1 IEEE CICC 2021/ Session 22: Circuits for Machine Learning and cryo-CMOS Applications/ Paper 22-3

A 400MHz NPU with 7.8TOPS% W High-Performance-
Guaranteed Efficiency in 55nm for Multi-Mode Pruning
and Diverse Quantization Using Pattern-Kernel Encoding
and Reconfigurable MAC Units

Zhanhong Tan', Sia-Huat Tan', Jan-Henrik Lambrechts', Yannian
Zhang?, Yifu Wu?, Kaisheng Ma'

Tsinghua University, Beijing, China
2|IISCT, Xian, China

Deep neural networks present a promising future in applications,
ranging from face ID on mobile phones to self-driving cars. Weight
pruning and quantization act as valuable solutions to release the
burden of computation and memory. Figure 1 shows the family of
weight pruning, including the fine-grained and several structural
pruning methods. With similar compression rates, coarse-grained
pruning results in more accuracy drop. A new structural solution
called pattern pruning [5] achieves excellent precision with uniform
sparsity rates among kernels, which is friendly to hardware. Kernels
are encoded into non-zero values with sparse pattern masks (SPM).
This work adopts 16 types of patterns with 4b SPM for the 3x3
convolution, which gains up to 8x compression for eight-zero kernels.
As for quantization, the optimal choice generally depends on models.

To support various quantization and pruning methods, including the
new pattern granularity, we clarify the following challenges: 1) For
pruning, the coarse-grained channel- and filter-level can be easily
implemented by the layer width reconfiguration. However, the kernel-
level leads to an unbalanced number of kernels in different filters,
thus reducing resource utilization. Pattern pruning is a brand-new
way that requires an efficient hardware design with a particular data-
encoding and computation design that is also compatible with other
pruning. However, prior works only focused on a single condition like
unstructured sparsity [3] or relatively coarse-grained pruning [4] but
did not cover multiple modes. 2) For quantization, resources are
expected to be reused as much as possible for linear and nonlinear
quantization. UNPU [2] studied various bit-width of weights but not
for diversity. Consequently, there lacks a unified architecture facing
to optimize diverse types of pruning and quantization.

We introduce a 55nm 400MHz 8.1TOPS/W versatile NPU with the
following features: 1) Efficient processing engines (PE) and the input
channel scheduler (ICS) supporting diverse pruning via pattern-
kernel encoding; 2) An algorithm-enabled data layout for kernel
pruning achieving better computation utilization; 3) Unified MAC
units supporting 4b weight with linear and nonlinear quantization in a
multiplier-free fashion that saves 30.7% power and 3.5% area.

Figure 2 shows the overall NPU architecture and processing flow for
pattern and kernel pruning. The proposed architecture mainly
consists of 64 PEs to process 64 output channels in parallel. Each
PE comprises a sparsity interface (Sl) and a pattern-based
calculation core (PCC) that exploits the weight and activation
sparsity. Each PE is interconnected with an 8-entry input feature map
(IFM) FIFO and a 2.3KB weight buffer bank. ICS issues and
multicasts input channels to PEs with order indices and masks, only
requiring 6.8% extra memory of the 75KB activation buffer. These
scheduling orders are generated from a software flow following the
group-wise optimized kernel pruning. For the weight pre-processing
shown at the bottom-right, the 4b weights are encoded in a pattern-
kernel fashion: for pattern pruning, weights within a kernel are
compressed in pattern-based format with a 4b SPM and non-zero
values; for kernel pruning, kernels in each bank are rearranged to
match the input channel order. Two pruning methods are compatible
since the pattern-kernel encoding is decoupled by inter/intra-kernel.

Figure 3 depicts the high-performance and pattern-based sparsity-
aware PE module with full pipeline design. The kernel in pattern-
kernel format is decoded through the pattern decoder and restored
to a full 9-weight kernel with a 9-bit mask. The mapping relationship
between SPM and weight sparsity mask is stored in a 16-entry LUT
reconfigured for each layer. An activation tile is pipelined into the
local IFM tile register file, and simultaneously, a sparsity mask for
activations is also produced. With sparsity masks, pair-masks for
MAC units are generated by the AND logic, followed by a pointer
generator to locate all the non-zero activation-weight pairs with the
bisection-method. The sparsity rates across kernels are uniform in
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regular kernel pruning, leading to unbalanced workloads. To tackle
this problem, we propose a group-wise manner that each group of
output channels shares the same set of input channels, and the
number of connected input channels of all groups is restricted as the
same. Evaluations under three models with 50% group-wise kernel
pruning on CIFAR10 show an accuracy drop of less than 2%. To
further improve PE utilization, we rearrange scheduling using the
flow shown in figure 2, aiming to prevent PEs from being idle for too
long. Results show that this policy efficiently skips ineffectual kernels,
achieving up to 2.83x performance improvement.

Figure 5 presents the unified MAC unit to maximize resource reuse
in different quantization manners. For the linear mode (LIN), we
implement the multiplication via accumulating three parts (1xA, 2xA,
4xA). Two small shifters calculate 2xA and 4xA. Three weight bits
serve as control signals to decide the effectual parts. For the single
power-2 quantization (POW), only one shifter is activated to generate
20~26 and we utilize W[2:0] of 3'b111 as the code of zero. For the
mixed power-2 quantization (MIX), two small adders leverage (a, B)
as adjustment factors to fine-tune two power-2 levels. Both shifters
generate results of two parts. Three modes reuse the same 28b
accumulator to complete the final results. In summary, this unified
MAC unit for 4b weight calculation replaces the traditional decoder
and arithmetic multiplier with a few small adders and two shifters,
which saves 30.7% power and 3.5% area without performance loss.

Figure 6 shows the measurement results of our NPU implemented in
UMC CMOS 55nm technology, operating at 0.75-to-1.00V with 26-
to-400MHz frequency. VGG-16 and ResNet-18, which employed
different quantization and pruning methods with guaranteed
accuracy, are evaluated by the NPU at 1.0V and 300MHz. The
average performance and energy efficiency of convolution layers are
104.7-t0-792.9GOPS and 1.07-t0-3.64TOPS/W. We evaluate the
peak energy efficiency using different sparsity scaling and show that
this work achieves up to 8.1TOPS/W efficiency. Utilizing 4b weight
quantization combined with pattern and kernel pruning, our NPU
saves up to 91.7x weight storage. Compared to prior works that
usually compromised performance for the peak efficiency [1~4], our
NPU achieves the highest performance-guaranteed efficiency of
8.5TOPS?/W (peak-efficiency x the-corresponding-performance).
This newly defined metric is profound, aiming to guarantee that the
NPU can achieve high performance and high efficiency at the same
time. Besides, this work is the first one supporting inter/intra-kernel
sparsity and linear/nonlinear quantization in a unified architecture
with high performance and efficiency.
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Fig. 1. The pruning family with a new promising pattern pruning and
different optimal quantization across models.
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Fig. 2. Overall architecture and weight (bottom-right) & activation
(top-right) pre-processing flow for pattern and kernel pruning.
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(PCC) for sparse computation.
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Fig. 4. The input channel scheduler (ICS) scheme for PE utilization
optimization via group-wise kernel pruning and reordering.
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Fig. 6. Measurement results and the comparison table.




