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Abstract—Motion planning is a core technique for autonomous
driving. Nowadays, there still exists a lot of challenges in motion
planning for autonomous driving in complicated environments due
to: 1) the need of both spatial and temporal planning in highly
dynamic environments; 2) nonlinear vehicle dynamic models and
non-convex collision avoidance constraints; and 3) the need of high
computation efficiency for real-time implementation. Iterative lin-
ear quadratic regulator (ILQR) is an algorithm to solve the optimal
control problem with nonlinear system very efficiently. However,
it can not deal with constraints. In this paper, the constrained it-
erative LQR (CILQR) is proposed to efficiently solve the optimal
control problem with nonlinear system dynamics and general form
of constraints. An autonomous driving motion planning problem is
then formulated and solved using CILQR. Simulation case studies
show the capability of the CILQR algorithm to solve these kind of
problems and the computation efficiency of CILQR is shown to be
much higher than the standard SQP solver.

Index Terms—Autonomous driving, motion planning, con-
straints, iterative LQR.

I. INTRODUCTION

MOTION planning is a challenging area for autonomous
driving. The planning module receives high-level deci-

sions or behaviors from decision-making and behavior genera-
tion module, as well as a dynamic world model with road struc-
ture and states of all detected obstacles from perception module.
The module finally generates trajectories satisfying safety and
feasibility constraints with desirable driving quality.

Typically, the representation of the constraints for collision
avoidance in motion planners is relatively complex. Also, the
trajectories need to be generated in a spatiotemporal domain in
order to deal with highly dynamic driving scenarios, such as lane
change and overtaking with moving obstacles. When generat-
ing motions in a spatiotemporal domain with a relatively long
horizon, the computational load is often intractable so that the
autonomous vehicle cannot respond to emergencies in real time.
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Therefore, autonomous vehicles need a motion planner which
can 1) generate long-term motions in a spatiotemporal domain,
2) take into account complex collision avoidance constraints, as
well as vehicle kinematic and dynamic models, and 3) achieve
real-time computation so that emergency situations can be han-
dled timely.

Our approach utilizes the analytical expressions in Linear
Quadratic Regulator (LQR) to design a motion planner with fast
computation for complicated planning problems. Iterative LQR
(ILQR) can be efficiently solved by dynamic programming (DP)
to deal with unconstrained problems with non-quadratic objec-
tives and nonlinear models. Constrained Iterative LQR (CILQR)
is proposed in this paper to deal with constrained problems for
motion planning of autonomous vehicles, so that the aforemen-
tioned requirements can be satisfied.

The main contributions of this paper can be summarized as
follows:
� New Fast Motion Planning Solver Proposed: We pro-

posed a version of Constrained Iterative LQR algorithm
to solve optimal control problems with nonlinear system
dynamics and general form of constraints. We use log-
arithmic barrier function and introduce a new outer-inner
loop framework to handle the constraints for Iterative LQR,
achieving fast computation.

� Convergence Property Proved: The convergence of our
proposed outer-inner loop iterative algorithm is proved in
this paper, which guarantees the safety and performance of
applying the algorithm.

� Applied to Autonomous Driving Problem Settings: The
proposed algorithm is then applied to an autonomous driv-
ing motion planning problem. The performance is evalu-
ated with some challenging simulation scenarios.

II. RELATED WORKS

A. Autonomous Driving Motion Planning

Considerable amount of efforts [1], [2] have been devoted to
the area of motion planner design for autonomous driving. Spa-
tiotemporal planning frameworks were proposed based on state-
lattice search algorithm [3] and numerical optimization method
[4]. The computational load was high for spatiotemporal plan-
ning frameworks with relatively long preview horizon, so that
the planner had to suffer relatively long runtime [4] or use GPU
to achieve real-time computation [3].
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The spatiotemporal domain can be partitioned to alleviate
the computational load. Typically, the domain was temporally-
partitioned into path planning (without temporal dimension)
and speed profile planning (with temporal dimension). Such
temporally-partitioned architecture was employed in [5] and
[6], in which fast computation was achieved. However, as was
pointed out in [7], the temporally-partitioned architecture is not
suitable for lane change and overtaking scenarios with mov-
ing obstacles. A spatially-partitioned planning architecture was
proposed in [7] with corresponding generic environmental rep-
resentation, which partitioned the domain into longitudinal and
lateral motion in a Frenét Frame. Desirable long-term trajecto-
ries can be generated in various kinds of scenarios in real time.
The limitation is that when the difference is large between the
curvature of the traffic-free reference path and that of the final
path, undesirable speed profile may be generated. Therefore, if
the computational load is satisfactory, spatiotemporal planning
is still worth exploiting.

Despite of the viewpoint of planning architecture, the works
on motion planning can also be categorized by discretized or
continuous space. Methods in discretized space, such as A*
search [8], D* search [9], state-lattice search [3] and Rapidly-
exploring Random Tree (RRT) [10], generate non-smooth tra-
jectories. Also, the sampling resolution significantly impacts the
computational load due to the ”curse of dimensionality”. Meth-
ods in continuous space, such as optimization-based [4] and
learning-based [11], [12] approaches, can overcome such de-
ficiencies. Learning-based methods are flexible to learn expert
or human-like driving policies and the computational load is
not sensitive to the dimensionality. However, it is still challeng-
ing for learning-based methods to have theoretical guarantee for
long-term safety and feasibility constraints.

The optimization-based method formulates the motion plan-
ning problem as a mathematical optimization problem. There
are several advantages of optimization-based method over other
methods. First, it allows continuous planning because the state
and action space is a subset of the Euclidean space. Second, it can
evaluate multiple objectives (such as constraints) in a uniform
formulation. Also, the computation does not increase exponen-
tially with the increase of dimension.

B. Numerical Optimization

The optimization-based method can be roughly divided into
two categories: direct collocation and indirect shooting [13].
The main idea of the direct collocation method is to consider
points on the trajectory as the decision variables, and improve
the trajectory by directly changing the trajectory points. Numer-
ical optimization algorithms [14] such as sequential quadratic
programming (SQP) [15] are the main tools for this method. An
example of this method in autonomous driving is the work by
Mercedes-Benz [4], [16], which utilized SQP for autonomous
driving motion planning.

An advantage for direct collocation method is the elimination
of system dynamic equation constraints. All the control inputs
are formulated using inverse dynamics. This elimination can

significantly improve the computation efficiency. However, for
problems with long preview horizon, nonlinear dynamics and
non-convex constraints, the computation load is still intractable.

Efforts have been made to improve the efficiency of optimiza-
tion algorithms. For example, Liu, Lin and Tomizuka proposed
the convex feasible set (CFS) algorithm for efficient trajectory
optimization [17]. It has been applied to robot collision avoid-
ance and autonomous driving motion planning [18], [19]. Al-
though CFS makes the real-time implementation possible, the
use of inverse dynamics makes the resulting optimal control in-
put inaccurate, and a low level controller is required to track
the planned trajectory. This may introduce a mismatch problem
between the planned trajectory and the actual trajectory.

Although some general numerical optimization tools can han-
dle dynamic equality constraints directly, the additional equality
constraints will significantly increase the computation load as we
will show in Section VIII-D.

C. Optimal Control and Iterative LQR

Another category of optimization-based motion planning is
the shooting method. The main idea is to consider the control
inputs as the decision variables and the trajectory can be obtained
by forward simulation using the system dynamic equation. This
category is closely related to the optimal control theory [20],
[21]. For specific problems, optimal control theory can give an
analytical solution such as the Riccati equation for linear sys-
tems. However, for problems with nonlinear systems and non-
convex constraints, it is extremely difficult or even impossible
to obtain an analytical solution.

Differential Dynamic Programming (DDP) [22], [23] is an
efficient numerical method which can solve the unconstrained
optimal control problem. Iterative Linear Quadratic Regulator
(ILQR) [24], [25] is a simplified and faster version of DDP. How-
ever, only very few literatures considered constraints in ILQR,
while constraints are inevitable in autonomous driving motion
planning. The control-limited DDP was proposed in [26], which
solves the nonlinear optimal control problems under only the
control input constraints. Extended LQR [27], [28] considered
collision avoidance, but it is achieved by adding a distance cost
and thus can not ensure hard constraints. Furthermore, it only
deals with circle obstacles. To our knowledge, there is still a lack
of methods that can handle general form of constraints using
ILQR, and there is no work using ILQR to deal with the gen-
eral on-road autonomous driving motion planning with complex
constraints.

III. PROBLEM STATEMENT

What is a motion planning problem? Imagine you are an agent,
you can get observations from the world, and can execute actions
to influence the world. Every time you execute an action, you
will get a reward from the world. The planning problem is to
find the best action sequence which will return the maximum
total reward. Since physical objects are usually controlled by
computer, we will consider the discrete time formulation shown
below:
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Problem 1 (General Motion Planning Problem):

x∗, u∗ = argmin
x,u

{
φ (xN ) +

N−1∑
k=0

Lk (xk, uk)

}
(1a)

s.t. xk+1 = fk (xk, uk) , k = 0, 1, . . . , N − 1 (1b)

x0 = xstart (1c)

g (x, u) < 0 (1d)

h (x, u) = 0 (1e)

where xk is the state vector at time step k, and uk is the con-
trol input vector at time step k. N is the preview horizon. (1a)
is the cost function, where φ (xN ) is the final stage cost and
Lk (xk, uk) is the stage cost at time step k. (1b) are the system
dynamic equations, (1c) is the initial state constraint. (1d) are
the inequality constraints and (1e) are the equality constraints,
where x =

[
xT
1 · · · xT

N

]T
and u =

[
uT
1 · · · uT

N−1

]T
are the

state vector and the control input vector for the whole trajectory,
respectively.

This formulation is quite general and covers a large class
of problems. It is also an optimization problem, which can be
solved by numerical optimization solvers such as SQP. However,
these numerical solvers are designed for solving general opti-
mization problems, which makes it not efficient enough for real
time motion planning. Actually, there are some special struc-
tures of the motion planning problem, which makes the motion
planning different from the general optimization problem. Thus
we change the problem formulation into the following one:

Problem 2 (Discrete-time Finite-horizon Motion Planning
Problem):

x∗, u∗ = argmin
x,u

{
φ (xN ) +

N−1∑
k=0

Lk (xk, uk)

}
(2a)

s.t. xk+1 = fk (xk, uk) , k = 0, 1, . . . , N − 1 (2b)

x0 = xstart (2c)

gk (xk, uk) < 0, k = 0, 1, . . . , N − 1 (2d)

gN (xN ) < 0 (2e)

where the objective function (2a), the system dynamic equa-
tions (2b), and the initial state constraints (2c) are the same
with Problem 1. The following additional assumptions are
introduced:

Assumption 1: The system dynamic equation constraints are
the only constraints in the problem. Here we eliminate the equal-
ity constraints such as (1e) in Problem 1.

Assumption 2: The inequality constraints (2d) and (2e) are
separated to different time steps.

Assumption 3: All the functions in Problem 2 have continu-
ous first and second order derivatives.

These assumptions are actually not very strict. Most motion
planning problems naturally satisfy assumptions 1 and 2, and we
can easily define the functions to have continuous first and sec-
ond derivatives. Problem 2 will be considered in the remainder
of this paper.

IV. ITERATIVE LQR (ILQR)

According to our discussion in section I and II, DDP and
ILQR are efficient numerical tools to solve the unconstrained
planning problems. Here we briefly describe the algorithm.

Problem 3 (Unconstrained Motion Planning Problem): The
Iterative LQR algorithm can deal with the following nonlinear
system motion planning problem

x∗, u∗ = argmin
x,u

{
φ (xN ) +

N−1∑
k=0

Lk (xk, uk)

}
(3a)

s.t. xk+1 = fk (xk, uk) , k = 0, 1, . . . , N − 1 (3b)

x0 = xstart (3c)

Note that compared to (2), everything remains the same except
that now the constraints (2d) and (2e) are eliminated.

The theoretical foundation of DDP/ILQR is dynamic pro-
gramming, specifically, the following Bellman equation:

V k (xk) = min
uk

[
Lk (xk, uk) + V k+1

(
fk (xk, uk)

)]
(4)

where V k (·) is the minimum cost to go starting at xk. The
algorithm works with the following steps:

Step 1 (Nominal Trajectory Definition): First a nominal tra-
jectory (x̄, ū) is defined. In the first iteration, a feasible initial
trajectory needs to be given as the nominal trajectory.

Step 2 (Backward Pass): For the final time step, we have the
final step value function V N (xN ) = φ (xN ). Then start from
step N − 1, define the perturbation term for each time step as
follows:
P k (δxk, δuk) = Lk (x̄k + δxk, ūk + δuk)− Lk (x̄k, ūk)
+V k+1

(
fk (x̄k + δxk, ūk + δuk)

)− V k+1
(
fk (x̄k, ūk)

)
(5)

Approximate P k (δxk, δuk) by its second order Taylor expan-
sion to get:

P k (δxk, δuk) (14)

≈ 1

2

⎡
⎢⎣

1

δxk

δuk

⎤
⎥⎦
T ⎡
⎢⎣

0
(
P k
x

)T (
P k
u

)T
P k
x P k

xx P k
xu

P k
u P k

ux P k
uu

⎤
⎥⎦
⎡
⎢⎣

1

δxk

δuk

⎤
⎥⎦ (6)

where

P k
x = Lk

x +
(
fk
x

)T
V k+1
x (7a)

P k
u = Lk

u +
(
fk
u

)T
V k+1
x (7b)

P k
xx = Lk

xx +
(
fk
x

)T
V k+1
xx fk

x + V k+1
x · fk

xx (7c)

P k
uu = Lk

uu +
(
fk
u

)T
V k+1
xx fk

u + V k+1
x · fk

uu (7d)

P k
ux = Lk

xx +
(
fk
x

)T
V k+1
xx fk

x + V k+1
x · fk

ux (7e)

Then the optimal control strategy is:

δu∗
k = argmin

δuk

P k (δxk, δuk) = −(P k
uu

)−1 (
P k
u + P k

uxδxk

)
= qk +Qkδxk (8)

The derivatives and Hessians of the value function are:

V k
x = P k

x − P k
u

(
P k
uu

)−1
P k
ux
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V k
xx = P k

xx − P k
xu

(
P k
uu

)−1
P k
ux (9)

The computation is repeated until reaching the first time step.
Step 3 (Forward Pass). After the backward pass, we need to
forward simulate the actual trajectory using the system dynamic
equation and the optimal control strategy (8):

x0 = xstart

uk = ūk + qk +Qk (xk − x̄k)

xk+1 = fk (xk, uk) (10)

Once an iteration from step 1 to step 3 is completed, the nominal
trajectory (x̄, ū) will be replaced by the new actual trajectory
(x, u), which improves the performance. By going back and
iteratively apply step 1 and step 2, the nominal trajectory will
asymptotically converge to the optimal trajectory.

Note that the computation of the Hessians (7c), (7d) and (7e)
can be simplified by eliminating their last terms. This simplifi-
cation transforms DDP into ILQR. The avoidance of computing
tensor multiplications makes ILQR generally more efficient than
DDP.

Although ILQR is a very efficient algorithm to solve motion
planning problems with nonlinear system dynamics, a drawback
of ILQR is the disability of dealing with inequality constraints,
which is essential in most robotic motion planning scenarios.
Taking autonomous driving for example, there are inequality
constraints for collision avoidance and actuator limits. Without
the ability to deal with inequality constraints, the power of ILQR
is significantly limited.

V. CONSTRAINED ITERATIVE LQR (CILQR) ALGORITHM

The proposed CILQR algorithm aims to solve Problem 2 by
extending the ILQR algorithm. It is pretty hard to directly handle
constraints in ILQR. For example, if we add constraints to (4),
since the added constraints only apply at a certain time step,
during forward pass the cumulated trajectory change may make
the constraints violated. The control-limited DDP [26] added
constraints to (4), but only for control inputs. However, for state
constraints this can not work.

An alternative way to handle constraints is introducing
penalties. The basic idea is to use a barrier function to shape
the constraint functions (2d) and (2e):

c (x, u) = b (g (x, u)) (11)

Then the barrier function is added to the objective function.
The ideal barrier function is the indicator function:

b∗ (g (x, u)) =

{
∞, g (x, u) ≥ 0

0, g (x, u) < 0
(12)

which can represent the original constraints. However, since
the indicator function is not differentiable, the augmented
objective function cannot be optimized by most numerical
optimization methods. Therefore, we need to find a barrier
function that can approximate the indicator function (12) while
being differentiable.

Our previous work[29] used an exponential barrier function:

b (g (x, u)) = q1 exp (q2g (x, u)) (13)

Fig. 1. The logarithmic barrier function.

where q1 and q2 are parameters. The constraints are incorpo-
rated into the ILQR algorithm by a four-step process with shap-
ing and linearization. However, there are some drawbacks using
the exponential barrier function. First, it cannot ensure hard con-
straints, and the constraints may be violated. Second, it is hard to
tune the parameters q1 and q2. If they are too small, the constraint
violation may be significant; if they are too large, the gradient
and Hessian will change sharply near the boundary, which may
result in numerical ill conditions.

In this paper, we use a logarithmic barrier function:

b (g (x, u)) = −1

t
log (−g (x, u)) (14)

where t > 0 is a parameter. The shape of the function under dif-
ferent t is shown in Fig. 1. The logarithmic function has several
nice properties. First, it ensures hard constraints by definition.
Second, by increasing t, it will asymptotically converge to the
indicator function.

Based on the logarithmic barrier function, we built the main
structure of the CILQR algorithm. The basic idea is to construct
both outer loop and inner loop iterations. The outer loop trans-
forms the inequality constraints into penalties using logarithmic
barrier function. The inner loop then solves the transformed un-
constrained problem using ILQR. During each outer loop itera-
tion, the parameter t will increase, making the solution converge
to the optimal solution of the original constrained problem. The
pseudo-code for the CILQR algorithm is shown in Algorithm 1.

The three core ingredients of the algorithm are:
Outer Loop: The algorithm starts with an initial feasible tra-

jectory and an initial parameter t(0) > 0. At every iteration, the
constraints in (2d) and (2e) are transformed into penalties using
(14). They are then added to the objective function (3a) in Prob-
lem 3. The transformed problem is then passed to the inner loop
to solve. After every iteration, the parameter t will be increased
by a scalar μ > 1.

Inner Loop: The inner loop solves the transformed Problem 3
introduced by the outer loop. Since it is now already an uncon-
strained problem, the ILQR algorithm described in Section IV
is utilized to solve the problem.
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Line Search: During the ILQR computation, line search is
commonly used to ensure convergence. In CILQR, line search
has an additional function. Although the logarithmic function
ensures hard constraints by definition, the constrains may still
be violated during ILQR trajectory update. To solve this issue,
in the line search iteration, we continue to check if the updated
trajectory violates the constraints until the constraints are satis-
fied.

VI. CONVERGENCE OF THE CONSTRAINED ITERATIVE

LQR ALGORITHM

The proposed CILQR algorithm can be categorized as a new
numerical optimization algorithm, which can be used to solve
general motion planning problems for robotic systems.

When we talk about a numerical optimization algorithm, one
important issue is the convergence property. Does the CILQR
algorithm converge? The answer is yes; its convergence can be
proved and the main result is summarized as follows:

Theorem 1 (Convergence of Algorithm 1): Under Algo-
rithm 1, the trajectory pair sequence {x(k), u(k)} will converge
to a local optimum of Problem 2, e.g., satisfies the following
Karush-Kuhn-Tucker (KKT) conditions:

∇J +
N∑
i=0

μT
i ∇gi

+

N−1∑
j=0

λT
j+1∇

(
f j − xj+1

)
= 0 (Stationarity) (15a)

gi < 0, for i = 0, . . . , N

f j = xj+1, for j = 0, . . . , N − 1

}

× (Primal feasibility) (15b)

μi ≥ 0, for i = 0, . . . , N (Dual feasibility) (15c)

μig
i = 0, for i = 0, . . . , N

× (Complementary slackness) (15d)

whereJ is the objective function (2a), {μi} are the dual variables
for inequality constraints, and {λi} are the dual variables for the
dynamic system equality constraints. We now show the proof of
Theorem 1. Note here we ignore the trivial initial state constraint
(2c).

A. Preliminary Results

In order to prove Theorem 1, we need to present some pre-
liminary results that are useful for proving the theorem.

Proposition 1: Using the barrier function, at each iteration in
the outer loop, problem 2 is transformed to the form of problem
3.

Proof: By eliminating the inequality constraints (2d) and (2e)
of Problem 2, transforming them using the logarithmic barrier
function (14), and adding them to the objective function (2a),
we get the following problem:

x∗, u∗ = argmin
x,u

(
φ (xN )− 1

t
log
(−gN (xN )

))

+

N−1∑
k=0

(
Lk (xk, uk)− 1

t
log
(−gk (xk, uk)

))

s.t. xk+1 = fk (xk, uk) , k = 0, 1, . . . , N − 1 (16)

Define

φ̄ (xN ) = φ (xN )− 1

t
log
(−gN (xN )

)
(17)

and

L̄k (xk, uk) = Lk (xk, uk)− 1

t
log
(−gk (xk, uk)

)
(18)

we have

x∗, u∗ = argmin
x,u

(
J̄ = φ̄ (xN ) +

N−1∑
k=0

L̄k (xk, uk)

)

s.t. xk+1 = fk (xk, uk) , k = 0, 1, . . . , N − 1 (19)

which is in the same form of Problem 3. �
Lemma 1: The inner loop ILQR algorithm will converge to

an optimum that satisfies the KKT conditions of Problem 3.
Proof: The ILQR algorithm can solve the Problem 3 and

converge to a solution which satisfies the Pontryagin’s Minimum
Principle[23]. The solution satisfies:

f j = xj+1, for j = 0, . . . , N − 1 (20a)

∂
(
Lk + V k+1

(
fk
))

∂uk
= 0 =

∂Lk

∂uk
+

(
∂fk

∂uk

)T

V k+1
x (20b)

∂
(
Lk + V k+1

(
fk
))

∂xk
=

∂Lk

∂xk
+

(
∂fk

∂xk

)T

V k+1
x = V k

x

(20c)

V N = φ (xN ) (20d)

Define Hamiltonian

Hk = Lk + λT
k+1f

k (21)
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Then the Lagrangian of the transformed Problem 3 can be written
as:

J̄ ′ = φ̄+
N−1∑
k=0

(
L̄k + λT

j+1

(
f j − xj+1

))

= φ̄− λT
NxN +H0 +

N−1∑
k=1

(
Hk − λT

k xk

)
(22)

Now, write down the variation of the Lagrangian:

dJ̄ ′ = (φxN
− λN )T dxN +

(
H0

x0

)T
dx0 +

(
H0

u0

)T
du0

+

N−1∑
k=1

[(
Hk

xk
− λk

)T
dxk +

(
Hk

uk

)T
duk

]

+

N∑
k=1

(
Hk−1

λk
− xk

)T
dλk (23)

By setting all coefficients of (23) to zero we get the correspond-
ing KKT conditions:

xk+1 =
∂Hk

∂λk+1
= fk (24a)

0 =
∂Hk

∂uk
=

∂Lk

∂uk
+

(
∂fk

∂uk

)T

λk+1 (24b)

λk =
∂Hk

∂xk
=

∂Lk

∂uk
+

(
∂fk

∂xk

)T

λk+1 (24c)

∂φ

∂xN
= λN (24d)

Observe that by settingλk = V k
x , (24a), (24b), (24c) and (24d)

become same as (20a), (20b), (20c) and (20d). Therefore, the
solution of the inner loop ILQR satisfies the KKT conditions of
Problem 3. �

Lemma 2: The KKT conditions of the transformed Problem
3 is a deformation of the KKT conditions of Problem 2.

Proof: Recall the stationarity condition of Problem 3:

0 = ∇
(
φ̄+

N−1∑
k=0

L̄k

)
+

N−1∑
j=0

λT
j+1∇

(
f j − xj+1

)
(25)

Now compute the derivatives of the Lagrangian we have:

0 = ∇
(
φ̄+

N−1∑
k=0

L̄k

)
+

N−1∑
j=0

λT
j+1∇

(
f j − xj+1

)

= ∇
(
φ− 1

t
log
(−gN

))
+∇

N−1∑
k=0

(
Lk − 1

t
log
(−gk

))

+

N−1∑
j=0

λT
j+1∇

(
f j − xj+1

)

= ∇
(
φ+

N−1∑
k=0

Lk

)
+

N∑
k=0

∇
(
−1

t
log
(−gN

))

+

N−1∑
j=0

λT
j+1∇

(
f j − xj+1

)

= ∇
(
φ+

N−1∑
k=0

Lk

)
+

N∑
k=0

(
− 1

tgk

)
∇gk

+

N−1∑
j=0

λT
j+1∇

(
f j − xj+1

)
(26)

Define the dual variables:

μk = − 1

tgk
(27)

where t > 0 is a parameter. Then we have:

∇
(
φ+

N−1∑
k=0

Lk

)
+

N∑
k=0

μk∇gk

+

N−1∑
j=0

λT
j+1∇

(
f j − xj+1

)
= 0 (28a)

gi < 0, for i = 0, . . . , N

f j = xj+1, for j = 0, . . . , N − 1

}
(28b)

μi = − 1

tgi
≥ 0, for i = 0, . . . , N (28c)

μig
i = −1

t
, for i = 0, . . . , N (28d)

Note that everything in (28) is same as the KKT conditions
(15) of Problem 2 except the complementary slackness condi-
tion (28d) and (15d). We call (28) a deformation of the KKT
conditions of Problem 2.

Proposition 2: The deformed KKT conditions of each outer
loop iteration converge to the KKT conditions of problem 2.

Proof: By increasing t at each outer loop iteration to infinity,
we have:

t → ∞ ⇒ μig
i = −1

t
→ 0, for i = 0, . . . , N (29)

which makes (28d) the complementary slackness condition
(15d). Therefore (28) become the KKT conditions (15). �

B. Proof of the Main Result

With the preliminary results, the proof of the main results
becomes clear:

Proof: The CILQR algorithm starts with a feasible trajec-
tory pair

(
x(0), u(0)

)
, parameter t(0) and scale μ. By Proposi-

tion 1, the original Problem 2 is transformed to the form of Prob-
lem 3. Then Problem 3 is solved by the inner loop ILQR and
gives a trajectory pair

(
x(1), u(1)

)
. By Lemma 2, this solution(

x(1), u(1)
)

satisfies the KKT conditions of the Problem 3. Then
by Lemma 3, this KKT conditions of Problem 3 are deformation
of KKT conditions of the original Problem 2, with a different
complementary slackness condition (28d). Now increase t by
letting t(1) = μt(0) and restart the iteration to obtain a solution(
x(2), u(2)

)
which also satisfies deformation of KKT conditions

of Problem 3. By induction, we can obtain a sequence of trajec-
tory pairs

{(
x(i), u(i)

)}
. By Proposition 4, this sequence will

converge to a trajectory pair that satisfies the KKT conditions of
the original Problem 2. �
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Fig. 2. The vehicle bicycle kinematic model.

VII. APPLICATION ON AUTONOMOUS DRIVING

MOTION PLANNING

In this section, the CILQR algorithm is applied to the motion
planning problem in autonomous driving. Subsection VII-A for-
mulates the problem in the form of Problem 2. Subsection VII-B
introduces the vehicle model we use. Subsection VII-C and
VII-D describe the objective function and constraints.

A. Problem Statement

The autonomous driving motion planning problem can be for-
mulated as follows:

Problem 4 (Motion Planning Problem for Autonomous Driv-
ing):

x∗, u∗ = argmin
x,u

φ (xN ) +

N−1∑
k=0

Lk (xk, uk) (30a)

s.t. xk+1 = f (xk, uk) , k = 0, 1, . . . , N − 1 (30b)

x0 = xstart (30c)

d
(
xk, O

k
j

)
> 0, k = 1, 2, . . . , N.j = 1, 2, . . . ,m (30d)

u < uk < u, k = 1, 2, . . . , N − 1 (30e)

where (30b) is the system dynamic equation. Here we ignore
the superscript, because the vehicle dynamics is time invariant.
(30d) shows the collision avoidance constraints. There are m
obstacles and Ok

j is the space occupied by the jth obstacle at
time step k. d

(
xk, O

k
j

)
is the distance from the host vehicle to

the jth obstacle at time step k. u and u are the lower bound and
upper bound of the control inputs.

B. Vehicle Model

The model applied in this paper is the vehicle bicycle kine-
matic model, which is shown in Fig. 2. The current vehicle state
vector includes the 2D position (x0, y0), the velocity v0 and the
heading θ0. The control input vector includes the acceleration
a and the steering angle δ. L is the wheel base. Assuming that
the steering angle maintains the same in a sampling time Tr,
the vehicle will rotate around the instant center O with rotation
radius r. The distance the vehicle moves in one sampling time
is l = v0Tr +

1
2aT

2
r and the curvature is κ = tan δ

L . Therefore,

the updated vehicle state after one sampling time is:

v1 = v0 + aTr

θ1 = θ0 +
∫ l

0 κds = θ0 + κl

x1 = x0 +
∫ l

0 cos (θ0 + κs) ds = x0 +
sin(θ0+κl)−sin(θ0)

κ

y1 = y0 +
∫ l

0 sin (θ0 + κs) ds = x0 +
cos(θ0)−cos(θ0+κl)

κ

(31)

We can now write down the vehicle dynamic equation as:⎡
⎢⎢⎢⎢⎣
xk+1

yk+1

vk+1

θk+1

⎤
⎥⎥⎥⎥⎦ = f

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
xk

yk

vk

θk

⎤
⎥⎥⎥⎥⎦ ,
[
a

κ

]
⎞
⎟⎟⎟⎟⎠ (32)

Note that in this subsection, in order to describe the dynamic
model more clearly, we use xk and yk to represent the 2D posi-
tion of the vehicle at time step k. However, in previous and the
continuing sections, xk represents the state vector at time step k.

C. Objective Function

The objective function (30a) is decoupled into control costs
and state costs. For control costs, there are cost for acceleration
and cost for steering angle. For state costs, there are cost for ref-
erence tracking and cost for velocity tracking. We now describe
how they are computed.

1) Acceleration: The term:

cacck = waccu
T
k

[
1 0

0 0

]
uk (33)

is the cost for longitudinal acceleration at time step k. This cost
is related to the fuel consumption and passenger comfort. The
weight wacc is a parameter to tune.

2) Steering Angle: The term:

csteerk = wsteeru
T
k

[
0 0

0 1

]
uk (34)

is the cost for steering angle. It penalizes rapid change in vehicle
direction which is related to driving safety and comfort. Tuning
the weight wsteer can change how much we concern the above
issues.

3) Velocity Tracking: The term:

cvelk = wvel

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎥⎥⎦

T

xk − vr

⎞
⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎥⎥⎦

T

xk − vr

⎞
⎟⎟⎟⎟⎠ (35)

is the cost for velocity tracking at time step k. vr is the reference
velocity and wvel is a parameter.

4) Reference Tracking: The term crefk is the cost to penalize
the distance from the ego vehicle to the reference trajectory. A
commonly used method to define reference is to set a sequence
of reference points xr = [xr

0, x
r
1, . . . , x

r
N ]. The cost penalizes

the distance from the trajectory point xk of the ego vehicle to
the reference trajectory point xr

k:

crefk = (xk − xr
k)

TQr
k (xk − xr

k) (36)
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Fig. 3. Problematic Scenario on Curve Road.

Fig. 4. Distance to the reference.

However, this method may lead to some problematic scenar-
ios. For example, as shown in Fig. 3, the vehicle is driving on
a curve road and it has to stop at the line A. Suppose the refer-
ence are points on the road centerline {xr

k}. If the cost is (36),
then the planned trajectory will be similar to points {xk} in
Fig. 3. Observe that in this case, points such as xi, xi+1 and
xi+2 are significantly deviated from the centerline because they
are “pulled” towards their corresponding reference points xr

i ,
xr
i+1 and xr

i+2.
The ideal cost for reference tracking penalizes the distance

from a trajectory point of the ego vehicle to the entire reference
trajectory. In this paper, we use polyline lref to represent the
reference trajectory and penalize the distance from the ego ve-
hicle to the polyline. The distance is denoted as dref

(
xk, l

ref
)
.

Then the cost for reference tracking is:

crefk = wrefd
ref
(
xk, l

ref
)

(37)

The distance is calculated as follows. As shown in Fig. 4, lref

is the polyline reference trajectory, which has m segments. lrefj ,

lrefj+1, lrefj+2 and lrefj+3 are part of them. The 2D space is partitioned
by the angular bisectors (denoted as dash lines in Fig. 4) between
adjacent line segments. xk, xk+1, xk+2 and xk+3 are points on
the planned trajectory. For a specific point such as xk, we first
localize its partition and corresponding line segment lrefj , then

we have dref
(
xk, l

ref
)
= d(xk, l

ref
j ), which is the Euclidean

distance between a point and a line.

D. Constraints

Besides the objectives to optimize, there are also some con-
straints the vehicle should not violate when driving. Three kinds

Fig. 5. Distance to a polygon.

of constraints are considered in this paper: the acceleration con-
straint, the steering angle constraint and the obstacle avoid-
ance constraint. We now describe the details of how they are
calculated.

1) Acceleration Constraint: The acceleration is bounded ac-
cording to the engine force limit and the braking force limit.
This constraint is formulated as:

alow ≤ uT
k

[
1
0

]
≤ ahigh (38)

where ahigh > 0 is the largest acceleration the engine can pro-
vide, and alow < 0 is the largest deceleration the brake can
provide.

2) Steering Angle Constraint: The steering angle is bounded
according to the steering angle limit:

− s̄ ≤ uT
k

[
0
1

]
≤ s̄ (39)

where s̄ is the largest steering angle value of the vehicle.
3) Obstacle Avoidance Constraint: The obstacle avoidance

constraint includes avoiding the moving obstacles and static ob-
stacles. For example, how to overtake the front vehicle safely,
and how to avoid parked vehicles on the roadside. The non-
convexity of the constraints makes it difficult to deal with.

In this paper the obstacles are represented by polygons, and
the vehicles are represented by rectangles. The core of the colli-
sion avoidance constraints (30d) is the distance from ego vehicle
to the polygon Oj , which can be calculated as:

d (xk, Oj) = min
y∈Oj

d (xk, y) , y /∈ Oj (40)

where d (xk, y) is the Euclidean distance between point xk and
point y. The distance (40) makes up a distance field, which
is shown in Fig. 5. Note that here we do not consider the
situation for y ∈ Oj , because given a feasible initial trajec-
tory, our algorithm can ensure the planned trajectories strictly
feasible.

VIII. CASE STUDIES

Three driving cases are used to illustrate the capability of
the proposed method. In our simulation environment, the host
vehicle is represented by a blue box and the surrounding vehicles
are represented by yellow ones. The temporal information is
represented by the depth of color, where deeper color represents
later time step.
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Fig. 6. Static Obstacle Avoidance.

For each case, we draw the historic trajectories of the host
vehicle and all surrounding vehicles. Figures of speed profile,
longitudinal and lateral acceleration, as well as distance to the
closest obstacle are also provided.

The sampling time of the simulation is Ts = 0.2 s, and the
preview horizon is N = 40. Thus the preview time is T = 8 s,
which is enough for long-term planning. The simulator is written
in Matlab script and run on a laptop with 2.6 GHz Intel Core
i7-6600U.

A. Case 1: Static Obstacle Avoidance

In this case there are several static obstacles (e.g., street park-
ing vehicles) along the road. The scenario is shown in the first
figure of Fig. 6 The three yellow boxes represent the static obsta-
cles. The thick black lines are road boundaries. The black dash
line separates the two-way road and the blue dash line repre-
sents the reference for the ego vehicle to track. Here the initial
velocity of the ego vehicle is 8 m/s.

Fig. 6(a) shows the trajectory of the ego vehicle. We can see
the ego vehicle passes by these obstacles safely. Fig. 6(b) shows
the speed profile of the ego vehicle, and the blue dash line repre-
sents the desired speed, which is 8 m/s in this case. The vehicle
accelerates while passing the obstacles and slows down to the
desired speed after finishing passing. The reason is that the cost
function has the penalty term for reference tracking defined in
Section VII-C4, so that the ego vehicle tries to reduce the time
it deviates from the reference. Fig. 6(c) shows the lateral accel-
eration profile of the ego vehicle, which is within a comfortable
level. Fig. 6(d) shows the distance to the closest obstacle, where
the red dash line represents the value of safety margin. We can
see the distance is always kept above the safety margin. The
average runtime in Case 1 is 0.18 s.

Fig. 7. The Lane Change Scenario.

B. Case 2: Crowd Lane Changing

Lane changing is one of the most common maneuvers in both
urban and highway driving. Usually, there is a front vehicle in
the target lane and the host vehicle needs adaptive cruise control
(ACC) after finishing the lane changing. However, executing
lane changing is dangerous in a crowded environment where
there are multiple surrounding vehicles. In such case the driver
may ignore the adjacent vehicles. Thus, we create Case 2, where
the ego vehicle plans to change to the adjacent lane because
there is a slow front vehicle. There are also a vehicle adjacent
to the ego vehicle in the target lane, and a vehicle in front of
it. The mission for the ego vehicle is to safely change to the target
lane and follow the vehicle in front of it. The initial velocity of
the ego vehicle is 5 m/s, the velocity of the vehicles in the target
lane is 3 m/s and the velocity of the vehicle in the original lane
is 2 m/s.

The results are shown in Fig. 7. Fig. 7(a) shows the trajec-
tories of the vehicles. Fig. 7(b) shows the speed profile of the
ego vehicle, from which we observe that the vehicle acceler-
ates at the beginning of the lane change. The reason is that the
gap between front vehicle in the original lane and the adjacent
vehicle is shrinking. Hence, it needs to accelerate to finish the
lane changing before the gap becomes too small. Then at the
end of the lane change, it slows done to follow its front vehicle.
Fig. 7(c) shows the lateral acceleration, and Fig. 7(d) shows the
distance to the surrounding vehicles. The average runtime in this
case is 0.14 s.

C. Case 3: Two-Way Road Overtaking

One of the most challenging and dangerous driving scenario
is to overtake the front vehicle on a two-way road, while there
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Fig. 8. Overtaking pass.

is an oncoming vehicle in the adjacent lane. In this case the
driver must be very careful to accelerate and steer appropriately.
Otherwise, a fatal accident might happen because of the high
relative speed of the vehicles.

There are two cases for this scenario. One is to accelerate to
overtake the front vehicle before the oncoming vehicle passes
by. We denote this case as ”overtaking pass”. The other is to
decelerate to wait until the oncoming vehicle passes, then over-
take. We denote this case as ”overtaking yield”. In both cases
the initial velocity of the ego vehicle is 10 m/s and the velocity
of its front vehicle is 3 m/s. But the velocity for the oncoming
vehicle is different in the two cases.

The results for ”overtaking pass” are shown in Fig. 8. In this
case the velocity of the oncoming vehicle is 9 m/s. Fig. 8(a)
shows the trajectories of vehicles. Fig. 8(b) shows the speed
profile of the ego vehicle. We can observe that the vehicle first
accelerates to overtake the front vehicle before the oncoming ve-
hicle arrives. Then after finishing overtaking, it slows down to
track the desired speed. Fig. 8(c) shows the longitudinal acceler-
ation profile, where the red dash line represents the acceleration
limit. Fig. 8(d) shows the distance to surrounding vehicles. The
average runtime in this case is 0.16 s.

The results for ”overtaking yield” are shown in Fig. 8. In this
case the velocity of the coming vehicle is 15 m/s. Fig. 8(a) shows
the trajectories of vehicles. Fig. 8(b) shows the speed profile of
the ego vehicle. We can observe that the vehicle first decelerates
to wait until the oncoming vehicle passes. Then it accelerates to
overtake the front vehicle and reaches its desired speed. Fig. 8(c)
shows the longitudinal acceleration profile, and Fig. 8(d) shows
the distance to surrounding vehicles. The average runtime in this
case is 0.22 s.

D. Runtime Analysis

To make a comparison, we implemented Case 1 using a stan-
dard SQP-based trajectory optimization ”optimTraj”, which is

Fig. 9. Overtaking yield.

TABLE I
RUNTIME COMPARISON WITH SQP

also written in Matlab script. The problem settings are exactly
the same as those in Section VIII-A, including the dynamic
equation constraint, inequality constraints, objective function,
preview horizon and initialization. The comparison results are
shown in Table I. As we can see, the CILQR algorithm is much
more computationally efficient than the SQP method in this case.
Besides the benefits of utilizing of dynamic programming, the
analytical derivatives and Hessians instead of finite difference
are also helpful for reducing the runtime.

IX. CONCLUSION AND DISCUSSION

In this paper, the constrained Iterative LQR algorithm was pro-
posed to efficiently solve the optimal control problem with non-
linear system dynamics and non-convex constraints. The outer-
inner loop framework enabled the usage of the efficient ILQR
algorithm while guaranteeing convergence to the optimum of the
constrained problem. A general on-road driving motion planning
problem was then solved by the CILQR algorithm. Case studies
showed that our algorithm can work properly in several on-road
driving scenarios. The runtime was much faster than the standard
SQP solver.

Since CILQR is basically an optimization solver, a initial tra-
jectory must be provided. In the experiments of this paper, the
initial trajectories are just some dumb trajectories such as main-
taining constant velocity or staying still. The resulting planned
trajectory only depends on the behavior pattern, no matter how
dumb the initial trajectory is. For example, all initial trajectories
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that go to the left will finally converge to an optimal left side
overtaking trajectory. However, the quality of the initial trajec-
tory can influence the converge speed of the algorithm. Thus
method to provide better initial trajectories can be investigated
in the future. Furthermore, although this paper concentrates on
the problem of autonomous driving motion planning, the gen-
eral formulation of CILQR makes it possible to be applied to
motion planning of robot manipulators. In that case the con-
tact force needs to be considered, which requires extensions and
modifications of the current CILQR algorithm.
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