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Abstract— Safety is essential for reinforcement learning (RL)
applied in the real world. Adding chance constraints (or proba-
bilistic constraints) is a suitable way to enhance RL safety under
uncertainty. Existing chance-constrained RL methods, such as
the penalty methods and the Lagrangian methods, either exhibit
periodic oscillations or learn an overconservative or unsafe policy.
In this article, we address these shortcomings by proposing a
separated proportional-integral Lagrangian (SPIL) algorithm.
We first review the constrained policy optimization process from
a feedback control perspective, which regards the penalty weight
as the control input and the safe probability as the control
output. Based on this, the penalty method is formulated as a
proportional controller, and the Lagrangian method is formulated
as an integral controller. We then unify them and present a
proportional-integral Lagrangian method to get both their merits
with an integral separation technique to limit the integral value
to a reasonable range. To accelerate training, the gradient of
safe probability is computed in a model-based manner. The
convergence of the overall algorithm is analyzed. We demonstrate
that our method can reduce the oscillations and conservatism of
RL policy in a car-following simulation. To prove its practicality,
we also apply our method to a real-world mobile robot navigation
task, where our robot successfully avoids a moving obstacle with
highly uncertain or even aggressive behaviors.

Index Terms— Constrained control, neural networks, robot
navigation, safe reinforcement learning (RL).

I. INTRODUCTION

RECENT advances in deep reinforcement learning (RL)
have demonstrated state-of-the-art performance in a vari-

ety of tasks, including video games [1]–[3], autonomous
driving [4]–[7], and robotics [8]–[10]. However, most RL
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successes still remain in virtual environments or simulation
platforms. For safety-critical real-world tasks, RL is not yet
fully mature or ready to serve as an “off-the-shelf” solution.
One of the reasons is the lack of safety constraints [11].
Generally, it is difficult to handle safety constraints for a
neural network policy. Although many previous studies have
discussed constraint-solving for a network policy [12]–[15],
none of them are in the context of RL. Handling safety
constraints still remains an open question in the deep RL
community.

The safety constraints used in safe RL mainly fall into
three categories: expected constraints, worst case constraints,
and chance constraints. Especially, the popular constrained
Markov decision process (CMDP) framework [16] is a
special case of the expected constraints, which constrains
the expected cumulative cost to be below a predetermined
boundary. Many well-known safe RL algorithms build on
this framework, including constrained policy optimization
(CPO) [17], projection-based constrained policy Optimiza-
tion (PCPO) [18], and reward constrained policy optimiza-
tion (RCPO) [19]. However, these methods only guarantee
constraint satisfaction in expectation, which is inadequate
for safety-critical engineering applications. In this case, the
probability of the constraint violation is about 50% (roughly
speaking) [20]. The second type of constraint is the worst
case constraint, which guarantees constraint satisfaction under
any uncertain conditions. Nevertheless, the worst case con-
straint tends to be overly conservative, and it only supports
systems with bounded noise [11]. The third form is the
chance constraint, where the constraint holds with a predefined
probability. The chance constraint clearly limits the occurring
probability of the unsafe event, which is selected according to
the different demands of users and the tasks. Therefore, the
chance constraint is quite suitable for various real-world appli-
cations. In this article, we will focus on the chance-constrained
RL problems, i.e., how to learn an optimal policy satisfying
the chance constraints.

Next, we will briefly introduce the existing chance-
constrained RL studies. Geibel and Wysotzki [21] use an
indicator function to estimate the safe probability by sampling
and add a large penalty term in the reward function if the safe
probability is low. Then, the reshaped reward is optimized
by an actor-critic method. Giuseppi and Pietrabissa [22] view
the reward and safe probability as two objectives and propose
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Fig. 1. Examples of learning curves for penalty and Lagrangian meth-
ods. (a) Penalty method exhibits oscillations and violates the constraint.
(b) Lagrangian method exhibits Lagrange multiplier overshooting and oscil-
lations, and further harms the policy learning.

a corresponding multiobjective RL method. Paternain et al.
[23] derive a lower bound of the safe probability, which is
employed to construct a surrogate constraint since it has an
additive structure and is easier to tackle. Then, the transformed
problem is solved by the Lagrangian method, which introduces
a Lagrangian multiplier to balance policy performance and
constraints satisfaction. To reduce the conservatism introduced
by constraining a lower bound, Peng et al. [24] only use the
lower bound to obtain an update direction but still evaluate
the feasibility of the policy using original chance constraints.
In addition, they employ a penalty method with increasing
weight to enforce constraint satisfaction.

The previous chance-constrained RL mainly relies on the
penalty method or the Lagrangian method. However, they actu-
ally face several challenges, such as poor policy performance,
constraint violations, and unstable learning process [25]. The
penalty methods require a well-designed penalty weight to
balance the reward and constraint, which unfortunately is
nontrivial and hard to tune. As shown in Fig. 1(a), a large
penalty is prone to rapid oscillations and frequent constraint
violations, while a small penalty always violates the constraint
seriously [19]. As for the Lagrangian method, it usually suffers
from the Lagrange multiplier overshooting [see Fig. 1(b)],
which will lead to an overly conservative policy [23], [26].
Besides, due to the delay between the policy optimization and
the Lagrange multiplier adaptation, the Lagrangian multiplier
usually oscillates periodically during the training process,
which further results in policy oscillations [27], [28]. In addi-
tion, most existing methods do not support model-based
optimization since they all rely on a nondifferentiable indi-
cator function to estimate the safe probability. Therefore,
they can only use model-free methods to optimize the
safe probability, which is generally slower than model-based
methods.

To overcome the problems mentioned above, we pro-
pose a model-based separated proportional-integral Lagrangian
(SPIL) method for chance-constrained RL, which can fulfill
the safety requirements with a steady and fast learning process.
The contributions of this article are summarized as follows.

1) This article interprets the chance-constrained policy opti-
mization process from a feedback control perspective,
which regards the penalty weight as the control input and
the safe probability as the control output. Based on this,

we unify the existing constraint optimization methods
into the PID control methodology, in which the penalty
method is formulated as a proportional controller, and
the Lagrangian method is formulated as an integral
controller. Then, we develop the proportional-integral
Lagrangian (PIL) framework by combining the propor-
tional and integral modules. Therefore, compared with
recent chance-constrained RL studies that rely solely
on the penalty or the Lagrangian methods [23], [24],
[29], the proposed PIL framework gets their both mer-
its, achieving a stable policy performance improvement
without losing constraint guarantees.

2) Furthermore, to prevent the policy from overconser-
vatism caused by multiplier overshooting, which is faced
by most existing Lagrangian-based RL methods [23],
[29], we draw inspiration from PID control and intro-
duce an integral separation technique to separate the
integrator out when the integral value exceeds a pre-
determined threshold. Then, we embed this technology
into the PIL framework to propose the SPIL method for
chance-constrained RL, which reaches a good tradeoff
between policy performance and constraints satisfaction.
The convergence of the SPIL is analyzed under some
assumptions.

3) Most chance-constrained RL methods choose to esti-
mate the policy gradient of the safe probability using
model-free techniques since it is hard to identify the
analytic form of the safe probability using the model
knowledge [22], [23], [29]. To accelerate the training
process in a model-based way, we adopt an approx-
imated model-based gradient of the safe probability to
participate in the policy optimization. The approximated
gradient is proven to approach the true gradient under
mild conditions. Results show that, compared with the
method based on PPO, which is one of the state-of-
the-art model-free RL methods, the learning speed is
improved by at least five times. Finally, simulations and
real-world robotics experiments demonstrate that our
SPIL achieves better policy performance compared with
the existing penalty and Lagrangian methods and verify
its effectiveness in practical engineering problems.

This article is further organized as follows. The chance-
constrained RL problem is formulated in Section II. The
model-based SPIL method is proposed in Section III.
In Section IV, our method is verified and compared in a
car-following simulation. In Section V, the mobile robot
navigation experiment is presented to prove the practicability
of the algorithm. Section VI concludes this article.

II. PRELIMINARIES

A. Problem Description

In our model-based RL setting, we assume that a dynamic
model is already available, either learned by collected data or
derived from prior knowledge. To indicate the gap between the
model and reality, an uncertain term is included in this model.
This assumption is reasonable in many physical engineering
problems, such as autonomous driving, where there are many

Authorized licensed use limited to: Tsinghua University. Downloaded on August 05,2022 at 02:25:24 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: MODEL-BASED CHANCE-CONSTRAINED RL VIA SPIL 3

established dynamic models. Therefore, we can directly learn
a policy through the given uncertainty model. To ensure the
policy feasibility for real environments, a chance constraint
needs to be introduced in the model-based learning process.
In other words, given a reasonable uncertain term, if the policy
is safe with a high probability under model uncertainty, we can
usually ensure its safety in practical environments. This setting
is similar to that in stochastic control [30].

The dynamic model and the chance constraint are mathe-
matically described as

st+1 = f (st , at , ξt ), ξt ∼ p(ξt )

Pr

�
N�

t=1

[h(st ) < 0]

�
≥ 1− δ (1)

where t is the current step, st ∈ S is the state, at ∈ A is the
action, f (·, ·, ·) is the environmental dynamic, and ξt ∈ R

n is
the model uncertainty following an independent and identical
distribution p(ξt ). h(·) is the safety function defining a safe
state region. Here, the chance constraint takes a joint form,
which is initially brought from stochastic systems control [30].
Intuitively, it requires the probability of being safe over the
finite horizon N to be at least 1− δ. For simplicity, we only
consider one constraint, but our method can readily generalize
to multiple constraints.

The chance-constrained problem is defined as maximizing
an objective function J , i.e., the expected discounted cumula-
tive reward, while keeping a high safe probability ps

max
π

J (π) = Es0,ξ

� ∞�
t=0

γ tr(st , at)

�

s.t. ps(π) = Pr

�
N�

t=1

[h(st ) < 0]

�
≥ 1− δ

st+1 = f (st , at , ξt ), ξt ∼ p(ξt ) (2)

where r(·, ·) is the reward function, γ ∈ (0, 1) is the discount
factor, and Es0,ξ (·) is the expectation w.r.t. the initial state
s0 and uncertainty ξ0:∞. π is a deterministic policy, i.e.,
a mapping from state space S to action space A. In prac-
tice, policy is usually a parameterized neural network with
parameters θ , denoted as π(st ; θ) or πθ . Note that the chance
constraints are defined in finite horizon, which is also widely
used in stochastic model predictive control research. However,
the strict recursive feasibility for the constraints is hard to
establish and still remains a major challenge [30]. Instead,
related articles usually assume that the recursive feasibility
holds as long as the horizon is long [31], [32]. In this article,
we follow their assumption and leave the strict feasibility
theory in our future work.

B. Penalty and Lagrangian Methods

To find the optimal control policy for problem (2), the
penalty and Lagrangian methods are widely employed in exist-
ing studies [21]–[24]. The penalty method adds a quadratic
penalty term in the objective function to force the satisfaction
of the constraint

maxπ J (π)− 1
2 K P

�
(1− δ−ps(π))+

�2
(3)

where K p > 0 is the penalty weight, ps(π) is the joint
safe probability [see (2)], and (·)+ means max(·, 0). This
unconstrained problem is usually solved by gradient ascent

θ k ← θ k−1 + αθ

�
∇θ J k−1 + K P

�
1− δ − pk−1

s

�+∇θ pk−1
s

	
(4)

where k means the kth iteration, αθ > 0 is the learning rate,
and J k and pk

s are short for J (πθ k ) and ps(πθ k ), respectively.
For practical applications, it is usually difficult to select an
appropriate weight K P to balance reward and constraint well.
A large penalty is prone to rapid oscillations and frequent
constraint violations, while a small penalty always violates
the constraint seriously.

For the Lagrangian method, it first transforms the
chance-constrained problem (2) into a dual problem by intro-
duction of the Lagrange multiplier λI [33]

max
λI≥0

min
π

L(π, λI ) = −J (π)+ λI (1− δ−ps(π)). (5)

Then, problem (5) can be solved by dual ascent, i.e., alterna-
tively update the Lagrange multiplier and primal variables

λk
I ←

�
λk−1

I + KI
�
1− δ−pk−1

s

��+
(6)

θ k ← θ k−1 + αθ

�∇θ J k−1 + λk
I∇θ pk−1

s

�
(7)

where KI > 0 is the learning rate for λI .
As mentioned in the Introduction, the Lagrangian method

usually faces the Lagrange multiplier overshooting and mul-
tiplier oscillation challenges, resulting in poor policy perfor-
mance and an unstable learning process.

III. METHODOLOGY

In this section, we first reshape the penalty method and
the Lagrangian method in a feedback control view, which is
partly inspired by [28], [38]. Then, we unify them to formulate
a proportional-integral Lagrangian method to improve the
policy performance without losing the safety requirement.
Finally, we introduce an integral separation technique and a
model-based gradient to make the whole method practical and
efficient.

A. Feedback Control View of Chance-Constrained
Policy Optimization

The key insight of the proposed method comes from a
deep and novel understanding of the penalty and Lagrangian
methods from a control perspective. From (4) and (7), the
update rule of existing methods can be expressed in a similar
form

θ k ← θ k−1 + αθ

�∇θ J k−1 + λk∇θ pk−1
s

�
(8)

where λk is actually a balancing weight. The core difference
between the two methods lies in the selection of λ. For the
penalty method, λk = K P (1− δ− pk−1

s )+, which indicates the
constraint violation at the kth iteration. For the Lagrangian
method, λk = λk

I in (6), which can be regarded as the sum
of constraint violation over previous k iterations. This insight
inspires us to review RL from a control perspective.

As shown in Fig. 2, one can view the policy optimization
as a feedback control process, where θ k is the state, λk is
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Fig. 2. Feedback control view of chance-constrained policy optimization.

the control signal, policy update (8) is the system dynamics
(state transition equation), pk

s is the system output, 1 − δ is
the desired output, and 1 − δ − pk−1

s is the tracking error
(or constraint violation). Then, the essence of this system
is the design of the controller, i.e., given the tracking error
1 − δ − ps , how can we decide the control signal λ? The
penalty method actually adopts λk proportional to the vio-
lation. The Lagrangian method instead computes λk as the
sum of previous constraint violations. In such an insight, the
penalty method becomes exactly a proportional (P) controller,
and the Lagrangian method becomes an integral (I ) controller.
Subsequently, one can easily understand the merits and flaws
of these two methods by analogy. For pure “P” control,
small K P leads to steady-state error, while large K P exhibits
oscillation. This matches the phenomena that we observe in
the penalty method. Similarly, the problems of overshooting
and oscillation in the Lagrangian method can also be explained
by properties of pure “I” control.

With this insight, we naturally propose to combine the
penalty method and Lagrangian method by computing λk as
a weighted sum of proportional and integral values, which
leads to the proportional-integral Lagrangian method (PIL).
The update process of PIL at k−iteration is given as

	k ← 1− δ − pk−1
s (9)

I k ← �
I k−1 +	k

�+
(10)

λk ← �
K P	k + KI I k

�+
(11)

θ k ← θ k−1 + αθ

1+ λk

�∇θ J k−1 + λk∇θ pk−1
s

�
(12)

where 	k and I k are proportional and integral values, respec-
tively, with K P and KI as coefficients. The proportional term
K P	k serves as an immediate feedback of the constraint
violation. The integral term KI I k eliminates the steady-state
error at convergence. In such a framework, the penalty method
and the Lagrangian method can be regarded as two special
cases of PIL with K P > 0, KI = 0 and K P = 0, KI > 0,
respectively. To maintain a relatively consistent step size and
make policy update more stable, the gradient for θ k in (12) is
rescaled by 1/(1+ λk).

This mechanism is expected to realize a steady learning
process, just like how the proportional-integral controller
works. However, there are still two key issues for practical
applications as follows.

1) Integral value I easily gets overly large, leading to policy
overconservatism.

2) ∇θ pk
s is hard to compute, especially in a model-based

paradigm.

Fig. 3. Framework of the proposed SPIL method.

The following subsections will explain and solve these two
problems.

B. Integral Separation Technique
The integral value I k increases according to the constraint

violation 	k . However, when the initial policy is relatively
unsafe, 	k can be quite large, which will cause the overshoot-
ing of I k and λk . With a large λk in (12), the policy tends to
be overly conservative since the weight of ∇θ pk−1

s is overly
large. Even worse, since the maximal safe probability is 1, the
overshooting and conservatism problems can hardly recover by
themselves. For example, suppose that 1− δ = 0.999, pk

s = 1,
and λk is already overshooting; the integral term I k can only
fall slowly with the speed of 	k = −0.001. Therefore, the
policy in such a case will deteriorate for a long time. This issue
is also not well recognized and resolved in previous similar
works, such as [28].

To deal with the overshooting problem of I k and λk ,
we draw inspiration from PID control [34] and introduce
an integral separation technique. As shown in Fig. 3, the
integrator will be activated only when 	k is less than a certain
value. If 	k is too large, the integrator will be blocked to limit
the increase of I k . Specifically, (10) is modified to

I k ← �
I k−1 + KS	

k
�+

KS =

⎧⎪⎨
⎪⎩

0, ε1 < 	k

β, ε2 < 	k ≤ ε1

1, 	k ≤ ε2

(13)

where KS is the separation function, and 1 > β > 0 and ε1 >
ε2 > 0 are predetermined parameters. The piecewise function
KS separates the integrator out or slows it down if the error
is relatively large. Such a recipe restrains the occurrence of
overshooting and overconservatism. Our simulation indicates
it greatly improves the performance for a large safety threshold
1− δ, such as 1− δ = 99.9%. We refer to the combination of
PIL and the separation technique as the SPIL method.

C. Model-Based Gradient of Safe Probability
Next, we will figure out how to estimate ∇θ ps in (12)

in an efficient way. Generally, there is not any analytic
solution for a joint probability and its gradient [30], [35],
i.e., they are nearly intractable. Therefore, previous researchers
usually introduce an indicator function to estimate the prob-
ability through sampling [23], [24]. Due to the discontinuity
of the indicator function, these methods are mostly model-
free, which are generally believed to be slower than their
model-based counterparts [36], [37].
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Fig. 4. Comparison of the indicator function and φ(z, τ ) with different τ ’s.

Inspired by recent advances in stochastic optimization [35],
we introduce a model-based alternative to ∇θ ps , which enables
us to estimate ∇θ ps efficiently. We first define an indicator-like
function φ(z, τ )

φ(z, τ ) = 1+ b1τ

1+ b2τ exp
�− z

τ

� ,

0 < b2 <
b1

1+ b1
, 0 < τ < 1,

(14)

where z and τ are scalar variables of the function and b1 and
b2 are the parameters. The expected production of φ(z, τ ) over
N horizon is defined as

�(π, τ) = Es0,ξ

�
N�

t=1

φ(−h(st ), τ )

�
. (15)

As shown in Fig. 4, φ(z, τ ) can be intuitively regarded
as a differentiable approximation of indicator function for
constraint violation, and its expected product �(π, τ) approxi-
mates joint safe probability. (To see this, one can image φ(z, τ )
in (15) as the indicator function. Then, its expected production
is actually the joint safe probability.) The parameter τ controls
how well the indicator function is approximated. Intriguingly,
this approximation is not only an intuitive trick, and it does
have strong theoretical support. Regardless of the nonlinearity
and nonconvexity of h(st ), the gradient of �(π, τ) is proven
to converge to the true gradient of joint safe probability ps(π)
as τ approaches 0 under mild assumptions [35]

lim
τ→0+

sup
θ∈�
∇θ�(π, τ ) = ∇θ ps(π) (16)

where � is a small ball around the current policy network
parameter. For simplicity, we omit mathematical details; inter-
ested readers are recommended to refer to [35] for a rigorous
explanation.

In practice, one only needs to pick a relatively small fixed
τ and compute ∇θ�(π, τ ) to substitute ∇θ ps(π), where the
expectation is estimated by sampling average. Therefore, the
original policy update rule of SPIL is rewritten as

θ k ← θ k−1 + αθ

1+ λk

�∇θ J k−1 + λk∇θ�(πθ k−1 , τ )
�
. (17)

It should be pointed out that the introduction of φ(z, τ ) in
this subsection is only used for the computation of ∇θ ps(π).
The safe probability ps itself is still estimated through Monte
Carlo sampling, i.e., suppose that there are m safe trajectories
among all the M trajectories, and then, the safety probability
is ps ≈ (m/M).

Algorithm 1 Model-Based SPIL Algorithm

Initialize πθ 0 , Qw0 , I 0 = 0, s0 ∈ S, k = 1
repeat

Rollout M trajectories by N steps using policy π k−1

Estimate safe probability
pk−1

s ← m
M

Update λ via SPIL rules
	k ← 1− δ − pk−1

s
I k ← (I k−1 + KS	

k)+
λk ← (K P	k + KI I k)+

Update critic:
ωk ← ωk−1 + αω∇ω J k−1

Q
Update actor:

θ k ← θ k−1 + αθ

1+λk (∇θ J k−1 + λk∇θ�(πθ k−1 , τ ))
k ← k + 1

until |Qk − Qk−1| ≤ ζ and |π k − π k−1| ≤ ζ

D. Model-Based SPIL Algorithm

Based on the aforementioned gradient, we will propose the
model-based SPIL algorithm for practical applications. First,
we define the state-action value of (s, a) under policy π as

Qπ (s, a) = Eξ,π

� ∞�
t=0

γ tr(st , at)
���s0 = s, a0 = a

�
. (18)

Thus, the expected cumulative reward J in (2) can be
expressed as an N-step form

J (π) = Es0,ξ

�
N−1�
t=0

γ tr(st , at)+ γ N Qπ (sN , aN )

�
. (19)

For large and continuous state spaces, both value function
and policy are parameterized

Q(s, a) ∼= Q(s, a;w), a ∼= π(s; θ). (20)

The parameterized state-action value function with parameter
w is usually named the “critic,” and the parameterized policy
with parameter θ is named the “actor” [37].

The parameterized critic is trained by minimizing the aver-
age square error

J k
Q = Es0,ξ

�
1

2

�
Qtarget − Q

�
s0, a0;wk

��2
�

(21)

where Qtarget = �N−1
t=0 γ t r(st , at ) + γ N Q(sN , aN ;wk) is the

N-step target. The rollout length N is identical to the horizon
of chance constraint.

The parameterized actor is trained via gradient ascent in
(17). In particular, we first compute J and � through model
rollout. Then, ∇θ J and ∇θ ps are computed via backpropaga-
tion though time with the dynamic model [37]. In practice,
this process can be easily finished by any autograd package.
The pseudocode of the proposed algorithm is summarized in
Algorithm 1.
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E. Convergence Analysis

The convergence analysis and proof of the RL algorithms
are generally difficult. Fortunately, the feedback system view
of chance-constrained RL benefits not only the algorithm
designing but also the convergence analysis. The convergence
of RL algorithms is comparable to the stability of the feedback
control system, i.e., one can analyze the convergence with
the help of stability analyzing tools, such as the Lyapunov
approach. The previous researchers have established some
theories in the context of the iterative constrained optimiza-
tion for neural networks, where the iterative algorithm is
reshaped as a joint dynamic system and the convergence
is analyzed by Lyapunov methods [28], [38]. In this arti-
cle, we extend their method to chance-constrained RL and
characterize the local convergence property of the proposed
algorithm.

We first consider a new RL problem similar to (2) but
with an equality constraint. This equality-constrained prob-
lem is easier to analyze, and the result can be extended to
inequality-constrained problem conveniently

max
θ

J (θ) s.t. p(θ) = 0 (22)

where J (θ) is the same objective function as in (2) and p(θ)
represents ps(πθ) + 1 − δ. The optimal feasible solution of
(22) is denoted as π∗.

We then make the following necessary assumptions when
applying Algorithm 1 to problem (22).

Assumption 1: There is a small neighborhood � around π∗,
inside which the following holds.

1) KS = 1, i.e., in (13), 	k ≤ �2 always holds, and there
is no integral separation.

2) Matrix M is always positive definite, where matrix M
is

M = −∇2 J + λ∇2 p + K P∇ p∇ p� (23)

Mi, j =
�
− ∂2 J

∂θi∂θ j
+ λ

∂2 p

∂θi∂θ j
+ K P

∂p

∂θi

∂p

∂θ j

�
. (24)

The first condition in Assumption 1 is reasonable since
the integral separation mainly takes effect in the early stage
when the safe probability is low, and it may not be triggered
in the later stage when the policy is close to the optimum.
The second condition in Assumption 1 actually demands the
concavity of the objective function J and the convexity of safe
probability p, which will be more likely to make matrix M
positive definite. Detailed discussion is deferred in Remark 1.

Assumption 2: In each iteration, the estimation of the value
function, safe probability, and its gradient is perfect, i.e.,
estimation errors and approximation errors are ignored in the
following analysis.

With these two assumptions, the convergence theorem of
the equality-constrained problem (22) can be derived.

Theorem 1: Under the assumption of 1 and 2, Algorithm 1
converges to a local optimal feasible solution π∗ for the
equality-constrained problem (22) starting from a policy inside
the neighborhood �.

Proof: We first reshape the updating rule in Algorithm 1
into continuous-time differential equations

θ̇ = αθ

�
∂ J (θ)

∂θ
− λ

∂p(θ)

∂θ

�
(25)

λ̇ = K P ṗ(θ)+ KI p(θ). (26)

Note that, according to Assumption 1, KS always equals 1,
thus not appearing in the equations anymore.

Calculating the derivative of (25) with respect to time t ,
one has

θ̈i = αθ

�
j

�
∂2 J

∂θi∂θ j
− λ

∂2 p

∂θi∂θ j

�
θ̇ j − αθ λ̇

∂p(θ)

∂θi
(27)

where i represents the i th parameter.
By embedding (26) into (27), we have

θ̈i + αθ

�
j

�
− ∂2 J

∂θi∂θ j
+ λ

∂2 p

∂θi∂θ j
+ K P

∂p

∂θi

∂p

∂θ j

�
θ̇ j

+ αθ KI p(θ)
∂p

∂θi
= 0. (28)

The above equation is the dynamics of the closed-loop feed-
back system, which is actually a damping-mass system with
eternal force αθ KI p(θ)(∂p/∂θi). Intuitively, if one can ensure
that the damping is always positive, the energy of the system
will constantly decrease, finally converging to a stable state.

Inspired by that, we define an energy function v(θ, θ̇ ) as

v
�
θ, θ̇

� := 1

2

�
i

�
θ̇i

�2 + αθ KI
1

2
(p(θ))2. (29)

The derivative of the energy function is

v̇ =
�

i

θ̈i θ̇i + αθ KI

�
i

p(θ)
∂p

∂θi
θ̇i

= −αθ

�
i

�
j

θ̇i

�
− ∂2 J

∂θi∂θ j
+ λ

∂2 p

∂θi∂θ j
+ K P

∂p

∂θi

∂p

∂θ j

�
θ̇ j

= −αθ θ̇
�M θ̇ (30)

where the matrix M is as defined in Assumption 1 and is
positive definite, which leads to

v̇(θ) = −αθ θ̇
�M θ̇ < 0. (31)

Because v(θ, θ̇ ) is the sum of squares, we have

v
�
θ, θ̇

� ≥ 0. (32)

The equality holds if and only if p(θ) = θ̇ = 0.
Equations (31) and (32) are exactly the Lyapunov stability

conditions, so the system (28) is asymptotically stable inside
the neighborhood �, and the system energy approaches to 0

lim
t→∞ v

�
θ, θ̇

� = 0. (33)

Furthermore, it holds that

lim
t→∞ θ̇ = 0

lim
t→∞ p(θ) = 0

lim
t→∞

∂ J (θ)

∂θ
− λ

∂p(θ)

∂θ
= 0. (34)
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Equation (34) means that Algorithm 1 converges to the
local optimal feasible solution π∗ for the equality-constrained
problem (22). �

Through simple reformation, the above theorem can be
extended to the convergence theorem for the inequality-
constrained problem, i.e., the original problem (2).

Theorem 2: Under the assumption of 1 and 2, Algorithm 1
converges to a local optimal feasible solution π∗ for the
inequality-constrained problem (2) starting from a policy
inside the neighborhood �.

Proof: The inequality constraint is

p(θ) ≥ 0. (35)

By introducing a slack variable z, it can be reformed into
an equality constraint

g(θ) = p(θ)− z2 = 0 (36)

where g(θ) is the reformed constraint function.
If we combine θ and z as an expanded vector

θz :=
�
θ
z

�

then the original inequality-constrained problem becomes an
equality-constrained problem with variable θz . According to
Theorem 1, this equality-constrained problem converges to a
local optimal feasible solution θ∗z = {θ∗, z∗}. This immediately
means that the inequality-constrained problem (2) converges
to a local optimal feasible solution θ∗. �

Remark 1: In (23), the matrix M is assumed to be positive
definite to guarantee convergence. In fact, since ∇ p∇ p�
is always positive definite, the last term K P∇ p∇ p� in (23)
is positive definite if K P > 0, which makes the matrix
M more likely to be positive definite and, thus, improve
convergence. This insight provides an underlying interpreta-
tion of why incorporating the penalty updating rules in the
Lagrangian method improves convergence, which was also
revealed by [38] and [28]. In addition, from (23), we also
notice that the concavity of the objective function J and
the convexity of the safe probability p also influence the
convergence condition. If J is strictly concave and p is strictly
convex, then M is always positive definite, which means that
the second condition in Assumption 1 always holds in the
whole policy space.

IV. SIMULATION VALIDATION

A. Example Description

In this section, the proposed SPIL is verified and compared
in a car-following simulation in Fig. 5, where the ego car
expects to drive fast and closely with the front car to reduce
wind drag [39], while keeping a minimum distance between
the two cars with a high probability. Concretely, we assume
that the ego car and front car follow a simple kinematics
model, and the velocity of the front car is varying with
uncertainty ξ .

The dynamics of the car-following example is given as

st+1 = Ast + Bat + Dξt

Fig. 5. Car-following scenario.

s = �
ve, v f , �

��
A =

⎡
⎣ 1 0 0

0 1 0
−T T 1

⎤
⎦

B = [T, 0, 0]�, D = [0, T, 0]� (37)

where ve (m/s) is the velocity of ego car, v f (m/s) is the
velocity of front car, and � (m) is the distance between the two
cars. The action a ∈ (−4, 3)m/s2 is the acceleration of ego
car. The uncertainty ξt ∼ N (0, 0.7) is truncated in the interval
(−7, 7). T = 0.1 s is the simulation time step. With a chance
constraint on the minimum distance, the policy optimization
problem is defined as

max
π

∞�
t=0

γ t
�
0.2ve,t − 0.1�t − 0.02a2

t

�

s.t. Pr

�
N�

t=1

(�t > 2)

�
≥ 1− δ

st+1 = Ast + Bat + Dξt , (38)

where ve,t denotes the velocity of the ego car at step t .

B. Algorithm Details

Three algorithms are employed to find the nearly
optimal car-following policy, including SPIL (ours), the
penalty method (amounts to proportional-only PIL), and the
Lagrangian method (amounts to integral-only PIL). Note that
all the algorithms are trained in a model-based manner. The
coefficients of SPIL are selected as K P = 15 and KI =
0.6 since it achieves the best results. The penalty method
is sensitive to the penalty weight selection, so we adopt two
weights K P = 12 and 80. In fact, both of them cannot totally
ensure constraint satisfaction. For the Lagrangian method,
we set KI = 18 because it achieved the best performance in
the pretest compared to other values. The cumulative reward
and safe probability in horizon N are compared under two
chance constraint thresholds: 90.0% and 99.9%, i.e., δ =
0.1 and δ = 0.001.

Both actor and critic are approximated by fully con-
nected neural networks. Each network has two hidden layers
using rectified linear unit (ReLU) as activation functions
with 64 units per layer. The optimizer for the networks is
Adam [40]. The main hyperparameters are listed in Table I.

C. Results

1) Overall Performance: The learning curves of all methods
under two thresholds are illustrated in Fig. 6. We emphasize
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Fig. 6. Comparison of performance among SPIL, the penalty method, and the Lagrangian method. The solid lines correspond to the mean, and the shaded
regions correspond to a 95% confidence interval over five runs. (a) Cumulative reward under 90.0% threshold. (b) Cumulative reward under 99.9% threshold.
(c) Safe probability under 90.0% threshold. (d) Safe probability under 99.9% threshold.

TABLE I

SPIL HYPERPARAMETERS FOR SIMULATIONS

that any comparison should consider both safety and reward-
winning. Generally, the proposed SPIL algorithm not only
succeeds to satisfy the chance constraint without periodic
oscillations but also achieves the best cumulative reward
among methods that meet the safety threshold.

For safety, the proposed SPIL satisfies the chance constraint
in both thresholds, as shown in Fig. 6(c) and (d). While
the penalty methods with two weights both fail to meet the
thresholds. In addition, the large weight of K P = 80 also leads
to oscillation. The Lagrangian method basically satisfies the
constraint but suffers from periodic oscillations under 90.0%
threshold. In a feedback control view, the SPIL combines the
advantages of integral and proportion control, thus having a
stable learning process with no steady-state errors.

In terms of reward-wining plotted in Fig. 6(a) and (b), SPIL
achieves more reward than the Lagrangian method but less
than the penalty method with K P = 12. This is because the
penalty method actually wins high performance at the cost of
constraint violation.

2) Ablation Study: To demonstrate the necessity of integral
separation proposed in Section III-B, we compare the results
of our method with and without integral separation with five

Fig. 7. Comparison of performance of SPIL with and without integral
separation technique (PIL) under 99.9% threshold. The solid and dotted lines
correspond to the mean, and the shaded regions correspond to 95% confidence
interval over five runs. In (b), solid lines represent reward, and dotted line
represent integral value. The values for SPIL are in red, and the values for PIL
are in green. (a) Safe probability. (b) Cumulative reward and integral value.

unsafe initial policies. As shown in Fig. 7, since the initial
safe probability is low, the integral value I increases rapidly
at first. With a large I and λ, the policy quickly becomes
100% safe. Unfortunately, since 	 = 0.999− 1 = −0.001 is
too small in (10), the decline of I and λ is quite slow, leading
to an overly conservative policy with poor reward. On the
contrary, once the integral separation is equipped, the above
problem is immediately solved. Note that the results in Fig. 6
and Fig. 7 are not comparable since the latter are conducted
under manually chosen unsafe initial policies.

The previous works typically adopt model-free methods to
optimize the policy due to the discontinuity of the indicator
function. In Section III-C, we propose a model-based gradient
of safe probability to enable model-based optimization, which
is believed to accelerate the training process. To verify this,
we adopt a state-of-the-art model-free RL algorithm PPO [41]
to estimate the gradient of the safe probability while keeping
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TABLE II

ALGORITHM PERFORMANCE WITH DIFFERENT PARAMETERS

Fig. 8. Comparison of performance of SPIL with model- and PPO-based
model-free optimizations under 99.9% constraint threshold. The solid lines
correspond to the mean, and the shaded regions correspond to 95% confidence
interval over five runs. (a) Safe probability. (b) Cumulative reward.

the other SPIL modules the same. This baseline is denoted as
model-free PPO-SPIL. The learning curves of safe probability
ps and cumulative reward J are plotted in Fig. 8, where an
iteration amounts to a batch of 4096 state-action pairs for both
model-based and model-free versions. Our model-based SPIL
reaches the required safe probability within about 250 itera-
tions, at least five times faster than its model-free counterpart.
This improvement comes from the fact that the model-free
method has first to learn an accurate cost value function before
it optimizes the policy, while the model-based method makes
use of the model to directly obtain a relatively precise gradient.
It should be pointed out that this improvement is especially
helpful for online training in the real world, where the policy
should be safe as early as possible.

3) Sensitivity Analysis: To demonstrate the practicality of
SPIL, we show that its high performance is relatively insensi-
tive to hyperparameter choice. We test the algorithm across
different values of K P , KI , and β while keeping all other para-
meters fixed. The results over five runs under 90.0% threshold
are summarized in Table II, with the best parameters shown in
bold. Even the worst case only leads to 1.8% degradation in
safe probability and 6.5% degradation in cumulative reward.

V. EXPERIMENTAL VALIDATION

A. Experiment Description

To demonstrate the effectiveness of the proposed method for
real-world safety-critical application, we apply it to a mobile
robot navigation task. As illustrated in Fig. 9, the robot aims to
follow the reference path (exactly the positive x-axis) without
colliding with a moving obstacle. However, it does not know

Fig. 9. Mobile robot navigation task.

the behavior or trajectory of the moving obstacle, which may
be highly stochastic. Besides, the moving obstacle will not
actively avoid the robot.

The robot locates its position and heading angle through
a LiDAR, and it also has sensors to estimate its current
velocity and angular velocity. In this experiment, we let the
obstacle share its current motion information through socket
communications.

B. Experiment Details
1) Dynamic Model: We first present the model used for

training. The wheeled robot adopts a two-wheel differential
drive architecture and takes the desired velocity vd and
desired angular velocity wd as control commands. Nonethe-
less, its bottom-level control mechanism and response are
unknown and varied in different conditions. Therefore, addi-
tional random terms ξv and ξω are introduced to describe this
uncertainty. To cover the stochastic behavior of obstacle, the
uncertainty of the obstacle is also considered. The motions of
both robot and moving obstacle are predicted through a simple
kinematic model

s =

⎡
⎢⎢⎢⎢⎣

Px

P y

α
v
ω

⎤
⎥⎥⎥⎥⎦, a =

�
vd

wd

�

st+1 =

⎡
⎢⎢⎢⎢⎣

Px
t

P y
t

αt

0
0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0
0
0
vd

t
ωd

t

⎤
⎥⎥⎥⎥⎦+ T

⎡
⎢⎢⎢⎢⎣

vt cos α
vt sin α

ωt

ξv
t

ξω
t

⎤
⎥⎥⎥⎥⎦ (39)

where T = 0.4 s is the time step, Px and P y denote
the position coordinates, α is the heading angle, v is the
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Fig. 10. Trajectories of robot and obstacle in five scenarios. All points are plotted with the same time interval, so the density of points also represents the
velocity of the object. The speed of two objects and the distance between two objects are also plotted. Most of the time, our robot keeps a safe distance from
the obstacle as specified in the chance constraint. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4. (e) Scenario 5.

velocity, ω is the angular velocity, vd is desired velocity, wd is
desired angular velocity, ξv is the uncertainty on the velocity,
and ξω is the uncertainty on the angular velocity. For the
robot, the control inputs a are output by the policy network,
which are also bounded by the following input constraints
|v−vd | ≤ 1.8T and |ω−ωd | ≤ 0.8T . The velocity and angular
velocity uncertainty of the robot are set to ξv ∼ N (0, 0.08)
and ξω ∼ N (0, 0.05). For the model of the obstacle, the
desired velocity and angular velocity are always set as the
same as its current velocity and angular velocity but with
uncertainties ξv ∼ N (0, 0.1) and ξω ∼ N (0, 0.06) to indicate
its stochastic behaviors. Although the true future behavior of
obstacles is unknown to the ego robot, these uncertainty terms
help to improve the robustness of the learned policy in real
environments.

We admit the whole model is relatively naive and inaccurate,
and the uncertainty term is given by experience instead of
estimation. However, we find it is enough to accomplish this
task. A better choice is to update the model and uncertainty
online through real-world experimental data. We leave it in
our further work.

2) Reward and Chance Constraints: The robot aims to fol-
low a reference path while avoiding collisions with a moving
obstacle. The start point for the robot is near (1, 0). The
reference path is the positive x-axis. Therefore, the reference
y-position and heading angle are both 0. The reference velocity
is set to 0.3 m/s. With additional regularization on the control
command, the reward of the task is defined as

r=−1.4
�
P y

�2−α2 − 16(v − 0.3)2−0.2
�
vd

�2 − 0.5
�
ωd

�2
.

(40)

TABLE III

SPIL HYPERPARAMETERS FOR EXPERIMENT

Then, we impose the obstacle avoidance constraint. For
simplicity, the robot and obstacle are both regarded as circles
with a radius of 0.4 m, and the distance between their centers is
denoted as �. The chance constraint on the minimum distance
is

Pr

�
25�

t=1

(�t > 0.9)

�
≥ 0.99. (41)

3) Algorithmic Parameters: The network structure is
exactly the same as that of the simulation. The main hyperpa-
rameters are listed in Table III.

4) Test Scenarios: The learned policy will be tested in
five scenarios with different obstacle behaviors. In the former
three scenarios, the obstacle behaves normally, without a
sudden stop or turn. To demonstrate the robustness and high
intelligence of the trained robot, the latter two scenarios
are under high randomness, where the obstacle drives in
a complex trajectory or even deliberately blocks the robot.
We stress that, in all experiments, the robot does not know
the behavior or trajectory of the obstacle in advance, and all
the experiments are conducted with the same network. This
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Fig. 11. Snapshots for scenario 4. (a) Obstacle initially moved toward the positive direction of the reference path. (b) Obstacle suddenly changed its direction
and moved toward the robot. Thus, the robot urgently turned right to avoid it. (c) Robot passed around the obstacle from the right. (d) Robot returned to the
reference path after the obstacle left. (a) Time: 10 s. (b) Time: 13 s. (c) Time: 15 s. (d) Time: 17 s.

Fig. 12. Snapshots for scenario 5. (a) Robot turned right to avoid the coming obstacle. (b) Obstacle deliberately moved back and blocked the robot from
returning to the reference path. Thus, the robot had to keep moving in the wrong direction. (c) Robot found an opportunity to turn left when the obstacle was
not blocking. (d) Robot successfully returned to the reference path. (a) Time: 11 s. (b) Time: 15 s. (c) Time: 18 s. (d) Time: 24 s.

means that the method should have high generalization ability
and intelligence to pass the five test scenarios.

C. Results
We trained the policy network using the proposed SPIL

algorithm with the dynamic model and then tested the learned
network on the real robot. A video for the results is available
at https://youtu.be/oVDB2XqNoCU. We highly recommend
readers to watch the video for an intuitive evaluation. Fig. 10
shows the control results of the learned policy in five scenarios.
In Fig. 10(a), when the obstacle was moving at a low speed,
the robot actively bypassed it from the left. If we increased
the speed of the obstacle, the robot instead chose to stop
and wait until the obstacle moved away, thereby avoiding a
collision [see Fig. 10(b)]. In Fig. 10(c), the ego robot avoided
the moving obstacle from the right side while tracking the
reference path. These results indicate that the learned policy
can adopt different strategies according to the position and
speed of the obstacle to achieve collision avoidance while
tracking.

In scenarios 4 [see Fig. 10(d)] and 5 [see Fig. 10(e)],
the behavior of the obstacle robot was more aggressive.
We controlled the obstacle to deliberately collide or block
the robot to increase the difficulty of collision avoidance.
See Figs. 10(d) and 11 for behavior details of the robot in
scenario 4, and Figs. 10(e) and 12 for that in scenario 5.
Results show that the learned policy can achieve safe move-
ment even when the obstacle behaves aggressively, which
demonstrates the superior performance of our method.

To be more specific, we list the minimum and average
distances between the robot and the obstacle, as well as the
safe time step ratio in Table IV. Note that the safe time
step ratio denotes the portion of time steps that satisfy the

TABLE IV

ROBOT-OBSTACLE DISTANCES IN FIVE SCENARIOS

constraints among all time steps in a whole run. As we
declared in Section V-B2, the required minimum distance is
0.9 m, so any time step when the distance is lower than that
value means a constraint violation. For the first three scenarios
where the obstacle moves predictably, our method achieves a
100% safe portion. For the remaining two scenarios where
the obstacle moves in a more stochastic or even aggressive
trajectory, the minimum distance is lower than 0.9 m, and the
safe time step ratio is relatively lower. However, the robot still
successfully avoids colliding with the obstacle as shown in
the videos or snapshots. This reduction in safety is reasonable
and actually inevitable with the existence of the aggressive
obstacle, as it deliberately moved toward the robot. Overall,
these quantitative analyses demonstrate the great performance
of our method under normal scenarios and decent performance
under risky scenarios.

VI. CONCLUSION

We presented a model-based RL algorithm SPIL for
chance-constrained policy optimization. Based on a feed-
back control view, we first reviewed and unified two
existing chance-constrained RL methods to formulate a
proportional-integral Lagrangian method and enhanced it with
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an integral separation technique to prevent policy overconser-
vatism. To accelerate training, it also adopted a model-based
gradient of safe probability for efficient policy optimization.
The convergence of the algorithm was analyzed by Lyapunov
methods. We demonstrated the benefits of SPIL over previous
methods in a car-following simulation. To prove its practical-
ity, it was also applied to a real-world robot navigation task,
where it successfully tracked the reference path while avoiding
a highly stochastic moving obstacle. In the future, we will
explore the possibility of online training where the model and
policy are both updated depending on the data from the real
world to improve its online performance.
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