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We solve the Bayesian sequential equilibrium of a general class of single-item first-price or all-pay auc-
tions of incomplete information. Our main contribution is a general methodology for solving the optimal
commitment problem, in closed form, for asymmetric continuous-type distributions.

Our approach consists of a number of innovations. We propose a modeling concept called equal-bid func-
tion to build a bridge between two players’ strategies. Another concept called equal-utility curve transforms
any commitment strategy into a weakly better continuous and everywhere directional-differentiable strat-
egy.

The optimal commitment functions in these auctions reveal some important insights. When the player
with commitment power (the leader) has low valuation, he bids passively. This is a credible way to alleviate
competition and to enable collusion. We demonstrate, via concrete examples, that this is a credible way to
threaten the follower so that the leader can secure a higher utility.

1. INTRODUCTION
The first-price auction has seen many applications because it is simple, intuitive
and easy to implement. In first-price auctions, the highest bidder wins and pays her
own bid. Theoretically, it enjoys many desirable modeling properties. For example,
in symmetric settings, the auction has a unique efficient Bayes Nash Equilibrium
(BNE) [Chawla and Hartline 2013]. In contrast, second-price auctions may have many
inefficient equilibria.

At the same time, first-price auctions pose important challenges for both academics
and practitioners. For one, in complete-information settings, the auction format, in-
cluding the class of generalized first-price auctions, sometimes does not have a pure
Nash equilibrium and is practically observed to be unstable [Börgers et al. 2013; Edel-
man and Ostrovsky 2007; Edelman et al. 2007]. In incomplete-information settings
where bidders have asymmetric type distributions, it is extremely difficult to solve or
characterize its BNE. In fact, this has been one of the most elusive open problems in
the literature of auction analysis [Fibich and Gavish 2011; Hartline et al. 2014; Le-
brun 1999; Vickrey 1961]. To date, the problem has closed-form solutions only in very
restrictive settings such as two-bidder asymmetric uniform distributions [Fibich and
Gavish 2012; Kaplan and Zamir 2012].

In this paper, we examine a general class of first-price auction games in which
a single leader is capable of making commitments to his strategy before a follower
subsequently chooses her strategy to maximize her payoff. Different from complete-
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information symmetric first-price auction games, the players have asymmetric type
distributions and the players’ types may be random draws from period to period. Such
a setting, known as Bayesian Stackelberg games [Fudenberg and Tirole 1991], is both
theoretically interesting and practically meaningful. [Fudenberg and Levine 1989] pro-
pose a reputation game in which a long-run player can enjoy a premium by making up-
front commitments. In flower auctions, some large players may have daily variations
in their values, but they can make credible commitments by following a pre-announced
strategy and making their past bids publicly verifiable. Such commitments can bring
them extra payoffs compared with the case when daily auctions are treated indepen-
dently. In a recent application of the theory [Paruchuri et al. 2007; Tambe 2011],1
the Los Angeles International Airport adopted an algorithm called ARMOR (Assistant
for Randomized Monitoring of Routes) to randomize the patrols [Pita et al. 2008]. At
the core of the algorithm is a game of a leader (the law enforcement) committing to
a publicly known strategy that achieves the highest payoff against the follower (the
terrorist).

In a Stackelberg equilibrium, given that it is possible for a follower to know a leader’s
committed strategy in advance and best-responds to it, the leader solves for an opti-
mal strategy to commit to. A Stackelberg equilibrium formulation is particularly useful
when one player has credibility to commit. It is well known that commitment weakly
increases the leader’s utility compared to his payoff in a simultaneous-move Nash
equilibrium. Furthermore, there are efficient algorithms to compute it in basic set-
tings [Conitzer and Sandholm 2006; Letchford and Conitzer 2010]. Since the players’
types are not always pre-determined (e.g., demand of flower on a particular day, po-
tential terrorist attacks, etc.), we study a Bayesian Stackelberg game to accommodate
such uncertainty.

1.1. Commitment
Consider the following example in a first-price auction.2 There are two bidders. One of
the bidders, we call him leader A, has the power to commit to a bidding strategy first.
Then the other bidder, we call her follower B, best-responds to the leader’s commit-
ment. We next show that commitment can increase A’s payoff.

Example 1.1. Both players’ types, x and y , are drawn uniformly from [0, 1]. Let the
leader’s strategy be sA(x) = x2/2. Clearly, the follower B must never bid more than 0.5

in this case. In fact, her utility when bidding t ≤ 0.5 is (y − t)
√

2t. B’s best strategy is
sB(y) = y/3. The expected utility of A is:∫ √2/3

0

(x− 1

2
x2) · 3

2
x2dx+

∫ 1

√
2/3

(x− 1

2
x2)dx = 0.2029

The first term considers the case when x is in [0,
√

2/3], while the second term considers
the case when x is in (

√
2/3, 1]. On the other hand, in the unique symmetric BNE where

each bidder bids half of the value, A’s expected revenue is 1/6 ≈ 0.167. In comparison,
commitment to sA increases A’s utility by 21%.

The concept of commitment has been observed in the domain of auction design, even
though sometimes implicitly. Note that early bidding and sniping in online auctions
(e.g., eBay auctions) can be regarded as two forms of commitment [Gray and Reiley

1See also, http://www.newsweek.com/random-security-laxs-armor-system-103885, for a Newsweek report.
2We will use first-price auction as a running example throughout. We extend our approach and results to
general rank-and-bid based auctions [Chawla and Hartline 2013] in the full version.



2013; Roth and Ockenfels 2002]. An advertiser that has a “passive” image (i.e., rarely
changes its bid, or always submits low bids) in sponsored search auctions can be seen
as another form of commitment. [Abraham et al. 2013] consider a super bidder who has
access to more information than others and study how this will affect seller’s revenue
in an alternative solution concept called tremble-robust equilibrium. Their setting is
similar to commitment but not the same. [Skreta 2006] considers another type of com-
mitment where the auctioneer is lack of credibility to reserve the item and studies how
this lack of commitment affects revenue.

A closely-related parallel work is [Xu and Ligett 2015]. They characterize optimal
commitment for first price auctions with complete information. For the case with in-
complete information, they assume that the bidders’ types are drawn from discrete
distributions and prove a partial property that the commitment function can be di-
vided into pieces. In comparison, we consider general continuous distributions and ob-
tain closed-form characterizations for a more general class of auctions. Our technical
approach also offers new insights in solving such models.

In this paper, we study the optimal commitment in first-price auctions with incom-
plete information (Bayesian setting). There is one item, and two bidders A and B. Two
bidders’ valuation are independent and differentiable distributions F1(x) and F2(y).

1.2. Our contributions
Our main contribution is a general approach to solve and characterize optimal commit-
ment in this class of auctions, for any continuous type distributions. In particular, ap-
plying our approach, we are able to solve optimal commitments for first-price and all-
pay auctions in closed-form for fairly general distributions. Our approach and results
on these auctions in a sense mitigate the difficulties of deriving a game-theoretical
prediction in first price and all-pay auctions with asymmetric type distributions. Our
approach consists of several nontrivial techniques. We dedicate Section 3 to introduce
the technical contribution (our main contribution). Here, we focus on the economic
interpretations of our results.

1.2.1. Equal-bid function and characterization. Equal bid function g is a mapping function
from leader A’s value to follower B’s value. g(x) is the minimum of follower’s value
which has best response equal to the leader A’s bid sA(x). Roughly speaking, when B’s
value is g(x), B bids sA(x), same as when A has value x. g(x) is the lowest such type. It
is a convenient modeling trick that allows us to greatly simplify the calculations and
representations. Based on equal bid function g, we derive our main theorem.

1.2.2. Structure and closed-form. Theorem 6.2 says when F2 is uniformly distributed on
[b1, b2],

— if ∀t, 2f21 (t)− F1[t]f ′1(t) ≥ 0, then optimal g(x) has at most 3 values.
— if b1 = 0, then g(x) has at most 2 pieces.

Theorem 6.3 gives the closed form of first price auction when two bidders’ type are
drawn uniformly from [0, 1].

s∗A(x) =

{
0 x ∈ [0, t0]
1− t0

x x ∈ (t0, 1]
, t0 ≈ 0.567

The optimal utility of the leader is 0.22, increasing by 32% than the utility in Bayesian
Nash equilibrium.

Our results on first price auction reveal certain striking findings: the leader bids
very passively when his type is low. Even worse, he bids 0 when his type is below a
threshold (depending on type distributions). This is against the common sense in first



Fig. 1. The optimal commitment strategy keeps zero when type is low. It increases rapidly when type is
large enough.

price and all pay auctions that bidding 0 has no chance of winning at all. However, a
close scrutiny states otherwise: by committing to a passive image, the leader (credibly)
ensures the follower that he has no intention to compete when he has a low type, thus
effectively brings down the follower’s bid, since the follower does not know the leader’s
actual type and views the leader as a mixed strategy. As a result, the leader eventually
wins the auction with less competition when he has a high type. We also note that such
passive bidding behaviors had been observed in major search engines such as Yahoo3

and Baidu (before they switch to GSP).
Furthermore, the commitment solutions are largely consistent with the collusive-

seeming behaviors studied in first-price auction [Aryal and Gabrielli 2013; Lopomo
et al. 2011; Marshall and Marx 2007; McAfee and McMillan 1992; Pesendorfer 2000]:
players coordinate to bring down the prices. Our results further suggest that such
collusive-seeming behaviors are stable: the trust between the players is built on the
rationality of the follower, as well as the leader’s credibility to commit.

2. THE SETTING
We consider a single item auction with two bidders, one called the leader A (male)
and the other called the follower B (female). Bidder A has a private valuation x drawn
from distribution F1 with support [a1, a2], while bidder B’s private valuation y is drawn
from distribution F2 with support on [b1, b2]. We use f1 and f2 to denote the probability
density of F1 and F2, respectively. We also sometimes write A = x to denote the case
where A’s type is x. Similarly, we can write B = y.

Leader A commits to a Bayesian strategy sA : [a1, a2] → 4R, where 4R denotes
the set of bid distributions on R. He announces this strategy and the follower B best
responds to the leader’s committed strategy via a single bid.4 We follow the standard
definition by [Conitzer and Sandholm 2006] of Bayesian commitment that the leader
only announces his strategy, i.e., the function sA(·), without revealing his actual type.
Compared to the utility from BNE, being able to commit increases the leader’s utility.

The timing of the game is summarized as follows:

(1) Leader A announces her Bayesian strategy sA(·) to follower B;
(2) Leader A then draws a random type x from a type distribution F1, which is com-

monly known;

3http://webscope.sandbox.yahoo.com/catalog.php?datatype=a
4It is easy to see that it is never profitable for B to use a mixed strategy.



(3) Leader A and B participate in a simultaneously auction, where A commits to bid
sA(x), while B knows sA(·) but not x and bids optimally to her available informa-
tion.5

(4) The payoffs of both players are then determined according to the auction rule.

There are two tie-breaking rules.

ASSUMPTION 2.1. When B has multiple best responses, she will choose the one that
maximizes A’s winning probability.

ASSUMPTION 2.2. When there is a tie, the good will be assigned to B.

We make these assumptions for expositional simplicity. Our main results do not
depend on these assumptions. 6 Given sA, B’s best response is fixed by assumption,
and both players’ winning probabilities are fixed.

Our goal is to solve for the optimal sA in first price auctions. Finding the optimal
strategy sA is known to be difficult. [Conitzer and Sandholm 2006] show that comput-
ing optimal commitments in general Bayesian games is NP-hard.

Definition 2.3. PA[x, sA] denotes A’s winning probability when he is at type x and
adopts strategy sA, while PB [t, sA] isB’s winning probability when bidding t againstA’s
strategy sA. In circumstances where there is no ambiguity, we use PA[t], PB [t] instead.

Definition 2.4. We use uA and uB to denote A and B’s expected utility, respectively.
Given sA, we can derive PB . Since B best responses to A, we have

uB(y) = sup
t≥0

(y · PB [t]− t · PB [t])

where t represents B’s bid. After figuring out B’s response, we can compute A’s ex-
pected utility,

uA(sA) = Ex∼F1(x · PA[x]− sA(x) · PA[x])

Although B’s valuation is on [b1, b2], we extend its definition domain to [0, b2], and let
F2[x] = 0, for x < b1.

Note that the follower cares about the local maximal utility on each type, and the
input for uB is a type. The leader cares about the maximal expected utility on the
whole range and the input for uA is a strategy function.

We use sup rather than max here because we need to show that max is attainable,
which is done in Lemma 4.1. We also note that bidding zero yields a nonnegative utility
for B, so uB ≥ 0 and uB(0) = 0.

Definition 2.5. Let SB(y, sA) denote B = y’s best responses against A’s strategy sA.
In circumstances where there is no ambiguity, we use SB(y) instead.

We will prove this definition is well-defined in Lemma 4.1, i.e. SB(y) is nonempty.

3. AN OVERVIEW OF OUR APPROACH
The main contribution of this paper is to put forward a general approach for solving
optimal commitments in first price auction. The approach can be sketched as follows.
It is useful to understand the intuition behind this approach before the details.

5We use first-price auctions as a running example, these results remain to be valid for all-pay auctions.
6We will show formally in the full version that neither of the assumptions is necessary.



3.1. Difficulties of the problem
If the optimal commitment was monotone and differentiable, we can use the first-order
condition to get the result: follower best responses to the leader. That is, (and if g(x) is
well-defined)

(g(x)− sA(t))F1[t] is maximized at t = x

(g(x)− sA(t))f1(t)− s′A(t)F1[t] = 0

g(x)f1(t) = [sA(t)F1[t]]′

sA(x) = 1
F1(x)

∫ x
a1
g(t)f1(t)dt

However, Maskin and Riley [2003]’s approach to proving that player’s strategy is dif-
ferentiable in a Nash equilibrium does not apply here. Their result is based on the
fact that everyone best responds to others. In our setting, the leader’s optimal strategy
is not necessarily continuous and differentiable. The main difficulty of the problem is
that the follower’s best response cannot be represented as a closed-form function of the
leader’s Bayesian strategy, which is also a function. This difficulty further prevents
us from obtaining a closed-form representation of the leader’s winning probability and
utility. As a result, standard functional optimization techniques cannot be applied.

To appreciate the difficulty, it is helpful to look at the problem of finding a Bayes
Nash Equilibrium with two asymmetric bidders in a first-price auction — one of the
most elusive open problems in the analysis of auctions [Hartline et al. 2014; Kaplan
and Zamir 2012]. The main barrier in that literature is exactly the difficulty to repre-
sent one’s best response as a concise function of the other’s strategy.

Previous work on this problem focuses on different cases of finding optimal com-
mitments in first price auctions with complete information [e.g., ?]. They do however
consider the case of incomplete information but with discrete types. They obtain a
partial characterization (the optimal commitment is a piecewise function). In fact, we
consider our using equal utility curves to prove the continuity and differentiability to
be one of our most innovative technical contributions. In addition, obtaining the closed
form solution also allows us to derive richer economic insights.

3.2. Step one: sorting the leader’s strategy and making it monotone
As discussed above, one of the obstacles is that the optimal leader strategy may not
be monotone or differentiable. Our first effort is to sort the leader’s strategy. We prove
that, for any leader’s strategy (optimal or not), one can sort it into a monotone function
that preserves the follower’s best response without hurting the leader’s utility. In other
words, the leader always prefers the strategy after sorting.

3.3. Step two: smoothing the leader’s strategy and making it continuous
A more difficult task is to smooth the leader’s strategy, that is, to turn it into a con-
tinuous and everywhere directional-differentiable function. To achieve this goal, we
introduce a methodological innovation called equal-utility curve. Roughly, given the
follower’s type, the equal-utility curve represents a leader’s strategy such that the
follower gets the same utility no matter what she bids. We can show that such a
curve always exists. Furthermore, the supremum (over all follower’s types) of all such
curves defines a new leader’s strategy that enjoys the following important properties:
it is continuous, left and right differentiable, preserves the follower’s best response,
and weakly improves the leader’s utility. To this point, one can truly focus on mono-
tone, continuously everywhere directional-differentiable leader strategies. Actually af-
ter this step, the modified strategy has a nice structure.



3.4. Step three: representing the strategy by a everywhere directional-differentiable
equal-bid function

A key insight here is to represent everything (the strategies, utilities and winning
probabilities of both players) as a function of some g, coined the equal-bid function,
that maps a leader’s type to a follower’s type. Intuitively, g(t) is the follower’s type
at which she submits the same bid as the leader does when the leader has type t. In
other words, g(t), later to be proved as monotone, can be seen as a bifurcation type
between winning and losing for the follower. As one can imagine, together with the
cumulative distribution function of the follower’s type, we can represent the leader’s
winning probability (hence utility) as a function of g. A similar but different idea has
appeared in [Hafalir and Krishna 2008; Lebrun 1999] in which inverse bid functions
are used to represent the best responses of players. However, inverse bid functions are
in pairs and the two functions make the final optimization problem complicated. In
contrast, our proposed equal-bid function represents everything with a single function.

3.5. Step four: optimizing A’s expected utility in terms of equal-bid function
With the above transformations, it turns out that we can find a bijection between the
set of monotone, continuously differentiable leader’s strategies and the set of contin-
uous and monotone equal-bid functions. As a result, we can focus on optimizing over
equal-bid functions and the Lagrangian method applies.

We conclude with a characterization of the optimal commitment for general follower
type distributions and compute the closed-form optimal commitments for both first-
price and all-pay auctions when the follower has uniform type distributions.

4. SORTING AND SMOOTHING THE LEADER’S STRATEGY
We first transform an arbitrary leader strategy into a continuous weakly increasing
strategy and show that this transformation does not hurt the leader’s expected utility.

In the next section, we prove some additional properties, such as everywhere
directional-differentiability, for the transformed strategy.

We first show that the notion of “best response” is well defined for the follower B.

LEMMA 4.1. For any B’s valuation y, B has a best response, i.e. uB(y) can be at-
tained by some bid and the smallest bid exists among the best responses.

By Assumption 2.2, B always chooses the smallest bid among all best responses.

4.1. Sorting sA

For an arbitrary strategy sA, the support of sA(v) on value v may not be a single bid.
Function sA could also be nonmonotone. The following lemma says, to find the optimal
commitment, it suffices to consider the strategies with the desirable properties below.

LEMMA 4.2. We can sort any strategy sA for A into a new strategy function s̆A such
that (1) s̆A(v) is a deterministic bid for any v and is weakly increasing in v (2) the best
response of s̆A remains the same as sA (3) s̆A yields at least the same utility for the
leader as sA.

For example, suppose leader A has equal probability on three types 1, 2 and 3. Then
s̆A brings higher expected utility than sA.

sA(x) =

{
0.8 x = 1
0.6 x = 2
1 x = 3

s̆A(x) =

{
0.6 x = 1
0.8 x = 2
1 x = 3

With this result, for ease of presentation, we can use sA to denote s̆A henceforth. So
sA is a weakly increasing, nonnegative strategy function.



The following example shows how to calculate uB in a first-price auction.

Example 4.3. Both bidders’ value distribution are uniform on [0,1].

sA(x) =

{
x/4 x ≤ 0.4
x− 0.3 x > 0.4

By definition uB(y) = max{maxt≤0.1(y − t) · 4t,maxt>0.1(y − t)(t+ 0.3)}, we have

uB(y) =

 y2 y ∈ [0, 0.2)
0.4y − 0.04 y ∈ [0.2, 0.5]
(y + 0.3)2/4 y ∈ (0.5, 1]

The following Lemma suggests the set of best responses of B at type y1 generally
does not intersect with the set of best responses at type y2 and these sets are well
sorted by the value of y, except for the following special case.

LEMMA 4.4. For B’s valuations y1 < y2, if ∃a ∈ SB(y1), b ∈ SB(y2) and a > b, then
we have SB(y1) ⊆ SB(y2), uB(y1) = uB(y2) = 0 and PB [b] = PB [a] = 0.

We can now prove that the follower’s utility is continuous and monotone.

LEMMA 4.5. uB(y) is continuous and weakly increasing.

4.2. Smoothing sA

To smooth sA into a continuous and everywhere directional-differentiable function, we
now introduce an important innovation of our approach: the equal-utility curve.

Definition 4.6. Define equal-utility curve euB(·, ·) : [0, b2]× (a1, a2]→ R,

euB(y, x) = y − uB(y)

F1[x]
(1)

The interpretation of euB(y, ·) is that, any value of euB(y, ·) (as a function of x) is a best
response of the follower at type y.

Consider Example 4.3, in a first-price auction, F1[x] = F2[x] = x, ∀x ∈ [0, 1], the
definition of euB above is simplified as

euB(y, x) = y − uB(y)

x
.

When B’s value y = 0.5, her best response is to bid 0.1 with utility 0.16. So uB(0.5) =
0.16, and the equal-utility curve is euB(0.5, x) = 0.5 − 0.16

x , shown in Fig 2. If A uses
strategy

max{euB(0.5, x), 0} =

{
0 x ∈ [0, 0.32)
0.5− 0.16

x x ∈ [0.32, 1]

then the utility of B when y = 0.5 is the same for any bid in [0, 0.34].
Function euB represents the leader’s strategy against which the follower will achieve

the same largest utility no matter what the follower bids. It’s easy to check that
euB(0, ·) = 0.

LEMMA 4.7. (1) euB(y, x) is weakly increasing and differentiable in x. euB(y, x) is
continuous in y.
(2) euB(y, x) ≤ sA(x)

We are now ready to introduce the smoothing method, by constructing an envelope
s∗A using euB .



Fig. 2. Equal-utility Curve. When y = 0.5, the utility of bidding 0 or 0.3 are always 0.16.

Definition 4.8. s∗A(x) = supy∈[0,b2] euB(y, x),∀x ∈ (a1, a2]

We will prove that strategy s∗A yields at least the same revenue for A as strategy
sA. The outline is as follows. First, we prove that, although the leader’s bid distribu-
tion changes, we keep the utility of the follower to be the same. Second, we prove the
best response of B is still the best response after smoothing, for any follower’s value
(Lemma 4.10). Third, we prove the leader’s winning probability does not change. Fi-
nally, since the leader’s bid is weakly decreasing, we can prove that the leader’s utility
weakly increases after smoothing (Theorem 4.13).

A mathematical view of the motivation of s∗A(x) can be found in Remark 1. The idea
is to suppress the bids of the leader while maintain his winning probability.

Consider Example 4.3, we can find s∗A(x) easily:

s∗A(x) =


x/4 x ∈ [0, 0.4)
x− 0.3 x ∈ [0.4, 0.65]

1− 0.652

x x ∈ (0.65, 1]
.

We now prove some basic properties of s∗A that will be used later.

LEMMA 4.9. (1) For any x ∈ (a1, a2], (x, s∗A(x)) must lie on some Equal-Utility
Curve.

(2) When s∗A(x) > limt→a1 s
∗
A(t), s∗A(x) strictly increases.

(3) When s∗A(x) = limt→a1 s
∗
A(t), (x, s∗A(x)) lies on euB(s∗A(x), ·), and uB(s∗A(x)) = 0.

(4) For any x, we have s∗A(x) ≤ sA(x).
(5) s∗A(x) is continuous.7

Up to now, the domain of s∗A is defined as (a1, a2]. Since s∗A is continuous, we can de-
fine s∗A(a1) = limx→a1 s

∗
A(x). For simplicity, we use P ∗B [t] and S∗B(y) instead of PB [t, s∗A]

and SB(y, s∗A). Next, we study how the follower’s utility and best response would
change in sA and s∗A.

LEMMA 4.10. (1) When A’s strategy sA is changed to s∗A, uB(y) remains the same.
(2) If t ∈ SB(y) then t ∈ S∗B(y), SB(y) ⊆ S∗B(y). If P ∗B [t] 6= PB [t] then uB(y) = 0 and

t = limx→a1 s
∗
A(x)

The lemma below draws connections between equal-utility curve and s∗A.

7The limit of a continuous function may not be continuous, so this argument is not trivial. Consider yk(x) =
kx, x ∈ [0, 1/k], constantly zero for x ≤ 0 and constant one for x ≥ 1/k. Clearly, yk is continuous but supkyk
is not.



LEMMA 4.11. (1) If (x0, s
∗
A(x0)) lies on equal-utility line euB(y0, ·), then s∗A(x0) ∈

S∗B(y0). (2) If s∗A(x0) ∈ S∗B(y0) and s∗A(x0) 6= limx→a1 s
∗
A(x) then (x0, s

∗
A(x0)) lies on equal-

utility line euB(y0, ·).
The best response set S∗B of the follower in s∗A is an a superset of SB . Since the best

response of the follower is sorted, S∗B(y) is bounded by any element in S∗B(y − ε) and
S∗B(y + ε). Therefore, it is bounded by SB(y − ε) and SB(y + ε). We then prove that for
most of the types, the winning probability of the leader will not change.

Definition 4.12. If ∃x such that s∗A(x) = limt→a1 s
∗
A(t), let x̂ = sup{x| limt→a1 s

∗
A(t) =

s∗A(x)}.
Since s∗A is continuous, s∗A(x̂) = limt→a1 s

∗
A(t). Combined with the fact that the bids

decrease in s∗A (thus lower payment) and the winning probability remains the same,
we prove that the expected utility does not decrease.

THEOREM 4.13. By using s∗A instead of sA, the expected utility of A does not de-
crease.

The intuition is that both strategies lead to the same follower?s best response, while
s∗A is lower and the leader has less payment. It may be possible that s∗A is worse at
countable number of breaking points, however, the effect of these points to the expected
utility is 0.

5. BIJECTIVE MAPPING BETWEEN S∗
A AND G

The final step is to show that every s∗A can be represented by a function g. Once we
obtain such a function, we will be able to focus on optimizing such a g instead.

Fig. 3. M1 is bijective between O1 and O2

Definition 5.1. ŷ = sup{y|uB(y) = 0}
Definition 5.2. ∀x > a1, Y (x) = {y|euB(y, ·) passes through point (x, s∗A(x))}.
LEMMA 5.3. (1) Y (x) is closed. (2) Y (x) ≥ ŷ. (3) For all x1 < x2, Y (x1) ≤ Y (x2). (4)

(ŷ, b2] ⊆ ∪xY (x) (5) Y (x) is an interval or is a unique number. Y (x) contains only one
element for almost all x.

Definition 5.4. Equal-bid function g(x) = minY (x),∀x ∈ (a1, a2]

The intuitive explanation of g is: when the follower’s type y = g(x), one of her best
response is equal to the bid s∗A(x) by the leader. In most of the time except for countable
types, if the follower gives the same bid as the leader, then the lowest type of the
follower must be g(x). In other words, the follower with value g(x) submits the same
bid as the leader who has value x.

With equal-bid function, the winning probability of the leader has a surprisingly
concise form.



Consider Example 4.3, we have

g(x) =

{
x/2 x ∈ [0, 0.4)
2x− 0.3 x ∈ [0.4, 0.65]
1 x ∈ (0.65, 1]

It’s easy to check that sA(0.45) = 0.15, g(0.45) = 0.6, SB(0.6) = {0.15}. The leader with
value 0.45 bids 0.15, same as the follower with value g(0.45) = 0.6.

By lemma 5.3, {y|euB(y, x) = s∗A(x)} is closed, so g(x) is well defined. When y < g(x),
the leader A = x beats the follower y by Lemma 4.4. When y ≥ g(x), the follower
y beats the leader A = x by the tie-breaking rule. So we can calculate the winning
probability of the leader A = x using g(x).

Note s∗A(x) is not yet defined on a1. In fact, bidding with zero probability does not
affect overall utility. We can define s∗A(a1) = limt→a1 s

∗
A(t) for convenience.

Now we prove the last a few desirable properties of s∗A: s∗A is differentiable on both
sides. Based on the derivatives, we find the relationship between g and s∗A.

THEOREM 5.5.

(1) s∗A(x) is left-hand differentiable and right-hand differentiable.
(2) s∗A(x) = 1

F1[x]

∫ x
a1
f1(t)g(t)dt.

Up to now, we have developed a new strategy s∗A for A based on sA, with at least
2 desirable properties: it yields at least as much utility as sA and is left-hand differ-
entiable and right-hand differentiable. In the following, we will calculate the winning
probability and find out the s∗A with the optimal utility.
Remark 1. From sA (we only need the weakly increasing condition), we can define g
directly, but sA cannot be calculated by g. To see this, the follower bids sA(t) and when
t = x, the follower achieves the highest utility. Taking first-price auctions for example,
we have (g(x)− sA(x))F1[x] ≥ (g(x)− sA(t))F1[t]∀t, then sA(t) ≥ g(x)− (g(x)−sA(x))F1[x]

F1[t]
,

equality can be achieved by setting t to be x. Moreover sA(t) ≥ supx(g(x) − uB(x)
F1[t]

) =

supx euB(g(x), t), equality may not be achieved, because if we fix t first, there might be
no corresponding x. Thus we do not have the exact formula of sA(t). If sA is optimal, for
any leader’s type, his bid should be as small as possible without changing the follower’s
behavior. To do this, when sA(t) > supx euB(g(x), t), we can decrease his bid to ε +
supx euB(g(x), t), without letting the follower match his new bid. This is the nature of the
smoothing method. So in the optimal strategy, we should have sA(t) = supx euB(g(x), t),
which is exactly the new strategy out of the smoothing method, s∗A.

We can check the correctness of relationship between g and s∗A in Example 4.2.
When x0 ∈ [0, 0.4],

1

F1[x0]

∫ x0

a1

g(x)f1(x)dx =
1

x0
[

∫ x0

0

x/2dx] = x0/4 = s∗A(x0)

When x0 ∈ [0.4, 0.65],

1

F1[x0]

∫ x0

a1

g(x)f1(x)dx =
1

x0
[

∫ 0.4

0

x/2dx+

∫ x0

0.4

(2x− 0.3)dx] = x0 − 0.3 = s∗A(x0)



When x0 ∈ [0.65, 1],

1

F1[x0]

∫ x0

a1

g(x)f1(x)dx =
1

x0
[

∫ 0.4

0

x/2dx+

∫ 0.65

0.4

(2x− 0.3)dx+

∫ x0

0.65

1dx]

=
1

x0
[0.04 + 0.65 ∗ 0.35− 0.04 + x0 − 0.65] = 1− 0.652

x
= s∗A(x0)

Definition 5.6.

O1 = {sA| strategies resulted from any nonnegative strategy after smoothing}
O2 = {(g, sA(a1))|g is weakly increasing and left continuous and in [0, b2]}

Since the domain of y in euB(y, x) is [0, b2], we have Y (x) ⊂ [0, b2] and g(x) ∈ [0, b2].
Thus Definition 5.4 gives a mapping M1 : O1 → O2. In fact, we will prove that there
is a bijective mapping between the two sets. The idea is that we construct a mapping
M2 : O2 → O1 and prove M1 ◦M2 = I.

THEOREM 5.7. There is a bijective mapping between O1 and O2.

Thus finding the optimal strategy is equivalent to finding the optimal function g such
that (g, 0) ∈ O2.

6. OPTIMIZING EQUAL-BID FUNCTION G
In this section, we solve for the optimal g in order to derive the final form of s∗A.

6.1. General optimization
Since s∗A(x) = 1

F1[x]

∫ x
a1
f1(t)g(t)dt, the expected utility becomes

uA(s∗A) =

∫ a2

a1

[x− 1

F1[x]

∫ x

a1

f1(t)g(t)dt]F2[g(x)]f1(x)dx

This is a function of g, denoted by M(g). For any admissible function g + εj, i.e. (g +
εj, 0) ∈ O2, we have M(g) ≥M(g + εj). Consider the marginal loss in direction j,

0 ≥ lim
ε→0

M(g + εj)−M(g)

ε

=

∫ a2

a1

[x− 1

F1[x]

∫ x

a1

f1(t)g(t)dt]f2(g(x))j(x)f1(x)dx

+

∫ a2

a1

− 1

F1[x]

∫ x

a1

f1(t)g(t)dtF2[g(x)]f1(x)dx

=

∫ a2

a1

j(x)f1(x)[f2(g(x))(x− 1

F1[x]

∫ x

a1

f1(t)g(t)dt)−
∫ a2

x

F2[g(t)]f1(t)

F1[t]
dt] (2)

Let h(x) denote the coefficient of j(x):

h(x) = f1(x)(xf2(g(x))− f2(g(x))

F1[x]

∫ x

a1

f1(t)g(t)dt−
∫ a2

x

F2[g(t)]f1(t)

F1[t]
dt)

We can deduce the optimal g when h(x) has some good property.

THEOREM 6.1. (1) For an interval L, if h(x) > 0, x ∈ L, we have

g(x) = lim
t→(supL)+

g(t) x ∈ L

Moreover, if supL = a2, then g(x) = b2, x ∈ L.



Similarly, if h(x) < 0, x ∈ L, we have
g(x) = lim

t→inf L
g(t), x ∈ L

If inf L = a1, then g(x) = 0, x ∈ L.
(2)There is an optimal g such that g(x) ∈ 0 ∪ [b1, b2].

In fact, g can be derived explicitly in fairly general settings, as we show below.

6.2. Some specific optimization results
THEOREM 6.2. When F2 is uniformly distributed on [b1, b2],
(1) if ∀t, 2f21 (t)− F1[t]f ′1(t) ≥ 0, then optimal g(x) consists of at most 3 values.
(2) if b1 = 0, then optimal g(x) consists of 2 pieces. When t0 = a2

∫ a2
t0

f1(t)
F1[t]

dt has a
solution,

g(x) =

{
0 x ∈ (a1, t0]
b2 x ∈ (t0, a2)

,where t0 = a2

∫ a2

t0

f1(t)

F1[t]
dt

Otherwise, g(x) = b2,∀x ∈ [a1, a2].

THEOREM 6.3. In Example 4.3, the optimal utility of the leader is 0.22. The closed-
form representation of the optimal g(x) and s∗A(x) are:

g(x) =

{
0 x ∈ [0, t0]
1 x ∈ (t0, 1]

s∗A(x) =

{
0 x ∈ [0, t0]
1− t0

x x ∈ (t0, 1]
, t0 ≈ 0.567

Here t0 is the solution of t0 = b2
∫ a2
t0

f1(x)
F1[x]

dx.

We should notice that the leader bids zero 56.7% of the time.

7. CONCLUSION
In many institutional settings, out of many participants, one dominant player may
exert a significant influence on the potential equilibrium that will be played by all.
Commitment is one such way. When a dominant player can establish a reputation,
commitment to a publicly known strategy can result in higher profits for the player.

This paper offers a framework to derive the closed-form solution to a class of games
including first-price and all-pay auctions when one player can use commitment as a
viable strategy. Different from works in the literature, our model allows for incomplete
information with asymmetric value distributions.

To solve this problem, we propose some innovations in the modeling approach.
Specifically, we propose a modeling concept called equal-bid function to build a bridge
between two players’ strategies. Another concept called equal-utility curve transforms
any commitment strategy into a weakly better continuous and everywhere directional-
differentiable strategy.

With closed-form solutions, our findings offer some interesting insights. With com-
mitment, a relatively low-valued leader will be less aggressive so that the two sides can
collude and reduce competition. Overall, we show that commitment allows the leader
to obtain higher payoffs compared to the case when commitment is not allowed. Our
methodological approach can be adopted in similar settings to find optimal commit-
ment strategies.
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