
Adaptive Probabilistic Vehicle Trajectory Prediction Through Physically
Feasible Bayesian Recurrent Neural Network

Chen Tang, Jianyu Chen and Masayoshi Tomizuka

Abstract— Probabilistic vehicle trajectory prediction is es-
sential for robust safety of autonomous driving. Current meth-
ods for long-term trajectory prediction cannot guarantee the
physical feasibility of predicted distribution. Moreover, their
models cannot adapt to the driving policy of the predicted target
human driver. In this work, we propose to overcome these two
shortcomings by a Bayesian recurrent neural network model
consisting of Bayesian-neural-network-based policy model and
known physical model of the scenario. Bayesian neural network
can ensemble complicated output distribution, enabling rich
family of trajectory distribution. The embedded physical model
ensures feasibility of the distribution. Moreover, the adopted
gradient-based training method allows direct optimization for
better performance in long prediction horizon. Furthermore, a
particle-filter-based parameter adaptation algorithm is designed
to adapt the policy Bayesian neural network to the predicted
target online. Effectiveness of the proposed methods is verified
with a toy example with multi-modal stochastic feedback gain
and naturalistic car following data.

I. INTRODUCTION

Safety is critical for autonomous vehicle (AV), because it
needs to interact with the complicated driving environment
filled with human-driven vehicles and pedestrians. It is then
necessary for AV to predict other vehicles’ future trajectories
accurately. Many efforts have been made to enhance predic-
tion accuracy [1]–[5]. However, deterministic prediction is
not sufficient to enable robust safety because human driver’s
decisions are uncertain even under the same circumstances.
Instead, the probabilistic distribution of trajectories should
be estimated.

Various methods exist in literature for probabilistic tra-
jectory prediction. Physics-based motion models are de-
veloped based on vehicle dynamics or kinematic model.
Certain assumption on control inputs is made to obtain a
self-evolving model, for instance, constant turn rate and
velocity (CTRV) model [6]. Stochastic trajectory prediction
can be achieved through Bayesian filtering [7] or Monte
Carlo simulation [8], [9]. The predicted distribution satisfies
certain physical constraints imposed by the vehicle model.
However, they are precise only for short time horizon [10].
Another stream of works skips the physics and directly
constructs a probabilistic model of trajectory. Commonly
used models include Gaussian mixture model (GMM) [11]
and Gaussian Process (GP) [12]. Moreover, the prevalence of
deep learning facilitated the usage of deep recurrent neural

†This work was supported by DENSO International America, Inc
†C. Tang, J. Chen and M. Tomizuka are with the Department

of Mechanical Engineering, University of California, Berkeley, CA
94720 USA (e-mail: chen tang@berkeley.edu, jianyuchen@berkeley.edu,
tomizuka@berkeley.edu).

networks (RNN) in probabilistic trajectory prediction [13],
[14]. This category of methods have better performance for
longer prediction horizon but feasibility is not guaranteed. In
practice, they are usually combined with maneuver recog-
nition modeule, resulting in a hierarchical structure [15].
However, human driver’s intention in complicated scenarios
can hardly be labeled, preventing accurate training of the
maneuver recognition module.

To enhance robustness, the models need to be trained with
trajectories executed by different human drivers to avoid
overfitting with specific driving strategies. On the other hand,
when deploying the trained models, the specific target driver
should have relatively consistent characteristics over time.
Therefore, its policy should have smaller variance compared
to the distribution in the training dataset. Consequently,
accuracy could be increased if we are able to adapt the
model to the specific target of interest online. This issue
is considered in [16]. Individual driving characteristics are
encoded as parameters in potential field functions, which are
identified online. However, its performance is restricted by its
relatively simple and inflexible model structure. Moreover, it
is designed for a particular scenario without the capability
for generalization.

In this work, we aim to combine the advantages of
both catagories of methods. Concretely, our objective is to
design a probabilistic model predicting dynamically feasible
trajectory distribution for long horizon. More importantly, we
want to make it adaptable to the specific target vehicle online.
We divide the entire model into two components, policy
and dynamics. The policy describes how the agent reacts to
his observations. The dynamics describes how the scenario
propagates given his actions. Dynamics model at certain level
of complexity can normally be assumed known for vehicles
[17]. It can then be combined with an expressive data-driven
model representing the complicated intrinsic policy, forming
an unit model for a single time step. To infer trajectory
distribution, units for the entire prediction horizon are then
connected into a recurrent structure. In this case, the problem
is transformed into a probabilistic policy learning problem,
which is similar to the idea of probabilistic model-based
imitation learning [18].

We propose to model the policy with Bayesian neural
network (BNN) which enables complicated output distribu-
tion, e.g. multi-modal distribution. It can therefore unify the
commonly used heuristic-based hierarchical model structure,
so that the policy model is optimized as a whole. Potentially,
it can be connected with deep-learning-based perception
and decision making modules. Bayesian deep learning can

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 3846

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:04:44 UTC from IEEE Xplore. Restrictions apply.

be applied in an end-to-end fashion to optimize the entire
architecture [19]. Its flexibility in distribution representation
also enables a policy model for general driving scenarios,
where a single parametric family of distribution is not
sufficient. We adopt a gradient-based method black-box α-
divergence minimization (BB-α) [20] to train the entire
recurrent model for better long-term prediction performance.
Eventually, we obtain a Bayesian recurrent neural network
(BRNN). To achieve adaptation, we propose a particle-filter-
based online adaptation method to incorporate new samples
quickly online. The model after training is treated as a prior
to obtain the posterior policy BNN adapted to the target
human driver.

Contribution of this work is threefold: 1) We propose
to convert the trajectory prediction problem into a policy
learning problem and develop a BRNN model for long-term
trajectory prediction. (2) Particle-filter-based online adapta-
tion method is proposed to adapt the policy BNN model
online to the specific predicted target. (3) The proposed
methods are applied to solve a practical vehicle trajectory
prediction problem in car following scenario.

II. BACKGROUND

A. Bayesian Neural Networks with Stochastic Inputs

A BNN with random input noise z is developed in [21]
for stochastic dynamical system modeling. Given data D =
{xn,yn}Nn=1, where xn is feature vector and yn is labeled
output, it is assumed that yn = g (xn, zn;W) + εn, where
g (·, ·;W) represents a neural network with L layers and Ll

hidden units in layer l, parameterized by W = {W l}Ll=1, a
collection of Vl × (Vl−1 − 1) weight matrices. The elements
of W l are mutually independent and an identical Gaussian
prior is assigned to each of them, i.e. wij,l ∼ N (0, λ). zn is a
synthetic stochastic disturbance to enable richer probabilistic
distribution structure. Each pair of sample (xn,yn) has a
corresponding independent zn. εi is random noise to enable
continuous distribution of yn. Both zn and εi have Gaussian
priors, i.e. zn ∼ N (0, γ) and εn ∼ N (0,Σε). The model
is trained by estimating the posterior distribution of param-
eters p (W, z|D), where z is the vector collecting all the
random inputs. The distribution p (W, z|D) is approximated
by q (W, z) as in (1). The conditional output distribution
p(y|x,D) can then be approximated by Monte Carlo sam-
pling, i.e. computing samples of y with samples of W, z
drawn from q(W, z). The structural complexity and non-
linearity embedded in the neural network enable abundant
probabilistic structure, strengthening the expressiveness of
the model.

q (W, z)

=

L∏
l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (
wij,l|mw

ij,l, v
w
ij,l

) N∏
n=1

N (zn|mz
n, v

z
n)

∝
[

N∏
n=1

f(W)fn(zn)

]
p(W)p(z),

(1)

where

p(W) =

L∏
l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (wij,l|0, λ)

p(z) =

N∏
n=1

N (zn|0, γ)

fn(zn) = exp

{
vzn − γ

2γvzn
z2n +

mz
n

vzn
zn

}
f(W) =

exp

⎧⎨
⎩

L∑
l=1

Vl∑
i=1

Vl−1+1∑
j=1

1

N

(
vwij,l − λ

2λvwij,l
w2

ij,l +
mw

ij,l

vwij,l
wij,l

)⎫⎬
⎭

B. Black-Box α-Divergence Minimization

BB-α [20] can be used to approximate the distribution
q(W, z), which is a gradient-based and sampling-based
approximate inference method. At each iteration, M samples
of W and z are drawn from current estimated posterior
distribution. A mini-batch of data S ⊂ {1, 2, 3, ..., N} is
sampled uniformly. The noisy estimate of energy function as
shown in (2) is minimized by tuning q(W, z) and Σ through
gradient descent. The only term related to the data is the
likelihood function p (yn|xn,Ws, zn,s,Σ). One advantage
of BB-α is that the divergence function used in the energy
function can be tuned by adjusting α, providing flexibility to
improve performance [20]. A general guidance for α value
selection is provided in [21]. In practice, the best α value
can be directly found by validation.

Êα(q) = − logZq − N

α|S|
∑
n∈S

L̂n
α(q), (2)

where

logZq =

L∑
l=1

Vl∑
i=1

Vl−1+1∑
j=1

(
1

2
log(2πvwij,l) +

(mw
ij,l)

2

2vwij,l

)

+
N∑

n=1

[
1

2
log(2πvzn) +

(mz
n)

2

2vzn

]

L̂n
α(q) = log

1

M

M∑
s=1

(
p (yn|xn,Ws, zn,s,Σ)

f(Ws)f(zn,s)

)α

.

III. PROBLEM FORMULATION

In this section, we formulate the trajectory prediction
problem and introduce the notations we use in latter sections.
The problem is formulated in the context of the interactive
car following scenario that our proposed methods are verified
with. It can be generalized to other scenarios and other
trajectory prediction problems easily. The following vehicle,
denoted by P , is driven by human driver and the preceding
vehicle, denoted by Q, is an AV. We define a state variable
x = [dpq vp vq]

T. dpq is the longitudinal distance between
the two vehicles. vp and vq are the longitudinal speed of
P and Q. The actions executed by the two vehicles are
denoted as ap = [Δdp Δvp]

T and aq = [Δdq Δvq]
T.

Δdp and Δdq are the longitudinal displacement of P and

3847

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:04:44 UTC from IEEE Xplore. Restrictions apply.

Q over the sampling time Δt. Δvp and Δvq are the change
of longitudinal speed of P and Q over Δt. The scenario
is modeled as a discrete-time system whose dynamics is
described below and illustrated in Figure 1.

dpq,i+1 = dpq,i −Δdp,i +Δdq,i + ω1,i (3)
vp,i+1 = vp,i +Δvp,i + ω2,i (4)
vq,i+1 = vq,i +Δvq,i + ω3,i. (5)

In the equations, ω1,i, ω2,i and ω3,i are additive Gaussian
noise accounting for the uncertainty in dynamics. We denote
ωi ∼ N (0,Σωi) as the random vector collecting these three
noise variables. For convenience, the dynamics model is
denoted as the following general form in the remainder:

xi+1 = h (xi,ap,i,aq,i) + ωi (6)

we assume we know x for the current and past time steps
and the planned future actions of the AV, aq , for next h
time steps. At a time step k, given a trajectory of x from
time step k−m to k, xk−m:k, and a series of aq from time
step k to k + h − 1, ak:k+h−1,the conditional distribution
of future state trajectory p (xk+1:k+h|xk−m:k,aq,k:k+h−1) is
predicted. The predicted distribution is utilized by sampling-
based motion planning algorithms which consider interaction
and uncertainty [22].

To fulfill the goal, we need to construct a probabilis-
tic model of trajectory. In this work, we break down the
probabilistic model into units connected recurrently. Each
unit corresponds to a single time step, describing the tran-
sition of state at this time step. At a time step i, we
assume that the state at next time step xi+1 depends on
the states of previous m + 1 time steps, i.e. xi−m:i. Con-
sequently, each unit describes the probabilistic transition
function pθi (xi+1|xi−m:i,aq,i), parameterized by θi for
i = k, ..., k + h− 1. By assuming the unit is time-invariant,
the transition functions at all time steps are parameterized by
an identical parameter vector θ. The probabilistic transition
function can be further split up as follows:

pθ (xi+1|xi−m:i,aq,i)

=

∫
p (xi+1|xi,aq,i,ap,i) pθ (ap,i|xi−m:i)dap,i.

(7)

The function pθ (ai|xi−m:i) represents P ’s inherent policy.
We assume that it depends only on xi−m:i, but not on aq,i.
It is reasonable as human drivers make decisions according
to their current and historical observations. Other drivers’
decisions cannot be directly observed. p (xi+1|xi,ap,i,aq,i)
represents the dynamics. Since the dynamics model is
known as (6), we can obtain p (xi+1|xi,ap,i,aq,i) =
N (xi+1;h (xi,ap,i,aq,i) ,Σωi). By contrast, probabilistic
model of the policy is unknown and need to be identified,
which is the key element in our proposed model.

IV. METHODOLOGY

In this work, we modify the BNN with random input
noise introduced in previous section to model the stochastic
control policy. To enhance prediction performance for long

Fig. 1: Interactive Car Following Scenario with human-driven
vehicle Q and autonomous vehicle P .

time horizon, the entire recurrent model consisting of policy
BNN and physical model is trained via BPTT. Accordingly,
the likelihood function in (2) is replaced by the likelihood
of labeled future trajectory, estimated with BNN parameter
sampling and optimal filtering. The parameters of the policy
BNN are adapted online through particle filtering. Intuitively,
weight samples generating trajectory similar to the actual
trajectory are assigned higher weights. Consequently, the
mass of weight distribution is shifted toward those weights.

A. Physically Feasible Bayesian Recurrent Neural Network

We use the BNN with random input noise to represent
the policy. Different from [21], we assume that the random
inputs for all the samples are identical, i.e. zi = z2 =
· · · = zN = z. Otherwise, it is ambiguous which zn
should be used for a test sample. Concretely, we assume
that ap,i = g (xi−m:i, z;W) + εi at each time step i. The
posterior distribution is then approximated with (8) instead.

With the policy BNN, the recurrent model developed
in last section becomes a BRNN with dynamics model
embedded (Figure 2). Instead of training the policy BNN
alone, we propose to directly train the entire recurrent model.
Since BB-α is a gradient-based method, it is straightfor-
ward to extend the scheme to train the BRNN via BPTT
[23], [24]. The training dataset consists of state trajectories,
planned future input series and actual future trajectories,
i.e. D = {xn

−m:0,a
n
q,0:h−1,x

n
1:h}Nn=1. In addition to W

and z, samples of addictive noise series {ωn
0:h−1}Nn=1 =

{ωn}Nn=1 and {εn0:h−1}Nn=1 = {εn}Nn=1 are drawn at each
iteration. The energy function is essentially the same. The
major difference is that the likelihood function becomes
p
(
xn
1:h|xn

−m:0,a
n
q,0:h−1,Ws, zs, ε

n
s ,ω

n
s

)
, namely the like-

lihood of labeled future trajectory given its corresponding
historical trajectory, future input series and sampled pa-
rameters. Besides, the energy function should be revised
based on the assumption on identical z over samples. It is
worth noting that policy BNNs for the entire time sequence
share the same Ws and zs under the sampling strategy. It
indicates an underlying assumption of invariant policy over
the given time horizon h. It enables our particle-filter-based
online parameter adaptation algorithm explained later in this
section.

One problem remained is how to estimate the likeli-
hood. We follows a simple estimation method to save
computational time. Given a sample xn

i−m:i,s at time step
i and corresponding sample of neural network parame-
ters Ws and zs, we compute the mean of predicted ac-
tion ān

p,i,s. The conditional distribution of predicted action

3848

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:04:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Structure of the physically feasible BRNN. The
shadowed nodes xk−m:k and aq,k:k+h−1 are given.

then follows N (ān
p,i,s,Σ). Since the dynamics model is

known, we can then estimate the conditional distribution
p(xn

i+1,s|Ws, zs,a
n
q,i,x

n
i−m:i,s) as N (mn

i+1,s,Σ
n
i+1,s), fol-

lowing the prior update procedure of optimal filtering [25],
e.g. Kalman filter (KF) for linear system and extended
Kalman filter (EKF) for nonlinear system. A sample xn

i+1,s

can be computed with ān
p,i,s and sampled noises (εni,s, ω

n
i,s),

along with the dynamics model for the usage of computation
for later time steps. Eventually, we can approximate the
likelihood function with

∏h
i=1 N (xn

i |mn
i+1,s,Σ

n
i+1,s). In

perspective of a single sample of neural network parameters,
this estimation scheme underestimates the propagation of
variance through time. However, the problem can be alle-
viated by increasing the number of samples J to decrease
the prior weight of each sample.

q (W, z) =

L∏
l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (
wij,l|mw

ij,l, v
w
ij,l

)N (z|mz, vz)N

∝ [f(W)f(z)]
N
p(W)p(z)N ,

(8)
where

p(z) = N (z|0, γ), f(z) = exp

{
vz − γ

2γvz
z2 +

mz

vz
z

}

Training the entire recurrent model has several benefits.
Firstly, the distribution q(W, z) approximates the posterior
distribution conditioned on sampled trajectories. Therefore,
the approximated posterior conditional distribution of trajec-
tory inferred from the model can resemble the actual distribu-
tion better. Moreover, since the dynamics model is embedded
into the recurrent model, it confines the output distribution
to probability with dynamical constraints. Consequently, the
parameters are optimized over dynamically feasible family
of output distribution.

B. Online Parameter Adaptation via Sequential Monte Carlo

Gradient-based methods are not suitable for real-time pa-
rameter adaptation since convergence cannot be guaranteed
within certain iterations. Instead, we adopt sequential Monte
Carlo (SMC) sampling, namely particle filtering. SMC has
been adopted for neural network training in early stage
[26]. It is computationally expensive for large-scale training.
In contrast, new samples collected in real time can be
incorporated into posterior distribution estimation by one-
step update sequentially.

Formally, we assume the weights of the policy BNN are
invariant over time. Equation (6) together with the model of

Algorithm 1 Parameter adaptation algorithm

Input: qk−u(W, z), xk−m−u:k, aq,k−u:k−1

Output: new approximate posterior distribution qk(W, z)
1: for s = 1, ...,M , draw samples from qk−u(W, z) and denote

them as {Ws}Ms=1 and {zs}Ms=1.
2: for s = 1, ...,M do
3: for r = 0, ..., u− 1 do
4: āp,k−u+r,s = g(xk−m−u+r:k−u+r, zs;Ws)
5: approximate the likelihood by Gaussian distribution using

Kalman filter or extended Kalman filter:
p(xk−u+r+1|Ws, zs,aq,k−u+r,xk−m−u+r:k−u+r)
≈ N (xk−u+r+1;mk−u+r+1,s,Σk−u+r+1,s)

6: end for

7: βs =

u−1∏

r=0

N (xk−u+r+1;mk−u+r+1,s,Σk−u+r+1,s)

8: end for
9: estimate the mean and variance as:

mw
ij,l =

∑M
s=1 βswij,l,s∑M

s=1 βs

vwij,l =

∑M
s=1 βs(wij,l,s −mw

ij,l)
2

∑M
s=1 βs

mz =

∑M
s=1 βszs∑M
s=1 βs

vz =

∑M
s=1 βs(zs −mz)2

∑M
s=1 βs

10: obtain qk(W, z) based on (8)
11: return qk(W, z)

policy BNN are treated as measurement model of W and z.
An additional random noise vi ∼ N (0,Σv) is added in (6).
The collected xi+1 is then regarded as a noisy measurement
of state, so that the parameters do not overfit with the
new samples. To further prevent overfitting, parameters are
updated each u steps. At each update step, the posterior
distribution of BNN parameters is estimated using particle
filter. The update procedure is described in Algorithm 1. For
faster resampling, the weighted samples of W and z are
fitted to a Gaussian distribution, from which new samples
are drawn [27].

V. EXAMPLES

A. Toy Linear System with Stochastic Feedback Gain

We start with evaluating the proposed method with a toy
example, so that the predicted conditional distribution of tra-
jectory can be compared directly with the actual distribution.
The designed toy example is a linear system with stochastic
feedback gain described in Equations (9-10).

xi+1 = xi − γS(κi)xi (9)
κi+1 = κi + ζi, (10)

where κ0 ∼ p1N (μ1, v1)+ p2N (μ1, v2) and ζi ∼ N (0, vζ).
The function S(·) is the sigmoid function. Along with the
constant γ, it enables stability of the closed-loop system.
A random noise ζi is added to have κi vary over time.
Given an initial state x0, we want to enquire the conditional
distribution p(x1:15|x0) from the model. The policy BNN is

3849

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:04:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Normalized histograms of xk at different time steps. The solid blue line represents histogram of actual xk, dash lines
with different color represent histogram of xk sampled from different models. The x-axis is the value of xk and the y-axis
is the corresponding approximated density.

Fig. 4: Estimated log likelihood and KL-divergence of xk

over the 15 time steps. The log likelihood is estimated as
in the training stage using 100 sampled trajectories. The
KL Divergence KL(pactual||papprox) is estimated based on the
normalized histograms, where pactual is the actual distribution
and papprox is the predicted distribution.

expected to approximate the average gain distribution over
the prediction horizon.

We set x0 = 200, μ1 = −1, μ2 = 1, v1 = v2 = 0.36,
p1 = p2 = 0.5 and vζ = 0.04. 5000 samples of x1:15 are
drawn for training. The network has two hidden layers with
50 hidden units per layer. The batch size is 50. The learning
rate is chosen as 1e− 4. 100 samples are drawn to estimate
the energy function. The model is implemented in Tensorflow
[28]. We compare BNNs trained with three special α values,
1e − 6, 0.5 and 1.0. Afterwards, BRNN is trained with
the best α value found. Moreover, a conditional GMM is
trained by Expectation Maximization (EM) algorithm for
comparison, so that the benefit of the complicated proba-
bility structure enabled by BNN could be illustrated. The
GMM model implemented in scikit-learn [29] is adopted.
10 mixture components are selected after tuning. BNN with
α = 1.0 captures the multi-modal structure of distribution,
while as BNNs with other α values as well as GMM model
fail to do so. Its performance surmounts other models in
terms of log likelihood and KL-divergence as well. Training
the entire recurrent model further increases the log likelihood
and decreases the KL-divergence, especially for latter time
steps in the prediction horizon. BRNN tends to approximate
the state distribution better over the entire prediction horizon,
at the cost of relatively lower similarity at the first time
step. The online parameter adaptation algorithm is tested
by adapting the policy BNN to trajectories generated with
κ0 ∼ N (μ1, v1). 9 adaptation iterations are applied. For
each iteration i, the policy BNN is adapted to a sampled

Fig. 5: (a) Average log likelihood over adaptation iterations.
(b) Average log likelihood over the prediction horizon.
Adapted model after the last iteration is compared with the
original model.

trajectory xi
0:30. Log likelihood of the trajectory xi

0:15 un-
der the predicted distribution is recorded. Meanwhile, the
log likelihood computed with the unadapted model is also
recorded for comparison. The test procedure is conducted for
50 times. The average log likelihood increases over iterations
(Figure 5), indicating adaptation towards the distribution of
new samples.

B. Interactive Car Following Model from Traffic Data

To verify the proposed method for stochastic trajectory
prediction problem in autonomous driving, we start with
learning an interactive car following model from naturalistic
traffic data. The scenario is stated in Section III. The dataset
selected is Interstate 80 (I-80) Freeway Dataset from the
Next Generation Simulation (NGSIM) program [30]. We set
Δt = 0.2s, m = 9 and h = 30. The network has three
hidden layers with 50 hidden units per layer. The batch
size is 250. The learning rate is chosen as 1e − 4. 1000
samples are drawn to estimate the energy function. During
the training of the policy BNN, α = 0.5 achieves the best
performance in terms of log likelihood. Therefore, we fix
α = 0.5 and evaluate the effect of trajectory length in the
training stage of the recurrent model. Particularly, we set
h = 1, h = 10, h = 20 and h = 30 in (2) and train
four models correspondingly. Meanwhile, similar to the toy
example, we train a GMM policy unit for comparison. 20
mixture components are selected.

We test the trained models with 100 randomly selected
trajectories from test dataset. To compare the performance
in short and long time horizons separately, the average log
likelihood of the first 15 time steps and the one of the

3850

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:04:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Normalized histograms of predicted vp at different time steps. The solid red vertical line represents the actual value
in the dataset. The x-axis is the value of vp and the y-axis is the corresponding approximated density.

latter 15 time steps are computed respectively. Increasing
h in training leads to higher likelihood. Since the car
following scenario is relatively simple with small variance,
GMM actually performs quite well especially for short time
horizon. But still, BRNN with h = 30 achieves higher
log likelihood for latter time steps than GMM, indicating
the effectiveness of training the entire BRNN in long-term
trajectory prediction.

To test the online adaptation algorithm, we adapt the
policy BNN to trajectories of the same vehicle over 90 time
steps. The parameters are updated per 30 steps, i.e. 2 update
iterations are applied for each trajectory. 44 trajectories
are extracted from the test dataset for evaluation. Table I
shows the average log likelihood of the trajectories over
the last 30 time steps. BRNN with h = 30 achieves the
best performance after adaptation, whereas smaller h led to
decreased log likelihood. To visualize the distribution for
comparison, we choose a trajectory and plot the normalized
histogram of predicted vp at different time steps for three
models: the BRNN with h = 30 without adaptation, the
BRNN with h = 30 after adaptation and GMM model. The
variance of BRNN’s prediction becomes smaller than the
GMM model after adaptation, leading to larger likelihood of
the actual vp. It is difficult to rigorously analyze the cause
as the actual distribution of data can hardly be extracted.
Intuitively, the BRNN with h = 30 learns a policy invariant
over the prediction horizon, so that the adaptation algorithm
based on the assumption of time-invariant policy works well.

VI. DISCUSSION AND FUTURE WORK

As shown in last section, the proposed BRNN architecture
achieves good performance in trajectory prediction especially
for long prediction horizon. Its advantages are more apparent
in the toy example, where the multi-modal policy leads to
complicated distribution of trajectory. The distribution in

the car following scenario is relatively simple, therefore,
GMM has a comparable performance with BRNN. However,
BRNN still surmounts GMM in later time steps of the
prediction horizon. In future research, the proposed method
will be evaluated in driving scenarios where the distribution
of trajectories is more complicated.

For the online adaptation algorithm, it has been illustrated
in the toy example that the policy BNN can indeed adapt to
online collected samples, when the assumption that the pol-
icy varies slightly over time holds. In real-world scenarios,
the assumption might not hold. Based on the experimental
results for car following, learning an time-invariant policy
for long horizon during training seems to enable better
adaptation effect, but its performance cannot be asserted.
The algorithm will be further evaluated when the time-
invariant assumption does not hold. Another limitation is a
large number of samples has to be drawn to approximate
the distribution of weights accurately when the size of BNN
is large. In the future, we will investigate on reducing the
number of adaptable parameters for online adaptation.

VII. CONCLUSION

In this work, a novel stochastic vehicle trajectory pre-
diction method based on BNN is developed. Combining
BNN-based policy model with the known physical model
recurrently, the proposed BRNN architecture can generate
physically feasible trajectory distribution. Gradient-based
training method enables direct optimization towards better
long-term prediction performance. Furthermore, a particle-
filter-based parameter adaptation algorithm is designed to
adapt the policy BNN towards the driving policy or predicted
target. The proposed methods achieve good performance in
both the toy example with multi-modal policy and real-world
car following scenario.

TABLE I: Model Performance Comparison for Car Following Model Learning

Model Testing Data Without Adaptation After Adaptation
First 15 time steps Second 15 time steps First 15 time steps Second 15 time steps First 15 time steps Second 15 time steps

BRNN, h = 1 −3.27 ± 13.51 −4.95 ± 4.76 −4.71 ± 4.46 −7.34 ± 2.39 −191.13 ± 100.82 −40.90 ± 45.52
BRNN, h = 10 −2.30 ± 5.50 −3.43 ± 1.15 −2.00 ± 1.05 −3.83 ± 0.52 −3.25 ± 2.04 −6.20 ± 1.31
BRNN, h = 20 −2.13 ± 2.78 −3.45 ± 0.90 −2.08 ± 0.82 −3.52 ± 0.22 −2.10 ± 0.81 −3.56 ± 0.32
BRNN, h = 30 −2.09 ± 2.03 −3.39 ± 0.86 −2.00 ± 0.73 −3.55 ± 0.32 −1.94 ± 0.70 −3.50 ± 0.27
GMM −1.89 ± 2.59 −3.46 ± 0.96 −1.89 ± 1.03 −3.69 ± 0.45 - -

1 In each cell, the average log likelihood of trajectory divided by the number of time steps is presented in form of mean ± std.
2 h is the number of future states considered at the training stage of BRNN.

3851

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:04:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion predic-
tion and risk assessment for intelligent vehicles,” Robomech Journal,
vol. 1, no. 1, p. 1, 2014.

[2] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle trajec-
tory prediction based on motion model and maneuver recognition,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pp. 4363–4369, IEEE, 2013.

[3] C. Liu and M. Tomizuka, “Enabling safe freeway driving for au-
tomated vehicles,” in American Control Conference (ACC), 2016,
pp. 3461–3467, IEEE, 2016.

[4] L. Lin, S. Gong, T. Li, and S. Peeta, “Deep learning-based human-
driven vehicle trajectory prediction and its application for platoon
control of connected and autonomous vehicles,” in The Autonomous
Vehicles Symposium, vol. 2018, 2018.

[5] D. Jeong, M. Baek, and S.-S. Lee, “Long-term prediction of vehicle
trajectory based on a deep neural network,” in 2017 International Con-
ference on Information and Communication Technology Convergence
(ICTC), pp. 725–727, IEEE, 2017.

[6] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone,
“Sensor fusion for predicting vehicles’ path for collision avoidance
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 8, no. 3, pp. 549–562, 2007.

[7] H. Veeraraghavan, N. Papanikolopoulos, and P. Schrater, “Determinis-
tic sampling-based switching kalman filtering for vehicle tracking,” in
Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE,
pp. 1340–1345, IEEE, 2006.

[8] A. Eidehall and L. Petersson, “Statistical threat assessment for general
road scenes using monte carlo sampling,” IEEE Transactions on
intelligent transportation systems, vol. 9, no. 1, pp. 137–147, 2008.

[9] M. Althoff and A. Mergel, “Comparison of markov chain abstrac-
tion and monte carlo simulation for the safety assessment of au-
tonomous cars,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 4, pp. 1237–1247, 2011.

[10] M. G. Ortiz, J. Fritsch, F. Kummert, and A. Gepperth, “Behavior
prediction at multiple time-scales in inner-city scenarios,” in 2011
IEEE Intelligent Vehicles Symposium (IV), pp. 1068–1073, IEEE,
2011.

[11] J. Wiest, M. Höffken, U. Kreßel, and K. Dietmayer, “Probabilistic
trajectory prediction with gaussian mixture models,” in Intelligent
Vehicles Symposium (IV), 2012 IEEE, pp. 141–146, IEEE, 2012.

[12] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A bayesian
nonparametric approach to modeling motion patterns,” Autonomous
Robots, vol. 31, no. 4, p. 383, 2011.

[13] B. Kim, C. M. Kang, S. H. Lee, H. Chae, J. Kim, C. C. Chung,
and J. W. Choi, “Probabilistic vehicle trajectory prediction over
occupancy grid map via recurrent neural network,” arXiv preprint
arXiv:1704.07049, 2017.

[14] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W.
Choi, “Sequence-to-sequence prediction of vehicle trajectory via lstm
encoder-decoder architecture,” in 2018 IEEE Intelligent Vehicles Sym-
posium (IV), pp. 1672–1678, IEEE, 2018.

[15] G. Xie, H. Gao, L. Qian, B. Huang, K. Li, and J. Wang, “Vehicle
trajectory prediction by integrating physics-and maneuver-based ap-
proaches using interactive multiple models,” IEEE Transactions on
Industrial Electronics, vol. 65, no. 7, pp. 5999–6008, 2018.

[16] H. Woo, Y. Ji, Y. Tamura, Y. Kuroda, T. Sugano, Y. Yamamoto,
A. Yamashita, and H. Asama, “Trajectory prediction of surrounding
vehicles considering individual driving characteristics,” International
Journal of Automotive Engineering, vol. 9, no. 4, pp. 282–288, 2018.

[17] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation
of advanced motion models for vehicle tracking,” in Information
Fusion, 2008 11th International Conference on, pp. 1–6, IEEE, 2008.

[18] P. Englert, A. Paraschos, M. P. Deisenroth, and J. Peters, “Probabilistic
model-based imitation learning,” Adaptive Behavior, vol. 21, no. 5,
pp. 388–403, 2013.

[19] R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah,
R. Cipolla, and A. V. Weller, “Concrete problems for autonomous
vehicle safety: Advantages of bayesian deep learning,” International
Joint Conferences on Artificial Intelligence, Inc., 2017.

[20] J. M. Hernández-Lobato, Y. Li, M. Rowland, D. Hernández-Lobato,
T. Bui, and R. E. Turner, “Black-box α-divergence minimization,”
2016.

[21] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft,
“Learning and policy search in stochastic dynamical systems with
bayesian neural networks,” arXiv preprint arXiv:1605.07127, 2016.

[22] J. Chen, C. Tang, L. Xin, S. E. Li, and M. Tomizuka, “Continuous
decision making for on-road autonomous driving under uncertain and
interactive environments,” in Intelligent Vehicles Symposium (IV), 2018
IEEE, IEEE, 2018.

[23] P. J. Werbos, “Backpropagation through time: what it does and how
to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560,
1990.

[24] M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian recurrent neural
networks,” arXiv preprint arXiv:1704.02798, 2017.

[25] B. D. Anderson and J. B. Moore, “Optimal filtering,” Englewood Cliffs,
vol. 21, pp. 22–95, 1979.

[26] N. De Freitas, C. Andrieu, P. Højen-Sørensen, M. Niranjan, and
A. Gee, “Sequential monte carlo methods for neural networks,” in
Sequential Monte Carlo methods in practice, pp. 359–379, Springer,
2001.

[27] J. H. Kotecha and P. M. Djuric, “Gaussian sum particle filtering,”
IEEE Transactions on signal processing, vol. 51, no. 10, pp. 2602–
2612, 2003.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), pp. 265–
283, 2016.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learn-
ing research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[30] V. Alexiadis, J. Colyar, J. Halkias, R. Hranac, and G. McHale,
“The next generation simulation program,” Institute of Transportation
Engineers. ITE Journal, vol. 74, no. 8, p. 22, 2004.

3852

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:04:44 UTC from IEEE Xplore. Restrictions apply.

