
107

Dynamic Power and Energy Management for Energy Harvesting
Nonvolatile Processor Systems

KAISHENG MA and XUEQING LI, Dept. of Computer Science and Engineering,
The Pennsylvania State University
HUICHU LIU, Intel Labs, Intel Corporation
XIAO SHENG and YIQUN WANG, Dept. of Electronic Engineering, Tsinghua University
KARTHIK SWAMINATHAN, IBM T.J Watson Research Center
YONGPAN LIU, Dept. of Electronic Engineering, Tsinghua University
YUAN XIE, Dept. of Electrical and Computer Engineering, University of California at Santa Barbara
JOHN SAMPSON and VIJAYKRISHNAN NARAYANAN, Dept. of Computer Science and
Engineering, The Pennsylvania State University

Self-powered systems running on scavenged energy will be a key enabler for pervasive computing across the
Internet of Things. The variability of input power in energy-harvesting systems limits the effectiveness of
static optimizations aimed at maximizing the input-energy-to-computation ratio. We show that the resultant
gap between available and exploitable energy is significant, and that energy storage optimizations alone do
not significantly close the gap. We characterize these effects on a real, fabricated energy-harvesting system
based on a nonvolatile processor. We introduce a unified energy-oriented approach to first optimize the
number of backups, by more aggressively using the stored energy available when power failure occurs,
and then optimize forward progress via improving the rate of input energy to computation via dynamic
voltage and frequency scaling and self-learning techniques. We evaluate combining these schemes and show
capture of up to 75.5% of all input energy toward processor computation, an average of 1.54× increase
over the best static “Forward Progress” baseline system. Notably, our energy-optimizing policy combinations
simultaneously improve both the rate of forward progress and the rate of backup events (by up to 60.7% and
79.2% for RF power, respectively, and up to 231.2% and reduced to zero, respectively, for solar power). This
contrasts with static frequency optimization approaches in which these two metrics are antagonistic.

CCS Concepts: � Hardware → Renewable energy; Emerging architectures

Additional Key Words and Phrases: Nonvolatile processor, dynamic power and energy management, energy
harvesting, intermittent power supply

This project was supported by NSF Award ASSIST 1160483, 1500848, 1461698, and 1533933, Center for
Low Energy Systems Technology (LEAST), and China’s High-Tech Research and Development (863) Program
under contract 2013AA01320.
Authors’ addresses: K. Ma and X. Li (Corresponding Authors), Dept. of Computer Science and Engi-
neering, The Pennsylvania State University; emails: {kxm505, lixueq}@cse.psu.edu; H. Liu, Intel Labs,
Intel Corporation; email: huichu.liu@intel.com; X. Sheng and Y. Wang, Dept. of Electronic Engineering,
Tsinghua University; emails: {x-cheng12, wang-yq05}@mails.tsinghua.edu.cn; K. Swaminathan, IBM T.J
Watson Research Center; email: kvswamin@us.ibm.com; Y. Liu, Dept. of Electronic Engineering, Tsinghua
University; email: ypliu@tsinghua.edu.cn; Y. Xie, Dept. of Electrical and Computer Engineering, University
of California at Santa Barbara; email: yuanxie@ece.ucsb.edu; J. Sampson and V. Narayanan (Corresponding
Author), Dept. of Computer Science and Engineering, The Pennsylvania State University; emails: {sampson,
vijay}@cse.psu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1539-9087/2017/05-ART107 $15.00
DOI: http://dx.doi.org/10.1145/3077575

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

http://dx.doi.org/10.1145/3077575

107:2 K. Ma et al.

ACM Reference Format:
Kaisheng Ma, Xueqing Li, Huichu Liu, Xiao Sheng, Yiqun Wang, Karthik Swaminathan, Yongpan Liu,
Yuan Xie, John Sampson, and Vijaykrishnan Narayanan. 2017. Dynamic power and energy management for
energy harvesting nonvolatile processor systems. ACM Trans. Embed. Comput. Syst. 16, 4, Article 107 (May
2017), 23 pages.
DOI: http://dx.doi.org/10.1145/3077575

1. INTRODUCTION

Improvements in electronics integration, miniaturization, and power efficiency con-
tinue to stretch the boundaries of what constitutes a sufficient power envelope within
which to operate a computational platform. This trend is now fueling the emergence
of self-powered systems that harness ambient energy sources without reliance on
batteries. Such batteryless systems are attractive for ubiquitous deployment in the
emerging Internet of Things paradigm by eliminating reliance on the presence of, and
constant connection to, underlying power infrastructure and easing the restrictions
imposed when provisioning batteries and enabling their recharge and/or replacement.
These systems are particularly useful in applications where battery weight or bio-
compatibility is a design limiter. For example, the additional weight of a battery can
increase the payload beyond what can be embedded on insects.

A key challenge in designing batteryless electronics with energy-scavenged power
sources is the erratic and unreliable power supply derived from ambient sources. One
solution is to add an energy storage capacitor, such as a supercapacitor, to smooth the
power. Figure 1 shows an abstracted charging metaphor that highlights the key com-
ponents of the systems considered in this article, and Figure 2 illustrates an energy
trace harnessed from an RF power source stored in a capacitor, accounting for its leak-
age. Since the capacitor leaks, periods during which the power harnessed is less than
the leakage power causes the overall stored energy to decrease. Conversely, leakage
rates and size/weight restrictions bound the practical scale of capacitor volume, so the
capacitor may saturate and be unable to store additional energy during periods of high
input power.

Three key insights into the dynamics of energy storage in energy-harvesting systems
are as follows: First, over the highly varying input power ranges that these systems
must operate, they will frequently encounter both periods where the energy lost from
capacitive storage is greater than that replaced by energy harvesting and periods
where short-term increases in input power provide more energy than a practical ca-
pacitor can store. Second, the effects of capacitive leakage, finite capacitor storage,
charging losses, and other front-end power components are large enough to require
co-optimization when considering processor or other compute-engine optimizations for
these platforms. Third, as Figure 2 depicts, policy management of the power demand
at the processor, the load for this front end, provides substantial leverage in mitigat-
ing both capacitive underflow and overflow by changing the slope of energy consumed.
Changes in processor policies, such as dynamic voltage and frequency scaling (DVFS)
[6, 7, 19, 28, 30, 39], can also affect front-end efficiency: For example, since DC-DC
conversion losses depend on the difference in voltage, actively depleting or restoring
the energy storage capacitor to a particular voltage range will impact the efficiency of
the system in harvesting future power.

Recently, nonvolatile processors have been proposed [26, 27] as a means to help in-
sulate tasks executing on energy-harvesting platforms from power-level uncertainty.
Such processors provide architectural support in the form of nonvolatile logic ele-
ments to back up and recover the compute state instantly instead of having to rely
on traditional approaches based on checkpointing and rollback to ensure forward com-
putational progress on a given task. While the instant save and wakeup support in

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

http://dx.doi.org/10.1145/3077575

Dynamic Power and Energy Management for Energy Harvesting 107:3

Fig. 1. Plumbing analogy for energy harvesting and consumption.

Fig. 2. A comparison of energy input and consumption trails for a TV RF power trace.

nonvolatile processors mitigate the time delays associated with power outages, a sig-
nificant fraction of the input energy can still be wasted in saving state during outages
to the nonvolatile flip-flops. Consequently, techniques such as DVFS that may limit
the number of outage-associated backups can redirect the limited energy toward use-
ful computation, altering the observed overheads from nonvolatility. Conversely, these
techniques must be adapted to be aware of backup energy costs to properly optimize
for forward progress.

The focus of this article is to understand how the limited energy derived from a vary-
ing power supply source can be exploited to maximize the computational progress in a
nonvolatile processor. Nonvolatile processors offer distinct challenges and opportuni-
ties for optimizing forward progress under uncertain power budgets. Nonvolatile back-
ups, if invoked too frequently, incur high energy overheads that must be accounted for in
dynamic power policies, but also enable more aggressive speculative optimizations than
in volatile processors, such as risking depletion of energy stored in capacitors to perform
additional execution during power emergencies when history indicates a likely benefit.

Starting with measurements by perturbing the front end of the energy-scavenging
system using a fabricated nonvolatile processor system, we evaluate more complex
system-level changes using a validated simulator. Our results indicate that a combina-
tion of DC conversion circuitry tuning, capacitor optimizations, and processor frequency
and voltage setting policies both improves the rate of forward progress and reduces the
number of backup events (by up to 60.7% and 79.2% for RF power, respectively, and up
to 213.7% and reduced to zero, respectively, for solar power), in comparison to static
frequency optimization approaches.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:4 K. Ma et al.

The frequency scaling approach adopted in the work differs from traditional dynamic
frequency scaling (DFS), which is developed for processors with stable power supply.
Traditional DFS techniques adjust frequency to improve energy efficiency. They tune
the frequency according to workloads, trading off between quality of service and power
consumption. In an energy-harvesting NVP system, we target at maximum forward
progress, which is the amount of instructions committed while powered with specific
power profiles. Constrained by a very limited unstable power supply, instead of saving
energy, DFS used in this work is targeted at aggressively improving energy consump-
tion rather than storing it in capacitors to improve the proportion of energy spent on
real computation. And as far as we know, this is the first time that DFS is applied to
an energy-harvesting NVP system.

The contributions of this article include the following, and can be readily understood
using the charging analogy depicted in Figure 1:

• We tune the front end of the energy-scavenging system to harness the most energy
(water) by varying the size of the capacitor (tank) and reduce the DC losses (wastage
in connection from source to tank). We leverage nonvolatility aggressively to use the
stored energy even if the minimum backup energy threshold has been triggered.

• We show that any static frequency/voltage setting substantially underperforms dy-
namic approaches. In particular, we show that optimizing for forward progress in
an energy-harvested NVP system is distinct from optimizing for least power or least
energy per instruction (EPI).

• We dynamically tune the processor frequency and voltage (variable flow from the out-
put tap from the tank) as a function of the incoming power trace (flow of tap feeding
the tank) as well as the current capacitor voltage levels (tank storage) to maximize
the energy for computations and forward progress. We explore both purely reac-
tive and history-adaptive policies that consider the interplay of the various tradeoffs
among system component efficiencies to maximize the forward progress. While DVFS
is a well-studied technique, we show why and how a DVFS policy must be tuned for
the energy-harvesting NVP environment to account for the substantial impacts of
power front-end parameters and the energy costs imposed by both necessary and
unnecessary nonvolatile backups.

• We evaluate the combination of our proposed techniques and tunings across a set
of kernels and show substantial improvements (1.54×) in forward progress and the
correlated metric of the fraction of input energy applied to computation. Our proposed
mechanisms and policies increase the fraction of energy consumed by execution to
75.5%, up from only 7.5% in the baseline, statically optimized system, while reducing
backup/recovery energy overheads to less than 1% of input energy.

The rest of the article proceeds as follows:
Section 2 provides basic background on energy-harvesting platforms, including the

front-end harvesting circuits. Section 3 introduces our prototype NVP system that we
use for testing and validation. We then describe our modeling approach and the tun-
ing of front-end parameters. Section 4 proposes speculative optimizations to increase
forward progress. Section 5 discusses a set of dynamic power adaptations to better
match processor demand with varying supply. Section 6 evaluates our proposed poli-
cies across different RF and solar input scenarios and benchmarks. Section 7 discusses
related work, and Section 8 concludes the article.

2. BACKGROUND

In this section, a general system structure is introduced to harvest energy from am-
bient energy sources. In this section, we discuss the characteristics of these energy

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:5

Fig. 3. Baseline front-end circuits.

sources and introduce typical harvesting techniques. The factors that affect the energy
conversion efficiency are also discussed.

2.1. Systems Powered by the Ambient Energy Harvesting

With the development of the Internet of Things (IoT), smart cities, and implantable
and wearable applications, extremely low-power systems powered by ambient energy
sources are gaining popularity. Figure 3(a) shows an archetypical system structure
consisting of (1) an energy-harvesting and power management block; (2) a digital sig-
nal processor, which is usually implemented using a microcontroller unit (MCU); and
(3) the wired or wireless I/O interface. The capacity and implementation of the en-
ergy storage medium is also critical to the system design because it directly affects the
tradeoff between leakage and other overheads and the maximum stored power. In later
sections, this tradeoff will be discussed in more detail.

It is also noted that different energy sources require different energy harvesters for
power conversion. For example, the output of a solar cell is a DC signal, while the RF
signal and the output of piezoelectric-based systems are AC signals, which require an
extra AC-DC rectifier. When the input power is weak, the output voltage may also be
low and potentially require an extra DC-DC voltage booster [16].

In this article, the baseline energy-harvesting block is illustrated in Figure 3. Sub-
sequent to the AC-DC or DC-DC conversion, an MPP tracking (MPPT) interface is
employed to control the charging power for the highest power-conversion efficiency
from the energy harvester.

2.2. Ambient Energy Sources and Harvesting Techniques

Typical ambient energy sources for harvesting include vibration, thermal gradients,
and solar and other electromagnetic radiation. Research also indicates that im-
plantable biofuel cells (BFCs) are able to generate electric power from sugars found
in the body fluid of an insect [33]. A comprehensive comparison among these power

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:6 K. Ma et al.

sources can be found in found in articles by Kim et al. [14] and Roundy et al. [31]. In this
article, we focus on far-field RF harvesting and solar harvesting as the two key input
power environments. The key characteristics of these power sources relevant to this
work are that RF energy density varies widely but is generally present to some degree
independent of weather and obstacles in a typical range of 0.1nW/cm2 to 0.1mW/cm2,
while solar power, when present, can provide input power densities over 0.1W/cm2

harvestable at 10% to 40% efficiency [9].

3. MODELING, VALIDATION, AND TUNING

Our model for the nonvolatile platform is derived from a synthesizable Verilog model
for a fabricated, noncommercial research nonvolatile 8051 microprocessor. The Verilog
model has been extended with additional connections to control and effect our backup
and power management policies, as shown in Figure 5. The model also considers addi-
tional features beyond the processor itself, such as the settle-down time for an oscillator
from power-on (for clocking after a power failure) and energy per instruction, and in-
cludes a front-end circuit-level model that reflects capacitor charging efficiency, chip
leakage, and capacitor leakage at different power supply levels. All the parameters in
the model have been calibrated using measured results. The key differences between
the simulation platform and our fabricated design are the lack of support for the “En-
ergy Policy Unit,” “Clock Frequency Unit,” and dynamic voltage control mechanisms
(see Figure 5) in the fabricated chip.

The model takes as input a power trail and a test bench that drives a benchmark. The
outputs of the model are the number of backup operations, the number of clock cycles,
the number of finished instructions as forward progress, and the derived statistics from
the previous key metrics.

3.1. Baseline Testing Results

We built the PCB prototype shown in Figure 6 to calibrate the model. The NVP chip
is designed and fabricated in ROHM 130nm Ferroelectric CMOS technology [26, 38].
While the prototype lacks dynamic frequency and voltage control, we can test it at
various fixed voltage/frequency pairs. We tested a frequency range for the processor
from 32KHz (min VDD 0.76V) to max frequency 25MHz (min VDD 1.31V) in order to
cover both RF-powered and solar-powered operation. The minimum measured VDD is
limited by the retention time for ferroelectric nonvolatile memory. For the prototype’s
technology, dropping VDD further will yield insufficient retention time—only a few
milliseconds at 0.5V, which is shorter than some power failures [15, 38]. Due to the
limited power income of RF power, we only consider operating frequencies between
32kHz and 1MHz in the model for the 100-minute RF trace as used for Figure 4. For
system stability consideration, we ensure that sufficient energy is accumulated in the
capacitor for backup before running new instructions when the system starts/recovers.

We also compare several capacitor volumes to evaluate the efficiency of the front-
end circuit. The capacitors are all commercial products including Nichicon (4700uF)
and Rukycon (0.47uF, 4.7uF, 47uF, 470uF). Intuitively, increasing the capacitor size
would help reduce power interruptions and improve forward progress. In particular,
larger capacitors will less frequently be at maximum capacity and will be able to con-
tinue to accumulate power during upticks. Simulations show that the percentage of
time that capacitors are full decreases from 59.4% with 47uF to 31.5% with 4,700uF.
However, there are tradeoffs among physical size, capacity, leakage, and charging ef-
ficiency that result in larger capacitors, beyond a certain point, actually reducing the
percentage of incoming energy available for computation. Figure 4 shows the simula-
tion results over an RF trace with different capacitor sizes for the processor running
at 32kHz. Consequently, a larger capacitor exhibits a smaller capacitor voltage range

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:7

Fig. 4. Simulation results with a 470uF capacitor.

Fig. 5. NVP control block diagram.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:8 K. Ma et al.

Fig. 6. Testing platform.

but may not profit as efficiently from shorter energy boosts, even though it is expected
to reduce the percentage of time that incoming energy is wasted due to the capacitor
being full. And charging efficiency varies among capacitors according to start voltage
caused by remaining energy and end voltage, which is determined by capacitor size. In
summary, the traditional solution of simply increasing the capacitor size is of limited
benefit to the NVP system. For optimal operation, the capacitor size can neither be too
large nor too small. In our tests, the 470uF capacitor performed the best and is used
throughout the rest of this article.

The effects on forward progress stem from the following sources:

(1) Using larger capacitors increases the leakage. Most of the energy is consumed due
to the leakage of both the capacitor and the processor.

(2) The DC loss energy represents the energy consumed in the DC-DC charger and
the LDO. We assume a constant-voltage charger, which maintains a high voltage
to charge the capacitor until the capacitor is full. With a constant-voltage output,
the best efficiency of charging the capacitor from 0V to VDD is 50%; hence, at least
half of the energy is wasted. Since we also assume a single threshold in our system,
the system operates only if the energy detector level is higher than that threshold;
otherwise, the system is backed up and stopped. In this case, a large capacitor
remains in a higher energy state for a longer period of time. A small capacitor
using the same amount of energy has a wider range of voltage drop and results in
a higher DC loss, especially in the charger.

(3) The stored energy in a capacitor can be extracted only when the capacitor voltage
level reaches a certain threshold. A large capacitor requires a longer time to reach
the threshold voltage than the small capacitor. If an input power spike occurs in a
short period of time, the voltage of the large capacitor may not be able to charge
up to the threshold, and the power boost may be wasted with larger leakage or
only partly used. In contrast, a small capacitor can make use of such power boosts
better.

3.2. NVP Power Management Unit

The primary focus of this article is on proposed changes to the power management unit,
including support for dynamic voltage and frequency scaling. This unit contains three
main components: (1) Backup and Recovery Unit (BRU) [26], (2) Energy Policy Unit
(EPU), and (3) Clock Frequency and Voltage Tuning Unit (CVU). The BRU is triggered
by the EPU to initiate a backup or system restore. The BRU initiates transferring
the data from the volatile registers and flip-flops to their nonvolatile counterparts.
Specifically, it generates the sequence of state backup/recovery signals like “PC Start

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:9

Fig. 7. Key energy paths.

B/R” and “RegFile Start B/R,” and sets/resets the atomic flag. The BRU contains a flag
to indicate safe storage of the backup state [26]. This flag along with a double buffering
of the system state is used to ensure safe recovery in case the backup operation itself
is not successful.

The EPU is triggered through a “Warning” signal as long as the input power trace
is below a specified threshold. A weak power input is indicative of an imminent power
outage. Consequently, the EPU overrides the current CVU clock and voltage setting
policy and sets the NVP to the lowest possible frequency. This policy is selected to
delay the running out of stored energy in anticipating that the power interruption
is transient. The EPU also triggers the BRU if the stored energy reaches a critical
threshold to guarantee safe backup in nonvolatile memory.

The CVU controls the system clock and voltage except when the EPU overrides it.
The CVU implements the clock frequency policies discussed in Sections 5 and 5.5 based
on the input power profile as well as the stored energy. The clock is also gated through
the “gated clock control” signal via an AND gate to ensure reliable switching frequency.

The state machines implementing the control policies are triggered at 200ms gran-
ularities (for RF power sources) and 1 second (for solar power source) and contribute a
negligible power overhead to our system.

4. ENERGY-INCOME SPECULATION

The focus of this section is how to efficiently use the energy stored in the capacitor when
the power income is lower than the threshold of the system operation (optimizing
path3 in Figure 7). The optimization target thus balances improving the efficiency
of forward progress while maintaining a low number of power emergencies. While
the cost of nonvolatile backups is high, their nonvolatility means that speculative
approaches where misspeculation results in energy storage capacitor depletion can
still be practically considered.

We study the optimization of the storage-to-compute path from an energy storage
capacitor design perspective. Based on the results of these explorations, we propose a
more aggressive backup policy that can exploit the nonzero level of input power during
an impending outage to accomplish additional work prior to a backup operation, and
that can elide some backups entirely. This policy comes with the cost of potential
rollbacks (requiring double-buffering of checkpoints), but these prove to be very rare
in practice.

One source of inefficiency is the single, conservative, and absolute threshold for
initiating backup. While, in the worst case, input power could conceivably immediately
drop to zero at the time that minimum required backup energy is reached in the
capacitor, in practice, input power is not zero during the backup process: in such
situations input power is often merely not quite high enough to keep the capacitor

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:10 K. Ma et al.

Fig. 8. ALD prediction structure.

adequately charged. We consider a simple estimation strategy, Adaptive Learning
Detection (ALD), to capitalize on this difference, and potentially avoid backups
altogether in situations where the input power is oscillating around the minimal
threshold for operation. In particular, we aim to learn how much additional work
we are likely to be able to complete in addition to a backup, given the power input
at the time that a back-up would otherwise have been triggered. Using a simple
double-buffering checkpointing scheme with an additional valid bit, we can delay the
point of backup by the previously learned number of instructions and potentially avoid
a backup altogether if power recovers during the delay period.

Figure 8 shows the structure of ALD. We add detectors to both incoming power and
stored energy. The main function of the ALD is to decide when to output the “Start
backup” signal to the “Backup/Recovery State Machine.” Once an energy emergency
occurs, it performs a lookup into a 10-entry table of stored instruction counts, indexed
by the power income level, discretized into 10 levels. Ten entries are designed because
more entries lead to fine-grained instruction numbers. But the energy per instruction
varies across test benches, and even within one specific test bench, average energy
per instruction varies among different time slots, which may lead to more backup
failures. Fewer entries lead to a waste of efficiency because the instruction numbers, if
well trained, should be conservative, which means there is larger potential that more
instructions can be executed before backup operation. Considering the two boundaries,
a 10-entry solution is selected in this design. If no prediction exists (entry invalid),
it performs a backup immediately and then uses the amount of energy remaining
in the system after backup to estimate the number of additional instructions that
could have been executed using a conservative per-instruction cost model and stores
this value in the table. If a valid entry exists, the system attempts to delay backup
by the indicated number of instructions. To do this, it first marks the prediction as
invalid. Three outcomes are possible: First, the delay is conservative, but power is
still failing, and both the additional instructions and the backup occur. Second, the
delay is conservative, and sufficient energy storage levels are restored by the end of
the delay. In this case, no backup actually occurs. In either of the first two cases, the
valid bit is reset to true. Third, the delay was too aggressive, and energy is depleted
during either instruction execution or midbackup. In either failure, the more recent
of the two checkpoints will not have been marked valid at completion, and a rollback
to the previous checkpoint will occur. Since the prediction was marked invalid at the
beginning in NVM, this will persist across the power failure to remove a bad prediction.

By applying the ALD, we can achieve greater energy usage efficiency of the stored
energy. As long as the heuristic for mapping from postbackup energy to additional

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:11

Fig. 9. Evaluation of ALD.

instructions is calibrated conservatively, we can increase energy exploitation with neg-
ligible incurred rollbacks. Results in Figure 9 show that, for the RF trace, ALD can
improve the computation energy percentage from 7.5% to 12.1%, while maintaining
the same backup number of 13.

5. DYNAMIC POWER ADAPTATION

In this section, we propose power optimization policies to improve energy utilization
efficiency. For all of these policies, we attempt to adjust both the load and the relative
roles of the three paths in Figure 7 in order to maintain the energy level in the capacitor
between 70% and 90% of capacity. This range balances the ability to store additional
incoming energy during power upticks with front-end charging efficiency: for optimal
efficiency, the power consumption in path2 needs to be kept slightly below the input
power, leaving the rest of the power dissipated through path1 to compensate for ca-
pacitor leakage. We examine policies for both dynamic frequency scaling and dynamic
voltage and frequency scaling as the primary means to alter processor demand.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:12 K. Ma et al.

Fig. 10. Forward progress at frequency 672kHz.

In order to modulate the NVP power dissipation rate, the system frequency is set
dynamically to tune the dynamic power of the NVP chip (DFS). To enable DFS, multiple
oscillators and clock dividers are employed in this work. A simple two-stage process
selects and synchronizes across the generated clocks to select the proper frequency for
the NVP as the system clock in Figure 13. The latency of this MUX-based selection
among multiple clocks has a two-clock-cycle penalty, which is included in the model.

Later, we introduce three reactive polices, operating at coarse temporal granularity,
to dynamically set the optimum frequency for the NVP. We then examine improving
the decision latency for the policy engines by introducing a learning mechanism that
records previous mappings from power and storage levels to preferred operating fre-
quency. Reducing decision latency can improve the degree to which energy consumption
can track available energy. We limit ourselves to a coarse (200ms) granularity for our
policy engines because this is the finest granularity for some of our input traces. All
of the policies are evaluated on the 100-minute RF power trace. Finer granularities of
adaptation may provide additional opportunities to avoid waste but would also incur
greater overheads due to the more frequent operation of the policy engine itself.

All three of our DFS policies are only employed when the input power levels are
above a preferred threshold (2.55uW for RF, and 1.76mW for solar): our default state
is our lowest frequency, and DFS is employed primarily for upscaling to exploit ad-
ditional available energy, rather than downscaling to reduce consumption. At every
(200ms) timestep, excluding power emergencies, the policy engine will sample power
and storage inputs, will update its state, and may or may not effect a frequency change.

For comparison, the best forward progress with a static frequency for the 100-minute
RF trace occurs at 672kHz, as shown in Figure 10. The energy consumption details of
this static configuration are shown in Figure 10. Computation consumes 56.76% of the
input energy and there are 766 backups.

5.1. Linear Policy (LinP)

LinP increases the NVP frequency linearly by one step at a time, as seen in Figure 11(a)
(each time step is 200ms). To implement LinP, we need four energy-level detectors, with
equal energy gaps between EthH and EthM, EthM and EthL. LinP activates only when the
energy level is higher than EthH and continues to increase frequency until the energy

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:13

Fig. 11. Illustration of the three reactive policies.

Fig. 12. Simulation results for LinP, EBLP, and DTT.

storage capacitor energy is no longer greater than EthH, indicating power consumption
in excess of harvested power. The appropriate frequency should be near this point,
and LinP holds the frequency stable until energy levels pass EthM, at which point the
frequency is reduced by another step. If the energy level reaches the backup trigger,
Ethebackup, the frequency is reset to the minimum for the backup operation.

The results in Figure 12(c) indicate that LinP is able to increase the energy uti-
lization percentage from the (backup-minimizing) baseline of 7.5% to 36.7% with RoO
decreasing from 13 to 10. However, because of the large input power range, the LinP
sometimes fails to keep the energy stored in the capacitor between EthL and EthH. For
example, during the time region from 4,900s to 5,700s, the stored energy is always
full in Figure 12(c), which suggests that some input energy is wasted due to the fully
charged capacitor. The main reason is that the frequency tuning is not sufficiently fast
due to the linear increase and coarse granularity of the policy cycle with respect to the
volatility of input power.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:14 K. Ma et al.

Fig. 13. Dynamic Frequency Learning (DFL) Structure.

5.2. Exponential-bottom-linear Policy (EBLP)

To improve reactivity to input peaks, we consider the combined exponential/linear pol-
icy depicted in Figure 11(b). As with LinP, the EBLP only activates when storage levels
are above the optimal range. In EBLP, the frequency first increases exponentially. Once
it triggers the first indication of overshoot (stored energy decreased below threshold),
it will switch to an exponential-and-then-linear policy that transitions from exponen-
tial to linear at half the frequency of the first overshoot frequency. The reason that
the exponential increase policy is employed after the first misprediction rather than
jumping immediately to a new frequency is to restore capacitor energy drained during
the frequency overshoot.

The result in Figure 12(b) shows that the computation energy efficiency improves to
60.6%, which is higher than the efficiency of the best static frequency optimization for
“Forward Progress,” which yields 56.76%, as seen in Figure 10. At the same time, the
number of power outages reduces from 13 (best static frequency optimizing for backup
reduction) to 10. Thus, this dynamic approach is superior in both metrics compared to
systems statically optimized for either.

5.3. Double Threshold Tracking (DTT)

In DTT, two thresholds are incorporated as shown in Figure 11(c). The scaled frequency
first increases from a low value (e.g. “1” in Figure 11(c)), then increases linearly. Once
it triggers the high threshold EthH, the frequency decreases linearly. And the frequency
increases when EthL is triggered. The drawback is that the frequency is always changing
back and forth within a small range.

The results in Figure 12(c) show that the computation energy usage improves to
75.5%, a 1.33× improvement over the 56.76% execution consumption of the best static
“Forward Progress” baseline with an improvement in the rate of backups over the best
static backup-optimized baseline from 13 to 11.

5.4. Dynamic Frequency Learning (DFL)

LinP, EBLP, and DTT aim to predict the best frequency for NVP operation. Practically,
for a given <input power level, stored> energy level tuple, it is reasonable to assume
that the previously selected frequency for that pair is a good guess for the right fre-
quency to operate at now. Figure 13 shows a simple lookup-table-based mechanism for
predicting operating frequencies given power and energy levels. The 100 entry × 6 bit
(5+valid) table encodes the frequency selection value based on an <input power level,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:15

Fig. 14. Forward progress improvement with DVR ranging from 32kHz to 1MHz.

stored> tuple where each of the dimensions has 10 possible values. The goal of DFL
is to further reduce the search time required to move the system to a stable frequency
when there is additional exploitable energy.

DFL begins in a prediction state. If the tuple indexes an invalid entry, DFL enters a
search state, where the reactive policy is employed to locate a stable frequency. After
the second overshoot for LinP, or the equivalent points in DTT or EBLP are reached,
the selected frequency is set in the lookup table, and DFL returns to the prediction
state. If the valid bit is set for the currently indexed entry, the stored frequency is
selected directly, and the DFL enters its validation state. In validation mode, the DFL
checks, over the next 10s of timesteps (a fixed value from 10 to 20 timesteps, depending
on which of the three reactive policies is employed in the search state), whether the
input energy remains in the current discretized (10 levels) band; that is, the predicted
frequency is neither far too high nor far too low for exploiting the input scenario. If the
energy storage band changes in this period, the prediction is marked as invalid and
the DFL returns to the prediction state. Otherwise, after leaving the validation state,
the DFL returns to the prediction state.

As per the other policies, DFL operation is only triggered when total storage ca-
pacitor energy is above the optimal capacitor energy threshold, and the policy engine
operates only once per 200ms. We examine the potential of DFL separately for each
of LinP, EBLP, and DTT. Compared to reactive policies alone, DFL shows a forward
progress improvement (FPI) of 65.4% for LinP, 17.1% for EBLP, and 1.5% for DTT while
maintaining the exact same backups as the solely reactive policies. With DFL, any of
the three reactive policies can achieve 70+% conversion of input energy to computation
energy, whereas previously only DTT achieved this. However, the improvements over
baseline DTT are small.

5.5. DVFS

Dynamic Voltage Range (DVR) can also be applied with DFS as DVFS. This is a tra-
ditional way to save further power over DFS at the cost of some additional circuit
complexity. We can directly extend the previous frequency scaling techniques with com-
mensurate voltage scaling. Nonvolatile logic can add additional challenges to voltage
scaling, potentially limiting the dynamic range, as mentioned in Section 3. Figure 14
shows that moving from DFS to DVFS provides an additional 8% forward progress on
the RF power trace across most benchmarks.

6. UBIQUITOUS TESTING FOR DIFFERENT POWER PROFILES,
TEST BENCHES, AND ENERGY SOURCES

This section integrates all the policies discussed in earlier sections. Specifically, we
incorporate the learning from the ALD policy that determines how many instructions
can be executed before a backup needs to be triggered when the input power is less

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:16 K. Ma et al.

Fig. 15. Comparison of the forward progress for each policy with a 24-hour RF trail.

Fig. 16. Energy dissipation for each policy powered by RF.

than 2.55uW for RF (1.76mW for solar). We use LinP, EBLP, and DTT to aggressively
use the income power, but not to store them. We use DFL to speed up and learn the best
frequency setup. We use DVR for DVS to try to reduce the EPI, for a better forward
progress. These policies operate and update every 200ms.

6.1. Different RF Trail Results Analysis

In this subsection, we apply our policies to various power trails. In this section, we
test a 24-hour RF trail. Different trails can support different max frequencies due
to different power levels. For this trail, the max frequency that can be supported is
448kHz.

Figure 15 shows the forward progress comparison for different policies. The naive
DVFS policy works like this: there are several energy thresholds for the energy storage
capacitor. Once the stored energy level in the capacitor is high from normal, frequency
increases at a various step. And frequency reduces when the capacitor energy level is
low. If the energy level is very low, backup operation will be triggered. As we can see
in Figure 15 and Figure 18, neither low frequency nor high frequency can have the
highest forward progress. The forward progress with frequency and voltage at the best
energy per instruction (EPI) is definitely not the best. For a static frequency of 384kHz,
the best forward progress is achieved.

As shown in Figure 16, the portion of computation energy of “Best FP Freq.” (35%) is
lower than that of “High Freq.” (39%). This is because of the complex tradeoffs inside
the nonvolatile system, including the EPI.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:17

Fig. 17. (a) FPI over the best statically optimized forward progress baseline, and (b) RoO over the best
statically optimized least outage baseline, when warmed with RF training trace and tested on five different
power traces across eight benchmarks.

We combine ALD, LinP, EBLP, DTT, DFL, and DVR together and test the forward
progress. The solution of ALD+DTT+FL+DVR has the best forward progress, with 89%
forward progress improvement over the “Naive DVFS” solution, and the portion of
computation energy is as high as 76%, as shown in Figure 16. ALD+LinP+DFL+DVR
may work better when the input power level is even lower, because LinP policies step
the frequency slowly, which can provide enough time for the energy storage capacitor
to be filled. ALD+EBLP+DFL+DVR may work well when the power level is relatively
high, but with little variation. ALD+DTT+DFL+DVR may fit to scenarios in which the
power variation speed is low.

6.2. Training and Testing with Different RF Trails and Different Test Benches

We used five different RF traces, each 1,000 minutes long, while executing different
applications to investigate the effectiveness of these combined learning mechanisms for
different training and testing of DFL. The entries in the learning table were initialized
based on the training with an independent 100-minute-long RF trace while executing
FFT. Figure 17(a) shows the FPI of ALD+DTT+DFL+DVR as compared to a baseline
strategy that finds the best fixed frequency setting that maximizes forward progress
(by sweeping all possible fixed frequency operations of the processor). Furthermore,
the baseline strategy triggers backup conservatively when the energy storage capacitor
falls below the minimum energy required for successful backup operation. In contrast,
the backup strategy in ALD+DTT+DFL+DVR is aggressive in letting the energy storage
capacitor capacity go below the required threshold by predicting a nonzero power
input in the future. The aggressive policy uses the double-buffering approach (which
is invoked less than 1% in our simulations) as a way to ensure safe forward progress.
The ALD+DTT+DFL+DVR provides around 54% improvement in forward progress,
as shown in Figure 17(a). There is a variance in the improvement depending on the
workload. There are two reasons for this variance. The applications such as Zigbee

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:18 K. Ma et al.

Fig. 18. Sweep over 32 static frequencies showing the tradeoff between maximum forward progress and
minimum power outages (solar power trace).

Fig. 19. Training solar trails. Fig. 20. Testing solar trails.

that had a smaller energy per instruction benefited more from the aggressive adaptive
thresholds for backup energy. Further, the applications that exhibited similar energy
consumption as FFT benefited from the initial setting better than others. However, due
to the DFL, this difference is not large.

We also observe that the number of power outages using ALD+DTT+DFL+DVR are
lower than that obtained by the best fixed frequency setting that minimized the number
of outages (by sweeping all possible 32 fixed frequency operations of the processor). It
is observed from Figure 17(b) that the number of outages can be reduced due to the
aggressive backup.

Different test benches have different energy per instruction. This will lead to varia-
tions in ALD; for example, if the ALD is preheated by a test bench with small energy
per instruction, once a different test bench is applied in execution, there is a larger
potential that the backup operation will be a failure, which may bring huge rollback
penalties to the system. If ALD is preheated by a large energy per instruction test
bench while testing on a small energy per instruction test bench, the prediction is too
conservative, leading to energy waste. In the later evaluation section, the FFT-512 test
bench is used for preheating while testing on other test benches. This is to evaluate
the influence of energy per instruction crossing different test benches. For frequency
scaling, similar influence is observed.

6.3. Solar Trails Simulation Results and Discussion

We also use four different solar traces, each 1 day long, while executing different appli-
cations as shown in Figure 20. The entries in the learning table were initialized based
on the training with an independent solar trace, 1 day long, using FFT as workload as

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:19

Fig. 21. FPI over the best statically optimized forward progress baseline for solar power trails tested on
three different power traces across eight benchmarks.

shown in Figure 19. In the solar trace, the training was based on an input profile from
a sunny day, while testing was based on a cloudy day where power supply was more
erratic and variant. However, we observe that the proposed technique is still efficient
in enhancing FPI (see Figure 21). Further, we observed that due to the higher input
power of the solar power scavenging, the number of outages was drastically reduced
using the aggressive policy of ALD+DTT+DFL+DVR (in most cases to no outages).

6.4. Limitations and Future Work

The power and energy solution proposed by this work can improve the forward progress
remarkably with small area penalty. But more details need to be considered when im-
plementing the system; for instance, the glitches caused by the switching frequency
need to be handled by waiting some cycles. About future improvement, we are con-
sidering applying machine-learning algorithms to the control logic to help predict the
frequency.

7. RELATED WORK

7.1. Power Management Technique in Energy-Harvesting Systems

Power management is critical in energy-harvesting systems, not only due to the limited
maximum energy but also due to the spatiotemporal energy availability. The environ-
mental energy-aware task scheduling is first proposed by Kansal and Srivastava [13] by
using a distributed framework to adaptively learn its energy environment. Kansal et al.
[12] further develops a general model for achievable performance based on the envi-
ronmental energy resources. These techniques rely on a compiler or software interface
for task allocation across the sensor nodes. Recent circuit designs adopt the maximum
power tracking techniques to maximize the energy utilization efficiency for different
energy harvesters [3, 37]. Architectural power management has also been investigated
by Baglio et al. [1], Christmann et al. [4], Ma et al. [26], Vanhecke et al. [36], and Yaqub
et al. [42] with respect to the harvester circuit, the processor complexity, the source
of harvested energy, and energy storage devices. Different from the previous works,
our article focuses on the power/energy control path design for the dynamic frequency
setting. The innovation of the work is that it further pushed the traditional DVFS opti-
mization methods to new energy-harvesting applications with unstable power supply.
The target of the work concentrates on maximum forward progress, backup numbers,
and new evaluation parameters that are more meaningful from application and user
levels. Rather than just using logic, this work takes advantage of nonolatile memory
within the processor to design lookup tables, learning, and preheating techniques.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

107:20 K. Ma et al.

7.2. Energy Storage and Power System Design

Various energy storage components have been explored in various energy-harvesting
platforms [4, 29, 32] for enhancing system performance. Battery-assisted energy stor-
age is discussed by Christmann et al. [4] and Porcarelli et al. [29], and the superca-
pacitor is used in works by Sheng et al. [32]. Because the supercapacitor offers higher
energy efficiency compared to the battery [2], our work uses capacitance-based energy
storage. Our work also applies an adaptive capacitor sizing technique (multi-small-
cap) to mitigate higher leakage associated with the supercapacitor as compared to
the batteries. The new counter-intuitive insight brought by this work is that increas-
ing the capacitor volume alone does not help for maximum forward progress; on the
contrary, it may harm the forward progress due to large leakage. Another significant
reason to avoid a large capacitor is that it reduces the chances that the processor can
run because it always requires a large power burst to charge the capacitor to a mini-
mum start-up voltage threshold. These insights are novel and counter-intuitive for the
energy-harvesting system.

7.3. Application and Resource Scheduling

Resource management and application scheduling serve as another design aspect in
energy-harvesting systems to ensure the quality of service and system performance.
By using the workload management framework and runtime scheduling scheme,
Siegel et al. [34] and Xiang and Pasricha [40-41] investigate the intertask depen-
dency, reliability-to-performance optimization, and runtime variations. Our work fo-
cuses on the hardware-oriented implementations of energy policies to enhance the
forward progress, which isolates the programmers and operation system.

7.4. Dynamic Voltage and Frequency Scaling

The DVFS technique is well known in power-aware system design [6, 7, 19, 28, 30,
39]. Our DVFS policies must contend with more rapid power fluctuations and frequent
outright power failures than traditional systems employing DVFS, and be able to
optimize against backup overheads in a nonvolatile processor. In practice, our DVFS
policies are effectively used to boost performance in times of high-power availability to
more aggressively leverage the income power, rather than for improving EPI efficiency,
which has parallels with Intel’s TurboBoost 2.0 approach [10].

7.5. Most Recent Research Progress

During the review progress of this work, more research works have been proposed in
the nonvolatile processor domain. New devices [17] and corresponding circuits [8] have
been proposed to be applied to NVP [18]. Novel architectures have been explored for
NVP [20–25]. Ma et al. propose dynamic architecture to dynamically switch among
different architectures [22]. Beyond that, a machine-learning-based frequency and
resource scaling method is proposed to manage the power and energy of the whole sys-
tem [24]. A machine learning based dynamic frequency scaling and resource allocation
method is proposed [24]. Higher-level supports in compiler level [11], programming
language [5], and operating system level [35] are also explored.

8. CONCLUSION

The variability of input power in energy-harvesting systems limits the effectiveness
of static optimizations aiming to maximize the input-energy-to-computation ratio. We
apply some of the traditional schemes like DVFS to these new application scenarios
under energy harvesting an unstable power supply. In order to fit into the new ap-
plications, preheating, dynamic learning, and lookup table methods are introduced to

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

Dynamic Power and Energy Management for Energy Harvesting 107:21

overcome the gap between traditional techniques and unstable power supply. Aiming
at maximum forward progress, we introduce a unified energy-oriented approach to first
optimize the number of power failures, by more aggressively using the stored energy
available when power failure occurs, and then optimize forward progress via improving
the rate of input energy to computation via dynamic voltage and frequency scaling. We
evaluate combining these two schemes and show capture of up to 75.5% of all input
energy toward processor computation, an average of 1.54× forward progress increase
over the best static frequency case.

REFERENCES

[1] S. Baglio, C. Trigona, B. Ando, F. Maiorca, G. L’Episcopo, and A. Beninato. 2012. Energy harvesting from
weak random vibrations: Bistable strategies and architectures for MEMS devices. In Proceedings of the
2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS’12). 154–157.
DOI:http://dx.doi.org/10.1109/MWSCAS.2012.6291980

[2] V. A. Boicea. 2014. Energy storage technologies: The past and the present. Proc. IEEE 102, 11 (Nov.
2014), 1777–1794. DOI:http://dx.doi.org/10.1109/JPROC.2014.2359545

[3] D. Brunelli, L. Benini, C. Moser, and L. Thiele. 2008. An efficient solar energy harvester for wireless
sensor nodes. In Proceedings of the Design, Automation and Test in Europe, 2008 (DATE’08). 104–109.

[4] J. F. Christmann, E. Beigne, C. Condemine, and J. Willemin. 2010. An innovative and efficient en-
ergy harvesting platform architecture for autonomous microsystems. In Proceedings of the 2010
8th IEEE International NEWCAS Conference (NEWCAS’10). 173–176. DOI:http://dx.doi.org/10.1109/
NEWCAS.2010.5603747

[5] A. Colin and B. Lucia. 2016. Chain: Tasks and channels for reliable intermittent programs. In Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM, 514–530.

[6] X. Cui, K. Ma, K. Liao, N. Liao, D. Wu, W. Wei, R. Li, and D. Yu. 2013. A dynamic-adjusting threshold-
voltage scheme for FinFETs low power designs. In Proceedings of the 2013 IEEE International Sympo-
sium on Circuits and Systems (ISCAS’13). 129–132.

[7] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini. 2012. CoScale: Coordinating
CPU and memory system DVFS in server systems. In 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. 143–154.

[8] S. George, K. Ma, A. Aziz, X. Li, A. Khan, S. Salahuddin, M.-F. Chang, S. Datta, J. Sampson, S. Gupta,
and V. Narayanan. 2016. Nonvolatile memory design based on ferroelectric FETs. In Proceedings of the
53rd Annual Design Automation Conference. ACM, 118.

[9] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop. 2014. Solar cell efficiency tables
(version 43). Progress Photovoltaics Res. Appl. 22 (2014), 1–9.

[10] Intel. Intel R©turbo boost technology 2.0. http://www.intel.com/content/www/us/en/architecture-and-
technology/turbo-boost/turbo-boost-technology.html.

[11] M. Kaisheng, L. M. Julie, L. Xueqing, H. Zhixuan, and S. Jack. 2017. Evaluating tradeoffs in granularity
and overheads in supporting nonvolatile execution semantics. In The 18th International Symposium
on Quality Electronic Design (ISQED’17). Santa Clara.

[12] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. 2007. Power management in energy harvesting
sensor networks. ACM Trans. Embed. Comput. Syst. 6, 4, Article 32 (Sept. 2007).

[13] A. Kansal and M. B. Srivastava. 2003. An environmental energy harvesting framework for sensor
networks. In Proceedings of the 2003 International Symposium on Low Power Electronics and Design,
2003 (ISLPED’03). 481–486.

[14] S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris. 2014. Ambient RF
energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE
102, 11 (2014), 1649–1666.

[15] H. Kimura, Z. Zhong, Y. Mizuochi, N. Kinouchi, Y. Ichida, and Y. Fujimori. 2013. Highly reliable non-
volatile logic circuit technology and its application. In Proceedings of the 2013 IEEE 43rd International
Symposium on Multiple-Valued Logic (ISMVL’13). 212–218.

[16] X. Li, U. D. Heo, K. Ma, H. Liu, V. Narayanan, and S. Datta. 2014a. RF-powered systems using steep-
slope devices. In Proceedings of the IEEE International New Circuits and Systems Conference.

[17] X. Li, H. Liu, U. D. Heo, K. Ma, S. Datta, and V. Narayanan. 2014b. RF-powered systems using steep-
slope devices. In Proceedings of the New Circuits and Systems Conference (NEWCAS’14). 73–76.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

http://dx.doi.org/10.1109/MWSCAS.2012.6291980
http://dx.doi.org/10.1109/JPROC.2014.2359545
http://dx.doi.org/10.1109/NEWCAS.2010.5603747
http://dx.doi.org/10.1109/NEWCAS.2010.5603747
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

107:22 K. Ma et al.

[18] X. Li, K. Ma, S. George, J. Sampson, and V. Narayanan. 2016. Enabling internet-of-things: Opportunities
brought by emerging devices, circuits, and architectures. In 2016 IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC). 1–6.

[19] X. Lin, Y. Wang, S. Yue, N. Chang, and M. Pedram. 2013. A framework of concurrent task scheduling
and dynamic voltage and frequency scaling in real-time embedded systems with energy harvesting. In
Proceedings of the 2013 International Symposium on Low Power Electronics and Design (ISLPED’13).
IEEE Press, 70–75.

[20] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie, J. Shu, and H. Yang. 2015.
Ambient energy harvesting nonvolatile processors: From circuit to system. In Proceedings of the 52nd
Annual Design Automation Conference. ACM, 150.

[21] K. Ma, X. Li, S. Li, Y. Liu, J. J. Sampson, Y. Xie, and V. Narayanan. 2015a. Nonvolatile processor
architecture exploration for energy-harvesting applications. IEEE Micro 35, 5 (2015), 32–40.

[22] K. Ma, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan. 2015b. Dynamic machine learning based
matching of nonvolatile processor microarchitecture to harvested energy profile. In Proceedings of the
2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’15). IEEE, 670–675.

[23] K. Ma, X. Li, J. Sampson, Y. Liu, Y. Xie, and V. Narayanan. 2015c. Nonvolatile processor optimization
for ambient energy harvesting scenarios. In Proceedings of the 15th Non-Volatile Memory Technology
Symposium.

[24] K. Ma, X. Li, S. R. Srinivasa, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan. 2017. Spendthrift: Machine
learning based resource and frequency scaling for ambient energy harvesting nonvolatile processors. In
Proceedings of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,
678–683.

[25] K. Ma, X. Li, K. Swaminathan, Y. Zheng, S. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan. 2016.
Nonvolatile processor architectures: Efficient, reliable progress with unstable power. IEEE Micro 36, 3
(2016), 72–83.

[26] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan. 2015.
Architecture exploration for ambient energy harvesting nonvolatile processors. In Proceedings of the
2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA’15).
526–537.

[27] P. P. Mercier, S. Bandyopadhyay, A. C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan. 2013. A 78
pW 1 b/s 2.4 GHz radio transmitter for near-zero-power sensing applications. In 2013 Proceedings of
the ESSCIRC. 133–136. DOI:http://dx.doi.org/10.1109/ESSCIRC.2013.6649090

[28] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. 2012. Predicting performance impact of DVFS for
realistic memory systems. In Proceedings of the 45th Annual IEEE/ACM International Symposium on
Microarchitecture. 155–165.

[29] D. Porcarelli, D. Brunelli, M. Magno, and L. Benini. 2012. A multi-harvester architecture with hybrid
storage devices and smart capabilities for low power systems. In Proceedings of the 2012 International
Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM’12). 946–951.
DOI:http://dx.doi.org/10.1109/SPEEDAM.2012.6264533

[30] N. B. Rizv and A. Y. Zomaya. 2013. A Primarily Survey on Energy Efficiency in Cloud and Distributed
Computing Systems. arXiv preprint (Oct 2013).

[31] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey. 2004. Power sources for wireless sensor
networks. In Wireless Sensor Networks. Springer, 1–17.

[32] X. Sheng, C. Wang, Y. Liu, H. G. Lee, N. Chang, and H. Yang. 2014. A high-efficiency dual-channel
photovoltaic power system for nonvolatile sensor nodes. In Proceedings of the 2014 IEEE Non-Volatile
Memory Systems and Applications Symposium (NVMSA’14). 1–2.

[33] K. Shoji, Y. Akiyama, M. Suzuki, N. Nakamura, H. Ohno, and K. Morishima. 2014. Diffusion refueling
biofuel cell mountable on insect. In Proceedings of the 2014 IEEE 27th International Conference on
Micro Electro Mechanical Systems (MEMS’14). IEEE, 163–166.

[34] H. J. Siegel, B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, G. A. Koenig, S. Powers, M. Hilton,
R. Rambharos, G. Okonski, and S. Poole. 2014. Energy-aware resource management for computing
systems. In Proceedings of the 2014 Seventh International Conference on Contemporary Computing
(IC3’14). 7–12.

[35] J. Van Der Woude and M. Hicks. 2016. Intermittent computation without hardware support or pro-
grammer intervention. In Proceedings of 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16). 17.

[36] C. Vanhecke, L. Assouere, A. Wang, P. Durand-Estebe, F. Caignet, J.-M. Dilhac, and M. Bafleur. 2015.
Multisource and battery-free energy harvesting architecture for aeronautics applications. IEEE Trans-
actions on Power Electronics 30, 6 (2015), 3215–3227.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

http://dx.doi.org/10.1109/ESSCIRC.2013.6649090
http://dx.doi.org/10.1109/SPEEDAM.2012.6264533

Dynamic Power and Energy Management for Energy Harvesting 107:23

[37] C. Wang, N. Chang, Y. Kim, S. Park, Y. Liu, H. G. Lee, R. Luo, and H. Yang. 2014. Storage-less and
converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor.
In Proceedings of the 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC’14).
379–384.

[38] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and H. Yang. 2012. A 3us wake-up
time nonvolatile processor based on ferroelectric flip-flops. In ESSCIRC (ESSCIRC’12). 149–152.

[39] Q. Wu, V. J. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi, and D. W. Clark. 2005. A dynamic
compilation framework for controlling microprocessor energy and performance. In Proceedings of the
38th Annual IEEE/ACM International Symposium on Microarchitecture. 271–282.

[40] Y. Xiang and S. Pasricha. 2014a. Fault-aware application scheduling in low-power embedded systems
with energy harvesting. In Proceedings of the 2014 International Conference on Hardware/Software
Codesign and System Synthesis (CODES’14). Article 32, 10 pages.

[41] Y. Xiang and S. Pasricha. 2014b. A hybrid framework for application allocation and scheduling in
multicore systems with energy harvesting. In Proceedings of the 24th Edition of the Great Lakes
Symposium on VLSI. ACM, 163–168.

[42] R. Yaqub, H. Ahmad, N. A. Boakye-Boateng, and Y. Wang. 2012. System architecture for ride portfolio
reporting employing energy harvesting scheme. In Proceedings of the 2012 International Conference on
Connected Vehicles and Expo (ICCVE’12). 241–245. DOI:http://dx.doi.org/10.1109/ICCVE.2012.54

Received September 2015; revised November 2016; accepted January 2017

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 107, Publication date: May 2017.

http://dx.doi.org/10.1109/ICCVE.2012.54

