
Iterative Cross Learning on Noisy Labels

Bodi Yuan1, Jianyu Chen1, Weidong Zhang2, Hung-Shuo Tai2, and Sara McMains1

1UC Berkeley
2Big Data Division, JD.COM American Technologies Corporation

Abstract

To address the problem of incorrect labels in training
data for deep learning, we propose a novel and simple train-
ing strategy, Iterative Cross Learning (ICL), that signifi-
cantly improves the classification accuracy of neural net-
works with training data that has noisy labels. We randomly
partition the noisy training data into multiple separate sub-
sets, each of which is used to train an independent network.
After these independent networks predict labels for the orig-
inal data, if the labels agree, we update the label with the
predicted result for that data point, but otherwise we up-
date the label with a random label, a key to the success
of our proposed method. The process is repeated, possibly
with several stages, to gradually improve the performance.
Testing our method on MNIST and CIFAR-10 with partially
shuffled labels, ICL significantly improves the classification
accuracy of existing methods when the data labels have
noise, especially in heavy noise situations. Moreover, the
proposed method doesn’t require any change to the under-
lying neural networks’ structure or loss function, so it can
also easily be combined with other existing methods that
address noisy labels, improving their performance.

1. Introduction

Deep learning has revolutionized AI, including deliver-

ing the current state-of-the-art in visual object recognition

[11]. One of the keys to deep learning is well labeled data

[3, 16], with correct labels, without noise. However, in

many situations, it is hard to get a completely clean data

set, without extensive effort to manually clean up the data.

So in practice, data often has noisy labels, from being man-

ually mislabeled, or mislabeled by inaccurate but fast and

cheap automated algorithms, or even because some portion

of the data originally without labels is intentionally given
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random labels for supervised learning. Figure 1 shows an

example of data sets corrupted with noisy labels.

Therefore supervised learning algorithms dealing with

noisy labels are an active area of research. Sukhbaatar et

al. [23] proposed a modification to a convolutional neural

network that adds a noise layer to match the noise distribu-

tion and achieve the desired performance. Jindal et al. [5]

proposed augmenting a standard network with a linear noise

model layer at the end that learns the noise distribution, it

can be removed after it has helped train the standard net-

work to make accurate predictions in the presence of noise.

Modifying the loss function with bootstrapping [21] gives

more credence to predicted labels that are the same as the

original labels. Natarajan et al. [17] addressed mislabeled

data for the binary classification problem, using a simple

unbiased estimator and a weighted surrogate loss to reduce

the effect of noisy data. Xiao et al. [25] proposed a gen-

eral training framework that models the relationship among

images, labels, and noise with a probabilistic model, first

predicting the type of noise and then removing the noise.

An extra noise layer [1] is able to simultaneously learn both

the neural network parameters and the noise distribution by

assuming that the observed labels were created from the true

labels by passing through a noisy channel whose parameters

are unknown.

In semi-supervised learning, if a portion of the input

is well-labeled and the remainder is originally unlabeled,

noisy labels may come from assigning random labels to

the unlabeled data, as described above. Lee [12] pro-

posed a simple method to generate pseudo-labels for semi-

supervised learning. It picks the class that has the max-

imal predicted probability as the label for each unlabeled

data point and then trains networks in a supervised fash-

ion. Kingma et al. [7] proposed a deep generative model

to improve semi-supervised learning performance by gen-

erative approaches. By modifying the cost function, Ras-

mus et al. [20] proposed a ladder network that is trained

to simultaneously minimize the sum of supervised and un-

supervised cost functions by backpropagation. Co-training
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Figure 1: Examples of training data sets corrupted with noisy labels

[2, 18, 24, 13, 9, 14] for semi-supervised learning requires

different views of a dataset, in other words, different fea-

tures describing the data. It would be ideal for co-training to

have two conditionally independent feature sets describing

the same data. However, we don’t always have that ideal sit-

uation, since the two feature sets might not be conditionally

independent from each other and multiple feature sets may

not be available. Similar to co-training, ICL also makes

use of different features, but doesn’t require different fea-

ture sets. Our proposed method uses a convolutional neural

network that learns features [26] by itself rather than manu-

ally extracting features like in co-training. We feed our net-

works different datasets, instead of different features of the

same dataset, to make it possible for the different networks

to automatically learn some different features. Moreover,

co-training’s classifier will only gradually generate new la-

bels for data points; it never doubts the labels it has gen-

erated, potentially introducing a large bias into the dataset

when it outputs incorrect results. Furthermore it cannot cor-

rect the labels it has misclassified and cannot address incor-

rect labels. ICL uses multiple neural networks that learn

independently and cross predict labels. It doesn’t assume

any label is a correct label a priori and it repeatedly updates

all the labels in the whole dataset. Thus the features will

also be updated after each stage, so ICL tends to have less

bias than co-training because the networks are able to cor-

rect each other’s classifications.

Another hot topic in the deep learning area, generative

adversarial nets (GANs) [4, 15, 19, 22], also inspired ICL.

The key idea of GANs is to use two separate competitive

models, the generator and the discriminator. The competi-

tors compete with each other, gradually learning a better

model. In ICL, we also use two separate models, learner 1

and learner 2, but instead of competing, they learn from dif-

ferent content. Then they help each other verify their learn-

ing results and identify learning differences to enable more

accurate re-learning. Learner 1 and learner 2 in ICL are par-

allel relations, whereas the generator and the discriminator

in GAN are serial relations.

In this paper, we propose an effective and simple ap-

proach, Iterative Cross Learning, to train a neural network,

which can significantly reduce the effect of label noise,

maintaining the classifier’s performance close to the per-

formance trained with clean data. ICL is a general training

strategy. It doesn’t require changing the network structure

or the loss function, which makes it possible to combine

with and improve the performance of any type of neural

network, including those that also use other techniques that

address noisy labels.

2. Noisy Labels

For a k-classification problem, we will denote a training

data point (xl, yl), where yl is the correct label for xl, (yl ∈
1, 2, ..., k), where k is the total number of classes. How-

ever, in practice, some of the training data points might

accidentally be (xl, y
∗
l ), where the label y∗l also belongs

to 1, 2, ..., k but y∗l �= yl. For example, in the CIFAR-10

dataset, a dog image might be mistakenly labeled as “cat”

or “frog,” as shown in Fig. 1. We call y∗l a “noisy label.”

In practice, noise may also be in the form of non-labeled

data points. For the convenience of supervised learning, we

can give a random label 1, 2, ..., k to each such non-labeled

data point.

In this paper, we compare the performance of existing

CNN models trained with and without using ICL on noisy

labels. We use uniform noise for our experiments, be-

cause the repeatability of non-uniform noise experiments

is low. To denote the amount of noise, we use “noise

level” η for the fraction of labels “flipped.” For a given data
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point (xl, yl), there are two ways to flip its label. We can

pick a random label from 1, 2, ..., k for y∗l while ensuring

that yl �= y∗l , or we can just randomly pick a label from

1, 2, ..., k for y∗l , which means there is a 1/k chance that

yl = y∗l . We choose the latter for reporting our results to be

consistent with [5]. Using confusion matrix M to represent

the noise distribution, each element pij in M represents the

probability of a member of class i being labeled as class j.

So for a clean dataset, M will be an identity matrix. For the

uniform noise model with noise level η, pii = 1− η + η/k
and pij = η/k (i �= j).

Since ICL is based on the assumption that the neural net-

work can learn useful information even with noisy labels,

let us consider their effect. For a k-classification problem

with uniform noise level η, each class i will have expected

fraction (1− η+ η/k) correct labels, and expected fraction

(η−η/k) = (η/k)∗(k−1) labels incorrectly set, distributed

equally between labels 1, 2, ..., i−1, i+1, ..., k. Let us con-

sider the relationship between the noise in two classes i and

j (i �= j). There will be fraction 1 − η + η/k of class i
correctly labeled, with fraction η/k incorrectly labeled as

j. Symmetrically, class j has fraction 1 − η + η/k correct

labels and η/k incorrectly labeled as i. Between these two

classes, the proportion P of correct to incorrect labels is

P =
1− η + η/k

η/k
=

1− η

η/k
+ 1 .

If there is some noise but not 100% noise, in other words,

0 < η < 1, P will always be greater than 1, which suggests

that the correct information will dominate between any two

classes. So if we give the neural network unlimited time

to learn and there is not overfitting, the network should fi-

nally tend to learn some correct information. If η = 1,

then P = 1; all the labels are totally random, so the labels

do not give any useful information and the network should

learn nothing from the data. In other words, data with 100%
noise is no better than unlabeled data, a problem for unsu-

pervised learning, which is not the focus of this paper. We

report results with noise levels as high as η = 0.7.

3. Iterative Cross Learning (ICL)
Sometimes even if the labels are noisy, existing CNN

models can achieve an error rate lower than the noise level

(this is confirmed in our experimental results). Thus, we can

use the trained model to re-predict labels to make the labels

less noisy. Based on those new labels we predict, if we are

still able to train a model with an error rate lower than the

current labels’ noise level, then we can repeat this process

to make the data less and less noisy.

As summarized in Figure 2, the key idea of Iterative

Cross Learning is to train independent convolutional neural

networks from different data, enabling these independent

networks to clean up each other’s data for the next learning

stage. In this paper, for simplicity we will describe the algo-

rithm for just two independent networks. For a given dataset

S with noisy labels, we shuffle and partition the noisy data

into two separate training datasets S1 and S2 with the same

number of data points. Though these two datasets will tend

to have similar noise levels and similar noise distributions,

the data points in the two datasets will be different.

Figure 2: ICL flow diagram

Two convolutional networks C1 and C2 (which need not

have the same structure, though for the currently reported

results we use the same structure for convenience) will be

trained on datasets S1 and S2 independently (the inner train-

ing loops in Fig. 2). Even with the same initial data and the

same weight initialization, trained networks will not end up

with the same weights if the input order is shuffled. Since

the two networks will have different randomly initialized

weights and are trained on different data, the parameters

they learn will definitely be different from each other. The

classifier C1 might be a little better at classifying class i and

the classifier C2 might be a little better at classifying class

j. ICL exploits this difference (the outer training loop in

Fig. 2).

When we do the training with a noisy dataset, the perfor-

mance might decrease after some inner training loop epoch

because the network overfits noisy labels. So it is better to

monitor the performance during the training and to decide

which epoch’s model to be used based on the monitoring

performance. In some situations, besides the noisy training

dataset S, we may have a clean set Sm without noisy labels

that can be used to monitor training. For example, in prac-

tice, we may expend some human effort to manually clean

up a small portion of the data. Since the training labels can-

not be trusted, the “training accuracy” and “training loss”

calculated from these noisy labels won’t be particularly use-

ful. Therefore, during training, we use the monitoring set,

which is more trustworthy than the training set, to monitor

the performance of the two networks C1 and C2. For each
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network, the model with the best performance on monitor-

ing set Sm during the training process will be used as the

training result to predict labels.

Algorithm 1 Iterative Cross Learning with monitoring set

1: S ← training set with noisy labels

2: Sm ← monitoring set with clean labels

3: S1, S2 ← randomly partition S into two separated

datasets

4: initialize weights of CNNs C1 and C2

5: initialize Accuracies Accc1, Accc2, Acc and Acc′ to 0
6: repeat
7: initialize weights of CNNs C ′1 and C ′2
8: C ′1 ← C ′1 trained on S1 with monitoring on Sm

9: C ′2 ← C ′2 trained on S2 with monitoring on Sm

10: Accc1 ← C ′1’s accuracy on Sm

11: Accc2 ← C ′2’s accuracy on Sm

12: Acc′ ← max(Accc1, Accc2)

13: if Acc′ <= Acc then
14: return the more accurate of C1 and C2

15: end if
16: C1 ← C ′1
17: C2 ← C ′2
18: Acc← Acc′

19: LC1 ← labels predicted for S by C1

20: LC2
← labels predicted for S by C2

21: for data point x in S do
22: if x’s label l is the same in LC1

and LC2
then

23: set x’s label to l
24: else
25: set x’s label to a random label l ∈ {1, 2, ..., k}
26: end if
27: end for
28: until the max stage number // e.g. 10

29: return the more accurate of C1 and C2

However, clean data is not always available or easy to

obtain. If we don’t have any clean data, we can still use our

strategy without monitoring on a monitoring set. Training

will just be terminated at a given training epoch number.

Then we will use the trained model to predict labels for the

dataset. Compared to monitoring on clean data, this will

give slightly worse results, since we are not able to deter-

mine if a model from an earlier epoch might have been the

model with the best performance on the clean dataset. (Al-

gorithm 1 and Algorithm 2 provide the pseudo code for ICL

with and without a monitoring set, respectively.)

After training, we use the two networks independently

to predict labels for the original training dataset S. If the

labels predicted by the two networks are the same, we set

the data’s label to match the prediction. Otherwise, we up-

date the label with a random label. This technique will

make the noise from incorrect predictions more uniformly

random and less structured, which can give the trained net-

works less bias. The two networks learn from their different

input at first, but then they also learn from each other, veri-

fying each other’s learning results and pointing out learning

disagreements to re-learn; hence the name “cross learning.”

Algorithm 2 Iterative Cross Learning without monitoring

set

1: S ← training set with noisy labels

2: S1, S2 ← randomly partition S into two separated

datasets

3: repeat
4: initialize weights of CNNs C1 and C2

5: C1 ← C1 trained on S1 with max epoch

6: C2 ← C2 trained on S2 with max epoch

7: LC1
← labels predicted for S by C1

8: LC2
← labels predicted for S by C2

9: for data point x in S do
10: if x’s label l is the same in LC1 and LC2 then
11: set x’s label to l
12: else
13: set x’s label to a random label l ∈ {1, 2, ..., k}
14: end if
15: end for
16: until the max stage number // zero-indexed;

// we use 1 as max

17: return C1 or C2

With a clean monitoring set, we could repeat the whole

process until the change in monitoring accuracy between

successive stages falls below some user-defined threshold.

However, based on our experimental results, we found that

most improvements are made in the first several stages, even

when it took many more stages for ultimate convergence.

So in practice, we terminate the training process if the mon-

itoring accuracy does not increase after a new stage. (Such

a decrease in accuracy suggests that the noise level from the

two classifiers’ prediction is already close to the noise level

of the training data.) Without a clean monitoring set, we just

repeat the process with a given maximum number of stages.

Based on our experiments, depending on how challenging

the input is, without a monitoring set the actual error rate

may actually get worse again subsequent to the first round

of retraining. Therefore we just set the max stage number

to 1 (one round of retraining after updating the noisy labels

based on the round zero results). Every time we update a

data point with a random label, it brings random noise into

the system such that some labels that were previously incor-

rectly predicted may get a chance to flip and help the net-

works recover from errors caused by misleading labels. In

other words, this random flipping process enables networks

to rectify some previous incorrect predictions.

When we finish the entire training process, we need to
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choose one model from C1 and C2. If we have a clean

monitoring set Sm, we choose the one that has better per-

formance on Sm. Otherwise, we just randomly pick one as

the final model.

We found that it tends to be slightly better if we only par-

tition the data once for all the stages rather than randomly

re-partition in every stage. We speculate the reason could be

that some data points may be easier for learning from and

some may be harder. Thus the one-time random partition

may make the two datasets S1 and S2 have slightly different

difficulty for classification, which means one dataset could

make it easier to train a better classifier from that dataset.

Compared to this, repeating random partitioning will even-

tually on average have two classifiers learn from an average

difficulty dataset. So the training result might tend to be a

little bit worse than using one-time random partitioning.

Note: The best we can achieve is that we perfectly pre-

dict the labels for all the data points in the original training

dataset and the performance should be the same as train-

ing with clean data. However, in practice, we may not

perfectly predict labels, so performance training with noisy

data should always be worse than training with clean data.

4. Experiments and Results

We test our method on two popular datasets (MNIST and

CIFAR-10) using TensorFlow, with uniform noise added.

To be consistent with how noise level is measured in the

previous work to which we compare our results, we use

the same methodology and terminology as Jindal et al.

[5]. Since both of the two datasets have 10 different labels

0, 1, 2..., 9, for a given “noise level” η, we randomly choose

η portion of the data and set a random label from 0 to 9
for each. For each dataset, we do experiments with adding

30%, 50% and 70% “noise” to training labels, respectively.

(Note that because there are 10 possible labels, 10% of the

time the “noise” will just be the original, correct label.)

Using ICL, the original training labels will be updated

in each stage. The training data will become cleaner and

cleaner, which should decrease the error rate. So during

the ICL process, the gap between the prediction error and

noise level will become smaller and smaller. The improve-

ment after the first several stages will also be small. And

finally, after several stages, the error rate tends to be close

to the noise level and the monitoring accuracy stops increas-

ing. After the best performance stage, the accuracy starts to

fluctuate. ICL’s improvement after the first stage is always

the greatest.

For each dataset, we compare the performance of the

base CNN model, the true noise linear model in [23], and

the dropout regularization noise model using [5] to ICL,

both ICL combined with the base CNN model and ICL

combined with the dropout regularization noise model.

4.1. MNIST with clean data for monitoring

The MNIST dataset is a set of handwritten digit images

[10]. We use its 50,000 image training set, and randomly

divide the other 10,000 images into 5,000 images for mon-

itoring and 5,000 images for testing. Each image has a di-

mension of 28 × 28. We use a base CNN that has 2 conv-

layers with 32 feature maps of 5× 5 kernels and 64 feature

maps of 5 × 5 kernels respectively, and each conv-layer is

followed by ReLU activation and a 2×2 max-pooling layer.

Next a dense layer of 1024 hidden units is fully connected

with the second convolutional layer, followed by ReLU and

dropout rate of 0.5, and fully connected with the final output

layer of 10 units. We choose the Adam optimizer [6] and a

learning rate of 1.0× 10−4.

Fig. 3 and Table 1 show our experimental results. Using

ICL with the base CNN, the error rate decreases in the first

several stages. Stage 0 is the baseline performance with-

out using ICL. For 30% and 50% noise, the model achieves

the best performance at stage 2. For 70% noise, the model

achieves the best performance at stage 6. But in practice,

we would terminate ICL when we find the performance gets

worse at stage 4, returning the model from stage 3; its per-

formance is already quite close to the best performance of

stage 6. Combining ICL with the dropout regularization

noise model [5], the best performance is achieved at stage 2

for 30% and 50% noise, and at stage 5 for 70% noise.

(a) ICL + base CNN (b) ICL + dropout

Figure 3: ICL on MNIST with clean data for monitoring
(“X” marks the stage returned by the algorithm).

On the MNIST dataset, we find that the accuracy stops

increasing significantly after no more than five stages (Fig.

3). (For comparison, we plot the results for a full six stages.)

In practice, we stop as long as the accuracy stops increasing

after a new stage, and return the prior model, which had the

best performance.

We also visualize confusion matrices M after each train-

ing stage. We give one example in Fig. 4 of 70% noise

to show how the noise distribution changes over training.

Note: for clearer visualization, we omit all the diagonal

matrix elements (marked NA); otherwise normalizing the

confusion matrices will make the intensity of diagonal ele-

ments so strong that the other elements will all appear to be
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Figure 4: Confusion matrices (base CNN with ICL training on 70% noise in MNIST dataset with clean data monitoring)

equally dark.

From these visualization results we can see that the num-

ber of misclassified labels is less and less over training,

which is also consistent with the decreasing error rate in

the first several ICL training stages. In addition, we can

see that the elements of the confusion matrix after stage 0
have the most contrast with each other, which means that

labels predicted at that time also have the most structured

noise. As seen in the visualizations of later stages in Fig. 4,

our method continues to make improvements at these stages

even with structured noise.

“Noise level” 30% 50% 70%

Base CNN 2.17 3.2 5.75

True noise1 1.3 2.06 3.31

Dropout2 1.25 (1.2) 1.8 (1.92) 3.01 (3.12)

Base CNN + ICL3 1.66 2.12 2.54
Dropout + ICL3 1.07 1.32 1.78

Table 1: Error rates % for MNIST with clean data for mon-
itoring; “noise level” is the percent of labels randomly re-
assigned.

No matter which method it is combined with, ICL im-

proves performance (see Table 1). Combined with the

dropout regularization noise model, ICL achieves the best

performance. The higher the noise level, the higher relative

performance improvement we see with ICL.

4.2. MNIST without clean data

Sometimes clean data may not be available for monitor-

ing, so we also test our algorithm without clean data. We

used the same 50,000 images for training and 5,000 images

1Results using True Noise model as reported in Sukhbaatar et al. 2014

[23]. Since Jindal’s model [5] already beats the true noise model, we don’t

re-implement the true noise model to combine with ICL.
2Model proposed by Jindal et al. 2016 [5]. Values out of parentheses

are the results we measured using the methods in [5], and the values in

parentheses are the results they reported in their paper.
3The numbers in bold are results from our algorithm.

for testing. The max epoch number was set to 20. Results

are shown in Fig. 5 and Table 2.

(a) ICL + base CNN (b) ICL + dropout

Figure 5: ICL on MNIST without clean data (“X” marks the
stage returned by the algorithm; it is set to be 1 if we don’t
have clean data for monitoring).

Unlike ICL with clean data, we don’t have a monitoring

set for monitoring each stage, so we just perform one stage

of ICL (i.e. max stages set to 1). The performance is a little

bit worse than ICL with clean data for monitoring, which is

to be expected.

“Noise level” 30% 50% 70%

Base CNN 2.29 3.76 6.60

True noise1 1.3 2.06 3.31

Dropout2 1.29 (1.2) 2.12 (1.92) 3.96 (3.12)

Base CNN + ICL3 2.00 2.54 3.58
Dropout + ICL3 1.17 1.50 2.34

Table 2: Error rates % for MNIST without clean data;
“noise level” is the percent of labels randomly reassigned.

4.3. CIFAR-10 with clean data for monitoring

The CIFAR-10 dataset is a set of tiny color images of

dimension 32 × 32 × 3 [8]. We use its 50,000 training im-

ages, and randomly divided the other 10,000 images into

5,000 images for monitoring and 5,000 images for testing.
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Classical data augmentation techniques (random crop, ran-

dom flip, random brightness and random contrast) are used

for the training. We use a similar base CNN model as de-

scribed above, except that the size of the max-pooling layer

is 3× 3 and the number of hidden units is 200.

Fig. 6 and Table 3 show experimental results. Using ICL

alone on the base CNN, for a 30% noise level, ICL achieves

the best performance at stage 1. For a 50% noise levels, it

achieves the best performance at stage 3. And for a 70%
noise level, it achieves the best performance at stage 4. Us-

ing ICL with the dropout regularization noise model [5], for

30% and 50% noise level, it achieves the best performance

at stage 1. For 70% noise level, it achieves the best perfor-

mance at stage 2.

(a) ICL + base CNN (b) ICL + dropout

Figure 6: ICL on CIFAR-10 with clean data for monitoring
(“X” marks the stage returned by the algorithm).

“Noise level” 30% 50% 70%

Base CNN 25.1 29.9 37.1

True noise1 24.8 29.6 36.2

Dropout2 24.1 (24.4) 27.7 (32.6) 34.4 (33.0)

Base CNN + ICL3 24.9 27.6 32.0
Dropout + ICL3 23.9 26.0 30.0

Table 3: Error rates % for CIFAR-10 with clean data for
monitoring; “noise level” is the percent of labels randomly
reassigned.

Again, using ICL improved the performance of both the

base CNN and dropout regularization (see Table 3). How-

ever, unlike the results on MNIST, on CIFAR-10 the im-

provement at 30% noise is fairly small (the base CNN

achieves a 25.1% error rate and ICL improves it to 24.9%;

the dropout model achieves a 24.1% error rate and ICL im-

proves it to 23.9%). The original base CNN, when trained

on the uncorrupted 0% noise CIFAR-10 dataset, already

has a 18.5% error rate, which is much higher than the

corresponding 0.8% error rate on the uncorrupted MNIST

dataset. When we train the model with 30% noise, it has

around a 25% error rate, which is already very close to the

30% noise level. In this case, there is not much additional

useful information that ICL can use for improvement with

30% noise.

Moreover, after the first stage of ICL, in such circum-

stances performance may only deteriorate in subsequent

stages. Though we terminate the ICL process in practice if

we find the performance does not improve after a new stage,

for our experiments we ran ICL for four or more stages. We

found that the performance with 30% noise actually would

get worse and worse after the 1st stage on the CIFAR-10

dataset. If the error rate is close to the noise level, when

we update the labels, we actually will bring more and more

noise into the labels.

4.4. CIFAR-10 without clean data

We also tested our algorithm without clean data on the

CIFAR-10 dataset, using the same 50,000 images for train-

ing and 5,000 images for testing (Fig. 7 and Table 4). The

max epoch number was set to 100 and max stages to 1.

(a) ICL + base CNN (b) ICL + dropout

Figure 7: ICL on CIFAR-10 without clean data (“X” marks
the stage returned by the algorithm).

“Noise level” 30% 50% 70%

Base CNN 25.7 30.6 40.4

True noise1 24.8 29.6 36.2

Dropout2 24.6 (24.4) 28.6 (32.6) 35.3 (33.0)

Base CNN + ICL3 25.5 28.1 33.8
Dropout + ICL3 24.5 26.8 30.6

Table 4: Error rates % for CIFAR-10 without clean data;
“noise level” is the percent of labels randomly reassigned.

5. Discussion
Training on the uncorrupted MNIST training set, the

base model can achieve a 0.8% error rate. With 30% noise,

ICL reduces the dropout regularization noise model error

from 1.25% to 1.07%, substantially reducing the distance

from the ideal performance achievable when trained with-

out noise (0.8%). To compare ICL’s performance with dif-

ferent noise levels, the absolute improvement is not as in-

tuitive a measure as the improvement relative to the ideal

of training without noise. Therefore we also measure the
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relative performance improvement. Define Ia, the absolute

performance improvement, and I∗a , the ideal absolute per-

formance improvement, as

Ia = e− eICL, I
∗
a = e− e∗

where e is the model’s error rate trained under noisy data,

eICL is the model’s error rate with using ICL, and e∗ is

the model’s error rate trained under the original uncorrupted

data. Then we define Ir, the relative performance improve-

ment, as

Ir = Ia/I
∗
a .

With this notation, the ideal performance is eICL = e∗,
such that Ir = 100%.

“Noise level” 30% 50% 70%

MNIST with clean data, ICL improvement to:

Base CNN 37.2% 45.0% 64.8%

Dropout 40.0% 48.0% 55.7%

MNIST without clean data, ICL improvement to:

Base CNN 19.5% 41.2% 52.1%

Dropout 24.5% 47.0% 51.3%

CIFAR-10 with clean data, ICL improvement to:

Base CNN 3.0% 20.2% 27.4%

Dropout 3.6% 18.5% 27.7%

CIFAR-10 without clean data, ICL improvement to:

Base CNN 2.8% 20.1% 30.1%

Dropout 1.6% 17.8% 28.0%

Table 5: ICL relative improvement Ir

The relative improvement numbers (see Table 5) illus-

trate how ICL is particularly advantageous under higher

noise levels. Furthermore, looking at ICL’s relative im-

provement under the same noise level and the same dataset,

the relative improvements are very similar from combin-

ing ICL with these two different models, base CNN and

dropout regularization. This also suggests that no matter

which method it is combined with, ICL will hopefully im-

prove performance.

The underlying model still plays an important role. The

final performance with ICL highly depends on the underly-

ing model’s performance. The better performance the un-

derlying model can achieve, the better final result ICL can

achieve.

6. Limitations
ICL has a limitation that the underlying model, trained

on uncorrupted data without ICL, must have a classification

error rate lower than the noise level. If its error rate is higher

than the noise level, the data will almost certainly be noisier

after ICL’s random flipping of labels for inputs on which the

separate networks disagreed.

Another limitation of ICL is that it will take longer for

training than training just the underlying networks it is com-

bined with, since it needs to repeat the training for at least

one stage. However, when we modify the networks’ struc-

ture or tune the training hyper-parameters, we don’t need

to use ICL. We will only use ICL once the structure and

hyper-parameters have already been chosen and tuned us-

ing standard training. So even if ICL takes multiple stages

to train, it is only at the last step of training.

7. Conclusions
The experimental results show that our training strategy

is able to greatly improve training performance when data

labels are noisy.

Moreover, a great advantage of ICL is that it has virtu-

ally no parameters to choose, nor does it need to re-tune the

hyper-parameters of the underlying model it is combined

with. As long as the underlying model works well, ICL

can be used to further improve its performance under noisy

data. Furthermore, ICL could be combined with other exist-

ing or yet-to-be-invented models that address noisy labels,

improving those models’ performance without any cost ex-

cept the training time. ICL is simple and easy to implement.

Numerous variations of the basic ICL method are en-

visioned. ICL doesn’t rely on the structure of neural net-

works, so it can be used to train differently structured net-

works simultaneously, on different training subsets, rather

than the same network structures. This could lead to dif-

ferent networks learning distinct features of the data, which

might benefit the cross labeling process. In this paper, we

performed the experiments with convolutional neural net-

works as the underlying model because CNNs’ performance

is usually better than other approaches on image classifi-

cation tasks. However, ICL isn’t restricted to CNNs; it

could also be combined with other types of neural networks

and even other machine learning algorithms. Moreover, our

training strategy isn’t limited to partitioning datasets into

just two separate piece with two classifiers, though fewer

classifiers means that each classifier can access more train-

ing data and the label updating rules can be simpler. Differ-

ent numbers of partitions and different partitioning methods

are another rich area of exploration for the ICL approach.
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