
Deep Imitation Learning for Autonomous Driving in Generic Urban
Scenarios with Enhanced Safety

Jianyu Chen*, Bodi Yuan* and Masayoshi Tomizuka

Abstract— The decision and planning system for autonomous
driving in urban environments is hard to design. Most current
methods manually design the driving policy, which can be ex-
pensive to develop and maintain at scale. Instead, with imitation
learning we only need to collect data and the computer will
learn and improve the driving policy automatically. However,
existing imitation learning methods for autonomous driving are
hardly performing well for complex urban scenarios. Moreover,
the safety is not guaranteed when we use a deep neural
network policy. In this paper, we proposed a framework to learn
the driving policy in urban scenarios efficiently given offline
connected driving data, with a safety controller incorporated
to guarantee safety at test time. The experiments show that our
method can achieve high performance in realistic simulations
of urban driving scenarios.

I. INTRODUCTION

Decision and planning for autonomous driving in urban
scenarios with dense surrounding dynamic objects is par-
ticularly challenging. The difficulties come from multiple
respects: 1) Complex road conditions including different road
topology, geometry and road markings in various scenarios
such as intersection and roundabout; 2) Complex multi-agent
interactions where their coupled future motions are unknown;
3) Various traffic rules such as traffic lights and speed limit.

The majority of autonomous driving community, including
both industry and academy, is focusing on the non-learning
model-based approach for decision making and planning.
This model-based approach often requires manually design-
ing the driving policy model. For example, a popular pipeline
is to first do scenario-based high-level decision, then predict
the future trajectory of surrounding objects, and then treat the
predicted trajectories as obstacles and apply motion planning
techniques to plan a trajectory for the ego vehicle [23], [18],
[19], [10].

However, the manually designed policy model is often
sub-optimal. There are two main reasons for this: 1) The
model-based approach often requires defining some motion
heuristics or at least some cost functions to indicate what
does a desired decision and planning look like. However,
designing an accurate cost function that can make the vehicle
do what we really want can be extremely difficult [11]; 2)
For highly entangled interactions among multiple agents,
simple policy models are not adequate. However, complex
behavior models such as game theoretic models are not
solvable in their general form (e.g, general sum multi-player

* indicates equal contribution
J. Chen, B. Yuan and M. Tomizuka are with Department of Mechanical

Engineering, University of California, Berkeley, CA94720, USA. Corre-
sponding to jianyuchen@berkeley.edu

This work was supported by Denso International at America

games) with the current non-learning methods. Besides its
sub-optimality, the model-based approach is also expensive
with respect to development and maintenance, as it relies on
human engineers to improve its performance.

While it is difficult to design a decision and planning
system for autonomous driving, an experienced human driver
can solve the driving problem easily, even in extremely
challenging urban scenarios. Thus an alternative is to learn
a driving policy from human driver experts using imitation
learning. Applying imitation learning has several benefits.
First, we do not need to manually design the policy model
or the cost function which can be sub-optimal. Second, we
only need to provide expert driving data which is not difficult
to obtain at scale, and the computer will then learn a driving
policy automatically.

There are already existing works of imitation learning
approaches for driving which typically focus on predicting
direct control commands such as steering and braking from
raw sensor data such as camera images [2], [9], [6], [21].
However they can only handle simple driving tasks such
as lane following. Direct mapping from raw sensor data to
control is too complex, which requires a huge amount of
training data to cover most situations. Besides, the end-to-
end architecture lacks transparency as we cannot explain the
decision making process in a neural network, which makes
it hard to evaluate and debug.

A more serious problem for the current imitation learning
approaches, especially with function approximation such
as deep neural network, is safety. Currently no theoretical
results can guarantee the safety of a policy composed of a
deep neural network. Safety is the most crucial issue for
autonomous driving and it must be considered strictly.

In this paper, we propose a framework which efficiently
obtains the intelligence of decision making for handling
complex urban scenarios using imitation learning, and then
provides safety enhancement to the learned deep neural
network policy. We design a bird-view representation as
the input and define future trajectory as the output of the
driving policy, which is similar to Waymo [1] and Uber’s
recent works [8]. The designed representation significantly
reduces the sample complexity for imitation learning. Then
a safety controller based on safe set theory is incorporated,
which generates control commands to track the planned
trajectory while guaranteeing safety. Experiments show that
the framework is able to obtain a deep convolutional neural
network policy which is intelligent enough to achieve high
performance in generic urban driving scenarios, with only
100k training examples and 20 hours training time on a single

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4004-9/19/$31.00 ©2019 IEEE 2884

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:07:42 UTC from IEEE Xplore. Restrictions apply.

GTX 1080 Ti.

II. RELATED WORKS

The first imitation learning algorithm applied to au-
tonomous driving was 30 years ago, when ALVINN sys-
tem [20] used a 3-layer neural network to perform road
following based on front camera images. Helped by recent
progress in deep learning, NIVIDIA developed an end-to-end
driving system using deep convolutional neural networks [2],
[3], which can perform good lane following behaviors even
in challenging environments where no lane markings can be
recognized. Researchers also trained deep neural networks to
predict the control output from camera image and evaluate
their open loop performance (e.g, the prediction error). [25]
used an FCN-LSTM architecture with a segmentation mask
to train a deep driving policy. [24] proposed an object-
centric model to predict the vehicle action with higher
accuracy. Although both [25] and [24] achieved good pre-
diction performance for complex urban scenarios, they did
not provide closed loop evaluation either on real world or
simulated environments. [22] used imitation learning to drive
a simulated vehicle in closed loop, however it is restricted to
limited scenarios such as lane following and lane changing
with fixed number of surrounding vehicles.

CARLA simulator [9] has been developed and open-
sourced recently. It enables training and testing autonomous
driving systems in a realistic three-dimensional urban driving
simulation environment. Based on CARLA, [6] used condi-
tional imitation learning to learn an end-to-end deep policy
that follows high level commands such as go straight and
turn left/right. [21] defined several intermediate affordance
such as distance to objects, learned a deep neural network
to map camera image to the affordance, and then performed
model-based control based on the affordance.

The above methods are all using front camera images
as the input. However the complexity of direct visual in-
formation has limited the performance of such methods.
Bird-view representation is a good way to simplify the
visual information while maintaining useful information for
driving. Uber [8], [7] used a rasterized image which includes
information for the map and objects as the input, and
learned a convolutional neural network to predict the future
trajectory of the vehicle. Waymo [1] used a similar mid-to-
mid representation and learned a deep model that combined
with perception and control modules, could drive a vehicle
through several urban scenarios.

Collision avoidance safety is an important topic in
robotics. Potential field method [14] introduces an artificial
field around the obstacle and push the vehicle away when
the distance is close. The method is efficient, but it cannot
guarantee the safety. Reachability analysis [17] calculates
the reachable set of the agent’s state using game theory, and
constrains the agent from reaching unsafe state. However, it
is computationally expensive. Planning based methods [4],
[5] may achieve safe motion in real time computation, but
it requires the prediction of trajectories for each object. In
this work we use safe set algorithm [15], [16] to develop our

safety controller, which is guaranteed to be safe, computa-
tionally efficient and do not require prediction of obstacles’
future motion.

III. FRAMEWORK OVERVIEW

Our system acts as an intelligent driving agent in a closed
loop environment, as shown in Fig.1. The agent receives
routing and perception information from the driving environ-
ment. It then outputs the control command such as throttle,
steering and braking to be applied to the ego vehicle. The
system includes two main building blocks: a deep imitation
learning trajectory planner and a safety & tracking controller.
The deep imitation learning trajectory planner is responsible
to handle almost everything about driving intelligence, such
as how to follow the given route in various road conditions,
how to react to surrounding objects, and how to handle
different traffic light states. This module is learned end-to-
end from the perception results to the planned trajectory. The
safety & tracking controller is responsible to guarantee safety
and handle vehicle dynamics. This module is designed with
non-machine-learning methods.

In this work, we assume that we already have a func-
tioning perception module to process the raw sensor data.
For example, we can use a localization system to estimate
ego vehicle pose, an object detection system to detect the
bounding box, position and heading of surrounding objects,
and a traffic light detector to tell the states of traffic lights.
Furthermore, we have access to the High-Definition map
data for the area that the ego vehicle is operating, as well
as the routing information which guides the ego vehicle to
a specified goal position. This is a reasonable assumption
as they are not difficult to obtain with current autonomous
driving technology, at least under a good weather. We will
not discuss the development and properties of the perception
module in this work, but concentrate on the decision and
planning part.

IV. DEEP IMITATION LEARNING FOR URBAN
AUTONOMOUS DRIVING

The goal of imitation learning is to learn a controller that
imitates the behavior of the expert. At data collection phase,
an expert (either a human driver or a controller) receives
observation ot and output action at at time step t. The
observation-action pairs D = {(ot,at)}Nt=1 are then stored
as the dataset. Let the policy function be f (o; θ), where θ is
its parameter. f can be any function approximator, including
deep neural network as used in this paper. The imitation
learning problem is then formulated as a supervised learning
problem, where the goal is the optimize the policy function
parameter θ to minimize the loss function L:

min
θ

∑
(oi,ai)∈D

L (f (oi; θ) ,ai) (1)

In this section, we will introduce how we design observa-
tion o, action a, policy function f , loss function L, and how
we augment the data to obtain a robust policy.

2885

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:07:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Framework overview of the our system. The agent takes information from the perception and routing modules,
generates a bird-view image and outputs the planned trajectory using a deep neural policy. The safety & tracking controller
then calculates the safe control command to be applied to the ego vehicle in the driving environment.

Fig. 2: Observation-action Representation of our deep imi-
tation learning planner. The bird-view observation combines
information of HD map, routing, traffic light, historical
detected objects and historical ego states. The output action
is a planned trajectory represented by a vector.

A. Observation-action Representation

A straight forward input-output representation is raw sen-
sor data (e.g, front view camera image) for observation,
and direct control command (e.g, throttle, steering, braking)
for action. However, directly learning the complex mapping
from raw sensor data to control output is too inefficient and
hard to generalize. The raw sensor data contains extremely
high dimensional information which can be influenced by
different textures and appearances of roads and objects,
different weather conditions, and different daytime. To allow
generalization of the learned policy, the dataset needs to
cover enough data for each aspect of sensor information such
as texture, weather, light condition and object appearance.
The direct control output is also influenced by different
vehicle dynamics, thus a new policy needs to be trained if
the vehicle dynamics is changed.

To alleviate this problem, we used a bird-view represen-
tation for the observation ot. This bird-view representation

is a concise description of only the useful information for
decision making and planning, discarding irrelevant infor-
mation such as texture. As shown in Fig.2, our bird-view
input representation is composed of the following five parts:

1) High-definition (HD) Map: The HD map contains
information of road conditions. Here we render all the lane
markings represented by yellow or white polylines on the
2D RGB image.

2) Routing: The routing information is provided by a
route planner after we define the start and end point. It is
represented by a sequence of waypoints for the ego vehicle
to follow. We render it as a thick blue polyline in the image.

3) Traffic Light State: When the state of the traffic light
becomes red, we set the color of the route to be purple,
otherwise it will maintain blue.

4) Past Detected Objects: The past detected surrounding
objects (e.g, vehicles, bicycles, motorcycles) in a past time
period are rendered as green boxes, with reduced level of
brightness meaning earlier time-steps.

5) Past Ego States: Similar to the detected objects,
the past ego states are represented as boxes with reduced
brightness. The color of the boxes are set red.

The final bird-view image is rendered with pixel size
192×192, and is always aligned to the ego vehicle’s local co-
ordinate. The actual size of the field of view is (40m, 40m),
where the ego vehicle is positioned at (20m, 8m).

The action of the policy is also altered from direct con-
trol output to trajectory at = [xt+1, yt+1, · · · , xt+H , yt+H],
where xi and yi are x and y position in the local coordinate
of ego vehicle at time step i, H is the preview horizon and
t is the current time step. While direct control output can
be significantly influenced by vehicle dynamics, the future
trajectory would have little difference if the vehicle dynamics
does not change too much. The output trajectory can be
tracked by a vehicle specific tracking controller, which is
easy to design as will be illustrated in the next section.

B. Network architecture

Taking the bird-view image as input, we use a CNN model
to predict ego vehicle’s future trajectory. Our CNN model

2886

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:07:42 UTC from IEEE Xplore. Restrictions apply.

has the same conv-layers as VGGNet16 [12], followed by a
fully connected layer with 1000 hidden units, which is then
fully connected with the final output layer with 2H units.
The output layer represents the H predicted trajectory points
(x̂t+i, ŷt+i) in the ego vehicle local coordinate.

We want to optimize the displacement error dt+i between
the expert’s actual trajectory point position (xt+i, yt+i) and
the predicted point position (x̂t+i, ŷt+i):

dt+i = ((xt+i − x̂t+i)2 + (yt+i − ŷt+i)2)
1
2 .

The overall loss function is defined as

Lt =
1

H

H∑
i=1

d2t+i.

C. Data augmentation

If we directly solve the supervised learning problem (1),
the resulting policy may be unstable and the vehicle will
easily run out of the road. This is due to the co-variant shift
of the vanilla imitation learning algorithm, which only learns
from normal driving data. In the test phase, small prediction
error can be accumulated and the vehicle may reach some
unseen states so that it is unable to recover.

To solve this problem, we periodically introduce noise to
the expert controller during the data collection phase, and let
the expert recover from the perturbation. The control noise
is added every 8 seconds, and will last for 1 second. The
vehicle’s pose might be pushed away from the waypoints.
The expert then provides demonstrations of recovering from
perturbations. The states during the noise phase are removed
in order not to contaminate the dataset. This data augmen-
tation trick significantly improves the performance of the
learned policy, as shown in our experiments.

V. SAFETY ENHANCEMENT & TRAJECTORY
TRACKING CONTROL

Since we use deep neural network, the safety and feasi-
bility of the planned trajectory cannot be guaranteed. In this
section, the design of the safety enhancement controller and
the trajectory tracking controller will be introduced.

A. Trajectory Tracking Controller

Given the planned future trajectory
[x̂t+1, ŷt+1, · · · , x̂t+H , ŷt+H], a tracking controller is
implemented to calculate the desired acceleration at and
steering angle δt to drive the vehicle that follows the
trajectory. A target waypoint (x̂t+m, ŷt+m) is selected
where 1 ≤ m ≤ H−1 (m = 5 in this paper). The controller
is then decoupled to longitudinal and lateral control:

1) Longitudinal Controller: The target speed is set to be

vd =
1

dt
‖(x̂t+m+1, ŷt+m+1)− (x̂t+m, ŷt+m)‖2

where dt is the time interval between two consecutive time
steps. The desired acceleration at is then obtained using PID
control to eliminate the speed tracking error ev (t) = vd −
v (t), where v (t) is the current speed of ego vehicle.

Fig. 3: Illustration of the safety index. Gray is the ego vehicle,
red is a surrounding vehicle. The safety constraint is similar
to the ellipse around the red vehicle, while also considering
the relative speed of the two vehicles.

2) Lateral Controller: The normalized vector from the
ego vehicle position to the target way point is ntarget =

(x̂t+m,ŷt+m)
‖(x̂t+m,ŷt+m)‖2

. The normalized vector of the ego vehicle
heading is nego (t) = (cos θt, sin θt), where θt is the yaw
angle of the ego vehicle. Then the desired steering angle is
obtained using PID control to eliminate the heading error:

eyaw (t) = cos−1 (nego (t) · ntarget (t))

B. Safety Enhancement Controller

The acceleration and steering command at and δt calcu-
lated by the tracking controller does not guarantee safety.
We incorporate a safety controller that will modify at and
δt to enhance safety, if their original values are not safe.

Our method is developed based on the safe set algo-
rithm [15], [16]. The key idea is that for each time step
t, we will calculate a control safe set US (t) of the control
command u (t) =

[
at δt

]T
. The control safe set has the

property that if u (t) ∈ US (t), the ego vehicle will stay safe.
To obtain US (t), a definition of safety needs to be stated.

Here we define a safety index φ (x), which is a function of
the state x, where x represents states (e.g, position, velocity,
heading) of both the ego vehicle and a surrounding object.
In this paper, the safety index is defined as:

φ (x) = D − d2 (x)− αḋ (x)

where d (x) is a shaped distance between the ego vehicle
and the surrounding vehicle:

d (x) =

√
[p0 − pj]TQ [p0 − pj]

where p0 indicates the position of the ego vehicle and pj
indicates the position of the surrounding vehicle. Q is a 2-
by-2 matrix such that [p− pj]TQ [p− pj] = 1 represents an
ellipse around the surrounding vehicle with long axis equal
to 1 and short axis equal to 1

β , where β is the aspect ratio
of the ellipse. Let the state safe set XS be the level set of
the safety index XS = {x : φ (x) ≤ 0}. Then intuitively, the
state safe set introduces an ellipse constraint as shown in
Fig.3. It also considers the relative speed between the ego
and surrounding vehicle. If their relative speed is high, it is
more likely to be unsafe.

We can choose the control safe set to be US (t) ={
u (t) : φ̇ ≤ −η if φ ≥ 0

}
where η > 0 is some margin. It

2887

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:07:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The simulation environment we use. Left is the map
layout, right is a sample view at an intersection.

can be proved that if x (0) ∈ XS and u (t) ∈ US for t ≥ 0,
then x (t) ∈ XS . Now if we approximate the ego vehicle
dynamics to a control affine function ẋ = f (x) + Bu, the
control safe set can be written as:

US (t) = {u (t) : L (t)u (t) ≤ S (t) if φ ≥ 0}

where L (t) = ∂x0

∂xj
B and S (t) = −η − ∂φ

∂xj
ẋj − ∂φ

∂x0
f , x0

and xj are the states of the ego and surrounding vehicle,
respectively.

If there are multiple surrounding objects, we can calculate
the intersection of the control safe set for each object, which
is a convex polytope. Letting u (t) =

[
at δt

]T
denotes

the control command output from the trajectory tracking
controller, the safety controller maps it into the control safe
set US by solving the following quadratic programming
problem:

u∗ (t) = argmin
u∈US

1

2
(u− u (t))TW (u− u (t))

where W is a 2-by-2 weight matrix. We can thus obtain the
modified safe control command u∗ (t) =

[
a∗t δ∗t

]T
. Then

the low-level controller will track the given acceleration a∗t
and steering angle δ∗t .

Note that our safety controller is not restricted to be
applied together with the specific imitation learning planner
in this paper. It can be applied as a module with any upper
level planner to modify their control output to enhance safety.

VI. EXPERIMENTS

A. Simulation Environment and Data Collection

We collect data and evaluate our proposed method on
CARLA simulator [9]. CARLA is an open-source high-
resolution simulation platform for development and valida-
tion of autonomous driving systems. It simulates not only the
raw sensor data such as camera image and Lidar point cloud,
but also detailed vehicle dynamics. A system evaluated on
CARLA is likely to have similar performance if applied to a
real driving environment. Furthermore, in our system we use
the processed bird-view image as input, which has no domain
difference with that of the real world and thus the policy can
be easily transferred from simulation to real world.

Fig.4 shows the map layout and a sample view of the
simulation environment we use for training. It includes
various urban scenarios such as intersection and roundabout.
The map has a range of 400m × 400m, containing about
6km total length of roads. We put 100 vehicles running

TABLE I: Average prediction displacement error (in meters)

Training Condition New Town
M0 0.16 0.44
M1 0.18 0.29

autonomously in the simulator to simulate a multi-agent
environment. The vehicles will randomly choose a direction
at the intersection, follow the route, slow down for front
vehicles and stop when the traffic light is red.

At data collection phase, we use a model-based controller
to act as the expert. The controller is the same as other
agents. When ego vehicle is running, we record the rendered
bird-view image and the corresponding ego vehicle state
(global positions and yaw angle) every 0.1 second. The future
ego vehicle trajectory is calculated by transforming its future
global positions to the ego vehicle’s current local coordinate.

B. Bird-view Image Generation

To render the bird-view input image, we build a buffer to
store the historical states (position, velocity, heading, size)
of all vehicles. The states are then transformed to the ego
vehicle’s current local coordinate. The HD map contains
information of lane markings, which is extracted from the
OpenDrive data provided by CARLA. Routing information
is a sequence of waypoints provided by the global planner
of CARLA, and is rendered as a thick blue line.

C. Training

We run the simulation for about 5 hours and generated
120k frames. 100k frames are used for training and 20k for
evaluation. The model is trained from scratch using Adam
optimizer [13], with initial learning rate of 10−4 for 30
epochs. It is then fined-tuned with learning rate of 10−5

for another 10 epochs. Batch size is set to 50. The model
converges in about 20 hours on a single GTX 1080 Ti.

D. Models

Besides our final model with data augmentation and safety
controller, we also train and test the models without data aug-
mentation and/or without safety controller for comparison.
We thus have three models: 1) M0 - the model without data
augmentation and safety controller; 2) M1 - the model with
data augmentation but without safety controller; 3) M2 - the
model with both data augmentation and safety controller.

E. Open Loop Evaluation

For open loop evaluation, we calculate the average dis-
placement error in both Town03 (Training Condition) and
Town01 (New Town), as shown in Table I.

We also did an ablation study on how data augmentation
improves the performance. We notice that model M0 per-
forms well under most cases. However, once the vehicle runs
into abnormal states, M0 can hardly predict a good trajectory
to help the vehicle recover to normal states. On the contrary,
model M1 has much better ability to help the vehicle recover.
Fig.5 gives one example.

Moreover, we give several examples of model M1’s out-
puts. Fig.6 (a) and (b) show that it can output reasonable

2888

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:07:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Comparison between models trained with data aug-
mentation or without data augmentation (a) Groundtruth
trajectory (b) Predicted trajectory from M0 (c) Predicted
trajectory from M1

Fig. 6: Example results: (a) Left turn at an intersection. (b)
Right turn at an intersection. (c) Blocked by a front vehicle.
(d) Stop at red light. (e) (f) Enter a roundabout.

trajectories in busy intersections. Fig.6 (c) demonstrates that
the model learns how to slow down and stop if there is a
slow or stopped car in front of the ego vehicle. Fig.6 (d)
gives one example that our vehicle stops at the red light.
Fig.6 (e) and (f) are examples of entering a roundabout. We
can see that the model learns to yield to other vehicles when
entering the roundabout in (f).

F. Closed Loop Evaluation

We also implemented our system in CARLA simulator for
closed-loop evaluation. For every 0.1 second, we receive the
environment information and render the corresponding bird-
view image. The deep neural network policy then performs
forward inference and output a predicted trajectory. The
trajectory is sent to the tracking controller and then the
safety controller to output a control command. The control
command is then applied on the ego vehicle in the simulator.
This process is repeated until it reaches some terminal
criterion. We then evaluate the performance of our models
under several urban driving cases and different towns.

1) Evaluation Metrics: Similar to the metrics designed
in [9], we have two metrics for the closed-loop evaluation.
The first is success rate, this metric is applied to some
specific urban driving cases such as intersection and round-
about. To calculate the success rate, a start and end point
are defined for each case, such as start at several meters
before entering an intersection/roundabout, and end at several
meters after passing through it. Note here we do not report
results on simple cases such as lane following as stated

TABLE II: Success rate for the intersection and roundabout
scenarios evaluated on our three models M0, M1 and M2.
The value represent percentage of success trials

Task M0 M1 M2

Intersection 16% 96% 100%
Roundabout 12% 84% 96%

in [9], because the model M2 can succeed 100%. Instead,
we perform experiments on two complex cases including
a signalized intersection and a roundabout with multiple
surrounding dynamic objects. We compare our three models
M0, M1 and M2 under the success rate metric.

The second metric is infraction analysis, which we define
as the average distance the ego vehicle can run between
two collision or out-of-lane events. This definition is a little
different with the infraction metric in [9], where they classify
collision events with respect to different kinds of objects such
as vehicles, bicycles and pedestrians. In this paper, a collision
event means collision to any objects. Since we do not have
pedestrians in our environment, in order to compare with
methods stated in [9], we use the smaller infraction value of
their collision-vehicle and collision-bicycle events. This is
reasonable because their total collision rate must be higher
than that of any single collision type. Our definition for out-
of-lane events contains both cases of running to the opposite
lane and to the sidewalk, as stated. Similarly, we choose the
smaller infraction value to compare. We compare 7 models,
including our three models, as well as Modular Pipeline
(MP), Conditional Imitation Learning (CIL), Reinforcement
Learning (RL) and Conditional Affordance Learning (CAL)
shown in [9], [6], [21]. We also evaluate our performance at
a new town (Town01) to see its generalization. Note that we
do not evaluate new weather conditions, because our method
will not be influenced by different weather because the bird-
view representation is not influenced by weather conditions.

2) Evaluation Results: Table II shows the success rate for
both the intersection and roundabout scenarios of our three
models, where we performed 50 trials for each scenarios and
each model. We can see that without data augmentation and
safety controller, the vehicle can hardly pass these complex
urban scenarios as they cannot even make successful turns at
a relatively sharp curve road. When trained with augmented
data, the success rate improves significantly. Then when
safety controller is added, our final model M2 can almost
perfectly solve the given scenarios.

Table III shows the infraction of our methods and the
existing methods on both our training town (Town03) and a
new town (Town01), where we performed 50 trials for each
model and each town, with 5 minutes for each trial. We then
divide the total distance by the total number of infractions
to get the infraction value. We can see that our final model
M2 outperforms all learning-based methods on both the out-
of-lane and collision metrics. The performance of our model
M2 is similar to the performance of the modular pipeline
under training condition. But for the new town, our model
significantly outperforms all other methods.

Note that our training condition is much more complex

2889

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:07:42 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Infraction analysis for driving in the training condition (Town03) and new town (Town01) using our three
models and other existing methods. The value represents average kilometers traveled between two infractions

Training Condition New Town
Infraction Type MP CIL RL CAL M0 M1 M2 MP CIL RL CAL M0 M1 M2

Out of lane 10.2 12.9 0.18 6.1 0.30 6.92 17.7 0.45 0.76 0.23 0.88 0.29 3.77 5.9
Collision 10.0 3.26 0.42 2.5 0.81 3.95 8.88 0.44 0.40 0.23 0.36 0.44 4.53 11.7

Fig. 7: Failure Cases (a) driving on lane with yellow lane
marking on the right (b) driving on lane with no lane
markings (c) driving on roundabout with fence

than the one in [9], where they train it in Town01 and we
train in Town03. Town01 contains only single lane roads
with almost no curve roads, and there is no roundabout.

G. Failure Cases

Here we analyze three interesting failure cases we found
during our evaluation. Fig.7(a) shows a case where the ego
vehicle is initialized on a lane where the yellow lane marking
is on its right. This makes it look like driving on the opposite
lane. As a result, the planned trajectory tries to steer back to
the ”correct” direction. Although in this case the vehicle fails
to follow the given route, the policy has learned something
about the structure of the road. Fig.7(b) shows a case where
there are no lane markings but only the routing information.
The vehicle then goes out of lane when there’s a fast vehicle
behind. Providing more information such as road boundary
should help with this situation. Fig.7(c) shows a case where
the vehicle hits on the fence at a small roundabout. This
is because there is no concept of collision in our current
model. Reinforcement learning can be incorporated to solve
this problem by adding penalties of hitting obstacles.

VII. CONCLUSION

In this paper, we proposed and implemented a system to
learn a driving policy in generic urban scenarios given offline
collected expert driving data, and enhanced the collision
avoidance safety. We evaluated our methods on CARLA
simulator and found our performance outperform the existing
learning-based methods.

In this work we directly get the ground truth informa-
tion about objects and roads from the simulator, which is
impossible in real world. Thus a perception module needs
to be developed and the influence of its performance to
our system needs to be studied. Furthermore, reinforcement
learning methods can be incorporated with our imitation
learning model to improve the performance.

REFERENCES

[1] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst. arXiv preprint
arXiv:1812.03079, 2018.

[2] M. Bojarski et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[3] M. Bojarski et al. Explaining how a deep neural network trained with
end-to-end learning steers a car. arXiv preprint arXiv:1704.07911,
2017.

[4] J. Chen, C. Liu, and M. Tomizuka. Foad: Fast optimization-based
autonomous driving motion planner. In 2018 Annual American Control
Conference (ACC), pages 4725–4732. IEEE, 2018.

[5] J. Chen, W. Zhan, and M. Tomizuka. Constrained iterative lqr for
on-road autonomous driving motion planning. In 2017 IEEE 20th
International Conference on intelligent Transportation Systems (ITSC),
pages 1–7. IEEE, 2017.

[6] F. Codevilla et al. End-to-end driving via conditional imitation
learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–9. IEEE, 2018.

[7] H. Cui at al. Multimodal trajectory predictions for autonomous driving
using deep convolutional networks. arXiv preprint arXiv:1809.10732,
2018.

[8] N. Djuric et al. Motion prediction of traffic actors for au-
tonomous driving using deep convolutional networks. arXiv preprint
arXiv:1808.05819, 2018.

[9] A. Dosovitskiy et al. Carla: An open urban driving simulator. arXiv
preprint arXiv:1711.03938, 2017.

[10] D. González, J. Pérez, V. Milanés, and F. Nashashibi. A review of mo-
tion planning techniques for automated vehicles. IEEE Transactions
on Intelligent Transportation Systems, 17(4):1135–1145, 2016.

[11] D. Hadfield-Menell at al. Inverse reward design. In Advances in neural
information processing systems, pages 6765–6774, 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[13] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[14] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. In Proceedings. 1991 IEEE
International Conference on Robotics and Automation, pages 1398–
1404. IEEE, 1991.

[15] C. Liu, J. Chen, T.-D. Nguyen, and M. Tomizuka. The robustly-safe
automated driving system for enhanced active safety. Technical report,
SAE Technical Paper, 2017.

[16] C. Liu and M. Tomizuka. Enabling safe freeway driving for automated
vehicles. In 2016 American Control Conference (ACC), pages 3461–
3467. IEEE, 2016.

[17] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games. IEEE Transactions on automatic control, 50(7):947–957, 2005.

[18] M. Montemerlo at al. Junior: The stanford entry in the urban challenge.
Journal of field Robotics, 25(9):569–597, 2008.

[19] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of
motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016.

[20] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural
network. In Advances in neural information processing systems, pages
305–313, 1989.

[21] A. Sauer et al. Conditional affordance learning for driving in urban
environments. arXiv preprint arXiv:1806.06498, 2018.

[22] L. Sun, C. Peng, W. Zhan, and M. Tomizuka. A fast integrated
planning and control framework for autonomous driving via imitation
learning. In ASME 2018 Dynamic Systems and Control Conference,
pages V003T37A012–V003T37A012. American Society of Mechani-
cal Engineers, 2018.

[23] S. Thrun et al. Stanley: The robot that won the darpa grand challenge.
Journal of field Robotics, 23(9):661–692, 2006.

[24] D. Wang et al. Deep object centric policies for autonomous driving.
arXiv preprint arXiv:1811.05432, 2018.

[25] H. Xu el at. End-to-end learning of driving models from large-scale
video datasets. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2174–2182, 2017.

2890

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:07:42 UTC from IEEE Xplore. Restrictions apply.

