
PCONV: The Missing but Desirable Sparsity in DNN Weight Pruning for
Real-time Execution on Mobile Devices

Xiaolong Ma†1, Fu-Ming Guo†1, Wei Niu2, Xue Lin1, Jian Tang3,4,
Kaisheng Ma5, Bin Ren2, Yanzhi Wang1

1Northeastern University, 2College of William and Mary, 3DiDi AI Labs, 4Syracuse University, 5Tsinghua University
E-mail: 1{ma.xiaol, guo.fu}@husky.neu.edu, 1{xue.lin, yanz.wang}@northeastern.edu,

2wniu@email.wm.edu, 2bren@cs.wm.edu, 3tangjian@didiglobal.com, 5kaisheng@mail.tsinghua.edu.cn

Abstract
Model compression techniques on Deep Neural Network
(DNN) have been widely acknowledged as an effective way
to achieve acceleration on a variety of platforms, and DNN
weight pruning is a straightforward and effective method.
There are currently two mainstreams of pruning methods rep-
resenting two extremes of pruning regularity: non-structured,
fine-grained pruning can achieve high sparsity and accuracy,
but is not hardware friendly; structured, coarse-grained prun-
ing exploits hardware-efficient structures in pruning, but suf-
fers from accuracy drop when the pruning rate is high. In this
paper, we introduce PCONV , comprising a new sparsity di-
mension, – fine-grained pruning patterns inside the coarse-
grained structures. PCONV comprises two types of sparsi-
ties, Sparse Convolution Patterns (SCP) which is generated
from intra-convolution kernel pruning and connectivity spar-
sity generated from inter-convolution kernel pruning. Essen-
tially, SCP enhances accuracy due to its special vision prop-
erties, and connectivity sparsity increases pruning rate while
maintaining balanced workload on filter computation. To de-
ploy PCONV , we develop a novel compiler-assisted DNN in-
ference framework and execute PCONV models in real-time
without accuracy compromise, which cannot be achieved
in prior work. Our experimental results show that, PCONV
outperforms three state-of-art end-to-end DNN frameworks,
TensorFlow-Lite, TVM, and Alibaba Mobile Neural Network
with speedup up to 39.2×, 11.4×, and 6.3×, respectively,
with no accuracy loss. Mobile devices can achieve real-time
inference on large-scale DNNs.

Introduction
Deep neural network (DNN) has emerged as the fundamen-
tal element and core enabler in machine learning applica-
tions due to its high accuracy, excellent scalability, and self-
adaptiveness (Goodfellow et al. 2016). A well trained DNN
model can be deployed as inference system for multiple ob-
jectives, such as image classification (Krizhevsky, Sutskever,
and Hinton 2012), object detection (Ren et al. 2015), and
natural language processing (Hinton, Deng, and Yu 2012).
However, the state-of-art DNN models such as VGG-16 (Si-
monyan and Zisserman 2014), ResNet-50 (He et al. 2016)
†These authors contributed equally.
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and MobileNet (Howard et al. 2017) involve intensive com-
putation and high memory storage, making it very challeng-
ing to execute inference system on current mobile platforms
in a real-time manner.

Recently, high-end mobile platforms are rapidly over-
taking desktop and laptop as primary computing devices
for broad DNN applications such as wearable devices,
video streaming, unmanned vehicles, smart health de-
vices, etc. (Philipp, Durr, and Rothermel 2011)(Lane et al.
2015)(Boticki and So 2010). Developing a real-time DNN
inference system is desirable but still yield to the limited
computation resources of embedded processors on a mo-
bile platform. Multiple end-to-end mobile DNN acceleration
frameworks, such as TVM (Chen et al. 2018), TensorFlow-
Lite (TFLite) (Ten ) and Alibaba Mobile Neural Network
(MNN) (Ali ), have been developed. However, the inference
time of large-scale DNNs (e.g., 242ms inference time using
TVM on Adreno 640 GPU with VGG-16) is still far from
real-time requirement.

In order to mitigate the challenge brings by the DNN’s
bulky computation and achieve the goal of real-time in-
ference, it is necessary to consider algorithm-level innova-
tions. Various DNN model compression techniques are stud-
ied, among which weight pruning (Han, Mao, and Dally
2015)(Mao et al. 2017)(Dai, Yin, and Jha 2017)(Wen et
al. 2016)(He, Zhang, and Sun 2017) can result in a no-
table reduction in the model size. Early work (Han, Mao,
and Dally 2015) on non-structured weight pruning (fine-
grained) prunes weights at arbitrary location, resulting in
a sparse model to be stored in the compressed sparse col-
umn (CSC) format. It leads to an undermined processing
throughput because the indices in the compressed weight
representation cause stall or complex workload on highly
parallel architectures (Han, Mao, and Dally 2015)(Wen et al.
2016). On the other hand, structured weight pruning (Wen
et al. 2016) (coarse-grained) is more hardware friendly. By
exploiting filter pruning and channel pruning, the pruned
model is more regular in its shape, which eliminates the
storage requirement in weight indices. However, it is ob-
served that structured pruning hurts accuracy more signifi-
cantly than non-structured sparsity.

It is imperative to find a new granularity level that
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can satisfy high accuracy demand as well as regularity in
DNN model structure. We make the observation that non-
structured and structured pruning are two extremes of the
full design space. The two missing keys are: (i) Find a
new, intermediate sparsity dimension that can fully lever-
age both the high accuracy from fine-grained model and
high regularity level from coarse-grained model; (ii) Find
the corresponding (algorithm-compiler-hardware) optimiza-
tion framework which can seamlessly bridge the gap be-
tween hardware efficiency and the new sparsity dimen-
sion. To address the above problems, this paper proposes
PCONV , comprising (a) a new sparsity dimension that ex-
ploits both intra-convolution and inter-convolution kernel
sparsities, exhibiting both high accuracy and regularity, and
revealing a previously unknown point in design space; and
(b) a compiler-assisted DNN inference framework that fully
leverages the new sparsity dimension and achieves real-time
DNN acceleration on mobile devices.

In PCONV , we call our intra-convolution kernel pruning
pattern pruning and inter-convolution kernel pruning con-
nectivity pruning. For pattern pruning, a fixed number of
weights are pruned in each convolution kernel. Different
from non-structured weight pruning, pattern pruning pro-
duces the same sparsity ratio in each filter and a limited
number of pattern shapes. Essentially, our designed patterns
correspond to the computer vision concept of key convolu-
tion filters, such as Gaussian filter for smoothing, Laplacian
of Gaussian filter for smoothing and sharpening. For connec-
tivity pruning, the key insight is to cut the connections be-
tween certain input and output channels, which is equivalent
to removal of corresponding kernels, making filter “length”
shorter than original model. With connectivity pruning, we
further enlarge compression rate and provide greater DNN
acceleration potential, while maintaining balanced workload
in filter-wise computation of DNNs. Pattern and connectiv-
ity pruning can be combined at algorithm level and acceler-
ated under the unified compiler-assisted acceleration frame-
work. For our advanced compiler-assisted DNN inference
framework, we use execution code generation which con-
verts DNN models into computational graphs and applies
multiple optimizations including a high-level, fine-grained
DNN layerwise information extraction, filter kernel reorder
and load redundancy elimination. All design optimizations
are general, and applicable to both mobile CPUs and GPUs.

We demonstrate that pattern pruning consistently improve
model accuracy. When combined with connectivity pruning,
the results still outperform current DNN pruning methods,
both non-structured and structured weight pruning. In Sec-
tion “Accuracy Analysis”, we show PCONV is the most de-
sirable sparsity among current prune-for-acceleration works.
We also deploy PCONV model on our compiler-assisted mo-
bile acceleration framework and compare with three state-
of-art frameworks on mobile CPU and GPU, TensorFlow
Lite, TVM, and MNN, using three widely used DNNs,
VGG-16, ResNet-50, and MobileNet-v2 and two benchmark
datasets, ImageNet and CIFAR-10. Evaluation results show
that PCONV achieves up to 39.2× speedup without any ac-
curacy drop. Using Adreno 640 embedded GPU, PCONV
achieves an unprecedented 19.1 ms inference time of VGG-
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Figure 1: Overview of different weight pruning dimensions.

16 on ImageNet dataset. To the best of our knowledge, it is
the first time to achieve real-time execution of such repre-
sentative large-scale DNNs on mobile devices.

Background
DNN Model Compression
DNN model compression is a promising method to remove
redundancy in the original model. It targets on the pur-
pose that inference time can be reduced if fewer weights
are involved in the computation graph. The weight pruning
method acts as a surgeon to remove the inherently redun-
dant neurons or synapses. As Figure 1 shows, two main ap-
proaches of weight pruning are the general, non-structured
pruning and structured pruning, which produce irregular and
regular compressed DNN models, respectively.

Non-structured pruning: Early work is (Han, Mao, and
Dally 2015), in which an iterative, heuristic method is used
with limited, non-uniform model compression rates. Flour-
ished by (Zhang et al. 2018) and (Ren et al. 2019) with the
powerful ADMM (Boyd et al. 2011) optimization frame-
work, non-structured pruning achieves very high weight re-
duction rate and promising accuracy. However, for compiler
and code optimization, irregular weight distribution within
kernels requires heavy control-flow instructions, which de-
grades instruction-level parallelism. Also, kernels in differ-
ent filters have divergent workloads, which burdens thread-
level parallelism when filters are processed through multi-
threading. Moreover, irregular memory access causes low
memory performance and thereby execution overheads.

Structured pruning: This method has been proposed
to address the index overhead and imbalanced workload
caused by non-structured pruning. Pioneered by (Wen et al.
2016)(He, Zhang, and Sun 2017), structured weight pruning
generates regular and smaller weight matrices, eliminating
overhead of weight indices and achieving higher accelera-
tion performance in CPU/GPU executions. However, it suf-
fers from notable accuracy drop when the pruning rate in-
creases.

Patterns in Computer Vision
Convolution operations exist in different research areas for
an extended period of time, such as image processing, signal
processing, probability theory, and computer vision. In this



work, we focus on the relationship between conventional
image processing and state-of-art convolutional neural net-
works in the usage of convolutions. In image processing, the
convolution operator is manually crafted with prior knowl-
edge from the particular characteristics of diverse patterns,
such as Gaussian filter. On the other hand, in convolutional
neural networks, the convolution kernels are randomly ini-
tialized, then trained on large datasets using gradient-based
learning algorithms for value updating.

(Mairal et al. 2014) derived a network architecture named
Convolutional Kernel Networks (CKN), with lower accu-
racy than current DNNs, thus limited usage. (Zhang 2019)
proposed to apply the blur filter to DNNs before pooling to
maintain the shift-equivalence property. The limited prior
work on the application of conventional vision filters to
DNNs require network structure change and do not focus
on weight pruning/acceleration, thus distinct from PCONV .

DNN Acceleration Frameworks on Mobile
Platform
Recently, researchers from academia and industry have in-
vestigated DNN inference acceleration frameworks on mo-
bile platforms, including TFLite (Ten ), TVM (Chen et
al. 2018), Alibaba Mobile Neural Network (MNN) (Ali ),
DeepCache (Xu et al. 2018) and DeepSense (Yao et al.
2017). These works do not account for model compression
techniques, and the performance is far from real-time re-
quirement. There are other researches that exploit model
sparsity to accelerate DNN inference, e.g., (Liu et al. 2015),
SCNN (Parashar et al. 2017), but they either do not target
mobile platforms (require new hardware) or trade off com-
pression rate and accuracy, thus having different challenges
than our work.

Motivations
Based on the current research progress on DNN model
compression vs. acceleration, we analyze and rethink the
whole design space, and are motivated by the following three
points:

Achieving both high model accuracy and pruning
regularity. In non-structured pruning, any weight can be
pruned. This kind of pruning has the largest flexibility, thus
achieves high accuracy and high prune rate. But it is not
hardware-friendly. On the other hand, structured pruning
produces hardware-friendly models, but the pruning method
lacks flexibility and suffers from accuracy drop. Our motiva-
tion is to use the best of the above two sparsities. To achieve
that, we introduce a new dimension, pattern-based sparsity,
revealing a previously unknown design point with high ac-
curacy and structural regularity simultaneously.

Image enhancement inspired sparse convolution pat-
terns. The contemporary DNN weight pruning methods
originate from the motivation that eliminating redundant in-
formation (weights) will not hurt accuracy. On the other
hand, these pruning methods scarcely treat pruning as a spe-
cific kind of binary convolution operator, not to mention
exploiting corresponding opportunities. Along this line, we
find that sparse convolution patterns have the potential in
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Figure 2: Illustration of pattern pruning and connectivity
pruning.

enhancing image quality thanks to its special vision proper-
ties. Motivated by the fact that sparse convolution patterns
can potentially enhance image quality, we propose our care-
fully designed patterns which are derived from mathematical
vision theory.

Compiler-assisted DNN inference framework. With the
higher accuracy enabled by fine-grained pruning patterns,
the key question is how to re-gain similar (or even surpass)
hardware efficiency as coarse-gained structured pruning. We
take a unique approach and design an optimized, compiler-
assisted DNN inference framework to close the performance
gap between full structured pruning and pattern-based prun-
ing.

Theory of Sparse Convolution Patterns (SCP)
Let an image with resolution H × W be represented by
X ∈ RH×W×3. An L−layer DNN can be expressed as a
feature extractor FL(FL−1(. . .F1(X) . . .)), with layer in-
dex l ∈ {1, . . . , L}. Inside the DNN, each convolutional
layer is defined as Fl(Xl) ∈ RHl×Wl×Fl×Cl , with filter
kernel shape Hl ×Wl, number of filters Fl and number of
channels Cl.

Besides treating pruning as a redundant information re-
moval technique, we consider it as incorporating an addi-
tional convolution kernel P to perform element-wise mul-
tiplication with the original kernel. P is termed the Sparse
Convolution Pattern (SCP), with dimension Hl × Wl and
binary-valued elements (0 and 1). Specific SCPs fit the
mathematical vision theory well according to our follow-
ing derivation. Based on the mathematical rigority, we pro-
pose the novel pattern pruning scheme, i.e., applying SCPs
to convolution kernels. As illustrated in Figure 2, the white
blocks denote a fixed number of pruned weights in each ker-
nel. The remaining red blocks in each kernel have arbitrary
weight values, while their locations form a specific SCP Pi.
Different kernels can have different SCPs, but the total num-
ber of SCP types shall be limited.

In order to further increase the pruning ratio and DNN
inference speed, we can selectively cut the connections be-
tween particular input and output channels, which is equiva-
lent to the removal of corresponding kernels. This is termed
connectivity pruning. Connectivity pruning is illustrated in
Figure 2, with gray kernels as pruned ones. The rationale
of connectivity pruning stems from the desirability of local-
ity in layerwise computations inspired by human visual sys-



tems (Yamins and DiCarlo 2016). It is a good supplement
to pattern pruning. Both pruning schemes can be integrated
in the same algorithm-level solution and compiler-assisted
mobile acceleration framework.

The Convolution Operator
In conventional image processing, a convolution operator is
formally defined by the following formula, where the output
pixel value g(x, y) is the weighted sum of input pixel values
f(x, y), and h(k, l) is the weight kernel value

g(x, y) =
∑
k,l

f(x+ k, y + l)h(k, l) (1)

This formula could transform to

g(x, y) =
∑
k,l

f(k, l)h(x− k, y − l) (2)

Then we derive the notation of convolution operator as:
g = f ∗ h (3)

Convolution is a linear shift-invariant (LSI) operator, sat-
isfying the commutative property, the superposition property
and the shift-invariance property. Additionally, convolution
satisfies the associative property following the Fubini’s the-
orem.

Sparse Convolution Pattern (SCP) Design
Our designed SCPs could be transformed to a series of steer-
able filters (Freeman and Adelson 1991), i.e., the Gaussian
filter and Laplacian of Gaussian filter, which function as im-
age smoothing, edge detection or image sharpening in math-
ematical vision theory.

Gaussian filter: Consider a two-dimensional Gaussian
filter G:

G(x, y, σ) =
1

2πσ2
e
− x

2+y2

2σ2 (4)

x and y are input coordinates, and σ is standard deviation
of the Gaussian distribution. Typically, the Gaussian filter
performs image smoothing, and further sophisticated filters
can be created by first smoothing the image input with a unit
area Gaussian filter, then applying other steerable filters.

Laplacian of Gaussian filter: The Laplacian operator is
the second derivative operator. According to the associative
property, smoothing an image with Gaussian filter and then
applying Laplacian operator is equivalent to convolve the
image with the Laplacian of Gaussian (LoG) filter:

∇2G(x, y, σ) =

(
x2 + y2

σ4
− 2

σ2

)
G(x, y, σ) (5)

The LoG filter is a bandpass filter that eliminates both the
high-frequency and low-frequency noises. LoG has elegant
mathematical properties, and is valid for a variety of appli-
cations including image enhancement, edge detection, and
stereo matching.

Taylor series expansion is utilized to determine the ap-
proximate values of the LoG filter with 3×3 filter size. First,
we consider the 1-D situation. The Taylor series expansions
of 1-D Gaussian filter G(x) are given by:

G(x+h)=G(x)+hG′(x)+
1

2
h2G′′(x)+

1

3!
h3G′′′(x)+O

(
h4) (6)

G(x−h)=G(x)−hG′(x)+1

2
h2G′′(x)−1

3!
h3G′′′(x)+O

(
h4) (7)

By summing (6) and (7), we have

G(x+ h) +G(x− h) = 2G(x) + h2G′′(x) +O
(
h4) (8)

The second derivative of Gaussian G′′(x) is equivalent to
LoG ∇2G(x). Equation (8) is further transformed to

G(x− h)− 2G(x) +G(x+ h)

h2
=∇2G(x)+O

(
h2) (9)

Applying central difference approximation of LoG∇2G(x),
we derive the 1-D approximation of LoG filter as [ 1 −2 1 ].
Then we procure the 2-D approximation of LoG fil-
ter by convolving [ 1 −2 1 ] and

[
1
−2
1

]
, and get result as[−1 2 −1

2 −4 2
−1 2 −1

]
. According to the property of second derivative:

∇2G(x, y) = Gxx(x, y) +Gyy(x, y) (10)

and Equation (9), we have

Gxx(x, y) +Gyy(x, y)=
(
[ 1 −2 1 ]+

[
1
−2
1

])
∗G(x, y) (11)

Based on (11), we derive another approximation of LoG as[
0 1 0
1 −4 1
0 1 0

]
.

According to the central limit theorem, the convolution of
two Gaussian functions is still a Gaussian function, and the
new variance is the sum of the variances of the two origi-
nal Gaussian functions. Hence, we convolve the above two
approximations of LoG and then apply normalization, and
get the Enhanced Laplacian of Gaussian (ELoG) filter as[
0 1 0
1 8 1
0 1 0

]
.

(Siyuan, Raef, and Mikhail 2018) have proved the con-
vergence of the interpolation in the context of (multi-layer)
DNNs, so we utilize the interpolated probability density es-
timation to make the further approximation. In ELoG filter
where 1 appears, we mask it to 0 with the probability of
(1−p). Because we uniformly convolve SCPs into n convo-
lutional layers, this random masking operation can be treated
as distributed interpolation of SCPs. In continuous probabil-
ity space, interpolating SCPs into convolution function is a
specific Probability Density Function (PDF), so the effect
of interpolating SCPs is accumulating probability expecta-
tions of interpolation into n convolutional layers. Besides,
the convolution function is normalized to unity, so we sepa-
rate the coefficient p in the following equation.

0     1     0
1     1     1
0     0     0

0     1     0
1     1     0
0     1     0

0     0     0
1     1     1
0     1     0

0     1     0
0     1     1
0     1     0

0     p     0
p     1     p
0     p     0

0     1     0
1   1/p    1
0     1     0

p
n n

= =

n interpolations

(12)

The four SCPs are shown in colored positions in (12). In
order to get the best approximation to ELoG filter, we set
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Figure 3: Visualization of intermediate results (saliency map
of gradient images) in original VGG-16 model and pattern
pruned VGG-16 model through guided-backpropagation.

p = 0.75 and n = 8, then the desired filter is equal to in-
terpolating these four SCPs for eight times. The coefficient
p has no effect after normalization.

Upper bound: According to (C.Blakemore and Camp-
bell 1969), the optimal times for applying the LoG filter is
six and the maximum is ten. Thus the desired number of
times to interpolate the SCP in (12) is around 24 and the
maximum number is around 55. This upper bound covers
most of the existing effective DNNs, even for ResNet-152,
which comprises 50 convolutional layers with filter kernel
size of 3× 3.

The four SCPs in (12) form the ELoG filter through in-
terpolation. Hence, the designed SCPs inherit the de-noising
and sharpening characteristics of LoG filters. We visualize
the intermediate results of DNNs to interpret and verify the
advancement of our designed SCPs in the following section.

Visualization and Interpretation

Explanations of individual DNN decision have been ex-
plored by generating informative heatmaps such as CAM
and grad-CAM (Selvaraju et al. 2017), or through guided-
backpropagation (BP) (Springenberg and Alexey Dosovit-
skiy 2015) conditioned on the final prediction. Utilizing
guided-backpropagation, we can visualize what a DNN has
learned. The visualization results of applying SCPs to an
original DNN model (pattern pruning) are demonstrated in
Figure 3. We sample four input images from the ImageNet
dataset, as “hourglass”, “bee”, “dragonfly” and “chihuahua”,
then apply the guided-backpropagation to propagate back
from each target class label and get the gradient images.
Eventually, we generate the saliency maps of gradient im-
ages. Compared with the original VGG-16 model, the pat-
tern pruned VGG-16 model captures more detailed informa-
tion of the input image with less noise.

We conclude that by applying our designed SCPs, pattern
pruning enhances DNNs’ image processing ability, which
will potentially enhance the inference accuracy of a DNN.
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Figure 4: Comparison results of our pattern and connectiv-
ity pruning of VGG-16 and ResNet-50 on ImageNet dataset
with: ADMM-NN (Ren et al. 2019), NeST (Dai, Yin, and
Jha 2017), Deep Compression (Han, Mao, and Dally 2015),
Fine-grained pruning (Mao et al. 2017), APoZ (Hu et al.
2016) and ThiNet (Luo, Wu, and Lin 2017).

Accuracy Analysis
In our previous derivation, we have determined the (four)
SCPs as our pattern set. Our algorithm-level solution starts
from a pre-trained DNN model, or can train from scratch.
To generate PCONV model, we need to assign SCPs to each
kernel (pattern pruning) or prune specific kernels (connec-
tivity pruning), and train the active (unpruned) weights. To
achieve this goal, we extend the ADMM-NN framework
in (Ren et al. 2019) to produce pattern and connectivity-
pruned models.

Accuracy results are illustrated in Figure 4. Starting from
the baseline accuracy results that are in many cases higher
than prior work, we have the first conclusion that the accu-
racy will improve when applying our designed SCPs on each
convolution kernel. For ImageNet dataset, pattern pruning
improves the top-5 accuracy of VGG-16 from 91.7% to
92.5%, and ResNet-50 from 92.7% to 93.0% with SCPs ap-
plied to each convolution kernel. The accuracy improvement
is attributed to the enhanced image processing ability of our
designed SCPs.

Pruning vs. accuracy for non-structured pruning,
structured pruning and PCONV. Combined with connec-
tivity pruning, PCONV achieves higher compression rate
without accuracy compromise. Comparing with other prun-
ing methods, i.e., non-structured pruning and structured
pruning, we conclude that: (i) PCONV achieves higher accu-
racy and higher compression rate compared with prior non-
structured pruning, and close to the results in ADMM-NN;
(ii) compared with structured pruning, under the same com-
pression rate, PCONV achieves higher accuracy, and can
structurally prune more weights without hurting accuracy.
The detailed comparisons on different sparsity and compres-
sion rates are shown in Figure 4.
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Figure 5: Overview of PCONV acceleration framework.
From algorithm-level design to platform-level implementa-
tion.

Compiler-assisted DNN Inference Framework
In this section, we propose our novel compiler-assisted DNN
inference acceleration framework for mobile devices. Moti-
vated by the two merits – flexibility and regularity of the
PCONV model, our compiler-assisted platform uniquely en-
ables optimized code generation to guarantee end-to-end ex-
ecution efficiency. As DNN’s computation paradigm is in
a manner of layerwise execution, we can convert a DNN
model into computational graph, which is embodied by
static C++ (for CPU execution) or OpenCL (for GPU execu-
tion) code. The code generation process includes three steps
as Figure 5 shows: (i) layerwise information extraction; (ii)
filter kernel reorder; (iii) load redundancy elimination.

Layerwise information extraction is a model analysis
procedure. In particular, it analyzes detailed kernel pattern
and connectivity-related information. Key information such
as pattern distribution, pattern order and connection be-
tween input/output channel through kernels are utilized by
the compiler to perform optimizations in steps (ii) and (iii).

Filter kernel reorder is designed to achieve the best
of instruction-level and thread-level parallelism. When a
PCONV model is trained, patterns and connections of all
kernels are already known, i.e., the computation pattern is
already fixed before deploying the model for inference. All
these information of patterns are collected from layerwise
information extraction, and is leveraged by filter kernel re-
order to (i) organize the filters with similar kernels together
to improve inter-thread parallelism, and (ii) order the same
kernels in a filter together to improve intra-thread paral-
lelism. Figure 6 illustrates the two key steps of filter kernel
reorder: (i) organizes similar filters next to each other; (ii)
groups kernels with identical patterns in each filter together.
As a result, the generated execution code eliminates much of
execution branches, implying higher instruction-level paral-
lelism; meanwhile, similar filter groups escalate execution
similarity and result in a good load balance, achieving better
thread-level parallelism.

Load redundancy elimination addresses the issue of ir-
regular memory access that causes memory overhead. In
DNN execution, the data access pattern of input/output is de-
cided by the (none-zero elements) patterns of kernels. There-
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Figure 6: Steps of filter kernel reorder: each square repre-
sents a convolution kernel; the number represents the spe-
cific pattern type of this kernel.

fore, we can generate data access code with this informa-
tion for each kernel pattern and call them dynamically dur-
ing DNN execution. Because the data access code consists
of all information at kernel-level computation, it is possi-
ble to directly access valid input data that is associated with
the non-zero elements in a pattern-based kernel. After steps
(i) and (ii), patterns are distributed in a structured manner,
which reduces the calling frequency of data access code and
as a result, reduces the memory overhead.

Experimental Results
In this section, we evaluate the execution performance of
our compiler-assisted framework with our PCONV model
deployed. All of our evaluation models are generated by
ADMM pruning algorithm, and are trained on an eight
NVIDIA RTX-2080Ti GPUs server using PyTorch.

Methodology
In order to show acceleration of PCONV on mobile devices,
we compare it with three state-of-art DNN inference accel-
eration frameworks, TFLite (Ten ), TVM (Chen et al. 2018),
and MNN (Ali ) using same sparse DNN models. Our exper-
iments are conducted on a Samsung Galaxy S10 cell phone
with the latest Qualcomm Snapdragon 855 mobile platform
that consists of a Qualcomm Kryo 485 Octa-core CPU and
a Qualcomm Adreno 640 GPU.

In our experiment, our generated PCONV models are
based on three widely used network structures, VGG-16 (Si-
monyan and Zisserman 2014), ResNet-50 (He et al. 2016)
and MobileNet-v2 (Howard et al. 2017). Since convolution
operation is most time-consuming (more than 95% of the
total inference time) in DNN computation, our evaluation
on the above network structures focus on convolutional lay-
ers performance. In order to provide a very clear illustration
on how PCONV enhances mobile performance, the whole
device-level evaluation is shown in three aspects: (i) execu-
tion time, (ii) on-device GFLOPS performance and (iii) how
pattern counts affect performance.

Performance Evaluation
In this part, we demonstrate our evaluation results on mobile
device from the three aspects we discussed above. In order
to illustrate PCONV has the best acceleration performance
on mobile devices, our comparison baselines, i.e., TFLite,
TVM and MNN use the fully optimized configurations (e.g.,
Winograd optimization is turned on).
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Figure 7: Mobile CPU/GPU inference time (ms) on different network structures inferring Cifar-10 and ImageNet images.

Execution time. Figure 7 shows mobile CPU/GPU per-
formance of PCONV model executing on our compiler-
assisted DNN inference framework. On CPU, PCONV
achieves 9.4× to 39.2× speedup over TFLite, 2.2× to 5.1×
speedup over TVM and 1.7× to 6.3× speedup over MNN.
On GPU, PCONV achieves 2.2× to 18.0× speedup over
TFLite, 2.5× to 11.4× speedup over TVM and 1.5× to 5.8×
speedup over MNN. For the largest DNN (VGG-16) and
largest data set (ImageNet), our framework completes com-
putations on a single input image within 19.1ms (i.e., 52.4
frames/sec) on GPU, which meets the real-time requirement
(usually 30 frames/sec, i.e., 33 ms/frame).

On-device GFLOPS performance. From the previous
comparison results we see that MNN has the higher per-
formance than TVM and TFLite. To show that PCONV has
better throughput on mobile devices, we compare PCONV
with MNN by measuring their run-time GFLOPS on both
CPU and GPU. Figure 8 demonstrates layerwise GFLOPS
performance comparison between PCONV and MNN. The
9 layers we pick from VGG-16’s 13 convolutional layers are
representing 9 unique layers with 9 unique layer sizes. The
other 4 layers are omitted in Figure 8 because they have re-
peated layer sizes which product repeated GFLOPS results.
From the results we can see that for both CPU and GPU
throughputs, PCONV outperforms MNN.

Pattern counts vs. performance. In order to determine
how pattern counts affects execution performance, we de-
sign some random patterns with 4 non-zero elements in
one kernel alongside with our designed SCPs. Table 1 and
Table 2 show accuracy and execution time under different
pattern counts using VGG-16 on Cifar-10 and ImageNet
datasets. The results show that the accuracy losses are not
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Figure 8: On-device GFLOPS performance evaluation of
MNN and PCONV .

necessarily related to the increase of pattern counts, but the
execution performance drops quickly, especially on Ima-
geNet dataset. The pattern counts vs. performance results
prove that our designed SCPs result in ideal performance
with a negligible accuracy loss.

Table 1: Pattern counts vs. performance. Evaluation uses
model with pattern (2.25×) and connectivity (8.8×) sparsity
on VGG-16 Cifar-10 dataset. Top-1 accuracy displayed.

Dataset Pattern# Acc. (%) Acc. loss (%) Device Speed (ms)

Cifar-10

4 93.8 -0.3
CPU 2.7
GPU 2.9

8 93.7 -0.2
CPU 2.9
GPU 3.0

12 93.8 -0.3
CPU 3.1
GPU 3.3

Table 2: Pattern counts vs. performance. Evaluation uses
model with pattern (2.25×) and connectivity (3.1×) sparsity
on VGG-16 ImageNet dataset. Top-5 accuracy displayed.

Dataset Pattern# Acc. (%) Acc. loss (%) Device Speed (ms)

ImageNet

4 91.5 0.2
CPU 52.7
GPU 19.1

8 91.6 0.1
CPU 58.9
GPU 22.0

12 91.6 0.1
CPU 105.2
GPU 32.1

Conclusion
This paper presents PCONV , a desirable sparsity type in
DNN weight pruning that elicits mobile devices accelera-
tion, leading to real-time mobile inference. PCONV inherits
the high flexibility in non-structured pruning which helps
achieving high accuracy and compression rate, and main-
tains highly structured weight composition like structured
pruning which leads to hardware friendlinesses such as opti-
mized memory access, balanced workload and computation
parallelism etc. To show PCONV’s real-time performance
on mobile devices, we design a compiler-assisted DNN
inference framework, which can fully leverage PCONV’s
structural characteristics and achieve very high inference
speed on representative large-scale DNNs.
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