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Abstract— Deep reinforcement learning has achieved great
progress recently in domains such as learning to play Atari
games from raw pixel input. The model-free characteristics of
reinforcement learning free us from hand-encoding complex
policies. However, for real world tasks such as autonomous
driving, there are some complex sequential decision making
processes that contain distinct behaviors. Due to the delayed
rewards and the averaged gradient, it is pretty difficult for
a flat deep reinforcement learning algorithm to learn a good
policy.

In this paper, we design a hierarchical neural network policy
and propose a hierarchical policy gradient method to train
the network with the semi markov decision process (SMDP)
temporal abstraction formulation. We apply this method to
a traffic light passing scenario in autonomous driving, where
the vehicle has two distinct behaviors (e.g., pass and stop)
and its primitive actions (e.g., acceleration) should follow the
corresponding behavior. We show via simulation that our
method is able to select correct decision and acts appropriately
when the traffic light turns yellow. On the contrary, the flat
reinforcement learning algorithm is not able to achieve a good
performance and exhibits a large variance. Furthermore, the
trained neural network modules are reusable in the future to
cover more scenarios.

I. INTRODUCTION

Recent progress in deep learning is quite inspiring. Sev-
eral breakthroughs happened in multiple domains, such as
computer vision [1] and natural language processing [2].
When combined with reinforcement learning [3], deep re-
inforcement learning showed its power on tackling complex
decision making and planning problems. Exciting successes
are achieved in game playing [4], [5], robotics [6], [7]
and self-driving [8]. The wonderful characteristics of deep
neural network such as its expressive representation are well
exploited, making it capable to capture extremely complex
policies for difficult tasks. Its benefit is huge, e.g, it allows
robots to learn policies automatically through experience.
Furthermore, it may potentially avoid developing tedious
hand-encoded components for perception and control.

Despite the exciting achievements, there are still many
tasks that deep reinforcement learning is not able to solve
well. One main reason is the delayed rewards. Unlike su-
pervised learning, reinforcement learning receives only very
weak feedbacks. In the reinforcement learning process, the
agent is only told how good it is acting (rewards) instead
of what it should do (state-action mapping). This problem
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becomes more serious when there exists distinct behaviors
whose corresponding actions are quite different from each
other. For example, in most urban driving scenarios such as
intersection or roundabout, there are basically two distinct
behaviors, pass or yield. In this kind of tasks, we can only
get a significant reward after the behavior is finished (e.g.,
finished passing the intersection). Furthermore, since the
deep neural network tends to be a smooth mapping, it is
very hard to learn a policy that can act distinct behaviors.
Generally speaking, The flat deep reinforcement learning is
often not able to deal with such tasks.

There are some applications of deep reinforcement learn-
ing on autonomous driving [8]–[10]. However, they are
only applied in simple tasks such as lane keeping, without
complex urban scenarios and distinct behaviors. Imitation
learning based methods [11], [12] can learn policies to handle
more complex tasks. However, they require a fairly good
guidance (either by human or by an optimal controller),
which might not be accessible all the time.

Hierarchical reinforcement learning (HRL) [13] introduces
hierarchical structures into the policy. The key point of hier-
archical reinforcement learning is to add temporal abstraction
and intrinsic motivation. There are several great works in
this field, such as MAXQ [14], option-critic [15], FeUdal
network [16], modulated locomotor [17] and MLSH [18].
The success of these works on tackling difficult tasks proves
that the method of temporal abstraction can significantly
improve the performance of deep reinforcement learning.
Using hierarchical policy can also benefit transfer learning,
because the modularized policies can be easily reused in new
tasks. Moreover, the decoupled policy modules enable us to
get more interpretation of how the policy works.

In this paper, we take advantage of the compositional char-
acteristics of hierarchical reinforcement learning to separate
these different behaviors into different policies. Then we train
an additional master policy that can choose which behavior
to execute with temporal abstraction. A policy gradient based
hierarchical reinforcement learning algorithm is proposed to
implement the method. The method is evaluated in a traffic
light passing scenario simulation. The learned policy is ana-
lyzed with explicit interpretation, and the policy submodules
can be reused in other scenarios.

The remainder of the paper is organized as follows.
Section II describes the structure of the deep hierarchical
reinforcement learning, how the hierarchical policy is exe-
cuted and how it is trained with policy gradient. Section III
explains the details of implementing the method such as data
collection and normalization. Section IV shows a case study
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applying the proposed method and analyzes its performance.
Finally, Section V concludes the work.

II. DEEP HIERARCHICAL REINFORCEMENT LEARNING
WITH POLICY GRADIENT

A. Temporal Abstraction

Temporal abstraction is the core of hierarchical rein-
forcement learning, which allows us to explore the world
more efficiently. In markov decision process (MDP), we
have state abstraction which is often known as function
approximation. Temporal abstraction is the abstraction of
action, which together with state abstraction significantly
improves generalization and scales up the reinforcement
learning algorithms.

The concept of temporal abstraction has been developed
early. Before hierarchical reinforcement learning, it was
exploited in hybrid system research [19]. There are several
temporal abstraction methods, such as the option framework
[20] and the manager-worker framework [21]. In this paper
our problem formulation is similar to the method of MAXQ
[14], which is based on the option framework and decom-
poses the value function of an MDP into a combination of
value functions of smaller MDPs.

The semi markov decision process (SMDP) [22] is used
in this paper to construct a mathematical formulation of
temporal abstraction. SMDP is an abstract form of markov
decision process (MDP). The key idea of SMDP is that
in contrary to MDP whose action can only be performed
in a single time step, the action in the SMDP framework
can persist over a variable period of time. As shown in
Fig.1, the state trajectory of MDP is made of small, discrete-
time transitions, whereas that of SMDP is made of larger,
continuous-time transitions.

Fig. 1: The state trajectory of MDP and SMDP

An SMDP problem setup has the same elements with MDP
〈S,A, P,R, P0〉, but some elements have different meanings:
• S: The set of states of the environment.
• A: The set of actions. Here each module in the hi-

erarchical policy has different set of actions. For the
primitive modules, the action set contains the actions
that can be applied directly to the environment. For
a higher-level module, the action is an option, which

defines an index to specify which lower module to
select.

• P : The transition model. When an action a ∈ A
is performed, the environment makes a probabilistic
transition from the current state s and time step k to
a resulting state s′ and time step k + N according to
the probability distribution P (s′, N | s, a).

• R: When an action a is performed, the agent will receive
a reward r whose expected value is R (s′, N | s, a). And
the reward functions are different for different modules.

• P0: The initial state distribution.

B. Hierarchical policy execution

The policy design in this paper is hierarchical and net-
worked. Fig.2 shows the structure of an example hierarchical
policy network. There are five neural network modules
connected as a net, where each lower level module can be
selected and called by multiple higher level modules. Only
the lowest level modules, a.k.a primitive controllers, have
direct access to the environment. Output produced by higher
level modules is considered as an option and command to
its lower level modules.

Fig. 2: The hierarchical policy structure

When executing this kind of hierarchical policy network,
a mechanism for transition termination is needed. For a
primitive controller, it is just the same as the original MDP.
The transition is terminated immediately after applying the
action to the environment, and a corresponding resulting
state and reward will be given. However, for a higher level
module, a terminating state needs to be specified, e.g., it will
terminate at state s with probability β (s). Moreover, there
should be a pointer that specifies which module is being
executed now. When it terminates, the pointer should return
to point to its higher-level module. The pseudo-code of this
process is shown in Algorithm 1.

C. Hierarchical policy gradient

For the training process, instead of using Q-learning to
train the hierarchical policy, we use policy gradient. There
are several benefits of using the policy gradient method. First,
when applying deep neural networks, policy gradient has
more rigorous theoretical foundation than deep Q-learning.
Although the tabular Q-learning, as is used in MAXQ, is
proved to converge to the global optimum, the deep Q-
learning is not supposed to converge. Second, a lot of
scenarios need to be formulated as a partially observable
markov decision process (POMDP) problem instead of MDP.
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Result: Execute one step of the root module and save
the (s, a, r) tuples of trajectories for each
module individually

st is the state of time t;
M0,M1, · · · ,MN are all the modules in the

hierarchical policy. Each module stores its lower
module, e.g, Mi.lowermodule =Mj ;
Kt is a stack at time t, which stores modules in the

order of execution;
Let t = 0; Kt = empty stack;
Append the root module M0 to Kt;
repeat

repeat
Get action from Kt[-1];
Save the current (s, a, r) tuple to Kt[-1];
Append Kt [−1].lowermodule to Kt;

until Kt [−1].lowermodule!=None;
Get action from Kt[-1];
Get the next state and reward;
Save the current (s, a, r) tuple to Kt[-1];
for i in range(len(Kt)-1) do

Add intrinsic reward to Kt [i];
end
for i in range(len(Kt)) do

if Kt [i] terminates then
Kt.pop()

end
end

until Kt is empty;
Algorithm 1: The Hierarchical Policy Execution Process

For example, in a multi-agent system, the internal states of
other agents are not directly accessible. For these problems,
the Q-learning method which depends on the markovian as-
sumption does not work well. In contrast, the policy gradient
method does not depend on the markovian assumption.

During the training phase, at each time the policy gradient
for one specific module needs to be calculated based on the
intrinsic rewards. The whole policy needs to be trained from
the lowest level modules up to higher levels. The training
of a higher level module can succeed only when its lower
modules already achieve relatively good performance.

III. IMPLEMENTATION DETAILS

This section introduces the learning process designed for
the traffic light passing problem. Section III-B introduces a
slightly modified policy gradient method to deal with the
large range of initial conditions. Section III-A introduces the
simulation setup and input-output configuration for hierar-
chical reinforcement learning.

A. Efficient Data Collection

The training data is collected by a simulator of the vehicle
dynamics. The states of the system consist of {v, s, tred}
where v is the velocity of the vehicle and s is the distance
from the vehicle to the crossing line. tred is the time for

the traffic light to turn to red. The parameters of the reward
function consist of indpass, vf , tpass where indpass is the
indicator from upper controller determining whether to pass
the light or stop before the line. For different indpass values
there are different reward functions. vf is the reference
velocity for the vehicle to track. tpass is the time limit to
pass the light generated by the upper controller. The tuple
(v, s, indpass, tpass, vf ) is fed to the primitive controller as
input and the policy network outputs acceleration command
a bounded by a sigmoid function. When indpass = 0 which
means that the vehicle should stop, the tpass is set to the time
for the vehicle to stop. The cost function for the primitive
controller is designed as

r = w1(v − vf )2 + w2a
2 + w3(0− v)+ + w4rterminate (1)

which includes tracking penalty, acceleration penalty, nega-
tive velocity penalty and termination penalty rterminate with
weights w1, w2, w3 and w4. The termination penalty is only
applied when the primitive controller meets the termination
criterion.

rterminate =


(0− s)+, if indpass = 1
(s− 0)+ + (δ − s)+, if indpass = 0
0, if not last time step

(2)

For the upper controller, the reward function formulations
is as given by (1), but the termination term (2) is different:

rterminate =

{
v
s , if s ≥ 0
0, if s < 0

(3)

which means that it has a termination penalty for high speed
and failure of crossing when the light turns red. In this case,
the vehicle is likely to have a red light violation. The upper
controller reward function is also the overall reward function
for the non-hierarchical policy network.

It is found in simulation that the speed is the bottleneck
for the efficiency of training because the policy networks
are usually simple and small. The simulation is modified to
allow parallel batch experiments. Note due to the termination
criterion, the total steps of each iteration may vary. For
a batch of experiments, only the non-terminated states are
updated and stored. The simulation step is determined by the
longest experiment so the number of experiments updated is
changing in one batch. The training is observed to be about
20 times faster with an experiment batch size of 20 compared
to training with 20 experiments one by one. Training one
policy network takes 10 to 30 minutes with efficient data
collection.

B. Task Dependent Policy Gradient

1) Advantage Normalization: Normalizing the rewards to
advantages, which has zero mean and unit variance, is very
common in policy gradient. It is natural to think that for a
batch of trajectories collected, those with different reward
functions should be normalized separately. Otherwise the
reward function with higher mean would overwhelm the one
with lower mean and ruin the training of the lower one.

Normalizing the advantage with respect to different re-
wards is found to be insufficient when initial states vary in
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a large range. In the traffic light passing scenario considered
here, there are various kinds distributions of rewards with
respect to the initial states. Therefore it is desirable to nor-
malize advantage with respect to both initial states v0, s0, t0
and reward functions indexed by indpass.

2) Hyper-parameter Tuning for Gradient update: Here
the reward weights are imbalanced where w3 and w3 are
much larger as they are supposed to approximate hard
constraints. It is found using the Adam optimizer setting
results in a lot of oscillation during training. The parameter
for Adam is set to β1 = 0.8, β2 = 0.9, ε = 1.

IV. EXPERIMENTS

A. Experiment Setup

We apply our method to a traffic light passing scenario for
autonomous driving. As shown in Fig.3, there is a pedestrian
crosswalk along with a traffic light in the middle of the track.
The vehicle will be initialized with a random distance s0 to
the crosswalk with a random initial velocity v0. The traffic
light is initialized as “green”, but it will turn to “yellow”
in a random time t0. And the “yellow” light will last for 3
seconds. We believe this is a quite challenging scenario for
most new drivers, as they often don’t know what to do when
the traffic light suddenly turns to “yellow” and thus often
results in suboptimal performance.

Fig. 3: The traffic light scenario for autonomous driving

For a flat deep reinforcement policy, we just need one
single policy that maps the current state directly to the actions
applied to the environment. Here it is a mapping from the
state to the acceleration and deceleration for each time step.

For our hierarchical policy, we designed a structure shown
in Fig.4. The root module “Traffic light” has three lower
level modules “Green”, “Yellow” and “Red”, and their state
transition processes depend on the traffic light time. When
the light is green and red, the policy is pretty trivial so we
will only concentrate on the yellow case. Here the “Yellow”
module will decide either to stop or to pass. And the lower
level “Stop” module will calculate how much to decelerate
to stop before the crosswalk, while the “Pass” module will
calculate how much to accelerate to pass before the traffic
light turns red.

The hierarchical structure is tested on a traffic light
passing problem in simulation. Primitive controllers are
trained individually for their own tasks first. Then the upper
controller is assembled together with lower level ones and

Fig. 4: The hierarchical policy of the traffic light scenario

trained. This section shows their individual performance and
combined performance. The effectiveness of using hierarchy
is demonstrated by comparing the result with a flat structured
baseline.

B. Evaluation Metric

In addition to the average return, another metric is calcu-
lated to evaluate the absolute performance of the controller,
called the violation. Due to the randomness and wide range
of initial conditions, there are scenarios when the vehicle
is neither able to stop nor able to pass the traffic light.
For example, the initial velocity is high (like 15m/s) and
distance is small (like 10m) but the light is going to be red
in a very short period (like 0.1s). The vehicle cannot avoid
violating the traffic rule, resulting in a very low reward that
makes the average return dominated by the large penalty.

The violation has two terms: absolute violation and relative
violation. The absolute violation is the termination penalty
rterminate. The relative violation is the gap between the vio-
lation of the current network and the violation produced by
the optimal controller (like pushing the braking pedal to the
bottom all the time to minimize the violation). The relative
violation shows the gap between the policy network and the
optimal controller when violation is unavoidable.

C. Hyper-parameter Details

1) Simulation: The initial condition uniformly chooses
initial velocity v0 ∈ [8, 12]m/s, initial distance s0 ∈ [5, 60]m
and time to red tred ∈ {3s, 10s}. The reference speed is
fixed to 10m/s. The system is discretized with a sampling
rate of 50Hz. Weights for the primitive controller is set to
be w1 = 2, w2 = 1, w3 = 50 and w4 = 20000. Violations
get larger weights w3 and w4 so as to approximate the hard
constraint.

2) Primitive Controller: The the primitive controller has
6 fully connected (FC) layers with 32 hidden units in
each layer, regardless of its task. The acceleration a ∈
[−5, 3]m/s2 is bounded by a sigmoid function added to the
last layer of the network. Each update iteration generates
10 different initial conditions. For each initial condition a
number of 20 paths is simulated. So there are 200 paths
in total for each iteration. The advantages are calculated as
stated in III-B. The discount for calculating the Q-value is
set to be 0.999, which coincides with the discount rate of the
upper controller which decays to 0.9 every 2 seconds. The
learning rate is 0.005. The total training iteration is 2000.
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D. Primitive Controller Evaluation

First it is shown that the primitive controller works well
individually for each task. Fig.5 shows the average return of
each primitive controller. They converge to relatively good
performance. Fig.6 shows the absolute and relative violations
by each primitive controller, and the violations are around
zero.

Fig. 5: Average returns of the primitive controllers.

Fig. 6: Violations of the primitive controllers.

E. Upper Controller Evaluation

The upper controller can be evaluated only if some
primitive controllers are given. Here the trained primitive
controllers in Section IV-D are used following the hier-
archical structure. Another non-hierarchical policy network
is trained simultaneously as the baseline. Note here for
the overall controller the training iteration is different from
the general setting in Section IV-C.2. For the hierarchical
structure, the fine-tuning only takes 150 iterations. For the
non-hierarchical structure, the training takes 5000 iterations
and the performance is still significantly lower than the
hierarchical structure shown in Figure 7.

Besides the average return plot, another 3D plot is shown
in Figure 8 which is the point cloud of state-action pairs
during the test. In the test case 500 initial states are sampled
randomly and 4 paths are simulated for each initial state.
Two dimensions of the observations, namely velocity v and
distance s, and the acceleration a from action are chosen to
form state-action pairs for plot. There are totally about 500K
points in the point cloud representing all state-action pairs
in all trajectories.

Fig. 7: Average returns of the overall controllers.

Fig. 8: State-action point cloud of controllers. The red part
represents the primitive controller for “Stop”, the blue part
represents the primitive controller for “Pass”. The yellow
part represents the non-hierarchical policy network and the
purple part represents the hierarchical policy network.

In Fig.8, the red part represents the primitive controller for
stop and the blue part represents the primitive controller for
pass. For the hierarchical controller colored by purple, the
point cloud clearly splits into two parts with a significant
gap. However, for the non-hierarchical controller colored by
yellow, the point cloud is in the middle where it has a long
“tail” resulting in passing the line for a long distance. This
means the non-hierarchical controller has a lot of violations
when the traffic light turns red quickly. It is optimized to an
aggressive local optimum where it always tries to pass the
yellow light.

F. Simulation Results

We simulate and visualize the policy with a self-built
python simulator for autonomous driving, which is built upon
the panda3d API. In the visualization window as show in
Fig.3, the left upside shows the state of the traffic light, and
on the right side we display the current vehicle velocity and
decision. A time series snapshot is shown in Fig.9.

In the figure, the top four pictures show how the vehicle
decides to stop. At the beginning, the light is green and
the vehicle maintains a constant speed; then the traffic
light turns to yellow and there is still a long distance to
the crosswalk, and the higher level policy decides to stop;
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Fig. 9: The simulation results visualization

Receiving this command, the lower level policy generates
appropriate deceleration to slow down the vehicle; Finally,
the vehicle stops right in front of the crosswalk.

The bottom four pictures show how the vehicle decides
to pass. At the beginning, the light is green and the vehicle
maintains a constant speed; then the traffic light turns to
yellow and the distance seems possible for the vehicle to
pass, and the higher level policy decides to pass; Receiving
this command, the lower level policy generates appropriate
acceleration to speed up the vehicle; Finally, the vehicle
passes the crosswalk safely before the traffic light turns to
red.

V. CONCLUSION

In the traffic light passing problem, the flat deep re-
inforcement learning is not able to solve the whole task
which has distinct behaviors. The hierarchical reinforcement
learning structure designed based on the SMDP model breaks
down the whole task into several simpler and self-consistent
modules. Each module is proved to have good performance
on its subtask and the assembled hierarchical policy is able
to address the traffic light passing problem. We showed the
hierarchical structure can handle the delayed reward and
distinct behaviors problem.

Figure 8 shows two distinct optimal behaviors side-to-
side. When trained with one non-hierarchical controller using
policy gradient, the network does not capture the two-
manifold structure and converges to a local optimum which
is a single manifold. The proposed method splits the policy
into two manifold of state-action pairs.
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