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Chance-Constrained Iterative Linear-Quadratic
Stochastic Games

Hai Zhong , Student Member, IEEE, Yutaka Shimizu , and Jianyu Chen

Abstract—Dynamic game arises as a powerful paradigm for
multi-robot planning, for which safety constraint satisfaction is
crucial. Constrained stochastic games are of particular interest,
as real-world robots need to operate and satisfy constraints un-
der uncertainty. Existing methods for solving stochastic games
handle chance constraints using exponential penalties with hand-
tuned weights. However, finding a suitable penalty weight is
nontrivial and requires trial and error. In this letter, we pro-
pose the chance-constrained iterative linear-quadratic stochastic
games (CCILQGames) algorithm. CCILQGames solves chance-
constrained stochastic games using the augmented Lagrangian
method. We evaluate our algorithm in three autonomous driving
scenarios, including merge, intersection, and roundabout. Experi-
mental results and Monte Carlo tests show that CCILQGames can
generate safe and interactive strategies in stochastic environments.

Index Terms—Multi-robot systems, motion and path planning,
optimization and optimal control.

I. INTRODUCTION

W ITH the recent advances in multi-robot systems, dy-
namic game has emerged as a new paradigm for multi-

robot planning [1], [2]. Dynamic game naturally captures the
interactive nature of multi-agent planning, as the ego agent’s
strategy accounts for the fact that other agents’ plans could
change based on the ego agent’s action. A few works also
consider safety constraints in the dynamic game settings [3],
[4], which is another key aspect of multi-robot planning (e.g.,
avoiding collisions with other robots or obstacles).

Most of the existing work on dynamic games focuses on de-
terministic settings. However, robots operating in the real world
must reason about uncertainties, resulting in stochastic games.
For example, robots need to reason about their unmodeled or
disturbed system dynamics, noisy sensor perceptions, and other
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Fig. 1. SDG with a large penalty weight could lead to conservative strategies
(as shown in (d)), while a small penalty weight could cause unsafe trajectories
(as shown in (c)). CCILQGames could ensure performance while satisfying
constraints without manually tuning penalty weights (as shown in (a)).

agents’ motion and intention uncertainties. Also, the complexity
of satisfying safety constraints in stochastic games is further
evolved, as the agent needs to guarantee safety under uncertainty.
Schwarting et al. [5] recently proposed the stochastic dynamic
game (SDG) algorithm to solve stochastic games, considering
process and observation uncertainties. SDG simply adds ex-
ponential penalties for chance constraint violations. Yet, this
approach is far from being satisfactory: choosing the penalty
weight is nontrivial. Inappropriate penalty weights will result
in undesired behaviors: a small penalty leads to dangerous
collisions (Fig. 1(c)), while a large penalty leads to conservative
suboptimal behaviors (Fig. 1(d)). Tuning penalty terms requires
trial and error and is generally failure-prone, which prohibits the
potential for real-time applications. To the best of our knowl-
edge, no existing work systematically handles safety constraints
for stochastic dynamic games (with both process and observation
uncertainties).

This letter proposes the chance-constrained iterative linear-
quadratic stochastic games (CCILQGames) algorithm to over-
come the hurdle above. CCILQGames can incorporate chance
constraints in stochastic dynamic games, which allows spec-
ification of the probability threshold for successfully satisfy-
ing constraints. We use the augmented Lagrangian method to
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construct an outer and inner loop framework, with the bene-
fits of automatically tuning the penalty weights. The chance
constraint violation is calculated to update penalty and Lagrange
multiplier terms in the outer loop. We solve the corresponding
unconstrained stochastic game in the inner loop by extending
the iterative linear-quadratic games (ILQGames) algorithm [2],
[6] to the stochastic game setting. We evaluate the proposed
method in lane merging, three-player intersection, and round-
about scenarios. Experimental results and Monte Carlo tests
show that our approach generates interactive and safe strategies
under uncertainty.

II. RELATED WORK

A. Game-Theoretical Planning

A family of algorithms for solving differential games hinges
on transforming a differential game into one or a series of
single-agent optimal control problems. Kavuncu et al. [7] pursue
this idea by utilizing potential differential games, for which
Nash equilibria could be obtained by solving an associated op-
timal control problem. Iterative best response scheme is another
family of algorithms that takes advantage of tools for solving
optimal control problems [8], [9]. This approach solves Nash
equilibria by solving single-agent optimal control problems in a
round-robin fashion. The usefulness of this type of algorithm is
demonstrated in racing games [8], [9]. A pitfall for this approach
is that there are no formal guarantees for convergence to Nash
equilibria. Another thrust of game-theoretic solvers focuses on
solving for open-loop Nash equilibrium. The key to this type of
approach is to formulate the necessary conditions of open-loop
Nash equilibria by concatenating the Karush–Kuhn–Tucker con-
ditions for each player. Di et al. [10] solved the corresponding
nonlinear program based on Newton’s method. In [3], aug-
mented Lagrangian is combined with Newton’s method to han-
dle state and control constraints. In [4], the constrained nonlinear
program is addressed by projected gradient or Douglas-Rachford
splitting method. As this type of approach solves for open-loop
Nash equilibrium (i.e., controls are functions of time instead of
states), special treatments such as model predictive control are
required to help to capture the reactive game-theoretic nature [3].
Another limitation of the aforementioned approaches is that
they only consider deterministic games and can not handle
uncertainties in dynamics and observations.

An increasingly popular branch of game-theoretic solvers
aims to compute local feedback Nash equilibrium [2], [5],
[6], [10], [11]. The iterative linear-quadratic game method [2]
exploits the analytical solutions of linear-quadratic games and
solves the game as a sequence of approximated linear-quadratic
games. Schwarting et al. [5] propose a belief space variant
of differential dynamic programming algorithm for stochastic
games, which could handle dynamics and observation uncer-
tainties. However, their work handles chance constraints using
exponential penalties, which requires adjusting penalty weights
by trial and error. Our work builds upon the iterative linear-
quadratic game method and extends to stochastic games with
dynamics and observation uncertainty. In contrast to [5], our
work directly handles chance constraints using the augmented
Lagrangian method. Our approach does not require manually

adjusting penalty weights and achieves a good balance of safety
and performance.

B. Chance-Constrained Planning

Chance constraint formulation provides a unified framework
for quantifying probabilistic constraint violations, which al-
lows the specification of desired probabilities for constraint
violations. However, calculating chance constraint violations is
intractable in general, which makes chance-constrained plan-
ning challenging. A branch of works exploits the structure of
Gaussian belief distributions [12], [13], whether it be a true
belief distribution or an approximation. We follow this line
of work, exploiting the structure of linear-Gaussian systems
via linearization. We further incorporate this technique into an
augmented Lagrangian framework. A different line of research
exploits moment-based approaches to handle non-Gaussian un-
certainties [14]. Han et al. [14] proposed a moment-based
method that can handle general chance-constrained motion plan-
ning problems. The key to handling general chance-constrained
planning problems is to transform chance constraints into a set
of deterministic constraints on the moments of the probability
distributions of the states, along with an exact moment-based
uncertainty propagation method to relate the moments of the
uncertain states to control inputs.

III. PROBLEM FORMULATION

We consider the following nonlinear stochastic N -player
dynamics:

xk+1 = f
(
xk, u

1:N
k , wk

)
, wk ∼ N (0,Σwk

), (1)

where xk and xk+1 ∈ Rn are the states at time step k and k + 1.
ui
k ∈ Rmi , i ∈ {1, . . ., N} is the control input of player i at time

step k, and u1:N
k = {u1

k, . . ., u
N
k } is the collection of all players’

controls at time step k.wk ∈ Rd represents the Gaussian process
noise at time step k.Σwk

is the corresponding covariance forwk.
Although the dynamics model considers Gaussian noises, it is
still general as the Gaussian noises could go through arbitrary
nonlinear transformations through f .

Following [5], we assume that each agent shares the same
observation model and state measurement. At the core of
CCILQGames is solving a series of linear-quadratic stochastic
games. Linear-quadratic stochastic games with certain structures
are computationally tractable [15], [16], thanks to the separa-
tion principle. In this work, assumption 1 is imposed to make
the linear-quadratic stochastic games tractable. We state this
assumption formally below:

Assumption 1: All agents share the same joint measurement
model and the same state (i.e., xk) measurement.

With assumption 1, we consider the following measurement
model:

yk+1 = h(xk+1, vk+1), vk+1 ∼ N (0,Σvk+1
), (2)

where yk+1 ∈ Rz and vk+1 ∈ Rs are the sensor measurement
and the Gaussian measurement noise at time step k + 1. Σvk+1

is the covariance of the measurement noise.
System dynamics (1) and measurement model (2) jointly

define a partially observable Markov decision process, in which

Authorized licensed use limited to: Tsinghua University. Downloaded on January 05,2023 at 06:38:56 UTC from IEEE Xplore.  Restrictions apply. 



442 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 1, JANUARY 2023

agents maintain a probability distribution of the state xk. We
use belief bk to represent the probability distribution of state xk

conditioned on control inputs and measurements:

bk = Pr
(
xk|y0, . . ., yk, u1:N

0 , . . ., u1:N
k

)
. (3)

Furthermore, we consider chance constraints on state:

Pr(gk(xk) ≤ 0) ≥ p, (4)

where gk(xk) ≤ 0 is the nonlinear constraint on state xk at time
step k. p is the chance constraint threshold. We assume gk(xk)
is a scalar.

Each agent has a time-varying feedback control policy
γi(k, y1, . . ., yk) ∈ Γi, which maps the current time step and
observations to control input (i.e., ui

k = γi(k, y1, . . ., yk)). Γi is
the strategy space for player i. Each agent has a cost function Ji
defined as the expectation of states and measurements:

Ji(γ1, . . ., γN ) =

E
X0,...,XL,Y0,...,YL

[
ciL(xL) +

L−1∑
k=0

cik
(
xk, u

1:N
k

)]
, (5)

where L is the planning horizon, and X0, . . ., XL, Y0, . . ., YL

are random variables for states and measurements. Now we are
ready to define the generalized Nash equilibrium, which is the
Nash equilibrium under chance constraints:

Definition 1: A set of control policies {γ∗
i }, i ∈ {1, . . ., N},

is a generalized Nash equilibrium if the following inequality
holds for all players while satisfying chance constraints (4):

Ji(γ
∗
1, . . ., γ

∗
i , . . ., γ

∗
N ) ≤ Ji(γ

∗
1, . . ., γi, . . ., γ

∗
N ),

∀γi ∈ Γi, i ∈ {1, . . ., N}. (6)

As we describe in detail in Section IV-C, our work builds
upon ILQGames. Since the computation of a Nash equilibrium
is generally intractable, ILQGames attempts to find local Nash
equilibria (i.e., the inequality in (6) holds within a neighborhood
around each player’s local Nash equilibrium strategy) [17, Def.
1]. ILQGames solves a series of linear-quadratic game approxi-
mations to the original game. More precisely, ILQGames obtains
the feedback Nash equilibrium [1, Def. 6.2] solution to the
approximate linear-quadratic game. The feedback Nash equi-
librium solution is strongly time-consistent [1, Ch. 6, Th. 6.6],
which is appealing since the feedback Nash equilibrium strategy
remains optimal at a future time step even if there are deviations
from the feedback strategy in the past time steps. Given that
ILQGames is at the core of our algorithm, CCILQGames also
aims to find local Nash equilibrium in practice.

With the above components, we can finally derive the target
problem for this work (i.e., finding the generalized Nash equi-
librium), which is summarized as follows:

Problem 1: Solve for a generalized Nash equilibrium with the
following cost functions, dynamics model, measurement model,
and chance constraints:

Ji(γ1, . . ., γN ) = E

[
ciL(xL) +

L−1∑
k=0

cik
(
xk, u

1:N
k

)]
,

xk+1 = f
(
xk, u

1:N
k , wk

)
, wk ∼ N (0,Σwk

),

yk+1 = h(xk+1, vk+1), vk+1 ∼ N (0,Σvk+1
),

P r(gi,mk (xk) ≤ 0) ≥ pi,m, m ∈ {1, ..,M i
k},

i ∈ {1, . . ., N},
where m, pi,m, and M i

k are the index for the mth chance
constraint, chance constraint threshold and the total number of
constraints at time step k for agent i.

IV. CHANCE-CONSTRAINED ITERATIVE LINEAR-QUADRATIC

GAME

A. System Linearization and Belief Dynamics

Given the current belief bk and next time step’s measurement
yk+1, the belief dynamics could be described using the Bayesian
filter [18]. Following [13], [19], we linearize the dynamical
system around a nominal trajectory and then apply the Kalman
filter to approximately track the belief dynamics. Kalman filter
approximates the true belief as a Gaussian distribution, such that
bk = (x̂k,Σxk

), where x̂k is the mean andΣxk
is the covariance.

Given a nominal trajectory b̄ = {b̄k = (x̄k, Σ̄xk
), k ∈

{0, . . ., L}}, ū1:N
0 , . . ., ū1:N

L−1, satisfying x̄k+1 = f(x̄k, ū
1:N
k , 0),

we linearize the dynamics (1) and measurement models (2):

xk+1 = x̄k+1 +Ak(xk − x̄k) +

N∑
j=1

Bj(u
j
k − ūj

k) +Wkwk,

yk+1 = h(x̄k+1, 0) +Hk+1(xk+1 − x̄k+1) + Vk+1vk+1,
(7)

where Ak, Bj ,Wk, Hk+1, Vk+1 are:

Ak =
∂f(x̄k, ū

1:N
k , 0)

∂xk
, Bj =

∂f(x̄k, ū
1:N
k , 0)

∂uj
k

,

Wk =
∂f(x̄k, ū

1:N
k , 0)

∂wk
, Hk+1 =

∂h(x̄k+1, 0)

∂xk+1
,

Vk+1 =
∂h(x̄k+1, 0)

∂vk+1
. (8)

Now we can use Kalman filter to propagate next time step’s
belief bk+1 = (x̂k+1,Σxk+1

) with the linearized dynamics, ob-
servation model, and current belief bk = (x̂k,Σxk

):

x̂p
k+1 = x̄k+1 +Ak(x̂k − x̄k) +

N∑
j=1

Bj(u
j
k − ūj

k),

Σp
xk+1

= AkΣxk
AT

k +WkΣwk
WT

k ,

x̂k+1 = x̄k+1 +Ak(x̂k − x̄k) +

N∑
j=1

Bj(u
j
k − ūj

k)

+Kk+1(yk+1−(h(x̄k+1, 0)+Hk+1(x̂
p
k+1−x̄k+1))),

Σxk+1
= (I −Kk+1Hk+1)Σ

p
xk+1

,

Kk+1=Σp
xk+1

HT
k+1

(
Hk+1Σ

p
xk+1

HT
k+1+Vk+1Σvk+1

V T
k+1

)−1

,

(9)
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where x̂p
k+1 is the state’s prior estimation, Σp

xk+1
is the covari-

ance’s prior estimation, andKk+1 is the Kalman gain. The inno-
vation term yk+1 − (h(x̄k+1, 0) +Hk+1(x̂k − x̄k)) is random,
which renders the mean propagation stochastic. Although the
mean propagation is stochastic, the covariance propagation is
deterministic, dependent neither on measurements nor controls.

B. Outer Loop: Augmented Lagrangian Scheme

1) Augmented Lagrangian Formulation: The augmented La-
grangian associated with player i is formulated by augment-
ing the cost function (5) with Lagrange multiplier terms and
quadratic penalty terms:

li(X0, . . ., XL, Y0, . . ., YL, u
1:N
0 , . . ., u1:N

L−1)

= E
X0,...,XL,Y0,...,YL

[
ciL(xL) +

L−1∑
k=0

cik
(
xk, u

1:N
k

)]

+

L∑
k=1

Mk∑
m=1

λi,m[pi,m − Pr(gi,mk (xk) ≤ 0)]

+

L∑
k=1

Mk∑
m=1

Ii,m
2

[pi,m − Pr(gi,mk (xk) ≤ 0)]2, (10)

where λi,m ∈ R is the Lagrange multiplier. Ii,m is defined as:

Ii,m =

{
0, pi,m − Pr(gi,mk (xk) ≤ 0) < 0 ∧ λi,m = 0,

μi,m, otherwise.
(11)

where μi,m ∈ R is the quadratic penalty term.
2) Augmented Lagrangian Update: Given a trajectory, the

Lagrange multipliers and penalty terms are updated as fol-
lows [20]:

λi,m = max(0, λi,m + μi,m(pi,m − Pr(gi,mk (xk) ≤ 0)),

μi,m = φμi,m, (12)

where φ > 1 is the increasing schedule.
3) Evaluating Chance Constraints Violations: Evaluating

chance constraint violations is necessary to update the Lagrange
multipliers. However, directly calculating chance constraint vi-
olations could be intractable in general. Hence, we follow the
approach of [12], [13] to linearize chance constraints.

Given a trajectory with belief b̄k = (x̄k, Σ̄xk
) and control

ū1:N
k , we get a linearization of gi,mk (xk) around x̄k:

Gi,m
k xk + qi,mk , (13)

where

Gi,m
k =

∂gi,mk (x̄k)

∂xk
, qi,mk = gi,mk (x̄k)−Gi,m

k x̄k. (14)

Now we can consider the following linearized chance con-
straints:

Pr(Gi,m
k xk + qi,mk ≤ 0) ≥ pi,m. (15)

To step further, we can decompose the Gaussian random
variable xk into its mean x̄k and ēk = xk − x̄k ∼ N (0, Σ̄xk

):

Pr(Gi,m
k (x̄k + ēk) + qi,mk ≤ 0) ≥ pi,m. (16)

By rearranging terms, chance constraint (15) can be trans-
formed to a deterministic linear constraint on mean x̄k [12]:

Gi,m
k x̄k ≤ −qi,mk − ρ̄i,mk . (17)

ρ̄i,mk could be calculated using the quantile function for uni-
variate Gaussian, as Gi,m

k ēk ∼ N (0, Gi,m
k Σ̄xk

(Gi,m
k )T ):

Pr(Gi,m
k ek ≤ ρ̄i,mk ) = pi,m,

ρ̄i,mk =

√
2Gi,m

k Σ̄xk
(Gi,m

k )T erf−1(2pi,m−1),

(18)

where erf−1 is the inverse error function. Since mean x̄k and co-
variance Σ̄xk

are known for the nominal trajectory, the violation
of constraint (17) can be directly calculated.

C. Inner Loop: Iterative Linear Quadratic Game

The inner loop iteratively solves a linear-quadratic stochastic
game. We present how to construct the approximate linear-
quadratic game from the original game and solve it.

1) Approximate Linear-Quadratic Game: The inner loop
of the proposed CCILQGames performs an iterative linear-
quadratic stochastic game step, which involves iteratively
solving a linear-quadratic stochastic game. We now present
how to obtain an approximated linear-quadratic stochastic
game with a given nominal trajectory b̄ = {bk = (x̄k, Σ̄xk

), k ∈
{0, . . ., L}}, control strategies {γ̄i}, i ∈ {1, . . ., N} and con-
trols ū1:N

0 , . . ., ū1:N
L−1.

Toward this end, we first obtain the linearized dynamics
and observation model (7) around the nominal trajectory, as
described in Section IV-A.

Moreover, a quadratic approximation to the running costs
cik(xk, u

1:N
k ) is necessary. Yet, before we are able to proceed, we

need to put the Lagrange multiplier and penalty terms associated
with chance constraints inside the expectation operator.

We proceed in the same manner as in Section IV-B.(3). By
linearizing around the nominal trajectory, we obtain a linear ap-
proximation to chance constraints in the form of a deterministic
linear constraint on the mean x̂k:

Gi,m
k x̂k ≤ − qi,mk − ρi,mk ,

ρi,mk =

√
2Gi,m

k Σxk
(Gi,m

k )T erf−1(2pi,m − 1), (19)

where qi,mk is defined in (14). Since the covariance propaga-
tion is deterministic as we mentioned in Section IV-A, we can
precompute the covariance before solving the game.

The linear constraint (19) now replaces the original chance
constraint. The Lagrange multiplier term can be directly put
inside the expectation operator:

λi,m(Gi,m
k x̂k + qi,mk + ρi,mk )

= E
Xk

[λi,m(Gi,m
k xk + qi,mk + ρi,mk )]. (20)
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For any probability distribution of Xk, Ii,m is determined
since the mean x̂k is determined. Now, the penalty term can be
transformed as follows:

Ii,m
2

(Gi,m
k x̂k + qi,mk + ρi,mk )2

=
Ii,m
2

[
x̂T
kG

i,m
k

T
Gi,m

k x̂k + 2(qi,mk + ρi,mk )TGi,m
k x̂k

+(qi,mk + ρi,mk )T (qi,mk + ρi,mk )
]

=
Ii,m
2

E
Xk

[
xT
kG

i,m
k

T
Gi,m

k xk + 2(qi,mk + ρi,mk )TGi,m
k xk

+(qi,mk + ρi,mk )T (qi,mk + ρi,mk )
]

− Ii,m
2

trace(Gi,m
k

T
Gi,m

k Σxk
), (21)

Since Gi,m
k and Σxk

are constants after linearization around the

nominal trajectory, trace(Gi,m
k

T
Gi,m

k Σxk
) is also constant. But

the penalty Ii,m indeed depends on the control, as the control af-
fects the probability distribution ofXk. So when constructing the

linear-quadratic game, the trace term trace(Gi,m
k

T
Gi,m

k Σxk
)

should be taken into account. However, calculating the derivative
and hessian of it requires calculating second and third order
derivatives of the dynamics, which could add heavy computa-
tional costs. So we omit the trace term in each agent’s augmented
Lagrangian as an approximation in this work.

Combining (20) and (21), the Lagrange multiplier and penalty
terms are transformed into the expectation operator. We denote
the modified running cost as c̃k

i(xk, u
1:N
k ). Finally, we are

equipped to obtain a quadratic approximation for the running
costs:

c̃k
i
(
xk, u

1:N
k

) ≈ c̃k
i(x̄k, ū

1:N
k ) +

1

2
δxT

k

(
Qi

kδxk + 2lik
)

+
1

2

N∑
j=1

δuj
k

T
(
Rij

k δu
j
k + 2rijk

)
, (22)

where δxk = xk − x̄k, δuj
k = uj

k − ūj
k, Qi

k, R
ij
k are the Hes-

sians with respect to xk and uj
k, and lik, r

ij
k are the gradients

with respect to xk and uj
k. We take the value of Ii,m

2 as the same
as the nominal trajectory and treat it as a constant as an approx-
imation when constructing the quadratic cost approximation.
Same as [2], we omit the mix partial derivatives.

2) Separation Principle for Linear-Quadratic Stochastic
Game: With (7) and (22), we have constructed a linear-quadratic
stochastic game. Next, we present the separation principle for
linear-quadratic stochastic games, which would be exploited to
solve the linear-quadratic stochastic game.

Theorem 1 (Separation principle for linear-quadratic
stochastic games): With assumption 1, We consider stochastic
games with linear dynamics, and quadratic costs for each player
i:

xk+1 = Akxk +

N∑
j=1

Bju
j
k +Wkwk,

yk+1 = Hk+1xk+1 + Vk+1vk+1,

Ji = E
X0,...,XL,Y0,...,YL

[
1

2
xT
L

(
Qi

LxL + 2liL
)

+

L−1∑
k=0

⎛
⎝1

2
xT
k (Q

i
kxk + 2lik)

+
1

2

N∑
j=1

uj
k

T
(
Rij

k uk + 2rijk

)⎞⎠
⎤
⎦ ,

where wk and vk+1 are zero mean Gaussian white noise. The
initial Gaussian belief (x̂k,Σxk

) is known and independent of
the additive noises.

Then the Nash equilibrium strategy of the above stochastic
linear-quadratic game is the Nash equilibrium strategy of the
deterministic linear-quadratic game applied to the estimated
state x̂k provided by the Kalman filter.

The proof of Theorem 1 is in the appendix. Thanks to The-
orem 1, we can obtain the Nash equilibrium strategy of the
stochastic linear-quadratic game by solving the deterministic
linear-quadratic game, which has an analytical solution [1].

D. Algorithm for Chance-Constrained Iterative Linear-
Quadratic Stochastic Game

The proposed algorithm is summarized in algorithm 1. After
obtaining the Nash equilibrium, a line searching procedure is
necessary to find a suitable step size. We use the definition of
step size as in (7) in [2]. We define the merit function to be M =
1
2‖ ∂li

∂ui ‖2 and apply a backtracking line search procedure to find a
step size that satisfies the Armijo condition [20]. We follow [5],
[21] to use a zero-noise realization to forward the dynamics.
Then we use the extended Kalman filter [18] to propagate the
belief to obtain the next iteration’s nominal trajectory.

V. EXPERIMENTS

A. Experimental Setup

In this section, we evaluate the performance of CCILQGames
in three autonomous driving scenarios: lane merging, three-
player intersection, and roundabout. We also further conduct
a Monte Carlo study to test the proposed algorithm in noisy
environments. We compare our algorithm to SDG with different
constraint penalty weights. Since SDG is not open-sourced, we
implement SDG by ourselves. All experiments are conducted
on a 2.2 GHz Intel Core i7 laptop. We run CCILQGames 50
times for each scenario to calculate the computation time’s mean
and standard deviation. Computation time for lane merging,
roundabout, and three-player intersection are 0.1017± 0.007.3
s, 0.4230± 0.0212 s, and 0.0866± 0.0086 s respectively.

1) Dynamics and Measurement Model: We use the unicycle
model as the vehicle dynamic model throughout the three sce-
narios. The state of the vehicle contains its position, heading
angle, and velocity. The agent’s control input is composed of its
angular velocity and scalar acceleration.
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Algorithm 1: Chance-Constrained Iterative Linear-
Quadratic Stochastic Game.

We use the following measurement model for each agent in
all three scenarios:

yik+1 = xi
k+1 + vik+1, vik+1 ∼ N

(
0,Σvi

k+1

)
, (23)

where xi
k+1, y

i
k+1 are the state and measurement of agent i at

time step k + 1. vik+1 is the associate noise. The joint measure-
ment model is just the concatenation of all agents’ measurement
models.

2) Costs and Chance Constraints: We consider quadratic
costs for distance from the lane center, deviation from the
nominal speed, and control efforts, which are in the same form
as in [2]. We consider chance constraints on the proximity
and collisions with obstacles. For the proximity constraints, the
minimum distance threshold between two agents is set to 3 m.
The obstacle avoidance constraint is formulated using the convex
feasible set [13], [22]. We augment the cost of the SDG simply
with quadratic penalties for proximity constraint violations and
linear penalties for obstacle avoidance constraint violation, all
weighted by a penalty weight (1 or 400). We set the chance
constraint threshold p to 0.95 in all experiments.

B. Lane Merging

As shown in Fig. 2, two vehicles need to merge into the
same lane in the lane merging scenario. Also, vehicles need
to avoid collisions between each other and obstacles on the lane
boundary. The planning horizon is 3 seconds with 20 time steps.

Fig. 2(a) illustrates the planned trajectory using
CCILQGames, in which the ellipses represent the covariance
of the state. As demonstrated in the speed profile (Fig. 2(b)),
the red vehicle speeds up to cut into the lane ahead of the
blue vehicle. By contrast, the blue vehicle slows down and

allows the blue vehicle to merge. As shown in Fig. 2(c), a small
penalty weight of 1 leads to unsafe strategies: two vehicles do
not avoid collisions with each other. The Monte Carlo tests
further validate a high probability of constraint violations. A
large penalty weight of 400 leads the blue vehicle to slow down
to let the red vehicle passes first. Notice that the penalty weight
of 400 does not lead to a conservative strategy in this case. But
the corresponding strategy is less safe than CCILQGames’s
strategy, as we would illustrate in the Monte Carlo Tests.

C. Three-Player Intersection

In the three-player intersection scenario, the planning horizon
is 2.5 s with 16 time steps. Fig. 1(a) illustrates the trajectory
planned by CCILQGames. The red vehicle accelerates to pass
the intersection ahead of the green vehicle. On the other hand,
the blue vehicle slows down to wait for the red vehicle to go
across the intersection. Interestingly, the red vehicle tweaks to
avoid collisions. SDG with a small penalty weight could lead to
unsafe behaviors. All vehicles go straight across the intersection
without avoiding collisions (Fig. 1(c)). However, a large penalty
weight again leads to conservative strategies, as only the red
vehicle could pass the intersection while the others turn back
(Fig. 1(d)).

D. Roundabout

The planning horizon is 2.5 s with 16 time steps for the
roundabout scenario. Fig. 2(e) illustrates the trajectory planned
by CCILQGames. The red vehicle accelerates to escape the
roundabout and cuts into the lane earlier than the blue vehicle.
The blue vehicle’s strategy is to slow down to let the red vehicle
pass first. The green vehicle also slows down to leave space
for the blue vehicle. Fig. 2(g) shows the trajectory for SDG
with a penalty weight of 1. The red vehicle turns around after
escaping the roundabout since the cost only encourages to stay
close to the lane center instead of specifying a direction. The
strategy leads to collisions, which are validated by the Monte
Carlo Tests. By comparison, a large penalty weight again leads
to conservative behaviors, as only the blue vehicle navigates
successfully (Fig. 2(h)). The green vehicle slows down and could
not get out of the Roundabout while the red vehicle turns back.

E. Monte Carlo Tests

We conduct a Monte Carlo study to test the performance of
CCILQGames in stochastic environments. We run 100 trials for
each scenario. The process noises are sampled fromN (0, 0.1I),
with the exception of heading angle’s variance being 0.05.
The observation noises are sampled from N (0, 0.6I), with the
exception of angular velocity’s variance being 0.1. The noises’
covariances are the same for planning (the planned trajecctoreis
are shown in previous subsections) and Monte Carlo testing.
Recall that our constraints are imposed on all the time steps in
all three experiments. As shown in our problem formulation,
we treat the same type of constraints at different time step as
different constraints (e.g., the proximity constraint at time steps
1 and 2 are counted as two different constraints). Therefore, we
calculate the statistics of constraint violations for each constraint
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Fig. 2. The first row illustrates the results for the lane merging scenario, while the second row shows the results for the roundabout scenario.

Fig. 3. Histograms of constraint violations for all the constraints in 100 Monte Carlo Tests, with sampled process and observation noises.

in 100 trials. Fig. 3 shows the histograms of constraint violations
in 100 trials for CCILQGames and SDG in the three scenarios.

The maximum number of constraint violations among all
the constraints for CCILQGames are 18,16,18 in lane merging,
intersection and roundabout scenarios in 100 trials. By compar-
ison, the maximum number of constraint violations among all
the constraints for SDG with penalty weights 1(400) are 54 (33),
62 (25), 54 (22) in lane merging, intersection and roundabout
scenarios in 100 trials.

F. Limitations

We would like to discuss several limitations of CCILQGames.
First, since we handle the chance constraints via linear approxi-
mations, there are no strict chance constraint satisfaction guaran-
tees. Additionally, the linearization techniques could only spec-
ify a chance constraint threshold for each individual constraint
instead of a joint threshold for satisfying all the constraints.
As a result, CCILQGames achieves rates of 48%, 51%, and
51% of constraint satisfaction for all the constraints in lane
merging, intersection and roundabout scenarios in 100 trials.
By comparison, SDG with the penalty weight 1 (400) achieves
rates of 13% (35%), 6% (65%), 19% (32%) in lane merging,
intersection and roundabout scenarios in 100 trials. We argue
that the above limitations could be mitigated or resolved via an
Model Predictive Control (MPC) formulation. For example, [23]
uses the same technique to handle chance constraints in an MPC
framework and achieves zero chance constraint violations in

experiments. Another possible way to mitigate this limitation
is to use the Bonferroni correction [24] to assign a chance
constraint threshold to each individual constraint. One more
limitation of CCILQGames is that the Kalman filter could expe-
rience numerical instabilities in some cases (e.g., the covariance
matrix becomes not symmetric positive definite).

VI. CONCLUSION

We have presented a novel algorithm for solving stochastic
dynamic games under chance constraints. Our work extends the
deterministic ILQGames to stochastic games with both observa-
tion and process noises while handling chance constraints using
the framework of augmented Lagrangian. We showcased the
proposed algorithm in the lane merging, three-player intersec-
tion, and roundabout scenarios. The experimental results proved
the effectiveness of the proposed approach.

APPENDIX

A. Proof for Theorem 1

Proof: We can reformulate the cost function as follows:

Ji = E
X0,...,XL,Y0,...,YL

[
1

2
xT
L(Q

i
LxL + 2liL)

+
L−1∑
k=0

⎛
⎝1

2
xT
k

(
Qi

kxk + 2lik
)
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+
1

2

N∑
j=1

uj
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T
(Rij

k uk + 2rijk )

⎞
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⎦ ,

= E
Y0,...,YL

[
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+

L∑
k=0

1

2
trace(Qi

kΣxk
), (24)

where x̂k is the mean of the state at time step k. Notice that the
trace terms trace(Qi

kΣxk
) are constants and do not depend on

control strategies. Due to assumption 1, the dynamics of x̂k are
the same for different agents. In other words, given the same
realizations of the observation noises, all the agents would get
the same x̂k from their Kalman filters. Now since x̂k is fully
observable (given by Kalman filter [25]), we have reduced the
problem to a stochastic linear-quadratic game with closed-loop
perfect state information pattern. By Corollary 6.4 in [1], the
Nash equilibrium of the linear-quadratic stochastic game with
exact state information coincides with the deterministic version
of the linear-quadratic game. We add linear costs of states and
controls into the cost function, which is slightly different than
the original setting in [1]. But the corollary still holds, with
minor modifications in the derivation, which is not included due
to page limits. �

REFERENCES
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