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Abstract - Batteryless energy harvesting systems face a 
twofold challenge in converting incoming energy into forward 
progress. Not only must such systems contend with inherently 
weak and fluctuating power sources, but they have very 
limited temporal windows for capitalizing on transitory 
periods of above-average power. To maximize forward 
progress, such systems should aggressively consume energy 
when it is available, rather than optimizing for peak average-
case efficiency. However, there are multiple ways that a 
processor can trade between consumption and performance. 
In this paper, we examine two approaches, frequency scaling 
and resource scaling, and develop a predictor-driven scheme 
for dynamically allocating future power budgets between the 
two techniques. We show that our solution can achieve 
forward progress equal to 2.08X of the baseline Out-of-Order 
(OoO) processor with the best static configuration of 
frequency and resources. The combined technique 
outperforms either technique in isolation, with frequency-only 
and resource-only approaches achieving 1.43X and 1.61X 
forward progress improvements, respectively. 
 

Keywords: Nonvolatile processor; energy harvesting; machine 
learning; power-adaptive microarchitecture; Internet of Things. 

1.� INTRODUCTION 
With the development of nonvolatile processors (NVPs), energy 
harvesting is emerging as an increasingly attractive means for 
powering the internet of things (IoT) [1,2,4]. NVPs can handle 
unstable input power by backing up the computation state in 
distributed nonvolatile flip-flops or integrated memories [1] at 
very short timescales, allowing systems using these processors to 
operate without large energy storage devices. 

In energy-harvesting systems, the local variance in input power is 
large: The peak available power can be many times larger than 
average power, and there can be sustained periods where only a 
minimally active processor can operate at all. Incorporating 
flexibility into a processor to adapt to changing conditions is a 
long-studied area. Techniques such as Turbo Boost [8,9] and other 
dynamic voltage and frequency scaling [10-13] as well as 
microarchitectural resource adaptation techniques [14-15] have 
been proposed by prior work in the context of energy-efficient 
computing. Prior work on energy harvesting NVPs [1-7] has also 
indicated that no single microarchitecture best translates input 
energy into forward progress across varying input power traces. 
Conceptually, the ideal NVP design is the one that can operate in 
input power valleys for more on-duty time, and also convert input 
energy plateaus into more progress rather than let them leak away 
or overflow 
 
Both frequency-scaling and microarchitectural adaptation are 
promising approaches for consuming energy that cannot be 
otherwise stored in a batteryless system. However, which 

approach is preferable and how the two approaches can synergize 
have not been explored in the context of NVPs for the IoT space. 
In particular, the policy space can be seen as a combination of 
predicting a) energy income in the next epoch and b) among 
designs capable of consuming as much of the energy income as 
possible over the coming epoch, which will offer the best forward 
progress per unit energy.  

The aims of this paper are to explore the effectiveness of both 
frequency and resource scaling techniques in the context of NVPs, 
and to develop an effective dynamic prediction mechanism to set 
both frequency and resource parameters efficiently. Our work 
makes the following contributions: 

•� Targeting lower energy per instruction (EPI) for NVP, we 
propose using an infrequently executed (5Hz) neural 
network-based predictor to manage bottleneck resources 
in a reconfigurable out-of-order processor. 

•� Targeting aggressive leveraging of harvested energy for 
forward progress, we design a machine learning based 
dynamic frequency scaling (DFS) module for nonvolatile 
processors.  

The rest of the paper is organized as follows. Section 2 proposes a 
NVP bottleneck resource predictor and Section 3 presents the 
smart NVP frequency scaling architecture. Section 4 describes 
simulation infrastructure and methodology. Section 5 presents the 
simulation results and analyzes the benefits of combining resource 
and frequency scaling predictors. We discuss the prior work in the 
field in Section 6 and conclude with Section 7. 
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Figure 1. Spendthrift architecture and simulation structure. 

2.� SPENDTHRIFT: BOTTLENECK 
RESOURCE PREDICTIONS 
In this section, we introduce the proposed hybrid processor 
microarchitecture, Spendthrift, which incorporates a single-issue 
In-Order microarchitecture and a multi-issue high performance 
OoO microarchitecture. The In-Order microarchitecture can 

*This work was supported in part by NSF awards 1160483 (ASSIST), Center for Low Energy Systems Technology (LEAST) sponsored by MARCO and DARPA, NSFC Grant 61674094, 
Beijing Innovation Center for Future Chip, NSF 1500848, 1533933, a grant from Qualcomm, and U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing 
Research under Award number DE-SC0013553. 
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operate with the minimum resources powered on for the minimum 
start-up threshold; The OoO microarchitecture operates with more 
aggressive power consumption but can achieve the highest 
throughput. The mechanism of how to find the best configuration 
for the maximum forward progress is also described in this 
section. 

2.1� Resource Allocation System Structure 
Figure 2 shows the system diagram. We select 10 adjustable 
potential bottleneck resources to balance EPI and performance. 
The total number of all possible configuration entries is 1024, and 
each entry uses 10 configuration bits. With limited power income 
in energy harvesting systems, we power on only bottleneck 
resources so as to boost performance with the minimum power 
penalty. With more resources powered on, the instruction per 
clock-cycle (IPC) may increase a lot, but the power consumption 
does not increase as much, thus EPI reduces, as shown in Figure 3 
and Figure 4.  

It is also noted that turning on and off resources results in 
switching delay and energy for power-gating control [27]. In 
addition, in our proposed solution, we have considered the need of 
freeing the resources before turning them off. 
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Figure 2. The system diagram of configurable resource 
allocation architecture. Configurations: IO/OO: InOrder/Out-of-
Order, low for In-Order, high for Out-of-Order; FT: Fetch Width, 
low for 1, high for 4; DC/IS: decoder  and issue width, low for 1, 
high for 4; RUU: low for 8, high for 128; ALU: low for 1, high 
for 4; MP: memory port, low for 2, high for 8; CL1: Instruction 
and Data Cache: low for -cache:il1 il1:256:32:1:l, high for -
cache:il1 il1:256:32:4:l; ICL2: low for -cache:dl1 dl1:256:32:1:l, 
high for -cache:dl1 dl1:256:32:4:l; DCL2: low for -cache:dl2 
ul2:64:64:4:l, high for -cache:dl2 ul2:256:64:4:l; PRE: low for -
bpred:bimod 128, high for -bpred:bimod 1024. 
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Figure 3. NVP power consumption for different resource 

configurations, testbench “susan_corners”. 

���

���

���

���

���

���

���

��	
��
��������
��
�����

�

��

�
��
��
��
��
��
���
��
��
��
��
��
���
�
�

�������������
����������������

���
�����������������������

 
Figure 4. IPC V.S. different resource configurations, 

testbench “susan_corners”. 
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Figure 5. System diagram with feature extraction circuits. 
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Figure 6. Neural network for one resource prediction.  

2.2� Feature Extraction and Neural Networks 
Rather than building a single, large neural network that predicts 
10 resources at a time, spendthrift uses 10 small neural networks, 
one network for one resource prediction. The reason is that 
multiple small neural networks can significantly reduce the 
computation amount. Each neural network has four layers as 
shown in Figure 6: one input layer, two hidden layers, and one 
output layer. These are optimized results following a similar 
approach considering number of layers and numbers of neurons in 
each layer, as discussed by Ma. et al. [3]. 

In the input layer, there are three inputs. One input is for the 
current resource usage conditions: "0" indicates a not fully utilized 
resource, and "1" indicates a fully utilized resource. A condition 
of "1" indicates one possible bottleneck resource as it may need 
extra resources for further performance improvement. The other 
two inputs are the input power and the stored energy. Both are 
captured through the front-end circuits shown in Figure 5 every 
0.2 second by an A/D converter (ADC). A small resistor Rs is 
used to sense the power delivered through it with negligible 
voltage drop. Considering 32 required sensed levels, a 5-bit 
resolution is sufficient while consuming only 1nW power. As for 
the stored energy sensing, it is equivalent to a measurement and 
calculation of the voltage across the energy storage capacitor. 

The two hidden layers each consists of 10 hidden neurons. The 
output has 1 node for resource selection result. When the output is 
higher than 0.5, that resource is treated as a bottleneck resource 
and will be enabled. The neural networks are triggered every 0.2s. 
Offline training is used with 10k training set, achieving an 
accuracy above 90% on Mibench “small inputs” [16] and these 
initial trained weights are stored in the NVM. 

8B-1

679



3.� DYNAMIC FREQUENCY SCALING  

 
Figure 7. NVP performance vs. frequency with minimum 

resources. 
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Figure 8. Proposed dynamic frequency scaling structure.  

In this section, we investigate NVP frequency scaling policies as 
another effective approach. For simplicity without losing 
generality, we use a fixed number of resources, and three power 
profiles, a typical example of which is seen in Figure 13. 

3.1� Performance vs. Static Frequency 
We scan across frequencies from 32kHz to 1.5MHz with a step of 
32kHz. In the simulations, a 672kHz static frequency results in the 
best forward progress, as shown in Figure 7. Compared to the 
forward progress with minimized 32kHz frequency, the forward 
progress is accompanied by the penalty of 29X more backup 
operations.  

With too low a frequency, a large portion of harvested energy 
leaks away or cannot be stored in the capacitor because of power 
consumption lower than input power. With too high a frequency, 
more power overhead is consumed because of more backup and 
recovery penalties. Both lead to reduced forward progress. In 
subsequent sections, the best static frequency 672kHz is used as 
the comparison baseline for dynamic frequency scaling solution. 

3.2� Proposed DFS Architecture 
Figure 8 shows the diagram of the proposed DFS architecture, as a 
part of the controller integrated in the system clock path. The 
dynamic frequency machine learning module generates the 
frequency configuration signal for frequency tuning module. The 
machine learning module consists of a forward propagation 
network with scaled income power and stored energy as inputs. 
The initial weights are trained offline and stored in NVM.  

As the processor power consumption varies greatly with the 
amount of resources being used, as shown in Figure 3, the 
proposed DFS architecture adapts to the resources allocation 
policies. Once the stored energy level is less than 25% of full 
stored energy while the income power is still able to power a 
32kHz processor with minimum resources, the weights update 

module is triggered to update the weights with a one-step lower 
frequency than the current one. 

3.3� DFS Neural Networks 
This neural network decides the best frequency that the NVP with 
fixed resources should run at, based on the input power and the 
stored energy. The neural network is similar to the structure in 
Figure 6. It has 2 entries: power income level and stored energy 
level. There are two hidden layers for 32*2 hidden neurons, and 
32 outputs as the predicted possibility to select the frequency. The 
frequency with the largest possibility will then be selected 
(Simplified Softmax layer). The initial neural networks achieve 
above 98% accuracy with <10k training set. 

4.� METHODOLOGY 
4.1� Simulation Infrastructure 
The simulation infrastructure consists of several parts as shown in 
Figure 1: (i), the inputs of power profiles and testbenches; (ii), a 
bottleneck resource predictor implemented based on Pybrain [26]; 
(iii), a frequency predictor for NVP. (4), dynamic configurable 
NVP. The NVP simulator was proposed by Ma. et al.[1], and has 
been verified by a fabricated NVP [1,4]. 

The NVP simulator provides features like resource usage, power 
and energy level, to the resource allocator. By combining these 
features and pre-trained weights, the allocator gives feedbacks to 
NVP with microarchitecture selection results. The NVP uses these 
configurations to reduce energy per instruction and maximize the 
forward progress. For each given power profile and testbench, the 
simulation results are forward progress, etc. The frequency 
predictor generates frequency configuration predicted results for 
maximum energy used for computation. In order to integrate with 
the bottleneck resource predictor, the frequency predictor also has 
an online weights update module to adapt itself to the unstable 
microarchitecture. 

4.2� Testbenches and Power Profiles 
We use MiBench [16] on “large inputs” as our core evaluation 
suite. In addition to Mibench, we also use some neural network 
algorithms as testbenches [17]: ADALINE: Adaline network for 
pattern recognition, classification of digits 0-9 [18]. ART1: 
Adaptive resonance theory network, brain modeling stability-
plasticity demonstration [19]. BAM: Bidirectional associative 
memory, heteroassociative memory association of names and 
phone numbers [20]. BOLTZMAN: Boltzmann machine [21]. 
BPN: Back-propagation, time-series forecasting [22]. CPN: 
Counter-propagation network, determination of the angle of 
rotation [23]. HOPFIELD: Hopfield model, associative recall of 
images [24]. SOM: Self-organizing map, reinforcement learning 
approach [25]. 

The power profiles are WiFi home/office profiles [1], measured in 
real home/office environments. 

4.3� Overhead Analysis 
Making predictions and effecting the changes in resource 
configurations and frequency imposes some overheads. We use 
one neural network prediction module to predict bottleneck 
resources one by one, and then the frequency prediction. We 
implement the neural network predictor using dedicated hardware, 
as the software overhead would be untenable. We evaluate the 
overhead of the predictor by synthesizing the prediction module 
using a 32nm library with VDD=0.85V. The neural network serial 
architecture shown in Figure 9 has only one multiply accumulate 
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(MAC) module, and a state machine is developed to select the 
weights, source neurons, and target neurons from the ROM or 
register files. The neural network predictor can run at a maximum 
of 156MHz, but we run it at 10MHz, considering the low 
frequency of the NVP. The power is 3.36uW, and it costs 141 
cycles to finish one prediction for one bottleneck resource 
prediction. The energy cost of making one resource prediction is 
47.36pJ. Similarly, the frequency predictor costs 711pJ per 
prediction. These overheads in energy correspond to 5.9% of 
average WiFi energy income during 0.2s interval 
(0.2s*10uW=2uJ). The additional power and energy sampling 
circuits also impose overheads, but we consider these negligible 
due to only being employed once per 0.2s.  

The area is 23744um2, 2.3% of a Non-pipelined processor. A 
single prediction takes 3.5uS on average to complete. When no 
prediction is being made, the circuit is power-gated. These 
overheads are included in all predictor results. 
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Figure 9. Neural networks computation serial architecture 

5.� RESULTS AND DISSICUSSION 
In this section, we first examine the efficacy of the bottleneck 
resource predictor and smart frequency predictor, each in 
isolation, and then consider a system employing both techniques. 

5.1� Bottleneck Resource Prediction Results 
In the test, a home WiFi power profile is used as inputs. The 
testbenches are Mibench “large inputs”. 

Figure 10 and Figure 11 show the resource prediction results for 
two different testbenches on the same home WiFi power profile. 
The processor runs only in a portion of the total time. With more 
power available, the controller predicts to power on more 
resources to reduce the energy per instruction. When the input 
power is high, and the energy storage capacitor is full, the neural 
network controller predicts to power all the resources for the 
maximum forward progress, regardless of lower energy per 
instruction. 

Different testbenches may require different configurations for best 
forward progress. If we compare testbench “rijndael_encoder” in 
Figure 11 to “susan_corners” in Figure 10, the “PRE” branch 
prediction is more likely to be the bottleneck resource, while the 
“ICL2” instruction cache level 2 is not. 

The system provides a relatively high tolerance for prediction 
errors. Moreover, it is difficult to define an “absolute” error. For 
example, one good prediction is: utilizing the power income 
aggressively, then running with the minimum resources 
configuration at the next cycle. In the experiments, the predictor 
selects one configuration with the minimum resources at first and 
the rest of the energy is saved in the capacitor, then the predictor 
selects one configuration with the best energy per instruction for 
the next prediction cycle even if part of the energy has been 
leaked. Thus, the energy storage device provides a tolerance for 

prediction errors. As long as the forward progress is maximized, 
the predictor is still a good one. 

Figure 12 shows the maximum forward progress improvement for 
different testbenches. Both Mibench and some neural network 
programs are tested. This method provides an average of 61.8% 
forward progress improvement. Forward progress improves for 
the following reasons: To begin with, when the input power is 
low, the predictor generates the minimum resources configuration 
for NVP to guarantee computation and to reduce the chance of 
backing up data to save power. Secondly, when the power supply 
exceeds a predefined power threshold, only the bottleneck 
resources are powered on. Thirdly, when the power is high and 
the stored energy level is full, all possible resources are powered 
on even if the energy per instruction is not the lowest. 
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Figure 10. Testbench “susan_corners” resource allocation. 
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Figure 11. Testbench “rijndael_encoder” resource allocation. 

��
&' 
(�
)*

�')
 +
,-
)
.&
+/)

&,
&�
-�
&(
++
)*'
-�

&,
&�
-�

��
��
&

&,
&�
-�

�+
/-�
/&

&)/
'-�
&�

�/�
*

�'0
1&
)/�

��
2�
(�/�

3�
�,

�'+

��
2�
(�/�

3�
�,

�'+ ��
	

��
	�
'-4

/'0-
��

�5�
�-

�+
��
/
















��
�


���
��

	�
���

��
	
��

��������

����
��


�
��

�

�

��

��

��

��

���
�

�+
/3

�/
��

�/
+�
/�
&&
��(

2/
+4

�(
�-
)�

�
+(

2�
/�

��
)+
��

�&
)��
)�
)'�
��
+-

 '�
,/

�)
'+
-�

!"
#

	�&)$�-�*

������������	�
����
����


���
��
���
������
���������������	�����������

 
Figure 12. Bottleneck resource prediction: An average of 

61.8% forward progress improvement. 
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5.2� Smart DFS Results and Analysis 
When smart DFS is applied to the NVP, the system frequency 
dramatically changes with the input profile. As shown in Figure 
13, the frequency almost follows the trends of the input power 
profiles. For a low input power and low stored energy, the smart 
DFS predictor uses a low frequency to reduce the activation 
threshold so as to aggressively use incoming energy, rather than 
storing it. For high power income scenarios, it bursts the 
frequency to a proper level that can just match the income power. 

The capacitor does provide some buffering for the energy. Figure 
13 shows two frequencies for two different testbenches. They 
have different energy per instruction when running on OoO NVP 
with fixed resources. This difference results in different frequency 
profiles. In the time section between 30s and 40s, the frequency 
for testbench HOPFIELD is higher than that of SOM. But 
between 40s and 50s, the frequency of SOM is higher than that of 
HOPFIELD. This indicates that current frequency and dissipated 
energy has influence on later prediction results through energy 
stored in capacitor. The capacitor is a cushion for improper 
frequency prediction because some of the energy can be saved to 
be used later, although with some leakage penalty. 

Figure 14 is the forward progress improvement compared a best 
static frequency 672kHz, showing an average of 43.0% 
improvement. The variation among different testbenches is very 
small because the frequency changes only the energy used for 
forward progress computation, the EPI factor is offset during the 
computation for percentage improvement. 

 
Figure 13. DFS frequency selection results. 
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Figure 14. DFS frequency forward progress improvement 

compared to the best static frequency 672kHz 

5.3� Resources Reallocation or DFS? 
In its simplest form, we can think about forward progress via the 
following equation: 

Forward Progress = Energy used for computation / Energy per 
Instruction (EPI)                                                                           (1) 

While backups and other overheads affect both terms on the right 
hand side, there is a clear intuitive mapping from each of our 
mechanisms to each of the right hand side terms: smart DFS 
primarily influences energy used for computation, and bottleneck 
resource prediction targets EPI. However, both approaches 
compete for the same income power to affect their benefits, and it 
is not immediately clear how best to apportion power between the 
two mechanisms. 

Powering on all resources is rarely the most energy efficient way 
to use income energy. However, from the bottleneck resource 
predictor’s perspective, in the absence of frequency scaling, 
aggressively using a large amount of temporary power income 
when the energy storage is full or almost full is still a good 
solution, even if the energy per instruction is not maintained at the 
best efficiency. When frequency scaling is also merged into the 
system, this situation changes: Targeting the best EPI point while 
bursting the frequency to aggressively use the income energy is 
the better solution at timescales large enough to support frequency 
boosting. 

To support combined operation, we add two more modules to the  
Figure 8 dashed line box. These are needed because the changing 
resources make frequency prediction more complicated since 
different consumption levels occur for the same frequency setting. 
To avoid increased backups, once the stored energy level is less 
than 25%, the training module is triggered to compute the new 
weights, and update the weight in NVM, using one step lower 
frequency.  

Figure 15 shows the results of the combined approach. One key 
behavior seen in Figure 15 is that, if the stored energy level is not 
full, the bottleneck resources predictor is unlikely to predict 
powering on all resources, and will continue at a more EPI-
efficient point. The aggressiveness of the combined solution 
results in a smaller percentage of time that the stored energy is full 
compared to baseline, which helps keep the resource predictor 
operating in an EPI-sensitive region. 

We observe that the EPI drops when more power is available due 
to powering on bottleneck resources, as shown in Figure 15. In 
contrast, when the input power is very small, the predictor 
generates minimum resource configurations with higher EPI to 
ensure the NVP continues running but avoids backup operations. 
The forward progress of the combined prediction scheme does fall 
short of what would be expected if the two techniques were 
orthogonal (i.e. 2.30X over baseline). This is because the 
bottleneck predictor still can either predict full resources or 
minimum resources, leading to a deviated EPI from the most 
efficient one. 

Similar gains are seen across WiFi power traces. Across our 
benchmark suite, Spendthrift shows average forward progress 
improvements of, 2.09X, 1.94X, and 1.99X for each of 3 power 
profiles. Minimum and maximum improvements are 2.66X and, 
1.76X, 2.16X and 1.84X, and 2.33X and 1.82X, respectively, for 
each of the three traces. Thus, the average improvement across all 
three traces for our suite is ~2X with an observed minimum of 
1.76X over the best static baseline. 

6.� RELATED WORK 
NVP architectures have been explored in previous works 
[1,2,4,28], in which NVP architecture trade-offs are considered. 
Noting the trade-offs among different microarchitecures, a 
machine learning method is proposed by Ma. et al. [3] to 
dynamically switch between three distinct design points. To the 
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best of our knowledge, there exist no works that attempt to predict 
bottleneck resources and DFS for NVP IoT platforms.  

DFS is a traditional technique targeting either boosted 
performance or reduced energy [10-13].  Distinct from these 
works, we apply DFS to NVP for energy harvesting scenarios to 
adjust to variations in power-income rather than variations in the 
workload or thermal headroom. Traditional methods use lookup 
tables for DFS, while in more complex energy harvesting 
scenarios with unstable power, we apply machine learning to 
handle it.  

Kontorinis, et al. [14] propose table-driven resource allocation in 
a configurable datapath to conservatively enforce peak power 
reductions with minimal performance degradation. We employ a 
similar scheme in this work to tune EPI to the current power 
income, but are not constrained to conservative solutions and 
utilize neural networks rather than tables to predict the bottleneck 
resources for unstable power incomes.  

 
Figure 15. Fine-grained simulation results for merged 

bottleneck resources predictor and smart DFS. 
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Figure 16. Forward progress improvement compared to OoO 
best static configuration and best static frequency. Average 

improvement of 2.08X. 

7.� CONCLUSION 
This paper shows that for energy harvesting NVP, bottleneck 
resource prediction and frequency scaling can both be applied to 
improve the forward progress. Powering on some resources to 
mitigate some bottlenecks can actually significantly increase the 
NVP’s parallel density. Through smart DFS, the energy used for 
forward progress computation increases. We show that the 
proposed spendthrift solution can achieve 2.08X forward progress 
than best case of OoO NVP with static configuration and static 
frequency. 
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