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Abstract— Motion planning under uncertainty is of signifi-
cant importance for safety-critical systems such as autonomous
vehicles. Such systems have to satisfy necessary constraints (e.g.,
collision avoidance) with potential uncertainties coming from ei-
ther disturbed system dynamics or noisy sensor measurements.
However, existing motion planning methods cannot efficiently
find the robust optimal solutions under general nonlinear and
non-convex settings. In this paper, we formulate such problem
as chance-constrained Gaussian belief space planning and
propose the constrained iterative Linear Quadratic Gaussian
(CILQG) algorithm as a real-time solution. In this algorithm,
we iteratively calculate a Gaussian approximation of the belief
and transform the chance-constraints. We evaluate the effec-
tiveness of our method in simulations of autonomous driving
planning tasks with static and dynamic obstacles. Results show
that CILQG can handle uncertainties more appropriately and
has faster computation time than baseline methods.

I. INTRODUCTION

When a robot working in an environment tries to ac-
complish a task, it will inevitably suffer from uncertain-
ties arising in i) unmodeled or disturbed system dynamics
and ii) noisy sensor measurements. These two forms of
uncertainties are common in practical robotics tasks. For
example, when performing motion planning for autonomous
cars, uncertainties might be introduced due to inaccurate
vehicle dynamics models, localization errors, or uncertain
motions of surrounding objects. Therefore, considering both
dynamics and measurement uncertainties during planning is
of significant importance.

Such planning under uncertainty problem can be formally
described as a partially-observable Markov decision process
(POMDP) [1]. Solving POMDPs requires planning in belief
space (the set of possible states) instead of the state space,
which is called belief space planning. However, general
belief space planning is known to be extremely complex [2].
Typical solutions require discretized state and action spaces
and are subject to the “curse of dimensionality”, resulting
in intractable computation time. Instead of discretizing the
space, Gaussian belief space planning parameterizes the
beliefs as Gaussian distributions [3], [4]. This body of work
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is promising for real-time continuous belief space planning
with a running time that is polynomial in the dimension.

Moreover, in many application domains, optimizing the
utility alone as in typical belief space planning methods is
not enough. There are often some constraints the robot must
not violate. For example, an autonomous car needs to avoid
collisions with surrounding objects and constrain its control
inputs within the engine limits. In belief space planning,
we need to consider limiting the probability of violating
constraints, which is called chance-constraint [5]. There are
only a few works considering chance constraints in belief
space planning [6], [7], and they are planning in discretized
space, resulting in sub-optimal plans and suffering from
intractable computation time as dimension increases.

In this paper, we propose the constrained iterative LQG
(CILQG) algorithm. It performs real-time Gaussian belief
space planning with a general nonlinear system dynamics
and measurement model while considering a general form
of nonlinear and non-convex chance constraint. To solve the
problem in real time, CILQG iteratively calculates Gaussian
approximations of the beliefs and transforms the chance-
constraints to standard linear constraints. We apply CILQG
to autonomous driving trajectory planning problems with
static and dynamic surrounding objects under dynamics and
measurement uncertainties. The simulation results verify the
performance and computation efficiency of the proposed
method.

The remainder of this paper is organized as follows. Sec-
tion II introduces related works of our work. Section III gives
the mathematical formulation of our targeted problem. Then
Section IV describes the details of our proposed method.
Section V shows the experiments we have conducted and
finally Section VI concludes the paper.

II. RELATED WORKS

A. Gaussian Belief Space Planning

Instead of directly considering the original POMDP prob-
lem, which is in general intractable, Gaussian belief space
planning finds local optimal solutions efficiently with Gaus-
sian belief approximations and has thus become a popular
trend among methods to solve POMDP. Platt et al. [8]
augmented the state with variance and used the LQG frame-
work to find a locally-optimal control policy by assuming
maximum-likelihood observations. Van den Berg et al. [3],
[4] approximated the belief dynamics using an extended
Kalman filter (EKF), and then used a variant of differential
dynamic programming (DDP) [9] to plan in the belief space.
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Patil et al. [10] proposed a method to compute locally opti-
mal plans without considering the covariance, which resulted
in decreased problem dimension. Rafieisakhaei et al. [11]
further reduced the problem dimension by restricting the
policy class to linear feedback policies. Although showing
impressive results for belief space planning problems, the
above approaches did not formally address the constraint
issue.

B. Chance-Constrained Planning

When planning under uncertainty, chance-constraint pro-
vides a formal way to account for constraints in stochastic
settings. Vitus et al. [12] considered chance-constraints in be-
lief space planning, but only under the linear quadratic case.
The authors in [13] used chance constraints to formulate the
problem as a non-convex optimization problem to solve the
planning problem. Okamoto et al. [14] formulated a convex
optimization problem by transforming chance constraints
into deterministic convex constraints. [7], [15] formulated a
chance-constrained POMDP problem and designed a heuris-
tic forward search algorithm to find a solution, but it only
works for discrete state and action space.

C. Indirect Trajectory Optimization

Another research area that is closely related to our work
is the indirect trajectory optimization method. Although this
branch of methods mainly focuses on deterministic planning
problems, there are similarities between their algorithm de-
sign and ours. DDP [16] [9] and iterative linear-quadratic
regulator (ILQR) [17] [18] are the most typical algorithms
for indirect trajectory optimization. They can solve the
unconstrained nonlinear trajectory optimization problems
efficiently by taking advantage of dynamic programming.
On this basis, researchers have proposed methods to han-
dle constraints for indirect trajectory optimization. Control-
limited DDP [19] considers control constraints, but it cannot
solve problems with state constraints. Extended LQR [20]
[21] transforms constraints into the cost function, but cannot
ensure hard constraints. [22] uses Augmented Lagrangian
based optimization to solve the constrained nonlinear op-
timization problems. Constrained iterative LQR [23] [24]
handles state and control input constraints using barrier
function to transform constraints in a way similar to interior-
point method. Therefore, CILQR can be applied to general
nonlinear systems with nonlinear constraints.

III. PROBLEM FORMULATION

We now define the problem we will discuss in this paper.
Let X ⊂ Rn be the space of all possible states x of the
agent, U ⊂ Rm be the space of of all executable control
commands u of the agent, and Y ⊂ Rr be the space of all
possible sensor measurements y of the agent. We consider
a generic form of nonlinear stochastic system dynamics and
measurement model:

xk+1 = f (xk, uk, wk) , wk ∼ N (0,Σw)

yk+1 = h (xk+1, vk+1) , vk+1 ∼ N (0,Σv)
(1)

where xk, uk, and yk are the state, control input, and sensor
measurement of the agent at time step k. wk represents the
system noise and vk represent the measurement noise, both
are assumed Gaussian distributions with zero mean. Σw and
Σv represent their variance. Note that although the noise
terms here are Gaussian, the distribution of xk+1 and yk+1

can be non-Gaussian since wk and vk will go through the
nonlinear transformations f and h.

To plan under uncertainty, we formulate the problem as
a POMDP or belief space planning problem, where the
belief of the agent is defined as the distribution of the state
conditioned on historical measurements and control inputs:

bk = Pr (xk| y1:k, u0:k−1) (2)

Here we assume the belief is represented by a Gaussian
distribution in this paper, which is described by the mean
and variance of the state bk = (µk,Σk). Our goal is to find a
control policy uk = πk (bk) that minimizes the cost function:

min
u0:N−1

E

[
lN (bN ) +

N−1∑
k=0

lk(bk, uk)

]
(3)

where lk(bk, uk) is a general nonlinear stage cost function
at time step k and lN (bN ) is a general nonlinear terminal
cost function.

In addition to minimizing the cost, we also consider the
chance-constraints on the states and control inputs:

Pr(gkx(xk) ≤ 0) ≥ p, Pr(gku(uk) ≤ 0) ≥ p (4)

where gkx(xk) ≤ 0 and gku(uk) ≤ 0 represents the nonlinear
state and control input constraints at time step k, and p is
the chance-constraint threshold, which should be greater than
0.5. As a summary, the targeting problem for our paper is
formulated as the following:

min
u0:N−1

E

[
lN (bN ) +

N−1∑
k=0

lk(bk, uk)

]
(5a)

xk+1 = f (xk, uk, wk) , wk ∼ N (0,Σw) (5b)
yk+1 = h (xk+1, vk+1) , vk+1 ∼ N (0,Σv) (5c)

Pr(gkx(xk) ≤ 0) ≥ p (5d)

Pr(gku(uk) ≤ 0) ≥ p (5e)
b0 = (µ0,Σ0) (5f)

where µ0 = x0 is initial mean state, Σ0 is initial state
covariance and (5f) represents initial belief of the problem.

IV. CONSTRAINED ITERATIVE LQG

To solve the chance-constrained Gaussian belief space
planning problem formulated in Section III in real time, we
propose the constrained iterative LQG (CILQG) algorithm.
CILQG first linearizes the nonlinear stochastic system. Then
based on the linearized system, it propagates the belief using
a modified Kalman filter. After that, it transforms the chance-
constraint into a linear inequality constraint. The algorithm
then iterates in an outer-inner loop form similar to [24]. We
describe details of the algorithm in this section.
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A. System Linearization and Belief Dynamics

To make the algorithm tractable, we first need to linearize
the nonlinear stochastic system dynamics as well as the
nonlinear measurement model (5b) (5c). Both dynamics
and measurement model are linearized around a nominal
trajectory x̄, ȳ, w̄ = 0, v̄ = 0:

xk+1 ≈ x̄k+1 +Ak (xk − x̄k) +Bk (uk − ūk) +Wkwk

yk+1 ≈ h (x̄k+1, 0) +Hk+1 (xk+1 − x̄k+1) + Vk+1vk+1

(6)
where

Ak =
∂f (x̄k, ūk, 0)

∂x
, Bk =

∂f (x̄k, ūk, 0)

∂u
,

Wk =
∂f (x̄k, ūk, 0)

∂w
,

Hk+1 =
∂h (x̄k+1, 0)

∂x
, Vk+1 =

∂h (x̄k+1, 0)

∂v

(7)

The model is linearized around the nominal trajectory
{x̄k, ūk} and zero means of the noises wk and vk. With this
linearized model, we can apply Kalman filter to obtain the
belief dynamics. Specifically, we can write the prior update
as:

x̂pk+1 = x̄k+1 +Ak (x̂mk − x̄k) +Bk (uk − ūk)

Σ̂pk+1 = AkΣ̂mk A
>
k +WkΣwW

>
k

(8)

where
(
x̂mk , Σ̂

m
k

)
represents the posterior estimation, and(

x̂pk+1, Σ̂
p
k+1

)
represents the prior estimation of the Gaus-

sian belief. The measurement update can be written as:

Kk+1 = Σ̂pk+1H
>
k+1

(
Hk+1Σ̂pk+1H

>
k+1 + Vk+1Σ̂mk V

>
k+1

)−1
x̂mk+1 = x̂pk+1 +Kk+1 (yk+1−(

h (x̄k+1, 0) +Hk+1

(
x̂pk+1 − x̄k+1

)))
Σ̂mk+1 = (I −Kk+1Hk+1) Σ̂pk+1

(9)
where Kk+1 is the Kalman filter gain. Since we do not know
the value of future measurement yk+1 at time step k, we treat
it as the output of the measurement function and approximate
it with its expectation:

yk+1 ≈ E [h (x̄k+1, 0) +Hk+1 (xk+1 − x̄k+1) + Vk+1vk+1]

= h (x̄k+1, 0) +Hk+1

(
x̂pk+1 − x̄k+1

)
(10)

Substitute (10) into (9) we have x̂mk+1 = x̂pk+1. Therefore,

given the initial belief
(
x̂m0 , Σ̂

m
0

)
= (µ0,Σ0) we can

propagate the mean of the belief with the system dynamics:

x̂mk+1 = x̄k+1 +Ak (x̂mk − x̄k) +Bk (uk − ūk) (11)

and propagate the variance of the belief following (8) and
(9). Note that the variance update process is dependent
only on the system coefficients but not on the states or
actions. The variance propagation algorithm is summarized
in Algorithm 1.

Algorithm 1: Variance Propagation
input : Nominal trajectory (x̄, ū); Initial belief(

x̂m0 , Σ̂
m
0

)
output: Variance sequence Σ̂m

for k = 0 to N − 1 do
Linearize the system to obtain Ak, Bk, Wk,
Hk+1 and Vk+1 following (6) and (7);

Obtain the prior estimation of variance Σ̂pk+1

using (8);
Obtain the posterior estimation of variance Σ̂mk+1

using (9);
Σ̂m ← append

(
Σ̂mk+1

)
end
return Σ̂m

B. Handling Chance-Constraints

In general, directly considering the original formulation
of chance-constraints (5d) (5e) are extremely challenging. In
this section, we describe how to transform complex chance-
constraints into simple deterministic constraints. We will
only discuss the state chance-constraint (5d) here without
loss of generality, as the control input chance-constraint (5e)
follows the same procedure.

By linearizing the constraint function gkx (xk) ≤ 0 around
the nominal state x̄k we get:

Gkxxk +mk
x ≤ 0 (12)

where

Gkx =
∂gkx (x̄k)

∂x
, mk

x = x̄k −Gkxx̄k (13)

We further decompose xk into a deterministic component
zk ∈ Rn and a stochastic component ek ∈ Rn as the
following:

xk = zk + ek (14)

where ek ∼ N
(

0, Σ̂mk

)
is a zero mean Gaussian. We then

get a simplified chance-constraint:

Pr
(
Gkxzk +Gkxek +mk

x ≤ 0
)
≥ p (15)

This is equal to the following constraints [25] [26]:

Gkxzk ≤ −mk
x − γkx (16a)

Pr
(
Gkxek ≤ γkx

)
= p (16b)

Since Gkxek ∼ N
(

0, GkxΣ̂mk
(
Gkx
)T)

, we can calculate
the value of γkx analytically:

γkx =

√
2GkxΣ̂mk (Gkx)

T
erf−1(2p− 1) (17)

where erf−1 (·) is the inverse error function. Therefore,
the original chance-constraint is transformed to a linear
constraint (16a) with γkx calculated by (17). The chance-
constraint transformation algorithm is summarized in Algo-
rithm 2.

Let’s now take a look at how we define the constraint
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Algorithm 2: Chance-Constraint
input : Nominal state x̄k;

State variance Σ̂mk
output: Transformed linear constraint function

coefficients Gkx, mk
x, γkx

Linearize the constraint function following (12) (13)
and obtain the coefficients Gkx, mk

x;
Calculate the coefficient γkx according to (17);
return Gkx, mk

x, γkx

Fig. 1: Illustration of convex feasible set calculation

functions gkx and gku. For control input constraint, we define
a box constraint u ≤ uk ≤ u where u is the lower
bound and u is the upper bound of the control input. For
state constraint, we focus on collision avoidance constraints,
which are defined in the following two ways:

1) Constraints considering obstacles’ shapes
Now define Γi = {x : φi (x) ≥ 0} to be the space outside

of the ith obstacle, where φi is the signed distance function to
the boundary of ith obstacle. Since in general Γ can be highly
non-convex, to make the downstream optimization problem
tractable we instead calculate a convex feasible set [27], [28]
of Γi:

Fi (x̄k) =

{
x : φi (x̄k) +

∂φi (x̄k)

∂x
(x− x̄k) ≥ 0

}
(18)

where x̄k is the agent’s nominal state. When the obstacle’s
shape is a convex polygon (e.g, a rectangle), we can have a
rather intuitive explanation of the convex feasible set. Fig.1
shows an example of convex feasible set calculation for on-
road autonomous driving. The blue rectangle represents the
ego vehicle and the red rectangle represents a surrounding
obstacle. The green region is the corresponding convex feasi-
ble set, which is a half space with its boundary perpendicular
to the closest connecting line from the center of ego vehicle
to the obstacle polygon.

In this paper we will only consider the cases where the
obstacles have convex polygon shapes. Therefore Fi (x̄k) is
always a half space. When there are multiple obstacles, we
calculate the intersection of all convex feasible sets F =⋂
i Fi, which is a combination of a group of linear (half

space) constraints and is still convex. It is shown in [27] that
F is non-empty if the obstacles are disjoint.

2) Constraints considering obstacles’ uncertainties
There are always uncertainties arising from detection,

localization, and prediction for surrounding obstacles, es-

Fig. 2: Considering obstacle’s uncertainty

pecially for moving ones. It’s better if we can consider
uncertainties with not only the ego agent’s motion but also
the obstacles’, as shown in Fig.2. Let xobs

k represents the
estimated state of the obstacle, which is stochastic and can
be decoupled the same way as done in (14):

xobs
k = zobs

k + eobs
k (19)

where eobs
k is a zero mean Gaussian random variance with

variance Σobs
k , and zobs

k is the mean state, which is considered
fixed during the planning process. The constraint function is
then written as:

η −
∥∥xk − xobs

k

∥∥ ≤ 0 (20)

where η is a safety margin. Note that now the variance of ek
in (14) should be Σ̂mk + Σobs

k , since we need to consider the
obstacle’s uncertainty together with the agent’s uncertainty.

C. Constrained Iterative LQG Algorithm

We have introduced how to calculate the belief dynamics
and how to handle the chance constraints. Let’s take a look
at our proposed Constrained Iterative LQG algorithm, which
is summarized in Algorithm 3. The algorithm is designed in
an outer-inner loop framework. The outer-loop calculates the
estimated state variance and transforms the chance constraint,
which is then augmented to the cost function. Then the
inner-loop performs iterative LQR to update the control
input sequence as well as the trajectory. Details of the
cost augmentation procedure and the applied iterative LQR
algorithm can be found in [24], here we briefly introduce the
ILQR backward pass used in our algorithm.

According to equation (6), we can obtain Ak and Bk
by linearizing the system dynamics around the nominal
trajectory (x̄, ū). Now quadratize the cost function:

l (xk, uk) ≈ x̃>k lkx + ũ>k l
k
u +

1

2
x̃>k l

k
xxx̃k +

1

2
ũ>k l

k
uuũk

+ũ>k l
k
uxx̃k + l (x̄k, ūk)

(21)

where x̃k = xk−x̄k and ũk = uk−ūk and subscripts denote
the Jacobians and Hessians of the cost function. Note that
our cost design omits the variance part during our imple-
mentation because our estimated variance of the state does
not depend on the control inputs as shown in Section IV-A.
Thus the variance does not enter the optimization procedure.
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Then recursively estimates the Q-function from backward:

Qkxx = lkxx +A>k V
k+1
xx Ak Qkx = lkx +A>k V

k+1
x

Qkux = lkuu +B>k V
k+1
xx Ak Qku = lku +B>k V

k+1
x

Qkuu = lkuu +B>k V
k+1
xx Bk + ρI

(22)

as well as the value function and linear policy terms:

V kx = Qkx −Q>ux
(
Qkuu

)−1
Qku

V kxx = Qkxx −Q>ux
(
Qkuu

)−1
Qkux

(
Qkuu

)−1
Qku

(23)

Then the optimal control input is given by:

u∗k = ūk −
(
Qkuu

)−1 (
Qku +Qkux (xk − x̄k)

)
(24)

Note that, we add regularization term ρ in the equation (22)
to guarantee Qkuu is invertible.

Algorithm 3: CILQG Algorithm
input : Feasible initial control sequence ū;

t := t(0) > 0, µ > 1, 1 ≥ α ≥ 0;
Initial belief

(
x̂m0 , Σ̂

m
0

)
;

Chance-constraint threshold p
output: Optimal control sequence ū∗ and

corresponding belief trajectory
(
x̂m, Σ̂m

)
x̄← Forward simulation with system dynamics (5b)
under zero noises using ū;

while not converge do /* Outer Loop */
Σ̂m ←
VariancePropagation

(
x̄, ū, x̂m0 , Σ̂

m
0

)
for k = 0 to N − 1 do

Gkx,m
k
x, γ

k
x ←

StateChanceConstraint
(
x̄k, Σ̂

m
k

)
;

Gku,m
k
u, γ

k
u ←

ControlChanceConstraint(ūk,Σu);
lk (bk, uk)←
lk (bk, uk)− 1

t log (−Gkxxk −mk
x − γkx)−

1
t log (−Gkuuk −mk

u − γku);
end
while not converge do /* Inner Loop */

Compute control sequence u∗ by performing
an ILQR backward pass described in
Section IV-C;

while cost increased or constraints violated
do /* Line Search */

ū := αu∗;
x̄← Forward simulation with system

dynamics (5b) under zero noises using ū;
end

end
ū∗ := ū;
x̂m := x̄;
t := µt;

end
return ū∗, x̂m, Σ̂m

Fig. 3: The vehicle bicycle kinematic model

V. EXPERIMENTS

We evaluate the performance of the proposed method on
simulations of autonomous driving motion planning tasks
in the presence of both static and dynamic obstacles. Fur-
thermore, we compare our method with the following three
related approaches:
• CILQR: Constrained iterative LQR [24] is a determin-

istic motion planning algorithm for autonomous driving,
which does not consider the measurement model and the
system noise.

• Gaussian Belief Space Planning(GBSP): This is a
soft-constraint version of our method, which shares
the same problem formulation and similar methodol-
ogy with existing Gaussian belief space planning ap-
proaches [3], [4].

• Open CILQG: This is an open-loop version of our
method, which does not consider the measurement
model and thus does not use filtering techniques to make
a closed-loop estimation of the belief. The problem for-
mulation is similar to [14] but for nonlinear dynamics.

The vehicle model we use throughout the experiments is
the bicycle kinematics model, which is shown in Fig. 3. The
vehicle state vector xk at the current time step k includes
the 2D position (pxk, p

y
k), the velocity vk and the heading

θk. The control input vector uk includes the acceleration ak
and the steering angle δk. L is the wheel base. Since for
digital control systems the control input will maintain the
same in a sampling time Tr, the vehicle will rotate around
the instant center O with rotation radius r. The distance the
vehicle moves in one sampling time is d = vkTr+ 1

2aT
2
r and

the curvature is κ = tan δ
L . We assume there are noises wa

and wk inserted to the acceleration and curvature. Therefore,
the vehicle system dynamics can be written as:

vk+1 = vk + (a+ wa)Tr

θk+1 = θk +
∫ d
0

(κ+ wk) ds

pxk+1 = pxk +
∫ d
0

cos (θk + (κ+ wk) s) ds

pyk+1 = pyk +
∫ d
0

sin (θk + (κ+ wk) s) ds

(25)

The measurement model is set as the true state plus a noise
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proportional to the velocity (The velocity is assumed always
positive):

yk = xk + vkmk, vk+1 ∼ N (0,Σv) (26)

This form of measurement model is based on the assumption
that the sensor measurement becomes inaccurate as the speed
increases. In this simulation, we use the following cost
function (5a):

lk (bk, uk) = (bk − xk,ref )>Q(bk − xk,ref ) + u>k Ruk

lN (bN ) = (bN − xN,ref )>Qf (bN − xN,ref )
(27)

where xk,ref is a reference trajectory generated by a higher-
level global trajectory planner. The Matrix Q,Qf and R
are coefficients determining the shape of the cost. Note that
although we use this specific quadratic cost function in our
experiments, it is also possible to give general nonlinear costs
in other settings. The ILQR step illustrated in Section IV-C
will handle the nonlinearity by quadratize the cost function.

We set the chance-constraint threshold p as 0.98 and
the prediction horizon as N = 50 for all experiments.
In addition, we use Tr = 0.2 as sampling time in this
simulation. The simulation is implemented in C++ on a
desktop PC with 3.10GHz Intel Core i9-9900 CPU. Details
of the experiment results are introduced in the following
subsections.

A. Static Obstacle Avoidance

We first test our method in two scenarios with static
obstacles. In this case, we use the constraints considering
obstacles’ shapes as described in Section IV-B.1.

First, our vehicle is required to pass through the interval
between two static obstacles safely and efficiently. Fig.4
shows the simulation results. The top two sub-figures show
the planning results of CILQG, GBSP, and CILQR, repre-
sented by different colors. The ellipse represents the confi-
dence region with probability p = 0.98, which is equal to the
chance-constraint threshold. Intuitively, the confidence re-
gion indicates where the vehicle is probable to be positioned.
The dark red rectangles represent the static obstacles, and the
light red regions indicate the safety margins. We can see that
the result of CILQG keeps its confidence region collision-
free with the obstacles, while other methods fail. The third
sub-figure shows the speed profile of the three methods. We
can find that CILQG decelerates before passing through the
obstacles to decrease the uncertainty and then accelerates
to keep its driving efficiency. The bottom sub-figure shows
the left-hand side of the constraint function (12), which
should ideally be non-positive to keep the state chance-
constraints satisfied. We can see that only our proposed
CILQG succeeds.

We further compare our method with Open CILQG in this
case, as shown in Fig.5. Samely, the first sub-figure shows
the confidence ellipse of the planning results. We can see that
CILQG can pass through the obstacles appropriately. On the
other hand, although the Open CILQG result is collision-free,
it is too conservative and cannot pass through the obstacles.
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Fig. 4: CILQG with two static obstacles

This is because there is no closed-loop adjustment of the
estimation of system uncertainty, and therefore it increases
rapidly. From the speed profile, we can see the CILQG first
decrease its velocity to pass through the obstacles safely and
then accelerates to reach the reference speed. However, the
Open CILQG just conservatively stops before the obstacles.
Nonetheless, both methods satisfy state chance-constraints
according to the bottom sub-figure.

Second, the autonomous vehicle is required to track a
curved reference trajectory while avoiding a static obstacle.
The result is shown in Fig.6. The first two sub-figures
show the confidence ellipse of the planning results, where
only the CILQG result is collision-free. The third sub-figure
shows the value of control input (curvature) applied on the
vehicle. We can see that although all methods can track the
curved reference, they apply significantly different values
of control inputs. Only the CILQG result can satisfy the
control input constraint, while others violate. The bottom
sub-figure indicates that CILQG successfully handles state
chance-constraint while other methods fail. Note that the
red dashed line represents the constraint threshold on the
curvature.

B. Dynamic Obstacle Avoidance

Next, we test our method in an environment with a
dynamic obstacle running around. In this case, we use the
constraints considering obstacle’s uncertainty as described in
Section IV-B.2. We assume a given stochastic trajectory of
the obstacle with its mean and variance already specified.
It can be obtained from an upstream motion prediction
module of the autonomous driving system in practice. Fig.7
shows the results, where the dynamic obstacle starts from the

5806

Authorized licensed use limited to: Tsinghua University. Downloaded on August 05,2022 at 02:42:47 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60
x[m]

− 20

− 10

0

10

20

y
[m

]

Reference CILQG Open CILQG

0 10 20 30 40 50 60 70
x[m]

0

2

4

6

8

v
[m

/s
]

Reference CILQG Open CILQG

0 10 20 30 40 50
x[m]

− 30

− 20

− 10

0

G
_
x
*
x
 -

 m
_
x

25 30
− 2.5

0.0

CILQG Open CILQG

Fig. 5: Closed-loop and Open-loop CILQG

position (0, 0) and steers to track the reference trajectory,
while the autonomous vehicle is required to overtake the
obstacle from the downside. The first two sub-figures show
the confidence ellipses of all methods, the third sub-figure
shows the speed profile, and the last sub-figure shows the
constraint violation. We can see that only our proposed
CILQG method can guarantee safety while maintaining the
efficiency of the trajectory.

C. Runtime Analysis

Finally, we evaluate the runtime of our proposed method
for each experiment. We execute the algorithm 50 times
and calculate the average time and its standard deviation.
Table I shows the summarized runtime. We can see that for
the experiments with static obstacles, the computation time
is strictly under 7ms. For the experiments with dynamic
obstacles, the computation time is around 30ms. This is
far enough for real-time autonomous driving as it usually
requires a sampling time of 100ms 200ms for motion plan-
ning. Furthermore, the calculation efficiency can be further
improved with better computation resources.

VI. CONCLUSIONS

In this paper, we formulated a motion planning problem
under uncertainties and stochastic constraints as a chance-
constrained Gaussian belief space planning problem. We
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Fig. 6: CILQG with one static obstacle

TABLE I: Runtime Analysis

Scenarios mean [ms] variance [ms]
Two static obstacles 5.56 0.93
One static obstacle 4.26 0.69
Dynamic obstacle 29 3.27

proposed the constrained iterative LQG (CILQG) algorithm
to solve this problem. The proposed algorithm can find
the optimal solution in real time by linearizing the system
model iteratively to approximate the belief dynamics and
transforming the original chance-constraints to standard lin-
ear constraints. Simulations for autonomous driving tasks
in environments with both static and dynamic obstacles
were conducted. Results indicated that CILQG is superior to
baseline methods and had real-time computation efficiency.
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