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Deep neural networks present a promising future in applications, 
ranging from face ID on mobile phones to self-driving cars. Weight 
pruning and quantization act as valuable solutions to release the 
burden of computation and memory. Figure 1 shows the family of 
weight pruning, including the fine-grained and several structural 
pruning methods. With similar compression rates, coarse-grained 
pruning results in more accuracy drop. A new structural solution 
called pattern pruning [5] achieves excellent precision with uniform 
sparsity rates among kernels, which is friendly to hardware. Kernels 
are encoded into non-zero values with sparse pattern masks (SPM). 
This work adopts 16 types of patterns with 4b SPM for the 3x3 
convolution, which gains up to 8x compression for eight-zero kernels. 
As for quantization, the optimal choice generally depends on models. 

To support various quantization and pruning methods, including the 
new pattern granularity, we clarify the following challenges: 1) For 
pruning, the coarse-grained channel- and filter-level can be easily 
implemented by the layer width reconfiguration. However, the kernel-
level leads to an unbalanced number of kernels in different filters, 
thus reducing resource utilization. Pattern pruning is a brand-new 
way that requires an efficient hardware design with a particular data-
encoding and computation design that is also compatible with other 
pruning. However, prior works only focused on a single condition like 
unstructured sparsity [3] or relatively coarse-grained pruning [4] but 
did not cover multiple modes. 2) For quantization, resources are 
expected to be reused as much as possible for linear and nonlinear 
quantization. UNPU [2] studied various bit-width of weights but not 
for diversity. Consequently, there lacks a unified architecture facing 
to optimize diverse types of pruning and quantization. 

We introduce a 55nm 400MHz 8.1TOPS/W versatile NPU with the 
following features: 1) Efficient processing engines (PE) and the input 
channel scheduler (ICS) supporting diverse pruning via pattern-
kernel encoding; 2) An algorithm-enabled data layout for kernel 
pruning achieving better computation utilization; 3) Unified MAC 
units supporting 4b weight with linear and nonlinear quantization in a 
multiplier-free fashion that saves 30.7% power and 3.5% area. 

Figure 2 shows the overall NPU architecture and processing flow for 
pattern and kernel pruning. The proposed architecture mainly 
consists of 64 PEs to process 64 output channels in parallel. Each 
PE comprises a sparsity interface (SI) and a pattern-based 
calculation core (PCC) that exploits the weight and activation 
sparsity. Each PE is interconnected with an 8-entry input feature map 
(IFM) FIFO and a 2.3KB weight buffer bank. ICS issues and 
multicasts input channels to PEs with order indices and masks, only 
requiring 6.8% extra memory of the 75KB activation buffer. These 
scheduling orders are generated from a software flow following the 
group-wise optimized kernel pruning. For the weight pre-processing 
shown at the bottom-right, the 4b weights are encoded in a pattern-
kernel fashion: for pattern pruning, weights within a kernel are 
compressed in pattern-based format with a 4b SPM and non-zero 
values; for kernel pruning, kernels in each bank are rearranged to 
match the input channel order. Two pruning methods are compatible 
since the pattern-kernel encoding is decoupled by inter/intra-kernel.  

Figure 3 depicts the high-performance and pattern-based sparsity-
aware PE module with full pipeline design. The kernel in pattern-
kernel format is decoded through the pattern decoder and restored 
to a full 9-weight kernel with a 9-bit mask. The mapping relationship 
between SPM and weight sparsity mask is stored in a 16-entry LUT 
reconfigured for each layer. An activation tile is pipelined into the 
local IFM tile register file, and simultaneously, a sparsity mask for 
activations is also produced. With sparsity masks, pair-masks for 
MAC units are generated by the AND logic, followed by a pointer 
generator to locate all the non-zero activation-weight pairs with the 
bisection-method. The sparsity rates across kernels are uniform in 

pattern pruning. The proposed group-
wise kernel pruning attains balanced 
workloads for multicast. With a more 
uniform workload distribution profit 
from the optimized pruning on our 
hardware, the PE idle time is reduced 
by 27.3%~35.9%. 

Figure 4 presents a high PE-utilization 
kernel pruning optimization method. 
The number of pruned kernels in 
different filters varies randomly for the 
regular kernel pruning, leading to unbalanced workloads. To tackle 
this problem, we propose a group-wise manner that each group of 
output channels shares the same set of input channels, and the 
number of connected input channels of all groups is restricted as the 
same. Evaluations under three models with 50% group-wise kernel 
pruning on CIFAR10 show an accuracy drop of less than 2%. To 
further improve PE utilization, we rearrange scheduling using the 
flow shown in figure 2, aiming to prevent PEs from being idle for too 
long. Results show that this policy efficiently skips ineffectual kernels, 
achieving up to 2.83x performance improvement. 

Figure 5 presents the unified MAC unit to maximize resource reuse 
in different quantization manners. For the linear mode (LIN), we 
implement the multiplication via accumulating three parts (1×A, 2×A, 
4×A). Two small shifters calculate 2×A and 4×A. Three weight bits 
serve as control signals to decide the effectual parts. For the single 
power-2 quantization (POW), only one shifter is activated to generate 
20~26, and we utilize W[2:0] of 3’b111 as the code of zero. For the 
mixed power-2 quantization (MIX), two small adders leverage (α, β) 
as adjustment factors to fine-tune two power-2 levels. Both shifters 
generate results of two parts. Three modes reuse the same 28b 
accumulator to complete the final results. In summary, this unified 
MAC unit for 4b weight calculation replaces the traditional decoder 
and arithmetic multiplier with a few small adders and two shifters, 
which saves 30.7% power and 3.5% area without performance loss. 

Figure 6 shows the measurement results of our NPU implemented in 
UMC CMOS 55nm technology, operating at 0.75-to-1.00V with 26-
to-400MHz frequency. VGG-16 and ResNet-18, which employed 
different quantization and pruning methods with guaranteed 
accuracy, are evaluated by the NPU at 1.0V and 300MHz. The 
average performance and energy efficiency of convolution layers are 
104.7-to-792.9GOPS and 1.07-to-3.64TOPS/W. We evaluate the 
peak energy efficiency using different sparsity scaling and show that 
this work achieves up to 8.1TOPS/W efficiency. Utilizing 4b weight 
quantization combined with pattern and kernel pruning, our NPU 
saves up to 91.7x weight storage. Compared to prior works that 
usually compromised performance for the peak efficiency [1~4], our 
NPU achieves the highest performance-guaranteed efficiency of 
8.5TOPS2/W (peak-efficiency x the-corresponding-performance). 
This newly defined metric is profound, aiming to guarantee that the 
NPU can achieve high performance and high efficiency at the same 
time. Besides, this work is the first one supporting inter/intra-kernel 
sparsity and linear/nonlinear quantization in a unified architecture 
with high performance and efficiency. 
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Fig. 1. The pruning family with a new promising pattern pruning and 
different optimal quantization across models. 

Fig. 2. Overall architecture and weight (bottom-right) & activation 
(top-right) pre-processing flow for pattern and kernel pruning. 

Fig. 3. Sparsity interface (SI) and pattern-based calculation core 
(PCC) for sparse computation. 

Fig. 4. The input channel scheduler (ICS) scheme for PE utilization 
optimization via group-wise kernel pruning and reordering. 

Fig. 5. Unified MAC unit for 4bit linear (LIN), single power-2 (POW), 
mixed power-2 (MIX) quantization for weights. Fig. 6. Measurement results and the comparison table. 


