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Abstract
Trajectory planning is of vital importance to decision-making for autonomous vehicles. Currently, there are three popu-
lar classes of cost-based trajectory planning methods: sampling-based, graph-search-based, and optimization-based.
However, each of them has its own shortcomings, for example, high computational expense for sampling-based methods,
low resolution for graph-search-based methods, and lack of global awareness for optimization-based methods. It leads to
one of the challenges for trajectory planning for autonomous vehicles, which is improving planning efficiency while guar-
anteeing model feasibility. Therefore, this paper proposes a hybrid planning framework composed of two modules, which
preserves the strength of both graph-search-based methods and optimization-based methods, thus enabling faster and
smoother spatio-temporal trajectory planning in constrained dynamic environment. The proposed method first con-
structs spatio-temporal driving space based on directed acyclic graph and efficiently searches a spatio-temporal trajec-
tory using the improved A* algorithm. Then taking the search result as reference, locally convex feasible driving area is
designed and model predictive control is applied to further optimize the trajectory with a comprehensive consideration
of vehicle kinematics and moving obstacles. Results simulated in four different scenarios all demonstrated feasible trajec-
tories without emergency stop or abrupt steering change, which is kinematic-smooth to follow. Moreover, the average
planning time was 31 ms, which only took 59.05%, 18.87%, and 0.69%, respectively, of that consumed by other state-of-
the-art trajectory planning methods, namely, maximum interaction defensive policy, sampling-based method with itera-
tive optimizations, and Graph-search-based method with Dynamic Programming.
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Introduction

In the past few decades, autonomous driving has
achieved considerable development of state-of-the-art
technologies in planning, control, and sensing.1,2

Trajectory planning is of great importance in decision-
making for autonomous driving. It generates collision-
free trajectory toward the destination with measure-
ments from perception and localization.3 It is well
demonstrated that the controller uses a sequence of
motion-level commands to guide the autonomous vehi-
cle along the predetermined trajectory robustly even at
driving limits.4 Therefore, we focus on aspects of plan-
ning to improve tracking performance such as safety,
comfort, and economy.4–6 If the trajectory is spatio-

temporal rather than purely geometrical, those objec-
tives can be better guaranteed in constrained dynamic
environment.4,7,8 Moreover, the conflict-free robust
control and cooperative control for multiple connected
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vehicles also benefit from the fast generation of spatio-
temporal trajectory.1,2 Current methods for spatio-
temporal trajectory planning are broadly classified into
three main categories: sampling-based methods, graph-
search-based methods, and optimization-based
methods.

Sampling-based methods first connect the points
sampled randomly or deterministically and select the
desired trajectory among a series of candidates by colli-
sion check and performance evaluation. The spatio-
temporal trajectory is generated with samples drawn in
action space.9 LaValle10 proposed a random sampling-
based method called rapidly exploring random tree
(RRT), which was characterized by high planning effi-
ciency but poor trajectory feasibility. Kuwata et al.11

used a closed-loop system to improve the stability of
standard RRT, where planning feasibility is guaranteed
by simulations with the low-level controller in advance.
The deterministic sampling-based method proposed by
Macfarlane and Croft12 sampled in a predetermined
acceleration range, resulting in jerk-bounded trajec-
tories. Gu et al.13 further improved the smoothness of
the spatio-temporal trajectory by branching over the
polynomial speed profiles sampled deterministically in
a short term. However, in the case of small sample size,
the sampling-based methods can generate trajectories
far from the global optimum. Otherwise, the planning
is intractable and time-consuming due to the curse of
dimensionality. Besides, the collision check does not
actually consider the dynamic obstacles parameterized
by time, probably leading to poor feasibility of the
spatio-temporal trajectory.

Graph-search-based methods search the desired tra-
jectory under some performance requirements on a dis-
cretized map. Originally, those search methods can
only deal with static obstacles. But currently, more and
more research works have focused on the generation of
the spatio-temporal trajectory with a consideration of
dynamic obstacles in the future. State lattice proposed
by Pivtoraiko et al.14 is the most widely used discrete
graphs composed of kinematically feasible motion pri-
mitives and time information. The spatio-temporal tra-
jectory can be obtained using classical graph-search-
based methods in such a state lattice.15 The Dijkstra
algorithm is widely used for finding the shortest trajec-
tory.16 A*, an extension of the Dijkstra algorithm, is a
fast heuristic search algorithm and the basis of many
implementations, such as the Junior (hybrid A*)17 and
Boss (AD*)18 autonomous vehicles. To search more
efficiently in a changing environment, D*19 and D*
Lite20 are proposed to replan the trajectory using previ-
ous information. Although the graph-search-based
methods generate the trajectory near the global opti-
mum, its higher order derivatives are still discontinu-
ous. However, the creation of state lattice takes a lot of
time, leading to low planning efficiency.21

Optimization-based methods are concerned with
mathematical problem-solving to obtain the minimal
cost or objective function with multiple constraints.

The trajectory is iteratively refined until the termina-
tion or convergence conditions are met.22 Shibata
et al.23 employed the potential field approach to gener-
ate the obstacle-avoidance trajectory based on velocity
vectors. They determined the optimal parameter values
for the velocity potential function by a numerical opti-
mization method called quasi-Newton. Keller et al.24

represented the spatio-temporal trajectory by a timed
elastic band (TEB) function and optimized it in con-
strained action space. They formulated the problem as
a nonlinear least-squares problem and solved it using
the Levenberg–Marquardt algorithm, a numerical opti-
mization method. Gao et al.25 applied a local
optimization-based method called model predictive
control (MPC) to smooth a coarse predefined trajec-
tory. They minimized the cost function by sequential
quadratic programming (SQP), where the problem was
divided into a sequence of quadratic programming
(QP) subproblems with linearized constraints.
However, the optimization-based methods are often
time-consuming, especially with non-convex environ-
mental constraints.

Overall, current research works on trajectory plan-
ning provide insightful progress but still have limita-
tions. Sampling-based methods can alleviate local
optimality problem by exploring the whole space and
finding a global optimum. However, it suffers from
curse of dimensionality and high computational
expense, leading to resolution suboptimality. Graph-
search-based methods can effectively generate the tra-
jectory near the global optimum, but it is usually not
curvature continuous and does not satisfy model feasi-
bility for trajectory execution. Optimization-based
methods can guarantee feasibility with model informa-
tion and are computationally acceptable by finding
local optimum through a few iterations. However, the
predetermined reference trajectory is required and
needs proper design and initialization.

Therefore, this paper proposes a novel hybrid plan-
ning framework composed of two modules, which pre-
serves the strength of both graph-search-based methods
for avoiding local optimality and optimization-based
methods for local refinement, thus enabling faster and
smoother spatio-temporal trajectory planning in con-
strained dynamic environment. The proposed method
first constructs spatio-temporal driving space based on
directed acyclic graph (DAG) and efficiently searches a
spatio-temporal trajectory using the improved A* algo-
rithm. Then taking the search result as reference, locally
convex feasible driving area is designed and MPC is
applied to further optimize the trajectory with a com-
prehensive consideration of vehicle kinematics and
moving obstacles.

The rest of the paper is organized as follows. Section
‘‘Proposed method’’ shows the framework of the pro-
posed planning method. Section ‘‘Reference trajectory
generation’’ introduces the reference trajectory genera-
tion. Section ‘‘Trajectory smoothing’’ introduces the
trajectory smoothing. Section ‘‘Simulation setup’’
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presents the simulation setup in detail. Section
‘‘Results’’ presents the results for overtaking and yield-
ing. Section ‘‘Conclusion’’ concludes this paper with a
summary of the contributions and perspectives.

Proposed method

To generate the smooth spatio-temporal trajectory effi-
ciently in constrained dynamic environment, a hybrid
planning method is proposed in this paper. As shown
in Figure 1, its framework consists of two procedures:
reference trajectory generation with a search-based
method and local refinement and smoothing with an
optimization-based method:

1. To generate a reference trajectory with a search-
based method. The driving map is represented by a
three-dimensional (3D) spatio-temporal map
instead of the general grid map, which is con-
structed by DAG. The position of dynamic obsta-
cles in the future can be illustrated in such a driving
map. Then, the improved A* algorithm is used to
search in action space to efficiently get the best
collision-free trajectory depending on the designed
performance requirements.

2. To smooth the reference trajectory with an
optimization-based method. The reference trajectory
is not smooth enough due to the discrete action
space and state space. Therefore, MPC is adopted
for further optimization. However, the presence of
dynamic obstacles generally brings non-convex
feasible driving areas for the ego vehicle. It
increases the computational difficulty and influ-
ences the whole planning efficiency. Then, the
method for reconstruction of convex feasible sets is
presented previously to ensure a fast optimization.
A kinematic model is introduced to make sure the
higher order derivatives of the trajectory are con-
tinuous and accordant with the vehicle kinematics.
Overall, the optimized trajectory is smooth
enough, leading to good tracking performance and
reasonable control cost.

Reference trajectory generation

This section presents the generation of the reference
trajectory, which contains the spatio-temporal informa-
tion toward the destination in dynamic environment.
The driving map represented by a 3D spatio-temporal
map is first established with the help of DAG. Then,
the improved A* algorithm is used to search in action
space to efficiently get the best collision-free trajectory
on the driving map.

Spatio-temporal map construction

The spatio-temporal trajectory provides the ego vehicle
not only the position but also the kinematic

information, leading to the good tracking performance
of the vehicle controller. To generate a reasonable tra-
jectory in the presence of moving obstacles, their posi-
tions are necessary to be parameterized by time.
However, graph-search-based algorithms generally do
not take into account their positions in the future due
to the lack of temporal information. Therefore, a time-
line is added into the grid map, and then the 3D spatio-
temporal map is established with the help of DAG.

DAG consists of the points and the edges directed
from one point to another along which it is impossible
for any point to loop back to itself.21,26 A sequence of
points in such topological ordering represents the
change of vehicle states over time, namely, the spatio-
temporal trajectory. Then the grid map with directed

Figure 1. Framework of the proposed planning method.

Figure 2. Two-dimensional spatial grid map for a two-lane
road.

Xin et al. 1103



acyclic edges connecting the neighboring points is
exactly a DAG.

First, the two-dimensional (2D) spatial grid map is
established by dividing the environment space into
finitely many squares with the same size. As shown in
Figure 2, the ego vehicle is considered as a mass point
occupying the grid where its geometric center is located.
The girds occupied by other vehicles take the vehicle
size into account so that the lateral and longitudinal
distances from the ego vehicle are large enough to avoid
collisions. To improve search efficiency, there are some
preliminaries concerned with the elimination of useless
squares. It is impossible for the ego vehicle to go
through those areas without collision even with the
maximum steering angle: for example, the circular areas
following the neighboring vehicles and those before the
destination, which are depicted as gray-shaded parts.
The radius of the areas, namely the minimum turning
radius for the ego vehicle, is tangent to the direction of
vehicle velocity.

The 2D spatial grid map is extended along the added
timeline, resulting in a 3D spatio-temporal map. Its
multiple map layers are parallel to each other as shown
in Figure 3. Several directed edges connect the two
states in neighboring map layers at different time steps.
The edge is in a single direction as time goes forward,
which meets the requirements of the DAG. In Figure 3,
a sequence of points connected by several solid
blue lines illustrates the spatio-temporal trajectory dis-
cretized with a time step size Dt. Such a trajectory con-
tains both the position and the time information.
Specifically, it can represent a stop at a specific time,
while it is impossible for general grid maps.

In the 3D spatio-temporal map, the positions for the
dynamic obstacle at different time steps are depicted as
the light green part in Figure 3. The future position of

surrounding vehicles is assumed to be given by trajec-
tory prediction, which is another vital module in the
decision-making system.27 Then, in the future, the pro-
posed planning method can take the dynamic unfeasi-
ble region into account, while the classical graph-
search-based methods based on the grid map only con-
sider the static obstacles in each search step. The refer-
ence trajectory without collisions is, thus, feasible in a
longer time horizon. Since the good suitability and scal-
ability of the 3D spatio-temporal map established off-
line, only the unfeasible squares are specified from
scenarios to scenarios. The unfeasible squares can be
eliminated quickly so that the increase in obstacle num-
bers has little impact on overall processing time.

Moreover, the established 3D spatio-temporal map
contains information not only about the vehicle states s
but also about the actions A, which are depicted as the
blue directed lines. The slope of its projection in plan
XOT denotes the lateral velocity vx =Dlx=Dt, while the
slope of its projection in plan YOT denotes the longitu-
dinal velocity vy =Dly=Dt. The angle between its pro-
jection on the plan XOY and the axis Y approximates
the yaw angle. Those actions are calculated depending
on the determined neighboring states. In turn, the pos-
sible states can be expanded from the current state if
the action space is determined (the blue solid line and
the dotted line in Figure 3). Note that it is possible to
adopt different curves to connect the two states at adja-
cent map layers. Since the time step is assumed to be
short enough, the velocity is assumed constant. Then,
the straight lines are used in this paper and the spatio-
trajectory of the ego vehicle is depicted as the light blue
part.

Trajectory search algorithm

One of the graph-search-based methods called A* algo-
rithm is introduced to find the best reference path
because of its high efficiency. It usually deals with
situations with fixed obstacles.28 The basic A* algo-
rithm used for a grid configuration space is restricted
to the spatial trajectory. Then, in this paper, the A*
algorithm is improved to be applicable on the estab-
lished 3D spatio-temporal map.

In this paper, the vehicle states are the collection
of the lateral and longitudinal position x, y, velocity v,
and yaw angle u, which is denoted as
st = fxt, yt, vt, utg. The discrete action space includes
possible acceleration and yaw angle, which is denoted
as A= fA,ΘjA= [i ai,Θ= [i uig. The expansion
for ego vehicle states is formulated in equation (1)

ut+1 = ut + ui

vt+1 = vt + ai3Dt

xt+1 = xt + vt+13Dt3 cos ut+1

yt+1 = yt + vt+13Dt3 sin ut+1

ð1Þ

Figure 3. Three-dimensional spatio-temporal map constructed
by DAG.
DAG: directed acyclic graph.
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During the search process, the closed set at each time
step stores not only the nodes that have been selected
to the desired trajectory but also the nodes that are cur-
rently unreachable for the ego vehicle. And the open set
stores the candidate nodes waiting to be examined.

The A* algorithm evaluates each point in the open
set by an estimated path cost function, which is defined
in equation (2)

Cost(st)= J(st)+H(st) ð2Þ

where J(st) is the accumulated cost to move from
the initial state to the state st and H(st) is a heuristic
function that estimates the cost to move from st to
destination. The A* algorithm introduces heuristic
information into the path cost function to provide the
expansion of vehicle states with direction, reducing the
total number of nodes to expand.

At each iteration, the node with the lowest cost of
the open set is selected to expand. Then, it is removed
from the open set and added to the closed set at the next
step. The reference trajectory is generated by repeating
selections until the destination point is selected. The
search space in this paper is the action space A rather
than the state space s, which reduces the search area a
lot. Then, as formulated in equation (1), the node is
expanded along the discretized yaw angle in action
space Θ, and the next position is determined depending
on the velocity calculated from the acceleration in
action space A. The detailed implementation of the A*
algorithm is described in Algorithm 1.

Trajectory smoothing

A smooth spatio-temporal trajectory leads to small
tracking errors and high riding comfort for autono-
mous vehicles.29 As stated in the previous section, the
improved A* algorithm efficiently finds the best trajec-
tory under some performance requirements. However,
both the state and the action space are highly discrete,
which makes the spatio-temporal trajectory not smooth
enough for the ego vehicle to follow. Therefore, MPC
based on the vehicle kinematic model is, thus, adopted
for further optimization to make sure its higher order
derivatives are continuous and accordant with the vehi-
cle kinematics. The challenge of the application in real
time is how to deal with dynamic constraints, as mov-
ing obstacles in mixed traffic flow generally bring non-
convex feasible driving areas for the ego vehicle. In this
paper, our previous research is introduced to recon-
struct the convex feasible sets to accelerate solving
the optimization problem. The details can be found in
Liu et al.30

Convex feasible set design

The whole feasible sets G for the ego vehicle are the
intersection of supersets Gi, which is formulated as

G : =
\N
i

Gi ð3Þ

where Gi is the feasible set depending on the constraint
of each surrounding vehicle. The augmented vehicle
state on the basis of the search results is denoted as the
reference state Xr. A convex feasible superset belongs
to the feasible set according to each constraint
F i(X

r) 2 Gi. Then, the whole convex feasible set for a
given reference state is calculated by

F (Xr) : =
\
i

F i(X
r) ð4Þ

where each convex feasible superset around the refer-
ence trajectory Xr can be constructed according to the
following rules inspired from the previous work:31

1. If Gi is convex

F i(X
r)=Gi ð5Þ

2. If the complement of Gi is convex, its signed dis-
tance function f for obstacles can be designed to
be convex

Algorithm 1. Improved A* algorithm for spatio-temporal
trajectory search

Input: A spatio-temporal DAG map
Output: The optimal spatio-temporal trajectory from

initial position to destination
1 Initialize the trajectory set with the initial point;
2 Initialize the open set with the initial point;
3 Construct the closedi set at different time steps according to

the dynamic obstacles
4 while the open set is not empty do
5 Estimate the Cost of each node in the open set with

equation (2);
6 Take the node current with the lowest Cost as the

vehicle states st;
7 Add the states st to the trajectory set;
8 if The selected node current is the destination then
9 The trajectory is found successfully;
10 else
11 Remove the current node from the open set;
12 Generate the neighboring nodes in the next map

layer with equation (1);
13 for each neighboring node do
14 if it is in the closedt + 1 then
15 ignore it
16 else
17 if is not in the open set then
18 Add it to the open set
19 end
20 end
21 end
22 end
23 t = t + 1;
24 end
25 return
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fi(X)ø fi(X
r)+Dfi(X

r)3(X� Xr) ð6Þ

Then the convex feasible superset is defined as

F i(X
r) :=fXjfi(X

r)+rfi(X
r)3(X�Xr)ø 0g ð7Þ

3. If neither Gi nor its complement RnGi is convex,
function fi is neither convex nor concave. An aux-
iliary function is adopted as

efi(X) : =fi(X)+
1

2
(X� Xr)THi(X� Xr) ð8Þ

where efi(X) is convex so that

efi(X)ø efi(X
r)+refi(X)3(X� Xr)

=fi(X
r)+rfi(X)3(X� Xr)

ð9Þ

Then the convex feasible superset is defined as

F i(X
r) :=

(
Xjfi(X

r)+rfi(X)3(X� Xr)ø
1

2

(X� Xr)THi(X� Xr)

) ð10Þ

As shown in Figure 4, all the constraints of dynamic
obstacles to reference trajectory can be reconstructed as
the above-mentioned three types of convex feasible sets,
which guarantees high efficiency in the following opti-
mization step.

Trajectory optimization method

The reference trajectory is optimized by MPC, and the
problem is formulated as

min
Un

XT
n=1

v13 Xn � Xr
n

�� ��2
Q
+v23 Unk k2R

s:t: X0 =X start ,XN =X target

Xn =Xn�1 +F(Xn�1,Un�1)3Dt

Umin4Un4Umax

f(Xn)ø 0, 8n=1, . . . ,N� 1

ð11Þ

where T denotes the prediction horizon, X start denotes
the initial position, X target denotes the destination, Xr

n

denotes the reference state of the spatio-temporal tra-
jectory, Un denotes the control input with limits of
(Umin ,Umax ), Q and R are the weighting matrices for
each component of states and control inputs, v1 and
v2 are the weights on two different objectives, F(�) is
the vehicle state-space model, and f(�) denotes the
state constraints for each state.

Expand the nonlinear function F(Xn,Un) as a Taylor
series around the reference point

F(Xn,Un) : =F(Xr
n,Un)+ JacF(Xn,Un)3(Xn � Xr

n)

ð12Þ

where JacF(�) is the Jacobian matrix of F(�). Then, the
state-space model is linearized as

Xn =Xn�1 +F(Xn�1,U)3Dt

¼D AnXn�1 +BnUn�1 +Cn

ð13Þ

where An, Bn, and Cn are the time-invariant matrices.
The problem-solving is time-consuming if the

dynamic constraints f are concave. With the convex
feasible set construction method introduced previously,
problem (11) is reformulated as

min
Un

XT
n=1

v13 Xn � Xr
n

�� ��2
Q
+v23 Unk k2R

s:t: X0 =X start ,XN =X target

Xn =Xn�1 +AnXn�1 +BnUn�1 +Cn

Umin4Un4Umax

Xn 2 F (Xr
n), 8n=1, . . . ,N� 1

ð14Þ

Simulation setup

Scenario

The proposed trajectory planning method is demon-
strated in different scenarios based on two-lane roads
with a lane width of 4m and a length of 100m. A
dotted line separates the two lanes, which allows vehi-
cles to cross. The ego vehicle is driving on the downside
lane while the other two vehicles are in different lanes,

Figure 4. Three types of convex feasible sets: (a) Gi is convex, (b) RnGi is convex, and (c) neither Gi nor RnGi is convex.
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respectively. The surrounding vehicle on the upside
land drives in the same or opposite direction depending
on specific situations. The map is homogeneously dis-
cretized by regular squares with a size of 0.2m3 0.2m,
leading to the facility of meshing and the efficiency of
computation. A* algorithm is applied to search the
constructed spatio-temporal map in the discrete action
space, where A= f�3:5, � 1:75, 0, 1:75, 3:5gm=s2 and
Θ= f�p=2, � p=4, 0,p=4,p=2g (see Figure 3).

Cost function in reference trajectory search

The cost function Cost(st) of the improved A* algo-
rithm includes mainly two parts: the accumulated cost
J(st) and the heuristic function H(st). In this paper, the
accumulated cost J(st, at) to move from the initial state
to the current state st consists of four indexes, namely,
efficiency E, safety S, comfort C, and reasonableness D

J(st)=wEE(st)+wSS(st)+wCC(st)+wDD(st)

ð15Þ

where wE,wS,wC, and wD are the corresponding
weights on the four indexes.

The efficiency E evaluates the search speed of the 3D
spatio-temporal map, which is defined as the displace-
ment in a step

E(st)= f(xt � xt+1)
2 + (yt � yt+1)

2g1=2 ð16Þ

The safety index S is designed as the change of artifi-
cial potential field (APF) value

S(st)=APFNodet � APFNodet�1 ð17Þ

where the higher the APF value, the safer the ego vehi-
cle.32 It is calculated depending on the distance that the

ego vehicle keeps from the obstacles and their speed dif-
ference, as defined in the following equation

APF=
c1

Dd
Dv+ c2

� c3

� �c4
Dd= yfront � yego

Dv= vy � vfronty

ð18Þ

where c1, c2, c3, and c4 are the parameters, Dd denotes
the difference in longitudinal distance between the ego
car and the front vehicle, and Dv denotes their differ-
ence in longitudinal velocity.

The comfort C is defined as the deviation of longitu-
dinal velocity from the desired value

C(st)= jvt � vdesiredj ð19Þ

The reasonableness D is defined as the deviation
from the center line of the road

D(st)= f(xt � xcenterline)
2 + (yt � ycenterline)

2g1=2 ð20Þ

The heuristic function H(st) estimates the distance
from the current point to the destination, such as the
Manhattan distance, the diagonal distance, and the
Euclidean distance. The search criterion focuses on the
cumulative direction to the target rather than the
motion direction at each step. In other words, the vehi-
cle is allowed to move in any direction. Therefore, the
heuristic function is defined as the Euclidean distance

H(st)= f(xt � xtarget)
2 + (yt � ytarget)

2g1=2 ð21Þ

Vehicle model in trajectory smoothing

As for the implementation of MPC, the time-invariant
matrices, An,Bn,Cn, are determined by the vehicle
model. A kinematic bicycle model is adopted in this
paper, which is formulated as

_x= v3 cosb+c

_y= v3 sinb+c

_c= v3
sinb

lf

v cosb= vf3 cos df

ð22Þ

where _x denotes the longitudinal velocity of the car in
the geometric center, _y denotes its lateral velocity, v
denotes its linear velocity, vf denotes the linear velocity
of the front wheel, b denotes the slip angle, c denotes
the yaw angle of the vehicle, df denotes the steering
angle of the front wheel, and l denotes the wheelbase.
The vehicle states X are defined as a collection of
(x, y,b,c, df, v)

T, and the control input U is defined as
the steering angle rate and the acceleration of the front
wheel ( _df, _vf).

Figure 5. Illustration of simulation scenarios: (a) different
driving direction with oncoming traffic and (b) same driving
direction with traffic.
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Results
The proposed method is demonstrated in four scenarios
where the ego vehicle overtakes a slow/fast oncoming
vehicle and yields to a cut-in vehicle/a walking pedes-
trian, respectively. Those simulations are executed in
MATLAB 2016a, on a laptop computer equipped with
an i7 2.2GHz core, an 8GB DDR3 memory, and a
Windows 10 operating system.

The first scenario is overtaking on slow oncoming
traffic as shown in Figure 6. The ego vehicle starts from
a fixed position (0m, 6m) at an initial speed of 15m/s
and ends at the destination (100m, 6m). The front vehi-
cle starts from (20m, 6m) at a constant speed of 5m/s.
The oncoming vehicle driving toward the opposite direc-
tion is in the adjacent lane at a constant speed of 10m/s
from the initial position (100m, 2m). The ego vehicle
considers not only the presence of the front vehicle but
also the prediction on the oncoming vehicle. Taking the
safety index as a priority, the ego vehicle speeds up to
the speed limit of 20m/s to overtake the front vehicle.
Then the ego vehicle returns to the downside lane as
soon as possible in avoidance of collision with the
oncoming vehicle. Other indexes become prior to the
safety one in the cost function when the self-vehicle
returns to the downside lane, resulting in the speed
reduction to 15m/s. The optimized trajectory turns to
be less aggressive. The front-wheel steering angle and
the velocity are more feasible for the controller.

The second scenario is overtaking on fast oncoming
traffic as shown in Figure 7. The ego vehicle starts from a
fixed position (0m, 6m) and ends at the destination

(100m, 6m). It drives at an initial speed of 15m/s with
a speed limit of 15m/s. The front vehicle starts from
(20m, 6m) at a constant speed of 5m/s. The oncom-
ing vehicle driving toward the opposite direction is in
the adjacent lane at a constant speed of 15m/s from
the initial position (45m, 2m). The search result
shows that the ego vehicle yields to the oncoming
vehicle and slows down to wait for it to pass by and
then speeds up to finish the overtaking maneuver. The
trajectory after optimization becomes smooth to fol-
low. The front-wheel steering angle and the velocity
are more feasible for the controller.

The third scenario is yielding to a cut-in vehicle as
shown in Figure 8. The ego vehicle starts from a fixed
position (0m, 6m) and ends at the destination (100m,
6m). It drives at an initial speed of 15m/s with a speed
limit of 20m/s. The front vehicle starts from (30m, 6m)
at a constant speed of 15m/s, keeping a large initial dis-
tance from the ego vehicle. The surrounding vehicle in
the neighboring lane takes a cut-in maneuver in front
of the ego vehicle. It starts from the initial position
(20m, 2m) at a constant speed of 10m/s. When facing
such a sudden cut-in, there will be considerable uncer-
tainty and danger if the ego vehicle speeds up to follow
the front vehicle or execute a lane change. Taking this
into account, the ego vehicle yields to the cut-in vehicle
and slows down to follow it until the end. To avoid an
emergency stop, the optimization method is applied to
smooth the reference trajectory. Note that the steering
angle for the front wheel remains at 0 rad because there
is no lateral displacement.

Figure 6. Simulation results for scenario I where the ego vehicle overtakes a slow oncoming vehicle: (a) planned spatio-temporal
trajectory, (b) planned speed profile, and (c) planned front-wheel steering angle.
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The last scenario is yielding courteously to a pedes-
trian as shown in Figure 9. The ego vehicle starts from
a fixed position (0m, 6m) and ends at the destination
(100m, 6m). It drives along the road at an initial speed

of 15m/s with a limit of 20m/s. A pedestrian is crossing
the road from an initial position (55m, 6m) at a speed
of 1m/s, which lasts for 1–7 s. In theory, the ego vehicle
could have taken a lane change to overtake the

Figure 8. Simulation results for scenario III where the ego vehicle yields to a sudden cut-in vehicle: (a) planned spatio-temporal
trajectory, (b) planned speed profile, and (c) planned front-wheel steering angle.

Figure 7. Simulation results for scenario II where the ego vehicle overtakes a fast oncoming vehicle: (a) planned spatio-temporal
trajectory, (b) planned speed profile, and (c) planned front-wheel steering angle.
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pedestrian, but it stops to wait for the pedestrian to
pass by and then continues driving toward the end.
This is because the safety index is assigned a huge
weight in the cost function. The optimization method is
applied to smooth the reference trajectory, leading to a
smooth speed reduction rather than an emergency stop.

Furthermore, the proposed planning method is also
evaluated in terms of computational cost. Three
other methods are introduced for comparison. The first
method, maximum interaction defensive policy (MIDP),
combines the sampling-based and optimization-based
methods. It generates the spatio-temporal trajectory by
connecting the current vehicle states and the next states
through the optimal speed profile. The optimal speed
profile is selected according to an optimization problem
among a set of speed profiles sampled by cubic polyno-
mials.33 Another method called sampling-based method
with iterative optimizations (SAIO) is based on sampling-
based methods with post-optimization, where the

trajectory is connected by speed profile sampled by quar-
tic polynomials and the optimization is iterative.34 The
last method called Graph-search-based method with
Dynamic Programming (GADP) is a combination of
graph-search-based and optimization-based methods. It
selects spatio-temporal trajectory on the state lattices
using the dynamic programming (DP) algorithms.21

Table 1 shows the total computation time consumed
by different planning methods. It can be seen from the
table that the proposed method only took 31ms on
average, which is only 59:05%, 18:87%, and 0:69% of
that consumed by MIDP, SAIO, and GADP,
respectively.

Conclusion

This paper proposed a hybrid framework for fast and
smooth spatio-temporal trajectory planning for auton-
omous vehicles in constrained dynamic environment.

Figure 9. Simulation results for scenario IV where the ego vehicle yields to a pedestrian: (a) planned spatio-temporal trajectory,
(b) planned speed profile, and (c) planned front-wheel steering angle.

Table 1. Comparison of planning time.

Scenario Time (ms)

Our method Chen et al.34 Xu et al.35 Ziegler and Stiller22

Aggressive overtaking 28 51 160 4519
Courtesy yielding 31 52 165 4524
Emergency cut-in 30 52 162 4520
Courtesy stop 35 55 170 4527
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First, a spatio-temporal driving map is constructed
using DAG, which can illustrate both search space and
future positions of dynamic obstacles. Based on the
driving map, a spatio-temporal trajectory is efficiently
searched through action space with the help of the
improved A* algorithm. Then, taking the search result
as the reference trajectory, convex feasible driving area
for autonomous vehicles considering surrounding vehi-
cles is designed and MPC is applied for model feasibil-
ity. The proposed framework takes a comprehensive
consideration of key advantages of both graph-search-
based and optimization-based trajectory planning
methods while reducing their limitations. Simulation
results show that it only takes about 31ms on average
for planning, while the planned trajectory, velocity,
and steering angle curves are reasonable and continu-
ous. Specifically, there is neither an emergency stop nor
an abrupt steering change in all simulated scenarios.
Compared to the state-of-the-art methods, the pro-
posed method has the following advantages: (1) be able
to generate spatio-temporal trajectory rather than just
geometrical path, (2) be able to generate trajectory
which is kinematically smooth to follow, and (3) enjoy
a much higher efficiency while guaranteeing optimum.

This study provides a promising approach for fast
and smooth trajectory planning for autonomous vehi-
cles in constrained dynamic environment. The prelimi-
nary research opens various perspectives for future
research: (1) to enhance the proposed method in order
to deal with multiple stochastic moving obstacles, (2)
to consider the interaction between the ego vehicle and
the surrounding vehicles, and (3) to generalize the pro-
posed method in different driving scenarios, for exam-
ple, intersections and unstructured roads.
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