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Abstract— The Hamilton–Jacobi–Bellman (HJB) equation
serves as the necessary and sufficient condition for the optimal
solution to the continuous-time (CT) optimal control problem
(OCP). Compared with the infinite-horizon HJB equation, the
solving of the finite-horizon (FH) HJB equation has been a
long-standing challenge, because the partial time derivative of
the value function is involved as an additional unknown term.
To address this problem, this study first-time bridges the link
between the partial time derivative and the terminal-time utility
function, and thus it facilitates the use of the policy iteration (PI)
technique to solve the CT FH OCPs. Based on this key finding,
the FH approximate dynamic programming (ADP) algorithm
is proposed leveraging an actor–critic framework. It is shown
that the algorithm exhibits important properties in terms of
convergence and optimality. Rather importantly, with the use of
multilayer neural networks (NNs) in the actor–critic architecture,
the algorithm is suitable for CT FH OCPs toward more general
nonlinear and complex systems. Finally, the effectiveness of the
proposed algorithm is demonstrated by conducting a series of
simulations on both a linear quadratic regulator (LQR) problem
and a nonlinear vehicle tracking problem.
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I. INTRODUCTION

THE optimal control problem (OCP) for continuous-time
(CT) systems has gathered considerable momentum and

research attention with a long history because of its theoretical
and practical significance. As a standard practice, the optimal
value function for CT systems can be obtained by solving the
well-known Hamilton-Jacobi–Bellman (HJB) equation, which
gives a necessary and sufficient condition for optimality [1].
For CT linear quadratic regulator (LQR) problems, the HJB
equation is simplified as the algebraic Riccati equation, which
can be solved directly. On the other hand, for complex
nonlinear dynamic systems, the LQR can be implemented
iteratively to derive the optimal solution [2], [3], [4]. In such
scenarios, the determination of the analytic solution to the HJB
equation typically poses great difficulty, because a nonlinear
partial differential equation remains to solve [5].

In view of the difficulty of finding the exact solution to
the HJB equation for nonlinear dynamic systems, it prompts
many researchers to turn their attention to investigate the near-
optimal solution. As one of the seminal works in this field,
Werbos [6] proposed the approximate dynamic programming
(ADP), with a primitive aim to solve the large-scale and
complex problems. It is known that ADP can be regarded as
one of the model-based reinforcement learning algorithms [7],
and it has many synonyms, such as the so-called neurodynamic
programming [8] and adaptive dynamic programming [8].
The core idea behind the ADP is to solve the intractable
HJB equation utilizing the policy iteration (PI) technique [9].
In addition, the training process with PI technique can be split
systematically into two stages: 1) policy evaluation (PEV) and
2) policy improvement (PIM) [10].

Last few years have witnessed the successful application of
ADP on solving the HJB equation for the CT infinite-horizon
control problem, in which the optimal control inputs only
depend on the system states [11]. In terms of the CT infinite-
horizon HJB equation, there are two unknown terms. Hence,
in this case, the PI technique can be deployed to determine the
two unknown terms in the infinite-horizon HJB equation by
solving two equations in an iterative framework. Remarkably,
Vamvoudak and Lewis [12] presented an online ADP algo-
rithm called the synchronous PI, which was implemented in
the actor–critic architecture for nonlinear CT infinite-horizon
systems. Vrabie et al. [13] presented a new scheme to obtain
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an online optimal control solution to linear CT infinite-horizon
systems based on the adaptive critics. Fu et al. [14] proposed
an online robust ADP algorithm for two-player zero-sum
games of CT unknown linear systems with uncertainties. The
PI technique is used, yet only one iteration loop is involved.
Kamalapurkar et al. [15] utilized the state following kernel
method to approximate the infinite-horizon value function.
He et al. [16] utilized the network linear differential inclusion
technique to linearize and approximate the nonlinear term in
dynamic model, and then the online H∞ OCP with infinite-
horizon quadratic function is solved. He et al. [17] provided
the perspective to address CT infinite-horizon control problem
with the combination of the online linearization and the online
PI technique. Fang et al. [18] studied the adaptive optimal
controller for nonlinear Markov jump systems via coupled
linear subsystems. Deniz et al. [19] extended the adaptive
control to uncertain dynamic systems and obtained the optimal
model for the nonlinear reference.

It is pertinent to notice that, the CT finite-horizon (FH)
control problem is essentially different from the infinite-
horizon control counterpart, because the value function is
time-dependent in the FH control problem. In this sense, the
additional unknown term, i.e., the partial derivative of value
function with respect to time, is naturally introduced. Thus in
this regard, there are three unknown terms in two equations,
and the PI technique is no longer suitable for the FH HJB
equation [20]. Therefore, the solving of the FH HJB equation
is still not explored thoroughly due to the lack of effective
mathematical tools.

Recently, the development of machine learning methods
renders it possible to solve the FH HJB equation leveraging
parameterized functions [21], [22], [23]. As one of the repre-
sentative types of parameterized functions, the neural network
(NN) is commonly used in OCPs [24], [25]. In essence, the
NN can also be suitably used for approximating the near-
optimal solution to the value function and control input. In this
case, it avoids the difficulty of solving the exact analytical
solutions to the two iterative equations in the PI framework.
In particular, the single-layer NN (SNN), which is also known
as the linear combination method, is widely employed for the
FH optimal control studies [26], [27], [28]. To handle the
tractable time-varying values, a few studies utilized SNNs
with time-varying weights to construct the value function
and policy [29], [30], [31], [32], [33]. The optimal time-
varying weights can be found by solving a nonlinear ordinary
differential equation backward in time using the weighted
residuals method.

However, existing methods for CT FH OCP suffer from two
significant problems. First, most algorithms are restricted to
affine systems as the policy is restricted to be expressed using
the value function analytically [34], [35]. Therefore, the OCP
can be addressed via solving the HJB equation for input-affine
systems with only value NN, yet directly solving the optimal
policy for nonaffine systems in this way is often intractable.
Second, the performance of SNN-based algorithms relies on
the design accuracy of the hand-crafted basis functions heavily,
and it is generally hard to design such features for complex
nonlinear systems [36], [37]. Compared with NNs with a

single hidden layer, NNs with multiple hidden layers own
the universal fitting ability. Hence, they can directly map
the system states to the value function and control inputs
without reliance on hand-crafted features [38]. Thus, it leaves
an interesting problem to explore the use of NNs with multiple
hidden layers to parameterize both value functions and control
input separately, and then solve the FH OCP.

Hence, taking all the aforementioned matters into consid-
eration, a parameterized ADP algorithm is proposed in this
work to find the nearly optimal policy of CT FH OCPs. The
main contributions of this work are threefold.

1) This study bridges the link between the partial time
derivative of the value function and the terminal-time
utility function. The analytical and solvable expression
for the additional unknown term is given, and thus it
facilitates the use of the PI technique to solve the FH
OCP. With rigorous proofs and an illustrative exam-
ple, the effectiveness of the proposed development is
verified.

2) Based on the FH HJB, the FH ADP algorithm with the
PI framework is proposed for solving CT FH OCPs.
The algorithm is shown to exhibit important properties
in terms of convergence and optimality.

3) Multilayer NNs are deployed in the proposed FH ADP
algorithm to parameterize both approximated value func-
tion and control input with the actor–critic framework,
so that the proposed methodology is not limited to
affine systems only. Furthermore, the need for complex
hand-crafted features is relaxed appropriately. Hence,
it is suitable for more general real-world systems with
nonlinearity and high complexity.

The rest of this article is organized as follows. Section II
introduces the CT HJB equation and ADP method. Section III
derives the value function’s partial time derivative in FH
HJB equation. Section IV proposes the FH ADP algorithm.
Section V employs the algorithm to linear quadratic and non-
linear system’s simulations with demonstrated effectiveness.
The conclusion of this article is given in Section VI.

II. PRELIMINARIES

In this part, we first introduce the CT HJB equation.
Then, we discuss the challenges of solving the FH OCPs by
analyzing the difference between the infinite-horizon and FH
HJB equations. Besides, an FH version of PI is given to point
out that the derivation of the partial time derivative of the value
function is the key to solve FH OCPs.

A. CT HJB Equation

The general CT time-invariant dynamical system is denoted
as

ẋ = f (x, u) (1)

where x ∈ � ⊂ R
n is the state vector, � denotes the compact

set, u ∈ R
m is the control input, and f (x, u) : R

n × R
m → R

n

is the state dynamic model. Our study assumes that the state
model is controllable and the dynamic system is stabilizable
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on �. Meanwhile, the model function f (x, u) is regarded to
be known, which could be any nonlinear analytical function
as long as (∂ f (x, u)/∂u) and (∂ f (x, u)/∂x) are available.

The FH value function corresponding to the known policy
π is defined as

V π (x(t), t) =
� T

t
l(x(τ ), u(τ ))dτ

=
� T

t
l(x(τ ), π(x(τ ), τ ))dτ (2)

where t ∈ [0, T ] is the current time, T is the fixed terminal
time, l(x(τ ), u(τ )) : R

n × R
m → R is the non-negative utility

function. It is obvious that V π(x(t), t) is time-dependent.
We define the policy function π as the mapping from the
states-time pair (x(t), t) to control inputs u. In other words,
the control inputs are generated by the policy π

u(τ ) = π(x(τ ), τ ), τ ∈ [t, T ], t ∈ [0, T ]. (3)

For system (1) with the value function (2), we introduce the
corresponding Hamiltonian

H

�
x, π(x, t),

∂V π (x, t)

∂x�

�

= l(x, π(x, t)) + ∂V π (x, t)

∂x� f (x, π(x, t)) (4)

where x is the abbreviation for the initial state x(t), which is
used in the this article for the sake of brevity. By taking the
derivative of (2), the FH Lyapunov equation can be expressed
as

H

�
x, π(x, t),

∂V π (x, t)

∂x�

�
=−∂V π (x, t)

∂ t
∀t ∈ [0, T ]. (5)

It means that given a policy π , its associated value function
V π can be calculated by solving (5). It can also be regarded
as the self-consistency condition.

The OCP is formulated to find a policy that minimizes the
value function (2) associated with the system for all x, t . The
minimum value function V ∗(x(t), t) is defined by

V ∗(x, t) = min
π

V π (x, t). (6)

It meets the CT FH HJB equation

min
π

�
l(x, π(x, t))+ ∂V ∗(x, t)

∂x� f (x, π(x, t))

�
=−∂V ∗(x, t)

∂ t
.

(7)

Along with (7), the terminal boundary condition also needs to
be satisfied by the optimal policy

V ∗(x(T ), T ) = 0. (8)

To obtain the optimal control policy of CT FH OCP,
researchers first need to solve the HJB equation (7) for
V ∗(x, t). Then, the optimal control policy π∗(x, t) can be
directly obtained by minimizing the associated Hamiltonian

π∗(x, t) = arg min
π

�
H

�
x, π(x, t),

∂V ∗(x, t)

∂x�

��
. (9)

Nevertheless, for complex nonlinear systems, it is generally
difficult or impossible to directly find the solution to the HJB
equation, since it is a nonlinear partial differential equation.

By inserting the optimal policy π∗(x, t) and optimal value
function V ∗(x, t) into the Lyapunov equation (5), we can
rewrite the FH HJB equation as

l
�
x, π∗(x, t)

� + ∂V ∗(x, t)

∂x� f
�
x, π∗(x, t)

�=−∂V ∗(x, t)

∂ t
.

(10)

There are three unknown terms in this equation: 1) π∗(x, t);
2) (∂V ∗(x, t)/∂x); and 3) (∂V ∗(x, t)/∂ t). For infinite-horizon
OCPs, i.e., T → ∞, the value function and optimal policy are
time-independent. This yields the celebrated infinite-horizon
HJB equation

l
�
x, π∗(x, t)

� + ∂V ∗(x, t)

∂x� f
�
x, π∗(x, t)

� = 0 (11)

which only contains two unknowns: 1) π∗(x, t) and
2) (∂V ∗(x, t)/∂x) as (∂V ∗(x, t)/∂ t) = 0 in this case [39].
Therefore, compared with infinite-horizon HJB equation, it is
more difficult to solve the FH HJB equation because more
unknown terms are involved.

B. Approximate Dynamic Programming

The basic principle of the ADP algorithm is to solve the HJB
equation (7). Iterative methods can be utilized to approach
the near-optimal approximation of both value function and
policy. PI technique is applied in this study, which iteratively
evaluates and improves the policy until convergence. Hence,
the proposed algorithm for CT FH OCPs involves two iterative
steps.

1) Policy Evaluation (PEV): It aims to drive the estimated
value function of the current policy toward the true value func-
tion. It means that the value function V π k

(x, t) corresponding
to the given policy π k at the kth iteration is calculated by
solving the Lyapunov equation (5).

2) Policy Improvement (PIM): The target for this stage
is to seek an improved policy π k+1(x, t) by minimizing
the Hamiltonian with respect to the current estimated value
function V π k

(x, t) utilizing (9).

Algorithm 1 PI for CT Systems

Initialize policy π0(x, t) and an arbitrarily small positive �.
repeat

1. Update value function V π k
(x, t) for ∀x ∈ � via

l
�
x, π k(x, t)

� + ∂V π k

∂x� f
�
x, π k(x, t)

�=−∂V π k
(x, t)

∂ t
.

(12)

2. Update policy π k+1(x, t) for ∀x ∈ � via

π k+1(x, t)=arg min
π

	
H



x, π k(x, t),

∂V π k
(x, t)

∂x�

��
.

(13)

until 	V π k+1
(x, t) − V π k

(x, t)	 ≤ �.

A traditional PI framework for CT OCP is shown in
Algorithm 1. Notice that the algorithm does not require the
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admissibility of the initial policy. It is due to the fact that
the value function is finite and bounded for the FH problem.
The PEV stage contains two unknown partial derivative terms
in (12): 1) (∂V π (x, t)/∂ t) and 2) (∂V π (x, t)/∂x). Given
a policy π(x, t), for any different (∂V π(x, t)/∂ t), one can
always seek out a correspondingly different (∂V π (x, t)/∂x)
making (12) hold. This indicates that no unique solution
exists for (12). Nevertheless, considering the infinite-horizon
OCP, (∂V π (x, t)/∂ t) = 0 holds. In this case, one can
easily solve the PEV process with the single unknown term
(∂V π (x, t)/∂x). Once (∂V π (x, t)/∂ t) is known, the solution
to FH HJB can be directly obtained by using PI tech-
niques. Therefore, it is meaningful and crucial to express
(∂V π (x, t)/∂ t) analytically.

III. PARTIAL TIME DERIVATIVE OF THE VALUE FUNCTION

Since the partial time derivative of the value function is
crucial for solving the FH OCP, this section shows that this
partial time derivative is equivalent to the negative value of
the terminal-time utility function. Particularly, it coverts the
time-dependent unknown term into a solvable utility function.
Meanwhile, this finding is verified by analyzing the optimal
solution to the general LQR problem.

A. Derivation

Theorem 1: Given a CT time-invariant dynamic system (1)
and its corresponding FH value function (2), the partial time
derivative of the value function satisfies

∂V ∗(x, t)

∂ t
= −l

�
x∗(T ), π∗(x(T ), T )

��
. (14)

Proof: The value function (2) can be partitioned as

V π(x(t), t) =
� t+dt

t
l(x(τ ), u(τ ))dτ + V π(x(t + dt), t + dt)

= l(x(t), u(t))dt + V π (x(t + dt), t + dt) (15)

where u(τ ) = π(x(τ ), τ ) and x(t + dt) can be expressed as

x(t + dt) = x(t) + f (x(t), u(t))dt . (16)

Similarly, the introduced function V π (x(t), t + dt) denotes
the value starting from the state x(t) at time t + dt following
policy π , i.e.,

V π(x(t), t + dt)= l(x(t), û(t))dt + V π (x̂(t + dt), t + 2dt)

(17)

where û(t) = π(x(t), t + dt), and x̂(t + dt) is generated by
û(t), i.e., x̂(t + dt) = x(t) + f (x(t), û(t))dt . Then, one has

x̂(t + dt) = x(t)+ f (x(t), u(t))dt+ d f (x(t), u(t))dt

du

du(t)

dt
dt

= x(t + dt) + dx(t + dt) (18)

where dx(t + dt) := (d f (x(t), u(t))dt/du)(du(t)/dt)dt .
Then, we take the Taylor expansion of the right-hand side
of (17), and the first term is expanded as

l(x(t), û(t))dt = l(x(t), u(t))dt + dl(x(t), u(t))dt

du(t)

du(t)

dt
dt .

(19)

Then the Taylor expansion of the second term of (17) is

V π (x̂(t + dt), t + 2dt)

= V π(x(t + dt) + dx(t + dt), t + dt + dt)

= V π(x(t + dt), t + dt) + ∂V π (x(t + dt), t + dt)

∂(t + dt)
dt

+ ∂V π (x(t + dt), t + dt)

∂x(t + dt)
dx(t + dt)

= V π(x(t + dt), t + dt) + ∂V π (x(t + dt), t + dt)

∂(t + dt)
dt

+ ∂V π (x(t + dt), t + dt)

∂x(t + dt)

d f (x(t), u(t))dt

du(t)

du(t)

dt
dt .

(20)

Upon (16), we obtain (dx(t + dt)/du(t)) =
(d f (x(t), u(t))dt/du(t)). Thereafter, (20) can be further
derived as

V π (x̂(t + dt), t + 2dt)

= V π (x(t + dt), t + dt) + ∂V π (x(t + dt), t + dt)

∂(t + dt)
dt

+ dV π (x(t + dt), t + dt)

du(t)

du(t)

dt
dt . (21)

Plugging (19) and (21) into (17), one can get the Taylor
expansion of V π (x(t), t + dt) as

V π (x(t), t + dt)

= l(x(t), u(t))dt + V π (x(t + dt), t + dt)

+ ∂V π (x(t + dt), t + dt)

∂(t + dt)
dt

+ d(l(x(t), u(t))dt + V π (x(t + dt), t + dt))

du(t)

du(t)

dt
dt

(22)

where V π(x(t + dt), t + dt) = V π (x, t) +
(∂V π (x, t)/∂x) f (x, u)dt + (∂V π (x, t)/∂x)dt . In this
case, when taking the derivative with respect to the control
input, one can obtain (dV π (x(t + dt), t + dt)/du(t)) =
(d(∂V π (x(t), t)/∂x) f dt/du(t)). Then, combined with
Hamilton equation (4), (22) can be further derived as

V π (x(t), t + dt)

= l(x(t), u(t))dt+V π (x(t+dt), t+dt)

+∂V π (x(t + dt), t + dt)

∂(t + dt)
dt

+
d


l(x(t), u(t))dt+ ∂V π (x(t),t)
∂x f dt

�
du(t)

du(t)

dt
dt

= l(x(t), u(t))dt + V π (x(t + dt), t + dt)

+ ∂V π (x(t+dt), t+dt)

∂(t+dt)
dt+

d H

x, π, ∂V π (x(t),t)

∂x

�
du(t)

du

dt
(dt)2.

(23)
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Thereafter, utilizing the definition of the partial-time derivative
and then subtracting (15) from (23), one can derive

∂V π(x(t), t)

∂ t

= V π (x(t), t + dt) − V π (x(t), t)

dt

= ∂V π (x(t + dt), t + dt)

∂(t + dt)
+

d H


x, π, ∂V π (x(t),t)
∂x(t)

�
du(t)

du

dt
dt .

(24)

Here, (∂V π(x(t + dt), t + dt)/∂(t + dt)) can be expanded
repeatedly by applying (24), we finally have

∂V π (x(t), t)

∂ t
= ∂V π (x(T ), T )

∂(T )
+ ζ π (25)

where ζ π is used to represent the integral term, i.e.,

ζ π =
� T

t

d H


x, π(x, τ ), ∂V π (x(τ ),τ )
∂x(τ )

�
du(τ )

du(τ )

dτ
dτ. (26)

Combined with the Lyapunov function (5), (25) can be further
expanded as

∂V π (x(t), t)

∂ t

= −l(x(T ), u(T ))− ∂V π (x(T ), T )

∂x�(T )
f (x(T ), u(T ))+ζ π .

(27)

Since V π(x(T ), T ) = 0; ∀x(T ), one can obtain
(∂V π (x(T ), T )/∂x�(T )) = 0. Therefore, we get the general
condition as

∂V π (x(t), t)

∂ t
= −l(x(T ), π(x(T ), T )) + ζ π . (28)

Supposing π∗ is an optimal policy with respect to V ∗(x(t), t)
and u∗(t) = π∗(x, t), we have

∂ H


x, u∗(t), ∂V ∗(x(t),t)
∂x�(t)

�
∂u∗(t)

= 0. (29)

Thereafter, ζ π = 0. Up to now, it concludes that the value
function’s partial time derivative equals the negative value of
the terminal-time utility function as (14). �

B. Verification With LQR Problem

Consider the general LQR control problem expressed as

V π (x, t) = 1

2

� T

t

�
qx2(τ ) + ru2(τ )

�
dτ

s.t. ẋ = ax + bu (30)

where stabilizable (a, b) are scalars, q > 0 and r > 0.
In this linear case, one can solve the algebraic Riccati equation
to obtain the optimal analytic value and policy function.
Therefore, we are able to provide evidence for the correctness
of Theorem 1 by inserting the analytic solutions in (14).

For LQR problem, the optimal value function V ∗ and the
corresponding optimal policy π∗ are given in the following
form:

V ∗(x, t) = 1

2
x� P(t)x, π∗(x, t) = −1

r
bP(t)x (31)

where the matrix P(t) is denoted as

P(t) = r

b2

β + a + η(β − a)e2β(t−T )

1 − ηe2β(t−T )
(32)

with P(T ) = 0, β = ((qb2/r) + a2)1/2, η = (a + β/a − β).
The derivation of (32) can be found in Appendix. Then, the
analytic expression of the optimal terminal state x∗(T ) can be
derived as

x∗(T ) = x(t)e
� T

t


a− b2

r P(τ )
�

dτ

= x(t)

�
1 − ηe2β(T −T )

1 − ηe2β(t−T )

�
e−β(T −t). (33)

From (30) to (33), one has

∂V ∗(x(t), t)

∂ t
= −l

�
x∗(T ), π∗(x(T ), T )

�
= 1

2
qx(t)2

�
2β

−a + β

�2 e2β(t−T )�
1 − ηe2β(t−T )

�2 . (34)

The details of the derivation of (33) and (34) are provided in
Appendix.

IV. CT FH ADP ALGORITHM

In this section, we first propose an FH PI framework based
on Theorem 1, along with the proofs of convergence and
optimality. Then the parameterized FH ADP algorithm based
on actor–critic is proposed to solve the nearly optimal policies
of CT FH OCPs.

A. FH Policy Iteration

According to Theorem 1, after replacing (∂V ∗(x, t)/∂ t)
in (10) by −l(x∗(T ), π∗(x∗(T ), T )), we can get the reshaped
FH HJB equation

l
�
x, π∗(x, t)

� + ∂V ∗(x, t)

∂x� f
�
x, π∗(x, t)

�
= l

�
x∗(T ), π∗�x∗(T ), T

��
(35)

where x∗(T ) is the terminal state under the policy π∗, which is
obtained by rolling out from the initial state x(t). Similar to
the infinite-horizon HJB (11), (35) contains two unknowns:
1) π∗(x, t) and 2) (∂V ∗(x, t)/∂x). Therefore, we refer to
(35) as the FH HJB. Correspondingly, the self-consistency
condition (12) used for PEV is rewritten as

l(x(t), π(x(t), t)) + ∂V π (x(t), t)

∂x� f (x, π(x, t))

= l(xπ(T ), π(xπ (T ), T )). (36)

It is noted that (36) only provides the first-order derivative
information (i.e., (∂V π (x, t)/∂x)). Therefore, the terminal
boundary condition (8) is essential to fix the value function to
a setting point when training value and policy NNs.

Remark 1: From (14), (∂V π (x, t)/∂x) is the single
unknown term in (36). Under this condition, the only differ-
ence is that (∂V π (x, t)/∂ t) = 0 for the infinite-horizon ADP,
whereas (∂V π(x, t)/∂ t) = −l(xπ(T ), π(xπ(T ), T )) for the
FH ADP. Therefore, like existing infinite-horizon ADP algo-
rithms, we can use the traditional PI techniques to approach
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the optimal solution to (35) iteratively. It iteratively solves
PEV equation based on (36) and PIM equation based on (13).

Next, the pseudocode of FH PI is demonstrated in
Algorithm 2.

Algorithm 2 Finite-Horizon PI for CT Systems

Initialize policy π0(x, t) and small positive �.
repeat

Rollout with policy π k from ∀xt ∈ � and receive xπ k
(T ),

1) Update value function V π k
(x, t) for ∀x ∈ � utilizing

l


x, πk(x, t)
�
+ ∂V πk

∂x� f


x, πk(x, t)
�
=l


xπk

(T ), πk(x(T ), T )
�
;

(37)

2) Update policy π k+1(x, t) for ∀x ∈ � utilizing (13);
until 	V π k+1

(x, t) − V π k
(x, t)	 ≤ �.

B. Analysis on the Convergence and Optimality

In this part, Theorem 2 is presented, which shows that
the FH PI algorithm is gradually convergent to the optimal
solution for both policy and value function.

Theorem 2: For arbitrary initial policy π0(x, t), if the policy
is updated with Algorithm 2, then V π k

(x, t) → V ∗(x, t),
π k(x, t) → π∗(x, t) uniformly on � as k goes to ∞.

Proof: Considering the PIM step (9), the following
equation is satisfied:

H



x, π k+1(x, t),

∂V π k
(x, t)

∂x�

�

= min
π

	
l(x, π(x, t)) + ∂V π k

(x, t)

∂x� f (x, π(x, t))

�

≤ H



x, π k(x, t),

∂V π k
(x, t)

∂x�

�
. (38)

Upon (28), given the policy π k , we have

H



x, π k(x, t),

∂V π k
(x, t)

∂x�

�
= l


xπ k

(T ), π k

xπ k

(T ), T
��

−ζ π.

(39)

Combining the two formulas above, we obtain

H



x, π k+1(x, t),

∂V π k
(x, t)

∂x�

�

≤ l


xπ k
(T ), π k


xπ k

(T ), T
��

− ζ π . (40)

Taking the derivative of V π k
(x, t) and V π k+1

(x, t) with respect
to t utilizing policy π k+1, respectively, we can obtain

dV π k
(x, t)

dt

= ∂V π k
(x, t)

∂x� f
�
x, π k+1(x, t)

� + ∂V π k
(x, t)

∂ t

= H



x, π k+1(x, t),

∂V π k
(x, t)

∂x�

�
− l

�
x, π k+1(x, t)

�

+ ∂V π k
(x, t)

∂ t

≤ H



x, π k(x, t),

∂V π k
(x, t)

∂x�

�
− l

�
x, π k+1(x, t)

�

+ ∂V π k
(x, t)

∂ t
= −l

�
x, π k+1(x, t)

�
(41)

dV π k+1
(x, t)

dt

= ∂V π k+1
(x, t)

∂x� f
�
x, π k+1(x, t)

� + ∂V π k+1
(x, t)

∂ t

= H



x, π k+1(x, t),

∂V π k+1
(x, t)

∂x�

�
− l

�
x, π k+1(x, t)

�

+ ∂V π k+1
(x, t)

∂ t
= −l

�
x, π k+1(x, t)

�
. (42)

Since l(x, u) ≥ 0, it is obvious that

dV π k
(x, t)

dt
≤ dV π k+1

(x, t)

dt
≤ 0 ∀x ∈ �, t ∈ [0, T ]. (43)

From Newton–Leibniz formula, we have

V π (x, t) = V π (x(T ), T ) −
� T

t

dV π (x, t)

dt
dτ. (44)

Considering the definition of the value function in (2), for
arbitrary π , one can obtain

V π (xπ(T ), T ) = 0. (45)

So, from (2) and (43), it yields

0 ≤ V π k+1
(x, t) ≤ V π k

(x, t) ∀x ∈ �, t ∈ [0, T ]. (46)

V π k
(x, t) will be convergent as k → ∞. Therefore, one can

obtain limk→∞ V π k
(x, t) = V π∞

(x, t), which also implies that
limk→∞ π k(x, t) = π∞(x, t). Furthermore, it is clear that

min
π

�
l
�
x, π∞(x, t)

� + ∂V π∞
(x, t)

∂x� f
�
x, π∞(x, t)

��

= l
�
x, π∞(x, t)

� + ∂V π∞
(x, t)

∂x� f
�
x, π∞(x, t)

�
= l

�
xπ∞

(T ), π∞(x(T ), T )
�
. (47)

Hence, V ∞(x, t) and π∞(x, t) satisfy the HJB equation (10),
i.e., V π∞

(x, t) = V ∗(x, t) and π∞(x, t) = π∗(x, t). There-
fore, we can conclude that V π k

(x, t) → V ∗(x, t), π k(x, t) →
π∗(x, t) uniformly on � as k goes to ∞. �

Remark 2: The convergence and optimality of the proposed
ADP algorithm are guaranteed with the theoretical proof. Since
the value function in the FH is finite and bounded, there is a
feasible solution to the self-consistency condition. In addition,
if the optimal policy to the OCP is stable, the policy obtained
by the proposed ADP algorithm is also stable, which can drive
the states toward the equilibrium.
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C. CT FH ADP

Since it is difficult to get the exact solution for the two
iterative equation in PI framework, one usually adopts approx-
imate function to approach the near-optimal solution. Previous
researches using the SNN suffer from the complexity of hand-
crafted basis function and limited application. In this article,
multilayer NNs are adopted to approximate both the value
function and the control policy with the following parametric
architectures:

V π (x, t) ≈ V (x, t; w)

π(x, t) ≈ π(x, t; θ) (48)

where the value network (i.e., critic) is denoted as V (x, t; w)
with parameters w, and the policy network (i.e., actor) is
denoted as π(x, t; θ) with parameters θ . Under the universal
approximation theorem [40], [41], multilayer NNs own the
universal fitting ability and convergence property. Hence, the
value network V (x, t; w) and policy network π(x, t; θ) can
map from the system states and time t to the approxi-
mated value function and control inputs, respectively. The key
process to determine the parameter vector of the parametric
architecture is generally called training. For brevity, Vwk and
πθ k are short for V (x, t; wk) and π(x, t; θ k), respectively,
at the kth step in the PI process.

The process of PI works as follows. We first initialize
the parameter vectors and the states. Then, at the kth step
of the PEV stage, the policy π k is known, and the critic
seeks to find the corresponding value Vwk . In essence, the
parameterized critic is to approximate the solution of self-
consistency condition (36). Hence, the critic aims to minimize
the mean square error JCritic

JCritic = E
x,t∼dx,t

�
1

2

�
H

�
x, πθ k ,

∂Vwk

∂x�

�

− l


xπ k
(T ), π


xπ k

(T ), T ; θ k
���2

�
(49)

where the training set consists of a batch of state-time pairs
(x, t); E represents the mathematical expectation; dx,t denotes
the distribution of state-time pairs over x ∈ � and t ∈ �0, T �;
dx,t can be regarded as a particular weighting function, which
reflects the importance of each state and can be chosen as
the uniform distribution; xπ (T ) represents the terminal state
which is rolling out by the dynamic model using policy π k .

As for the PIM stage according to (13), the policy network
is tuned to directly minimize the expectation of Hamiltonian
for whole states. Therefore, the loss can be expressed as

JActor = E
x,t∼dx,t

�
H

�
x, πθ k ,

∂Vwk

∂x�

��

= E
x,t∼dx,t

�
l(x, πθ k ) + ∂Vwk

∂x� f (x, πθ k )

�
(50)

where Vwk becomes a known variable after critic update, and
πθ k has unknown policy parameter θ .

To solve the parameter vector w of the value network and θ
of the policy network, the key point is to calculate the gradients
of the critic and actor in (49) and (50). In this case, the gradient

of the loss JCritic with respect to w is calculated as

∇w JCritic

= E
x,t∼dx,t

��
H

�
x, πθ k ,

∂Vwk

∂x�

�

− l


xπ k
(T ), π


xπ k

(T ), T ; θ k
���∂


∂Vwk

∂x� f (x, πθ k )
�

∂w

⎫⎬
⎭.

(51)

Meanwhile, the gradient of JActor is expressed as

∇θ JActor = E
x,t∼dx,t

�
∂πθ k

∂θ

�
∂l(x, πθ k )

∂π
+ ∂ f (x, πθ k )

∂π

∂Vwk

∂x�

��
.

(52)

In fact, the weight vector is adjusted by taking a small step
in opposite direction of the gradient, which aims to minimize
the critic loss and actor loss. Therefore, the updating rule for
tuning the parameter w of the critic is

wk = wk − αw · ∇ JCritic (53)

where αw is the step size. Then the updating rule for the actor
is

θ k = θ k − αθ · ∇ JActor (54)

where αθ is the step size. Finally, the new parame-
ters modify the current policy until approaching the
final policy. The pseudocode and schematic illustration
of the proposed constrained ADP algorithm is shown in
Algorithm 3.

Algorithm 3 Parameterized CT Finite-Horizon ADP

Initialize w0, θ0, learning rates αw and αθ .
repeat

Rollout with policy π(x, t; θ k) from ∀x(t) ∈ � to xπ k
(T )

1. Calculate ∂ JCritic
∂w

using (51);
Update the value function utilizing (53)

2. Calculate ∂ JActor
∂θ

using (52);
Update the policy utilizing (54)

until 	Vwk+1(x, t) − Vwk (x, t)	 ≥ �.

Remark 3: The proposed FH ADP relaxes the requirement
for hand-crafted basis functions. It employs multilayer NNs
to parameterize the value function and policy, mapping the
system states and time to the value and control policy directly.
Two separated NNs are trained with the loss functions JCritic

and JActor. Therefore, it is applicable for arbitrary nonlin-
ear nonaffine systems as it learns an independent policy
network.

V. ILLUSTRATIVE EXAMPLES

This section aims to give the verification for the effective-
ness of the proposed FH ADP algorithm. The simulations with
both the LQR problem and nonlinear vehicle tracking problem
have been carried out.
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A. Example 1: Linear System

1) Problem Description: To verify the optimality of the
proposed FH ADP algorithm numerically, we first consider the
general LQR control problem shown in (30) with T = 0.5,
a = −1, b = 1, q = 2, and r = 1. In addition, the sampling
frequency in the simulation is set as 50 Hz.

2) Details of the Algorithm: Both V (x, t; w) and π(x, t; θ)
are approximated by fully connected NNs with three layers and
there are 256 units in every hidden layer. The input layer for
both NNs contains state and t , followed by two hidden layers
whose activation function is exponential linear units (ELUs).
V (x, t; w) is the output of the value network with softplus
as the active function. π(x, t; θ) is the output of the policy
network with tanh as the active function. We set learning rates
αw and αθ to 0.001 and utilize Adam optimization method to
update both NNs.

3) Result Analysis: We run Algorithm 3 for ten times with
different random seeds, with evaluations every 100 iterations.
Each evaluation measures the policy performance by calcu-
lating the relative errors of both policy and value, denoted
as uerror and Verror. Given the optimal solution π∗(x, t) and
V ∗(x, t), the relative errors uerror and Verror of the proposed
FH ADP algorithm are calculated by the equations

uerror = E
x,t∼dx,t

⎡
⎣ |π(x, t; θ∗) − π∗(x, t)|

max
x,t∼dx,t

π∗(x, t) − min
x,t∼dx,t

π∗(x, t)

⎤
⎦ (55)

Verror = E
x,t∼dx,t

⎡
⎣ |V (x, t; w∗) − V ∗(x, t)|

max
x,t∼dx,t

V ∗(x, t) − min
x,t∼dx,t

V ∗(x, t)

⎤
⎦ (56)

where the optimal solution π∗(x, t) and V ∗(x, t) are obtained
by calculating (31). Each evaluation contains 500 states-time
pairs randomly chosen from x ∈ � and t ∈ �0, T � as the dx,t .

The learning curves are shown in Fig. 1. Solid lines are
average relative value and policy errors over ten runs. After
3 × 104 iterations, both the policy error and value error are
less than 1%, which indicates that the algorithm has the
ability to converge policy to optimality. Fig. 2 compares the
value, state, and control input trajectories of Algorithm 3 and
optimal solutions (31) from three different initial conditions,
including [t = 0.02, x = 5]�, [t = 0.1, x = 4]�, and
[t = 0.2, x = −1]�. Obviously, the trajectories generated by
the learned policy almost overlap with the optimal solutions.
As shown in Fig. 2(a), the proposed policy can drive the
states to bounded results in the FH. Meanwhile, the descending
direction is toward the equilibrium state.

B. Example 2: Nonlinear System

1) Problem Description: As the second example, the vehi-
cle path tracking task is selected to show the applicability of
Algorithm 3 to nonlinear systems. The linear four-dimension
tracking control problem has been studied in [42]. The state
and control input of vehicle are described as

x = �
vy, r, ϕ, ye

��
, u = δ (57)

where vy is vehicle lateral speed, r is the yaw rate, ϕ is the
angle between vehicle heading direction and road tangent, and

Fig. 1. Value and policy error in the training process. The solid lines
correspond to the mean and the shaded regions correspond to 95% confidence
interval over ten runs.

ye is the lateral position error between the vehicle and trajec-
tory. The position of the ego vehicle point and the reference
point are denoted as (xego, yego) and (xr , yr ), respectively. The
position error ye is calculated as ye = (yego − yr) cos ϕ. δ
is the steering angle of front wheels. The reference path is
the superposition of the sine curves, which is designed as
yr = 0.3 sin(xr/12) + 0.6 sin(xr/20) + 1.5 sin(xr/30).

In this study, the nonlinear vehicle dynamics with the
nonaffine saturated control input is used

ẋ = f (x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Fy f cos δ + Fyr

m
− vxr

a Fy f cos δ − bFyr

Izz

r

vx sin ϕ + vy cos ϕ

⎤
⎥⎥⎥⎥⎥⎥⎦

(58)

where Fy f and Fyr represent the front and rear tires’ lateral
tire forces, respectively. The parameters are listed in Table I.
Considering the Pacejka tire model [43], [44], [45], the lateral
tire forces can be approximated as

Fy f = −Dmg
b

L
sin

�
C arctan

�
Bα f

��
Fyr = −Dmg

a

L
sin(C arctan(Bαr )) (59)

where α f and αr represent the front and rear wheel slip angle,
respectively, and D = 0.75, C = 1.43, B = 14 are the
parameters of the Pacejka tire model. The slip angles can be
calculated utilizing the geometric relationship

α f = arctan

�
vy + ar

vx

�
− δ

αr = arctan

�
vy − br

vx

�
. (60)

The aim of this task is to minimize the lateral tracking
errors. Hence, the policy optimization problem of this example
is given by

min
u

� 0.5

0

�
6y2(τ ) + 80u2(τ )

�
dτ

s.t. ẋ = f (x, u). (61)
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Fig. 2. State, control input, and value trajectories of FH ADP compared with the optimal LQR solution. The initial state of Test 1, 2, and 3 are
[t = 0.02, x = 5]�, [t = 0.1, x = 4]� , and [t = 0.2, x = −1]� , respectively. (a) State, (b) control input, and (c) value function curves.

Fig. 3. Performance comparison for Example 2. (a) Lateral position. (b) Heading angle. (c) Control input. (d) Position tracking errors. (e) Heading angle
tracking errors. (f) Control input difference between FH ADP and MPC.

TABLE I

VEHICLE PARAMETERS

2) Details of the Algorithm: To ensure the approximation
accuracy and training performance, multilayer NNs are applied

to represent the value function V (x, t; w) and the policy
π(x, t; θ), which are comprised of an input layer, two hidden
layers, and an output layer. The input layer for both NNs
contains state x and time t , followed by two hidden layers
whose activation functions are ELUs. Moreover, each hidden
layer has 256 neurons. Then, the scalar V (x, t; w) is the output
of the value network with softplus as the activation function,
and π(x, t; θ) is the output of the policy network with tanh
as the activation function. The policy network for the front-
wheel angle is further scaled to [−0.4, 0.4] rad with a gain.
Obviously, the architecture of the value network and value
network is almost the same except for activation function for
the output layer.

To accelerate the training process, a parallel exploring trick
is applied [46]. By employing parallel agents to explore
different state spaces, the diversity of the training set will
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TABLE II

COMPARISON BETWEEN FH ADP AND MPC

be improved, thereby avoiding overfitting. The batch size of
the NNs is set as 256, which means that 256 agents are
used to estimate the gradients of actor and critic for every
iteration during the training. In addition, we utilize the Adam
optimization method to update both NNs, and the learning rate
is set as 10−3.

3) Result Analysis: After 3 × 104 iterations of training,
we obtain a learned policy π(x, t; θ∗) of Algorithm 3. Distin-
guished from the linear systems, we cannot get the CT optimal
analytical policies for the nonlinear systems. In this case, the
solver for model predictive control is utilized as a baseline
to evaluate the accuracy performance for the learned policy
of our algorithm, although it solves the discrete-time OCP.
Consistent with (61), we can formulate the MPC problem as

min
ut ,...,ut+T−1∈U

V (x, t) =
T�

i=0

�
6y2

i|t + 80u2
i|t

�
s.t. xi+1|t = xi|t + f

�
xi|t , ui|t

�
�t, i = 0 : T − 1 (62)

where �t = 0.005 and T = 100. The IPOPT solver with
Casadi package [47] is adopted to calculate the optimal control
input of the MPC problem formulated as (62).

Similar to the MPC method, we also implement the learned
policy π(x, t; θ∗) in a receding-horizon way by setting t = 0.
In other words, at each time step, u = π(x, 0; θ∗) is taken
as the control input. The control results of Algorithm 3 and
MPC are shown in Fig. 3. The horizontal axis (i.e., longi-
tudinal position) represents the X-coordinate position of the
vehicle center. Meanwhile, the vertical axis in Fig. 3(a) (i.e.,
longitudinal position) represents the Y -coordinate position of
the vehicle center. It is shown that the state and control
curves of Algorithm 3 are almost the same as those of MPC.
Specifically, Fig. 3(a) and (d) shows the trajectories of the
vehicle’s lateral position. The maximum error of the ADP
algorithm is 0.046 m while the one of MPC method is 0.074 m
except for the initial position. In addition, the heading angle
curves are shown in Fig. 3(b) and (e), where the maximum
errors of both methods are less than 1.5◦ except for the initial
position. Fig. 3(c) and (f) reflects the difference on the control
input between the ADP algorithm and MPC, which is less
than 0.57◦. In conclusion, the performance attained by the
proposed ADP algorithms is at a comparable level with the
MPC. Furthermore, Table II compares the tracking accuracy
of CT FH ADP and MPC for the whole tracking simulation
process. We can see that the FH matches MPC in terms
of tracking accuracy, which demonstrates the optimality and
effectiveness of the proposed algorithm in the case of nonlinear
systems.

VI. CONCLUSION

This work investigates the solving of the FH HJB equation.
Essentially in the stated problem, the partial time derivative of
the value function hinders the solving for CT FH OCP by the
PI technique. For the first time, this work constructs the con-
nection between the partial time derivative and the terminal-
time utility function. Meanwhile, the initial-time equivalence
between two FH OCPs is utilized to support the theoretical
analysis and rigorous proof of this finding. Based on the FH
HJB equation, we develop the FH ADP algorithm with the
actor–critic framework for solving CT FH OCPs. The con-
vergence and optimality have been proved to be guaranteed.
Meanwhile, multilayer NNs are adopted for parameterizing
the value function and control input, so that the proposed
algorithm is suitable for the general nonlinear systems with
high complexity. Finally, two simulations are carried out
to demonstrate the efficacy and generality of the proposed
development, and the results show that the proposed FH ADP
algorithm is convergent to the nearly optimal policy for general
CT FH OCPs. In the future, the practical implementation of the
algorithm will be carried out on the motion control problem
of vehicles, which aims to improve the online computation
efficiency for solving the control policy.

APPENDIX

DERIVATION DETAILS

By deriving the HJB equation for the LQR problem, the
well-known Riccati equation can be obtained as

Ṗ(t) = −2a P(t) + b2

r
P2(t) − q. (63)

When solving the solution to Riccati equation (63), an inter-
mediate variable y(t) is introduced to eliminate the constant
term. It is set as

y(t) = P(t) + r

b2
(−a + β) (64)

where β = ((qb2/r) + a2)1/2. Then, the Riccati equation is
converted to the differential equation as

ẏ(t) + 2βy(t) = b2

r
y2(t). (65)

Following it, we can divide the differential equation by y2 to
get

y−2 ẏ(t) + 2βy−1(t) = b2

r
. (66)

Subsequently, the variable substitution can be performed as

z(t) = y−1(t). (67)

Then, (65) is converted to a differential equation in terms of
z(t) as

ż(t) − 2βz(t) = −b2

r
. (68)

The solution to the linear ordinary differential equation is
calculated as

z(t) = e2βt

�� t

0
e−2βt

�
−b2

r

�
dt + C

�

= b2

2βr

�
1 − ηe2β(t−T )

�
(69)
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where η = −(a + β/ − a + β). So, the solution to (65) can
be solved subsequently

y(t) = 2βr

b2

1

1 − ηe2β(t−T )
. (70)

Thereafter, by replacing y with P , we obtain the solution
of (63) as

P(t) = r

b2

�
2β

1 − ηe2β(t−T )
− (−a + β)

�

= r

b2

β + a + η(β − a)e2β(t−T )

1 − ηe2β(t−T )
. (71)

The following content will derive (34). According to [48],
the optimal state trajectory in (30) satisfies

x∗(τ ) = x(t)e
� τ

t


a− b2

r P(t)
�

dt
(72)

where the variable τ ∈ [t, T ]. From (32), one can further
derive the integral term in (72)� τ

t

�
a − b2

r
P(t)

�
dt

=
� τ

t

�
a − b2

r

r

b2

�
2β

1 − ηe2β(t−T )
− (−a + β)

��
dt

=
� τ

t

�
β − 2β

1 − ηe2β(t−T )

�
dt

= β(τ − t) − 2β

� τ

t

1

1 − ηe2β(t−T )
dt

= β(τ − t) − 2β

�
(τ − t) − 1

2β
ln

�
1 − ηe2β(τ−T )

1 − ηe2β(t−T )

��

= −β(τ − t) + ln

�
1 − ηe2β(τ−T )

1 − ηe2β(t−T )

�
. (73)

Hence, the optimal state trajectory can be derived as

x∗(τ ) = x(t)e
� τ

t


a− b2

r P(t)
�

dt

= x(t)e
�
−β(τ−t)+ln


1−ηe2β(τ−T )

1−ηe2β(t−T )

��

= x(t)

�
1 − ηe2β(τ−T )

1 − ηe2β(t−T )

�
e−β(τ−t), τ ∈ [t, T ]. (74)

Therefore, one can get the optimal state x∗(T ) at the terminal
time by letting τ = T , i.e.,

x∗(T ) = x(t)

�
1 − ηe2β(T −T )

1 − ηe2β(t−T )

�
e−β(T −t). (75)

From (31), (∂V ∗(x(t), t)/∂ t) of system (30) is

∂V ∗(x(t), t)

∂ t
= 1

2
Ṗ(t)x(t)2. (76)

According to (32), we have

Ṗ(t) = (2β)2 rη

b2

e2β(t−T )�
1 − ηe2β(t−T )

�2 . (77)

Then, (76) can be further expanded as

∂V ∗(x(t), t)

∂ t

= −1

2
(2β)2 r

b2

a + β

−a + β
x(t)2 e2β(t−T )�

1 − ηe2β(t−T )
�2

= −1

2
(2β)2 r

b2

−a2 + β2

(−a + β)2 x(t)2 e2β(t−T )�
1 − ηe2β(t−T )

�2

= −1

2

r

b2

�
qb2

r
+ a2 − a2

�
(2β)2

(−a + β)2 x(t)2 e2β(t−T )�
1 − ηe2β(t−T )

�2

= −1

2
qx(t)2 (2β)2

(−a + β)2

e2β(t−T )�
1 − ηe2β(t−T )

�2 . (78)

In addition, from (31) and (75), one can derive
l(x∗(T ), π∗(x(T ), T )) as

l
�
x∗(T ), π∗(x(T ), T )

�
= 1

2
qx∗(T )2 + 1

2
rπ∗(x(T ), T )2

= 1

2
qx(T )2

= 1

2
qx(t)2

�
1 − ηe2β(T −T )

1 − ηe2β(t−T )

�2

e−2β(T −t)

= 1

2
qx(t)2e−2β(T −t)

�
1 − η

1 − ηe2β(t−T )

�2

= 1

2
qx(t)2(1 − η)2 e2β(t−T )�

1 − ηe2β(t−T )
�2

= 1

2
qx(t)2

�
2β

−a + β

�2 e2β(t−T )�
1 − ηe2β(t−T )

�2 . (79)

Finally, we can get (34). In addition, it is noted that
l(x∗(T ), π∗(x(T ), T )) is still time-dependent. It is due to that
the time-dependent terminal-time state xπ (T ) is obtained by
rolling forward the dynamic model from the initial state x(t)
with the policy π , u(T ) = π(xπ(T ), T ).
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