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Abstract
Methods based on deep neural networks with a
massive number of layers and skip-connections
have made impressive improvements on sin-
gle image super-resolution (SISR). The skip-
connections in these complex models boost the
performance at the cost of a large amount of
memory. With the increase of camera resolu-
tion from 1 million pixels to 100 million pix-
els on mobile phones, the memory footprint of
these algorithms also increases hundreds of times,
which restricts the applicability of these models
on memory-limited devices. A plain model con-
sisting of a stack of 3×3 convolutions with ReLU,
in contrast, has the highest memory efficiency
but poorly performs on super-resolution. This
paper aims at calculating a winning initializa-
tion from a complex teacher network for a plain
student network, which can provide performance
comparable to complex models. To this end, we
convert the teacher model to an equivalent large
plain model and derive the plain student’s initial-
ization. We further improve the student’s perfor-
mance through initialization-aware feature distil-
lation. Extensive experiments suggest that the
proposed method results in a model with a com-
petitive trade-off between accuracy and speed at
a much lower memory footprint than other state-
of-the-art lightweight approaches.

1. Introduction
Single image super-resolution (SISR) pursues reconstruct-
ing a high-resolution (HR) image from a low-resolution
(LR) counterpart, which has been widely applied in mobile
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Figure 1. Speed, accuracy, and memory trade-off. The maxi-
mum memory footprint and the average inference time for up-
scaling 2× on LR image of size 960 × 540 with full precision on
PyTorch (Paszke et al., 2019) and Nvidia GTX 1080Ti are shown
above. Accuracy is estimated on B100 (Martin et al., 2001) ×2
dataset in terms of peak signal to-noise ratio (PSNR). The plain
model trained with our framework achieves performance compa-
rable to existing light-weighted models while requiring memory
comparable to FSRCNN.

phones, televisions, and cameras. With the great success of
deep neural networks, the pioneering work SRCNN (Dong
et al., 2016a) first used a three-layer convolutional neural
network (CNN) for SISR and outperformed conventional
approaches by large margins. After that, CNN-based SR
methods (Mei et al., 2020; Tai et al., 2017a; Niu et al.,
2020; Muqeet et al., 2020) consisting of deep networks with
sparse and dense skip-connections achieved impressive per-
formance. However, due to the high computational cost and
memory footprint, it is hard to utilize them for real applica-
tions such as mobile phones, televisions, and robots. Thus,
it is crucial to build lightweight SR models.

Conventional lightweight SR models generally focus on
reducing the computational cost or the number of parame-
ters. Therefore, they use global residual learning (Kim et al.,
2016a), residual groups (Ledig et al., 2017), residual dense
blocks (Zhang et al., 2018b), residual in residual architec-
ture (Zhang et al., 2018a), and channel splits (Hui et al.,
2019), which come at the cost of increased memory usage
or inference speed. Memory-efficient SR models use recur-
sive layers to reduce parameter counts (Tai et al., 2017a;
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Kim et al., 2016a) or adopt additional modules specific for
SISR (Ahn et al., 2018; Hui et al., 2019). These specially
designed or recursive architectures only reduce parameter
numbers and are unfriendly towards hardware (Du et al.,
2021). SRCNN (Dong et al., 2016a) and FSRCNN (Dong
et al., 2016b) are hardware-friendly and runtime memory-
efficient yield poor image quality.

Therefore, it is necessary to train a hardware-friendly net-
work with low memory usage, fast inference speed, and
high image quality. However, existing methods can not
train a plain model achieving performance comparable to
a complicated model. Therefore, we propose MemSR, an
effective framework for training a plain network in SISR.
Our algorithm transfers the teacher knowledge to the student
network by deriving an initialization from the teacher. Here,
we name it winning initialization.

To this end, we convert the teacher network with multi-
branch topology to an equivalent cumbersome plain model
and find a winning initialization for a lightweight student
from this plain model. Then we further improve the student
performance with a specialized feature distillation, where
the parameters in distillation are based on the winning ini-
tialization of the student.

We mainly exploit EDSR (Lim et al., 2017) as the teacher
structure since it is a well-known SISR model supported
by our framework. Experimental results demonstrate that
the winning initialization improves the plain model perfor-
mance by a large margin. To the best of our knowledge, our
framework is the first attempt to boost plain model perfor-
mance for SISR. To summarize, we make the following key
contributions:

• We present a novel framework that can effectively train
a plain model, resulting in a competitive PSNR-speed
trade-off compared to state-of-the-art lightweight SR
models and favorable memory-PSNR trade-off.

• We propose a distillation method coupled with student
initialization, which significantly surpasses conven-
tional SR distillation on plain models.

• We demonstrate the effectiveness of our framework
with extensive experiments on different scales of stu-
dents.

2. Related work
2.1. Single image super-resolution

With the promising performance achieved by applying deep
learning in SISR, methods based on convolutional neural net-
works (CNNs) have been the mainstream. The pioneering
work SRCNN (Dong et al., 2016a) directly applied a three-
layer convolutional neural network to the task. VDSR (Kim

et al., 2016b) employed skip-connections to learn the resid-
ual information between low-resolution images and high-
resolution images. EDSR (Lim et al., 2017) improved the
SRResNet (Ledig et al., 2017) by removing Batch Normal-
ization (Ioffe & Szegedy, 2015) and dramatically advanced
the SR performance. Inspired by DenseNet (Huang et al.,
2017), RDN introduced dense connections into SR network
structures and improved performance with fewer parame-
ters.

Recent methods apply sparse (Mao et al., 2016; Ledig et al.,
2017; Chu et al., 2020) or dense (Haris et al., 2018; Zhang
et al., 2018b; Tong et al., 2017) skip connections to prevent
the gradient vanishing problem and boost the performance
using attention mechanisms (Hu et al., 2018; Zhang et al.,
2019; Xiao et al., 2019; Mei et al., 2020; Zhao et al., 2020;
Muqeet et al., 2020) or advanced sub-block designs (Luo
et al., 2020; Niu et al., 2020). Although these models make
significant improvements quantitatively and qualitatively,
a massive number of parameters, expensive computational
cost, and a huge amount of memory footprint limit their
practice in the real world (Ahn et al., 2018).

Storage-efficient super-resolution methods (Kim et al.,
2016a; Li et al., 2019; Tai et al., 2017a;b) reuse the
parameters recursively to reduce the parameter number.
Computational-efficient methods utilize group convolu-
tions (Hui et al., 2018; Liu et al., 2021), depth-wise sep-
arable convolutions (Timofte et al., 2017), hierarchical
sub-blocks (Hui et al., 2019), knowledge distillation (He
et al., 2020; Gao et al., 2018), re-parameterization tech-
nique (Bhardwaj et al., 2021), or automated neural architec-
ture search (Chu et al., 2020) to design lightweight models.
However, these lightweight models are not friendly to hard-
ware, leading to slow inference speed in the application.
FSRCNN (Dong et al., 2016b) and SRCNN (Dong et al.,
2016a) have hardware-friendly network architectures, but
current SR methods can significantly outperform them. In
comparison, our method trains a hardware-friendly plain
network and achieves high performance at the same time.

2.2. Plain model training

There are some researches for training a high-performance
plain model. An initialization method (Xiao et al., 2018) pro-
posed for classification can train an extremely deep plain net-
work. However, the performance is no better than Vgg16 (Si-
monyan & Zisserman, 2015) on CIFAR-10 (Krizhevsky
et al.). A following work (Oyedotun et al., 2020) com-
bined several techniques to reach 74.6% accuracy on Ima-
geNet (Deng et al., 2009). Recently RepVGG (Ding et al.,
2021) significantly improved plain model performance with
a re-parameterization technique on classification and seg-
mentation, but not super-resolution. In this paper, we ex-
plore the efficient training method for plain models in SISR.
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2.3. Knowledge distillation

As a well-known method in deep learning, knowledge dis-
tillation was proposed by Hinton (Hinton et al., 2015) in
2015. Knowledge distillation uses a trained teacher model
to guide the training of a student model in order to enhance
the performance in tasks. Researchers have proposed vari-
ous methods to achieve this goal by transferring the knowl-
edge on logits (Hinton et al., 2015), feature maps (Romero
et al., 2015), attention (Zagoruyko & Komodakis, 2017),
metrics (Yu et al., 2019), and the relation between sam-
ples (Park et al., 2019). While there are hundreds of knowl-
edge distillation methods on the classification task, few can
be applied in the super-resolution. SRKD (Gao et al., 2018)
is the preliminary work applying knowledge distillation in
super-resolution. Nevertheless, it requires the teacher and
the student to use a specified network structure. PISR (Lee
et al., 2020) pre-trains the teacher with an auto-encoder
on the high-resolution image, makes a copy of the trained
teacher as the student, then uses adopts feature distillation to
improve the student’s performance. However, PISR requires
the teacher and the student to have the same structure.

3. Method
In this section, we describe the details of our proposed
framework. The framework consists of two stages: (1) We
derive the winning initialization for the plain student model
from a trained teacher model as shown in Figure 2. (2) Then
we fine-tune the student using feature distillation coupled
with the winning initialization.

3.1. Teacher structure

The backbone of the teacher follows the design of
EDSR (Lim et al., 2017), which is a stack of ResNet-like
blocks. We directly apply the pixel-shuffle (Shi et al., 2016)
operation in the up-sampling part to reduce the maximum
memory footprint. The backbone of the student model is ini-
tialized with the proposed method described in the following
subsections. In contrast to the backbone, the up-sampling
part of the student model is initialized with weights from
the up-sampling part in the teacher. More detailed teacher
structure can be found in the appendix.

3.2. Convert the teacher backbone to an equivalent
plain network

In order to convert the teacher backbone to an equivalent
plain network, we need to find a way to merge convolutions.

Notations. Denote the kernel and bias of convolution C
as K(C) and b(C), respectively. We use ∗ to denote the
convolution operation. When ∗ is used between a kernel
and a feature map, it is defined as applying a convolution

Figure 2. Overview of the initialization stage in our framework.
We convert the teacher model to an equivalent plain network. Then
we use the sampled teacher features to generate the pseudo stu-
dent features, and derive the student’s convolution kernel by our
algorithm. (Best viewed in color.)

with this kernel on the feature map. So we can express
applying a convolution C on a feature map F as C ∗ F or
K(C) ∗ F + b(C). We use Conv(Cout, Cin, k) to denote a
convolution with Cin input channels, Cout output channels,
kernel size k × k, and stride k

2 . The size of kernel and
bias of this convolution are Cout × Cin × k × k and Cout,
respectively. The kernel size of all convolutions in the paper
is odd.

We define the padh(X) operation on a t× t matrix X (when
X is a scalar, we regard it as t = 1) as applying zero-
padding with h−t

2 zeros on all edges.

We define the identity convolution ID := Conv(C,C,1) as
K

(ID)
i,i,:,: = 1,K

(ID)
others = 0,∀1 ≤ i ≤ C and b(ID) = 0,

which has the same output as input.

3.2.1. MERGE PARALLEL CONVOLUTIONS

Let A := Conv(C2, C1, ka), B := Conv(C4, C3, kb). We
will merge A and B into a convolution C where the output
of C is the concatenation of the output of A and B.

When the convolutions A and B have different inputs, we
define C := Conv(C2 + C4, C1 + C3,max{ka, kb}) as:

K
(C)
i,j,:,: =


padkC

(K
(A)
i,j,:,:) if i ≤ C2, j ≤ C1

padkC
(K

(B)
i−C2,j−C1,:,:

) if C2 < i,C1 < j

0 otherwise,
(1)

b(C) is the concatenation of b(A) and b(B).

When the convolution A and B share the same input (C1 =
C3), we construct C := Conv(C2 + C4, C1,max{ka, kb})
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as:

K
(C)
i,j,:,: =

{
padkC

(K
(A)
i,j,:,:) if i ≤ C2

padkC
(K

(B)
i−C2,j,:,:

) otherwise,
(2)

and the b(C) is the same as above.

3.2.2. MERGE 1×1 CONVOLUTION WITH THE
FOLLOWING CONVOLUTION

We define the bias-remove operation to ensure the correct-
ness of merging convolutions as below:

Let T := Conv(C2, C1, kt), and denote the input feature
map as F ∈ RN×C1×H×W . We use the following operation
to remove b(T ): Append a constant channel filled with 1 to
the front of F yielding F ′ ∈ RN×(C1+1)×H×W with

F ′
:,i,:,: =

{
1 if i = 1

F:,i−1,:,: otherwise.
(3)

Construct T ′ := Conv(C2, C1 + 1, kt) with kernel

K
(T ′)
:,i,u,v =


K

(T )
:,i,u,v if 1 < i

b(K) if i = 1, u = v = ⌈ kt
2
⌉

0 otherwise,

(4)

and no bias. It is easy to see K(T ) ∗ F + b = K(T ′) ∗ F ′.
We denote these operations as F ′ = one pad(F ), and T ′ =
bias rm(T ), respectively.

Let A := Conv(C2, C1, 1), the successive convolution
B := Conv(C3, C2, kb). Denote the input feature map to A
as F .

Lemma 3.1. We can construct a convolution C ′ :=
Conv(C3, C1 + 1, kb) with zero-bias as

K
(C′)
i,k,:,: =

{
padkb

(b
(B)
i ) +

∑C2

j=1 K
(A′)
j,1,1,1K

(B)
i,j,:,: if k = 1∑C2

j=1 K
(A′)
j,k,1,1K

(B)
i,j,:,: otherwise,

so that B ∗ (A ∗ F ) = C ′ ∗ F ′.

By Lemma 3.1, we can merge 1×1 convolution with the
following convolution. However, we must use a one pad op-
eration before feeding feature maps into each convolution in
the plain model. Luckily, this will not increase computation
significantly.

3.2.3. CONVERT THE TEACHER TO EQUIVALENT PLAIN
MODEL

In this subsection, we prove that networks with only non-
intersecting skip-connections and odd convolution kernel
size can be converted to plain networks. 1

1Proofs for propositions in this section can be found in the
appendix.

Figure 3. Illustration of converting models to plain networks. C
is the constant mentioned in Proposition 3.6. Step1: Convert
the skip connection into 1×1 convolutions. Step2: Merge the
convolutions with different kernel sizes. Step3: Merge neighboring
1×1 convolution and following convolution.

Definition 3.2. Plain model is a stack of convolution and
ReLU activation.
Definition 3.3. Models with an equivalent plain model are
convertible models.
Proposition 3.4. Plain models are convertible model.

Proposition 3.5. Stacks of Convertible Models are still a
Convertible Model.

Proposition 3.6. Let P be a convolution model with non-
intersecting skip-connections. Each element of the input
feature map to P is limited in [−C,C](C ∈ R+), then P is
a convertible model.

Proof. We use C1 to denote the input channel of P. First,
replace the add operation at the end of the skip connection
with an equivalent 1×1 convolution T = Conv(C1, 2C1, 1)

with K
(T )
i,i,:,: = 1,K

(T )
i,i+C1,:,:

= 1,K
(T )
others = 0, b(T ) = 0.

Next, substitute the skip connection with a series of identity
1×1 convolutions and add a constant C to the bias of the first
convolution, ensuring the feature map in skip-connections to
be non-negative. Then add −C to the bias of K to preserve
the output. Since the feature map in the skip connection
branch is non-negative, we can insert the ReLU activation
into the branch. In the end, merge the identity convolution
and the corresponding convolution.

With the above propositions, our EDSR-style teacher model
is a convertible model and can be converted.

3.3. Calculate the winning initialization for the student

We find the winning initialization of the student from the
equivalent plain teacher model in two steps. The first step
is to determine pseudo feature maps for the student. The
second step is to calculate the weights for the student with
these feature maps.
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For simplicity, we regard all activation layers in the teacher
and the student as identity layers. Commonly, this hypothe-
sis would introduce some disturbance to the results. How-
ever, extensive experiments show that the winning initializa-
tion is still useful for the student network.

Denote the post-activation feature maps after each convo-
lution in the backbone teacher model as F

(T )
0 , · · · , F (T )

n

and F
(S)
0 , · · · , F (S)

n for the student (where n is the num-
ber of layers in the teacher), where F

(T )
0 and F

(S)
0 is the

uniformly random sampled input data. Denote the con-
volution of the teacher model by C

(T )
1 , · · · , C(T )

n . Simi-
larly, C(S)

1 , · · · , C(S)
n are for the student’s convolution lay-

ers. Furthermore, n 1×1 convolutions mapping the student
features to the teacher features are denoted as M0, · · · ,Mn.
M0 is set to identity convolution since F

(S)
0 and F

(T )
0 are

the same.

Clearly, we have

C
(T )
i ∗ F (T )

i−1 = F
(T )
i , (5)

C
(S)
i ∗ F (S)

i−1 = F
(S)
i . (6)

We determine the pseudo feature map F
(S)
i at the ith (1 ≤

i ≤ n) layer via

F
(T )
i ≈ M (i) ∗ F (S)

i , (7)

using the decomposition Algorithm 1.

In Algorithm 1, the coefficient β is introduced to avoid
negative values in the pseudo student features, since all
post-activation features from the plain student model are
non-negative due to ReLU activation.

Along with equations 5, 6, 7 and convolution merge tech-
nique in subsection 3.2, we have

C
(T )
i ∗ F (T )

i−1 ≈ M (i) ∗ F (S)
i (8)

C
(T )
i ∗ (Mi−1 ∗ F (S)

i−1) ≈ M (i) ∗ (C(S)
i ∗ F (S)

i−1) (9)

Merge C
(T )
i and Mi−1 into H using the method in subsec-

tion 3.2. Let F (S)
i−1

′ = one pad(F (S)
i−1), H

′ = bias rm(H),

and C
(S)
i

′ = bias rm(C
(S)
i ). Then express above equation

as
H ′ ∗ F (S)

i−1
′ ≈ M (i) ∗ (C(S)

i
′ ∗ F (S)

i−1
′). (10)

Subtract H ′ from the bias of M (i) in the first channel, then
we can find an approximation for C(S)

i
′ by solving

H ′
:,:,u,v = M (i)

:,:,1,1C
(S)
i

′
:,:,u,v (11)

using least square algorithm.

Algorithm 1 Determination of M and Pseudo Student Fea-
tures

Input: Teacher feature map at ith layer F (T )
i , the channel

width ri of ith layer in student.
Reshape F

(T )
i from (n, ci, h, w) to (ci, n× h× w);

Calculate the mean value b for each row in F
(T )
i ;

U,Σ, V T = SVD(F
(T )
i − b);

F
(S)
i = Σ:ri,:ri(V

T ):ri,:;
K = U:,:ri ;
Apply mean-shift on the pseudo feature map to prevent
negative values.
for k = 1 to ri do

γ = −β mean(F (S)
i k,j where F

(S)
i k,j < 0);

F
(S)
i k,: = F

(S)
i k,: + γ;

for j = 1 to Ci do
bj = bj − γKj,k;

end for
end for
Reshape F

(S)
i from (ri, N ×H ×W ) to (N, ri, H,W );

Reshape K from (Ci, ri) to (Ci, ri, 1, 1);
Output: M (i) with K as the kernel and b as the bias,
F

(S)
i .

So far, we have demonstrated the winning initialization al-
gorithm for the student. With this initialization, the plain
student’s performance can be improved by a large margin
(from 25.31dB to 25.97dB PSNR on Urban100 (Huang
et al., 2015)). We propose the initialization-aware fea-
ture distillation to further boost student performance by
make use of M (i) (from 25.97dB to 25.99dB PSNR on
Urban100 (Huang et al., 2015)).

3.4. Initialization-aware feature distillation

As most feature distillation methods, we propose the fol-
lowing external loss to encourage the student to learn the
knowledge from the teacher:

Ldistill =
1

n

n∑
i=1

MSE(F (T )
i ,M (i) ∗ F (S)

i ), (12)

where MSE refers to the mean square error, and M (i) are
1×1 convolutions and initialized with weights from Algo-
rithm 1.

Same as existing works, the reconstruction loss is

Ltask =
1

HW

H∑
i=1

W∑
j=1

|Yij − Y S
ij |, (13)

where H,W is the picture size, Yij is the HR image and Y S
ij

is the SR image from student network.
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Learning from the teacher is different from learning from
the ground truth. So we apply an exponential decay to
prompt the student to learn from the teacher at the start of
the training and learn from ground-truth in the end. Overall,
we use the following loss to train the student network:

Ltotal = Ltask + λϵαLdistill, (14)

where ϵ = 10−5, α = #current iteration
#total iteration , and λ is the

coefficient for balancing two parts.

3.5. Dynamic student filter width

Inspired by VGG (Simonyan & Zisserman, 2015), the
computation-efficient design of the plain model need to
be thin in the early layers and wide in the later layers. One
way to determine suitable width for each layer is using auto-
matic neural network search (NAS). However, NAS usually
requires a large amount of computation power and time.
Our approach efficiently finds the suitable width by calcu-
lating the smallest student layer width that approximates the
teacher feature maps within limited error.

Denote the input and the results of algorithm 1 by F
(T )
i , r

and F
(S)
i ,M (i). Then we use binary search to find suitable

r that satisfies

∥M (i) ∗ F (S)
i − F

(T )
i ∥2

∥F (T )
i ∥2

≤ θ. (15)

In this way, we calculate the width for each layer. Ex-
periments show that this can achieve a better speed-PSNR
trade-off compared to the equal-width model. θ is either
0.05 or 0.14 in the main experiments.

4. Experiments
4.1. Experimental details

Datasets. We use the DIV2K (Agustsson & Timofte, 2017)
dataset to train our network, which includes 800 pairs of
LR and HR images and is widely used in image restoration
tasks. We evaluate our framework on standard benchmarks,
including Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2010), B100 (Martin et al., 2001), and Urban100 (Huang
et al., 2015).

Implementation details. The backbone of the teacher
network is the same as EDSR (Lim et al., 2017), while the
up-sampling part is directly using pixel-shuffle (Shi et al.,
2016) operation. There are two versions (S, M) of teacher
networks and three versions (S, M, X) of student networks of
different sizes. Only Plain-X uses the dynamic filter width
in subsection 3.5, and others use equal-width structure. The
teacher of Plain-S is Teacher-S, and the teacher of Plain-M
and Plain-X is Teacher-M. The details and more experiments
are available in the appendix.

Training. DIV2K is used as the training dataset. We ran-
domly crop HR patches of size 192 × 192 from the HR
images. LR patches are cropped from the corresponding
LR images by the scale factor. Standard data augmentation
(i.e. random rotation and horizontal flipping) are used as
with existing works (Hui et al., 2019; Lee et al., 2020; Lim
et al., 2017; Hui et al., 2018; Luo et al., 2020; Muqeet et al.,
2020). The teacher network is directly trained with random
initialization. For training plain student network with our
framework, we use β = 3 in Algorithm 1, C = 1000 in
Figure 3, λ = 0.3 in equation 14. All super-resolution mod-
els in this paper is trained with a batch size of 16 and 106

iterations in total. We use the Adam (Kingma & Ba, 2015)
with β1 = 0.9 and β2 = 0.999 as optimizer. For learning
rate, we use a one-cycle learning rate scheduler (Smith &
Topin, 2019) from PyTorch (Paszke et al., 2019) with max-
imum learning rate 2 × 10−4. All experiments using our
framework are repeated 4 times with global seeds 233, 234,
235, and 236.

Evaluation. We evaluate the performance of the super-
resolved images using peak signal to-noise ratio (PSNR)
and structure similarity index (SSIM) (Wang et al., 2004).
As with existing works (Ahn et al., 2018; Hui et al., 2019;
Dong et al., 2016b; Mei et al., 2020; Niu et al., 2020; Hui
et al., 2018; Muqeet et al., 2020) we calculate the values on
the luminance channel. No self-ensemble is used during the
evaluation. We also provide model size, FLOPs (a.k.a. Mult-
Adds), inference time, and maximum memory footprint
comparisons.

4.2. Ablation analysis

In this subsection, We present an ablation analysis on each
component of our framework. The structure of the teacher
network is Teacher-M and the structure of student network
is Plain-M. We report quantitative results in terms of the
average PSNR on standard benchmarks with the scale factor
of 4. In Table 1, we show the average PSNR of student
trained with different configurations of our framework. The
first row shows accuracy of directly training the plain student
network.

Winning Initialization (Init). To demonstrate the effect
of winning initialization from the teacher. We replace the
default initialization of convolutions in the student model
with our winning initialization. From the first and the second
row, we can see that our initialization significantly improves
the plain model’s performance. The PSNR of baseline on
Set5 increased by 0.5dB with only initialization changes
and no extra components or parameters.

Feature distillation (FD). We can see from the first and
third row that the distillation in section 3.4 can improve
the student performance as well, but is less effective than
the initialization. The second and the last row show that
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Table 1. Average PSNR of student networks trained with variants
of our framework on standard benchmarks.

Init FD FDInit Set5 Set14 B100 Urban100

× × × 31.59 28.24 27.32 25.32√
× × 32.09 28.54 27.53 25.97

×
√

× 31.83 28.39 27.44 25.67
×

√ √
31.82 28.40 27.44 25.67√ √

× 32.08 28.56 27.55 25.99√ √ √
32.10 28.57 27.55 25.99

Table 2. Quantitative results of the student network trained with
SRKD (Gao et al., 2018), FAKD (He et al., 2020), and PISR (Lee
et al., 2020). The average PSNR for ×4 scale factors on stan-
dard benchmarks are reported. Best and second best results are
highlighted and underlined.

Depth Method Set5 Set14 B100 Urban100

19

Baseline 31.593 28.237 27.315 25.320
SRKD 30.650 27.635 27.022 24.833
FAKD 31.609 28.246 27.326 25.342
PISR 31.219 28.043 27.182 25.057
Ours 31.884 28.432 27.464 25.698

35

Baseline 31.607 28.221 27.314 25.301
SRKD 31.405 28.122 27.243 25.161
FAKD 31.587 28.222 27.308 25.303
PISR 7.615 7.210 8.023 7.169
Ours 32.104 28.566 27.549 25.990

these two optimizations are not in conflict, and the winning
initialization is more important.

Initialization to Feature distillation (FDInit). To evaluate
the effect of FDInit in equation 12, we compare the train-
ing result with the case when using a random learn-able
convolution M . As the result on the third and the fourth
row, FDInit improves the distillation performance. The fifth
and last row show that FDInit also works when winning
initialization is adopted.

4.3. Comparison to existing training methods

4.3.1. COMPARISON TO OTHER SR DISTILLATION
METHODS

In this section, we compare the distillation result with ex-
isting distillation methods in super-resolution. Plain-S and
Plain-M are used as student network structures in distilla-
tion. From Table 2, we observe that PISR failed in Plain-M
due to gradient explosion problem in the pre-training stage.
Moreover, PISR performs poorly though it does not corrupt
in Plain-S. In all four datasets, our method far outperforms
the existing methods in the plain network distillation.

4.3.2. COMPARISON TO REPVGG

RepVGG (Ding et al., 2021) trains the plain network with
the re-parameterization technique and is effective in both

Table 3. Quantitative results of the student network using
RepVGG (Ding et al., 2021) training method. The average PSNR
for ×4 scale factors on standard benchmarks are reported. Best and
second best results are highlighted and underlined.

Student Method Set5 Set14 B100 Urban100

Plain-S

Baseline 31.59 28.24 27.32 25.32
RepVGG 30.44 27.52 26.85 24.52
RepVGG-bn-free 31.62 28.26 27.33 25.35
Ours 31.88 28.43 27.46 25.70

Plain-M

Baseline 31.61 28.22 27.31 25.30
RepVGG 30.60 27.61 26.92 24.55
RepVGG-bn-free 31.62 28.26 27.33 25.35
Ours 32.10 28.57 27.55 25.99

classification and segmentation tasks. Here we apply the
RepVGG technique in super-resolution by replacing each
convolution in the student network with the RepBlock struc-
ture in RepVGG and directly train the student network. As
the common-sense in super-resolution, batch normalization
will harm the performance (Lim et al., 2017). Thus, we re-
move the batch normalization in the RepVGG structure and
name it RepVGG-bn-free. As shown in Table 3, RepVGG-
bn-free vastly outperforms the RepVGG in super-resolution,
but RepVGG-bn-free still can not train a plain model well.

4.4. Comparison with baseline methods

4.4.1. QUANTITATIVE COMPARISON ON DATASETS

In Table 4, we compare the performance of our student
model with the state of the art on standard benchmarks
including Set5, Set14, BSD100 and Urban100, particularly
for efficient super-resolution methods (Dong et al., 2016a;
Ahn et al., 2018; Hui et al., 2018; 2019; Dong et al., 2016b;
Lim et al., 2017; Luo et al., 2020; Liu et al., 2020). 2

For a quantitative comparison, we report the average PSNR
and SSIM for upsampling factors of 2, 3, and 4, on
Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010),
B100 (Martin et al., 2001), and Urban100 (Huang et al.,
2015). We also report the number of model parameters, op-
erations (FLOPs), inference time on NVIDIA GTX 1080Ti,
maximum GPU memory footprint in PyTorch, required to
reconstruct a HR image of size 1920 × 1080.

As we can observe from this table that Plain-M trained with
the proposed framework only requires memories sightly
more than FSRCNN (Dong et al., 2016b) while outper-
forming it by a large margin in all cases. Furthermore,
compared to models with comparable performance and in-
ference speed, Plain-Xθ=0.14 and Plain-Xθ=0.05 only have
less than half of the maximum memory footprint. For ex-

2LatticeNet refers to the results given in
https://github.com/ymff0592/super-resolution/, which is re-
trained on DIV2K dataset and evaluated without self-ensemble.
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Table 4. Average PSNR/SSIM for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, BSD100, and Urban100. Best and second best
results are highlighted and underlined.

Scale Method Param. FLOPs Runtime Memory Set5 Set14 B100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Bicubic * * * * 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403
FSRCNN 24K 34G 13ms 368MB 37.00 / 0.9558 32.63 / 0.9088 31.53 / 0.8920 29.88 / 0.9020
Plain-M 1,219K 636G 158ms 420MB 37.99 / 0.9606 33.64 / 0.9184 32.19 / 0.8999 32.10 / 0.9284
Plain-Xθ=0.05 2,224K 1,180G 253ms 718MB 38.10 / 0.9609 33.71 / 0.9187 32.24 / 0.9004 32.31 / 0.9302
SRCNN 68K 144G 60ms 807MB 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946
IDN 577K 393G 138ms 916MB 37.83 / 0.9600 33.30 / 0.9148 32.08 / 0.8985 31.27 / 0.9196
EDSR 1,370K 713G 199ms 1,306MB 37.99 / 0.9604 33.57 / 0.9175 32.16 / 0.8994 31.98 / 0.9272
LatticeNet 765K 384G 178ms 1,710MB 38.06 / 0.9607 33.70 / 0.9187 32.20 / 0.8999 32.25 / 0.9288
RFDN 534K 279G 166ms 1,731MB 38.05 / 0.9606 33.68 / 0.9184 32.16 / 0.8994 32.12 / 0.9278
IMDN 694K 359G 150ms 1,813MB 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283
CARN 1,592K 503G 199ms 3,210MB 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256

×3

Bicubic * * * * 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349
FSRCNN 24K 30G 6ms 179MB 33.18 / 0.9140 29.37 / 0.8240 28.53 / 0.7910 26.43 / 0.8080
Plain-M 1,219K 285G 68ms 202MB 34.34 / 0.9269 30.31 / 0.8417 29.08 / 0.8048 28.10 / 0.8513
Plain-Xθ=0.05 2,379K 561G 116ms 341MB 34.47 / 0.9278 30.37 / 0.8426 29.13 / 0.8062 28.29 / 0.8552
IDN 577K 239G 61ms 435MB 34.11 / 0.9253 29.99 / 0.8354 28.95 / 0.8013 27.42 / 0.8359
RFDN 541K 125G 72ms 784MB 34.41 / 0.9273 30.34 / 0.8420 29.09 / 0.8050 28.21 / 0.8525
LatticeNet 765K 172G 79ms 787MB 34.40 / 0.9272 30.32 / 0.8416 29.10 / 0.8049 28.19 / 0.8513
SRCNN 68K 144G 60ms 807MB 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989
IMDN 703K 162G 65ms 822MB 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519
EDSR 1,555K 361G 101ms 1,160MB 34.37 / 0.9270 30.28 / 0.8417 29.09 / 0.8052 28.15 / 0.8527
CARN 1,592K 268G 102ms 1,950MB 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493

×4

Bicubic * * * * 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577
FSRCNN 24K 30G 4ms 111MB 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280
Plain-M 1,219K 162G 40ms 161MB 32.10 / 0.8938 28.57 / 0.7805 27.55 / 0.7352 25.99 / 0.7830
Plain-Xθ=0.14 1,259K 167G 41ms 168MB 32.14 / 0.8941 28.59 / 0.7810 27.56 / 0.7356 26.05 / 0.7845
Plain-Xθ=0.05 2,541K 337G 70ms 211MB 32.21 / 0.8950 28.63 / 0.7822 27.60 / 0.7369 26.17 / 0.7883
IDN 577K 185G 36ms 269MB 31.82 / 0.8903 28.25 / 0.7730 27.41 / 0.7297 25.41 / 0.7632
RFDN 550K 72G 43ms 457MB 32.24 / 0.8952 28.61 / 0.7819 27.57 / 0.7360 26.11 / 0.7858
LatticeNet 777K 98G 47ms 473MB 32.18 / 0.8943 28.61 / 0.7812 27.57 / 0.7355 26.14 / 0.7844
IMDN 715K 92G 38ms 476MB 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838
SRCNN 68K 143.6G 60ms 807MB 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221
EDSR 1,518K 257G 74ms 1,108MB 32.09 / 0.8938 28.58 / 0.7813 27.57 / 0.7357 26.04 / 0.7849
CARN 1,592K 205G 76ms 1,554MB 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837

ample, IMDN (Hui et al., 2019) requires 476MB memo-
ries and 38ms runtime to achieve the average PSNR of
26.04dB PSNR on Urban100 (Huang et al., 2015) for a
factor of 4. In contrast, Plain-Xθ=0.14 trained with the pro-
posed framework requires 41ms runtime and only 168MB
memories, achieving the average PSNR of 26.05dB. For an-
other example, Plain-Xθ=0.05 has faster runtime compared
to CARN (Ahn et al., 2018) and EDSR (Lim et al., 2017)
and outperforms them in all the cases. These demonstrate
the effectiveness of our approach to training a plain network.

Urban100:img092x4

Ground Truth FSRCNN

CARN EDSR

IMDN Plain-M(ours) Plain-X(ours)

SRCNN

VDSR

Figure 4. Visual comparisons with other SR methods on Urban100.

4.4.2. QUALITATIVE COMPARISON ON URBAN100

Figure 4 shows visual comparisons on the Urban100 dataset.
For the “img092” image from Urban100, we can see that
most of the compared methods failed to recover direction
and details. In contrast, Plain-X correctly recovers the direc-
tion and details outperforming others, which qualitatively
demonstrates the effectiveness of our framework.

5. Conclusion
This paper present a novel plain network training framework
for lightweight and accurate single image super-resolution.
We show with experiments that the plain network trained
with MemSR requires less than half the memory footprint
while having comparable performance and inference speed
compared to the state-of-arts in lightweight models. The de-
tailed analysis of each component of our framework demon-
strates the effectiveness of our approach.
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A. Proofs
A.1. Proof to Lemma 3.1

Proof. Let A′ = bias rm(A), F ′ = one pad(F ), and we
have B∗(A∗F ) = K(B)∗(K(A′)∗F ′)+b(B). ∀i ∈ [1, C3],

(K(B) ∗ (K(A′) ∗ F ′) + b(B)):,i,:,:

= b
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i +
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′
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by the definition of K(C′),

=
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K
(C′)
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:,k,:,:(Note that F ′
:,1,:,: = 1)

A.2. Proof to Proposition 3.4

Proof. The plain model itself is the equivalent plain. Thus
Plain models are convertible models according to the defini-
tion.

A.3. Proof to Proposition 3.5

Proof. We can convert convertible models to plain mod-
els and stack them up as a new plain model, which is a
convertible model by Proposition 3.4.

B. More discussion
B.1. The similarity between student and teacher

For investigating the knowledge transferred by winning ini-
tialization from the teacher to the student, we prepare three
types of the student model: (1) A directly trained plain
model. (2) A plain model trained with the winning initializa-
tion. (3) A plain model trained with the complete training
framework. Comparing model (1) and model (2) in Fig-
ure 5, we observe that the winning initialization transfer the
most knowledge from the teacher to the student. Comparing
model (2) and model (3), we find that when both the initial-
ization and the feature distillation are adopted, the student
model is more similar to the teacher model in deeper layers.
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Figure 5. The similarity between the teacher model and the student
model. The similarity is measured using centered kernel align-
ment (Kornblith et al., 2019) on the B100 (Martin et al., 2001).
The greater, the more similar.

B.2. Training curve of the wining initialization
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Figure 6. The training curve for a plain model with and without the
winning initialization evaluated on DIV2K (Agustsson & Timofte,
2017) validation set. Feature distillation is not adopted in both
cases.

In Figure 6, we can observe that the plain model with win-
ning initialization converges much faster than the common
plain model, which demonstrates the effectiveness of our
framework.

Table 5. Quantitative results of whether the student network uses
mean-shift in Algorithm 1 or not on standard benchmarks.

Init FD MST Set5 Set14 B100 Urban100
√

× × 32.030 28.519 27.521 25.914√
×

√
32.090 28.543 27.534 25.969√ √

× 32.095 28.561 27.546 25.963√ √ √
32.104 28.566 27.549 25.990
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Table 6. The average PSNR of student networks trained with dif-
ferent balance parameters λ on standard benchmarks with ×4 scale.

λ Set5 Set14 B100 Urban100

0.1 32.104 28.557 27.549 25.983
0.3 32.113 28.568 27.549 25.986
0.5 32.101 28.564 27.551 25.983
1.0 32.110 28.563 27.552 25.983
2.0 32.100 28.558 27.550 25.984

Table 7. The average PSNR of student networks trained with dif-
ferent parameters ϵ on standard benchmarks with ×4 scale.

ϵ Set5 Set14 B100 Urban100

1e-6 32.086 28.558 27.547 25.980
1e-5 32.120 28.571 27.550 25.999
1e-4 32.113 28.565 27.549 25.991
1e-3 32.072 28.546 27.541 25.955

B.3. Ablation of student mean-shift

In this subsection, we present an ablation analysis on the
mean-shift in Algorithm 1 of our framework. The structure
of the teacher network is Teacher-M, and the structure of the
student network is Plain-M. We report quantitative results
in terms of the average PSNR on standard benchmarks with
the scale factor of 4.

Mean-shift on the Student Feature (MST). MST improves
the performance on Set5 (Bevilacqua et al., 2012) by
0.06dB when only the winning initialization is applied by
comparing the first row and the second row in Table 5. The
third and fourth row shows that SMT still improves the
model performance on all benchmarks when both winning
initialization and feature distillation are adopted.

B.4. Hyper-parameters

In Table 6 and Table 7, we investigate the influence of two
main hyper-parameters used in our method: (1) the λ for
balancing two parts of the loss, and (2) the ϵ in Eq. 14. The
student network structure is Plain-M.

We validate a series of λ: 0.1, 0.3, 0.5, 1.0, and 2.0. As
shown in Table 6, the performance increases on Set5 as λ
gets smaller. But the performance gets worse on Urban100
when λ is too small. And it can be observed that 10−5 is the
best in Table 7.

B.5. Comparison to other initialization methods

For the winning initialization, we compare it with other con-
volution neural network initialization techniques. Table 10
shows that these initialization methods perform similarly in
SR. None of them can train a plain model well.

F
i
l
t
e
r
 
W
i
d
t
h

Layer Index

Figure 7. Filter width for each layer of Plain-X with different θ.

Table 8. Teacher Structures.

Name #features #resblocks

Teacher-S 64 8
Teacher-M 64 16
Teacher-L 100 16

Table 9. Student Structures.

Name #layers width

Plain-S 19 64
Plain-M 35 64
Plain-X 35 Dynamic
Plain-L 35 100

Table 10. Quantitative results of the student network using other
initialization methods when training Plain-M. The average PSNR
for different scale factors (2×, 3×, and 4×) on standard benchmarks.
Best results are highlighted.

Scale Method Set5 Set14 B100 Urban100

×4

He. Normal 31.59 28.21 27.31 25.29
He. Uniform 31.56 28.20 27.30 25.28
Xavier Normal 31.58 28.22 27.31 25.29
Xavier Uniform 31.55 28.21 27.30 25.28
Ours 32.1 28.57 27.55 26.00

×3

He. Normal 33.88 29.98 28.83 27.30
He. Uniform 33.86 29.97 28.83 27.29
Xavier Normal 33.88 29.99 28.84 27.32
Xavier Uniform 33.86 29.98 28.83 27.29
Ours 34.34 30.31 29.08 28.10

×2

He. Normal 37.59 33.20 31.92 31.09
He. Uniform 37.59 33.20 31.92 31.10
Xavier Normal 37.59 33.19 31.92 31.07
Xavier Uniform 37.59 33.18 31.91 31.05
Ours 37.99 33.64 32.19 32.00
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Table 11. Average PSNR for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, BSD100, and Urban100.

Scale Method Param. FLOPs Runtime Memory Set5 Set14 B100 Urban100

×2
plain-Xθ=0.14 935K 496G 134ms 547MB 37.98 33.60 32.17 32.04
Plain-L 3,005K 1,595G 324ms 641MB 38.08 33.71 32.23 32.28
SwinIR-S 878K 810G 2,877ms 2910MB 38.14 33.86 32.31 32.76

×3
Plain-Xθ=0.14 1106K 261G 65ms 264MB 34.37 30.30 29.09 28.13
Plain-L 3005K 712G 145ms 305MB 34.42 30.36 29.13 28.24
SwinIR-S 886K 360G 1,204ms 1,305MB 34.62 30.54 29.20 28.66

×4 Plain-L 3005K 402G 82ms 188MB 32.18 28.62 27.59 26.12
SwinIR-S 897K 205G 654ms 759MB 32.44 28.77 27.69 26.47

B100:78004x4

Ground Truth Bicubic FSRCNN

CARN EDSR IMDN Plain-M(ours) Plain-X(ours)

SRCNN VDSR

Urban100:img011x4

Ground Truth Bicubic FSRCNN

CARN EDSR IMDN Plain-M(ours) Plain-X(ours)

SRCNN VDSR

Urban100:img067x4

Ground Truth Bicubic FSRCNN

CARN EDSR IMDN Plain-M(ours) Plain-X(ours)

SRCNN VDSR

Figure 8. More qualitative comparisons on different datasets.

C. More details and experiments
C.1. Details of teacher structure and student structure

Tables 8 and 9 show the detail of student structures and
teacher structures. ‘#features’ indicate the filter width in the
backbone of the teacher. ‘#resblocks’ indicate the number
of residual blocks used in the EDSR-like teacher backbone.
‘#layers’ indicate the number of convolutional layers in the
student plain model, while ‘width’ stands for the filter width
in the student. Plain-X uses the dynamic filter width decided
by hyper-parameter θ mentioned in section 3.5 in the paper.
Figure 7 shows the filter width of each layer corresponding
to different θ. The ‘Teacher’ in the figure is the equivalent
plain network of Teacher-M.

C.2. More quantitative comparison

Table 11 provides the results for Plain-L and Plain-Xθ=0.14

in more cases.

C.3. More qualitative comparison

Figure 8 shows reconstruction examples on B100 (Martin
et al., 2001) and Urban100 (Huang et al., 2015) datasets us-
ing student networks. We can see that the student networks
trained with our framework provide comparable results com-
pared to other light-weighted models, consistent with the
quantitative results.


