
MOTION PLANNING FOR AUTONOMOUS DRIVING WITH EXTENDED
CONSTRAINED ITERATIVE LQR

Yutaka Shimizu∗
Graduate School of

Information Science and Technology
University of Tokyo

7-3-1 Hongo Bunkyo-ku
Tokyo 113-0033

Japan.
Email: yutaka.shimizu@pf.is.s.u-tokyo.ac.jp

Wei Zhan, Liting Sun, Jianyu Chen
Department of Mechanical Engineering

University of California
Berkeley, CA 94720

Email: wzhan, litingsun, jianyuchen@berkeley.edu

Shinpei Kato †

Graduate School of
Information Science and Technology

University of Tokyo
7-3-1 Hongo Bunkyo-ku

Tokyo 113-0033
Japan.

Email: shinpei@is.s.u-tokyo.ac.jp

Masayoshi Tomizuka

Department of Mechanical Engineering
University of California

Berkeley, CA 94720
Email: tomizuka@berkeley.edu

ABSTRACT
Autonomous driving planning is a challenging problem

when the environment is complicated. It is difficult for the
planner to find a good trajectory that navigates autonomous
cars safely with crowded surrounding vehicles. To solve this
complicated problem, a fast algorithm that generates a high-
quality, safe trajectory is necessary. Constrained Iterative Lin-
ear Quadratic Regulator (CILQR) is appropriate for this prob-
lem, and it successfully generates the required trajectory in real-
time. However, CILQR has some deficiencies. Firstly, CILQR
uses logarithmic barrier functions for hard constraints, which
will cause numerical problems when the initial trajectory is in-
feasible. Secondly, the convergence speed is slowed with a bad
initial trajectory, which might violate the real-time requirements.
To address these problems, we propose the extended CILQR by

∗This work was conducted during a visit to the Mechanical Systems Control
Laboratory at University of California, Berkeley.

†TierIV Inc., 3-22-5 Hongo, Apt. 13F, Bunkyo-ku, TOKYO, 113-0033

adding two new features. The first one is using relaxed logarith-
mic barrier functions instead of the standard logarithmic barrier
function to prevent numerical issues. The other one is adding
an efficient initial trajectory creator to generate a good initial
trajectory. Moreover, this initial trajectory helps CILQR to con-
verge to a desired local optimum. These new features extend
CILQR’s usage to more practical autonomous driving applica-
tions. Simulation results show that our algorithm is effective in
challenging driving environments.

1 INTRODUCTION
Autonomous Vehicles (AVs) have a great potential to im-

prove our society and life. Since the 2007 DARPA Urban Chal-
lenge, autonomous driving has gained lots of attention from both
academia and industry. However, there are still many unsolved
problems in the field of autonomous driving. One of the chal-
lenging problems is path planning, which requires generating a
real-time safe, smooth and efficient trajectory to navigate the au-

Proceedings of the ASME 2020
Dynamic Systems and Control Conference

DSCC2020
October 5-7, 2020, Virtual, Online

DSCC2020-3138

Copyright © 2020 ASMEV001T12A001-1

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

https://crossmark.crossref.org/dialog/?doi=10.1115/DSCC2020-3138&domain=pdf&date_stamp=2021-01-18

tonomous vehicle in highly complicated environments. To ad-
dress this challenging task, a considerable amount of works have
been reported.

Optimization-based approach is one of the effective ways
to solve this problem. It has gained much more attention since
Mercedes-Benz showed its effectiveness. They formulate au-
tonomous driving motion planning to a nonlinear optimization
problem and solve it with Sequential Quadratic Programming
(SQP) [9] and successfully ran the autonomous vehicle for 100
km without human intervention. Though the algorithm can deal
with many challenging situations, its calculation time needs to
be further reduced for emergency situations.

Researchers have proposed alternative optimization-based
motion planners. Constrained Iterative Linear Quadratic Reg-
ulator (CILQR) [1,2] is a newly proposed approach to this prob-
lem. It is based on Iterative Linear Quadratic Regulator (ILQR),
which is an efficient algorithm to solve nonlinear optimal con-
trol problems. However, ILQR cannot handle both state and
input constraints. Due to various state and input constraints in
robot planning problems, it is not easy to apply ILQR to practi-
cal robotics problems. CILQR iteratively uses a shaped barrier
function to embed the constraints into the objective function and
solve the resulting unconstrained planning problem using ILQR.
This approach shows faster convergence than SQP. However,
there are some problems to CILQR to real-world autonomous
driving, including numerical stability and convergence rate. The
former problem comes from the barrier function, which will fail
when the initial trajectory is infeasible. The latter comes from
the quality of the initial trajectory since the convergence rate is
slowed with a bad initial trajectory.

In this paper, we propose the extended CILQR algorithm
that improves numerical stability and convergence rate. First, we
design a new barrier function that relaxes the standard logarithm
barrier function to solve the numerical stability problem. Then,
we develop a new efficient initial trajectory creator that gener-
ates better initial trajectories faster. Finally, we test our proposed
algorithm on simulated driving environments and verify that ex-
tended CILQR can handle some complicated driving situations
when the original CILQR fails to solve. Furthermore, the com-
putational time of the proposed method is fast enough to be used
in a practical application.

The main contribution of this paper can be summarized as
follows.

Relaxed logarithmic barrier function:
We propose a relaxed logarithmic function that solves the
numerical stability problem when initial trajectory is infea-
sible.
Fast initial trajectory creator:
We develop a new fast initial trajectory creator that generates
high quality trajectory.
Simulation in a practical environment We simulate our
new algorithm in challenging situations where the original
CILQR fails. Furthermore, we confirm that our new algo-
rithm has fast computation speed.

The paper is organized as follows. In Section 2, we intro-
duce some related works that has been developed. Section 3

explains the basic idea of ILQR, Differential Dynamic Program-
ming (DDP) and CILQR. Section 4 introduces the relaxed loga-
rithmic function and Section 5 gives details of the initial trajec-
tory creator. Finally, Section 6 shows the result of the simulation
and Section 7 concludes this paper and discusses the future work.

2 Related Works
Learning-based motion planning methods, such as imita-

tion learning [3] and inverse reinforcement learning [4], are ca-
pable of learning the driving preference of human drivers, but
lack the theoretical guarantee for safety and feasibility. On
the other hand, conventional planning approaches without learn-
ing, such as search-based [5], sampling-based method and the
optimization-based methods are able to theoretically guarantee
the generated trajectories to be collision-free and feasible. The
latter two approaches will be introduced in this section.

Sampling-based method has been developed for many years.
It can be divided into two categories, random sampling-based
and deterministic sampling-based. Random sampling-based
method samples the destination points randomly in a config-
uration space. Typical methods in random sampling includes
Rapidly-exploring Random Tree (RRT) [11] and its variant
RRT* [35]. Random-based approach is very efficient when the
problem state space has high dimensions, but the sampling reso-
lution has a significant effect on computation time and trajectory
quality. Deterministic sampling-based method samples the prim-
itives in a deterministic way [28, 29], or adaptively [6]. Though
deterministic sampling method is very efficient, it often results
in sub-optimal trajectories.

Optimization-based method uses numerical optimization to
obtain the optimal trajectory. As mentioned in Section 1,
Mercedes-Benz formulates the autonomous driving planning
problem into a non-convex optimization problem and then use
SQP to solve it. Qian et al incorporates integer constraints into
the planning problem to address logical constraints [30]. How-
ever, these approaches still require substantial computation time.
To make the planning algorithm more efficient, Liu et al pro-
pose the convex feasible set (CFS) algorithm [31] to solve a spe-
cific non-convex optimization problem efficiently. Furthermore,
they apply this algorithm to various planning problems for au-
tonomous driving [32–34]. However, CFS requires inverse dy-
namics to get the optimal trajectory, thus the resulting trajectory
is possibly infeasible. Another approach is to use the indirect
shooting method that explicitly enforces system dynamics. This
method is related to optimal control theory. LQR, ILQR and
DDP [21] [22] [24] are typical methods in this field. However,
these approaches have significant difficulty to incorporate the
state and control constraints which are essential for robot con-
trol. To address this problem, some papers [1, 2, 24] incorporate
constraints into ILQR/DDP. [24] incorporates input constraints,
but they did not consider the state constraint. CILQR [1] [2]
has incorporated the input and state constrains but they still have
some problems. The biggest issue is that they need a feasible ini-
tial trajectory to solve the problem. [1] and [2] assume that the
controller already has a feasible initial trajectory. However, this
assumption does not necessarily hold. Moreover, it is not easy

Copyright © 2020 ASMEV001T12A001-2

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

to generate a feasible trajectory in real time. To the best of our
knowledge, there are no prior works to include initial trajectory
feeder to constrained ILQR or DDP.

3 Review of CILQR
3.1 Naive ILQR and DDP

First, we give a short review of ILQR and DDP. Let x ∈ Rn

be the state vector and u ∈ Rm be the input vector. The path
planning problem can be formulated in the following form.

x∗,u∗ = argmin
x,u
{φ(xN)+

N−1

∑
n=1

Lk(xk,uk)} (1a)

s.t. xk+1 = f k(xk,uk), k = 0,1,2, , , , ,N−1 (1b)
x0 = xstart (1c)
g(x,u)< 0 (1d)

Note that (1a) is a cost function where φ(xN) is the final stage
cost and Lk(xk,uk) is the stage cost at time step k. In addition,
(1b) is the system dynamics equation and (1c) is the initial con-
dition for state. Also g(x,u) descries state constraint and input
constraint.

ILQR/DDP uses dynamic programming to solve the uncon-
strained optimal control problem with non-linear cost function
and system dynamics. The unconstrained optimal control prob-
lem takes the following form:

x∗,u∗ = argmin
x,u
{φ(xN)+

N−1

∑
n=1

Lk(xk,uk)} (2a)

s.t. xk+1 = f k(xk,uk), k = 0,1,2, , , , ,N−1 (2b)
x0 = xstart (2c)

ILQR/DDP is based on dynamic programming, specifically,
the following Bellman equation.

V k(xk) = min
uk

[
Lk(xk,uk)+V k+1(f k(xk,uk))

]
(3)

where V k(xk) is the cost-to-go at xk. ILQR/DDP iterates with the
following three steps until convergence:

(Step 1) Nominal Trajectory Definition: If at the first iter-
ation, we need to define an initial control sequence u and propa-
gate the system with equation (2b) and get a nominal trajectory
(x,u). For later iterations, the nominal trajectory is calculated by
the forward pass (step 3).

(Step 2) Backward Pass: In the second step, we have the
final step cost-to-go V N(xN) = φ(xN). Then from time step N−1
we start to calculate the following backward pass:

Pk(δxk,δuk) = Lk(xk +δxk,uk +δuk)−Lk(xk,uk)+

V k+1(f k(xk +δxk,uk +δuk)))−V k+1(f k(xk,uk))
(4)

Approximating Pk(δxk,δuk) by its second order Taylor ex-
pansion, we get:

Pk(δxk,δuk) =
1
2

[1
δxk
δuk

]T 0 (Pk
x)

T (Pk
u)

T

Pk
x Pk

xx Pk
xu

Pk
u Pk

ux Pk
uu

[1
δxk
δuk

]
(5)

where

Pk
x = Lk

x +(f k
x)

TV k+1
x (6a)

Pk
u = Lk

u +(f k
u)

TV k+1
x (6b)

pk
xx = Lk

xx +(f k
x)

TV k+1
xx f k

x +V k+1
x • f k

xx (6c)

pk
uu = Lk

uu +(f k
u)

TV k+1
xx f k

u +V k+1
x • f k

uu (6d)

pk
ux = Lk

ux +(f k
u)

TV k+1
xx f k

x +V k+1
x • f k

ux (6e)

The third terms in (6c), (6d) and (6e) are the product of a
vector with a tensor, which are ignored in ILQR. Then we can
get the optimal control strategy by minimizing (5)

δu∗k = argmin
δuk

Pk(xk,uk) =−(pk
uu)
−1(Pk

u +Pk
uxδxk) (7)

The derivative of value function V k
x and Hessian of value

function V k
xx are updated in the following formulation:

V k
x = Pk

x −Pk
u (P

k
uu)
−1Pk

ux (8a)

V k
xx = Pk

xx−Pk
xu(P

k
uu)
−1Pk

ux (8b)

This computation is repeated till reaching first time step k =
0.

(Step 3) Forward Pass: After getting the control strategy at
each time step k, we compute the new trajectory from time step
k = 0 to k = N−1.

x0 = xstart (9a)
uk = uk +δu∗k (9b)

xk+1 = f k(xk,uk) (9c)

Copyright © 2020 ASMEV001T12A001-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

3.2 Constrained ILQR
Iterative LQR is an effective way to handle the optimal con-

trol problem with non-linear dynamics. However, it cannot han-
dle state and control constraints. To cope with this problem, we
use Constrained ILQR [1] [2]. CILQR transforms constraints
into a certain form of penalties and add it to the cost function. [1]
and [2] proposed two types of penalty functions. The first one is
logarithmic barrier function and the second one is exponential
barrier function. [1] further pointed out that logarithmic barrier
function is better than exponential one because logarithmic bar-
rier function can make hard constraint with fewer parameters. It
also helps provide a theoretical proof the convergence. There-
fore, we use logarithmic barrier function to penalize the con-
straints. It is expressed as:

b(g(x,u)) =−1
t

log(−g(x,u)) (10)

where t is a parameter and g(x,u) is a constraint function.
By using the barrier function described above, the objective

function will be

J = φ(xN)+
N−1

∑
n=1

Lk(xk,uk)+b(g(x,u)) (11)

The detail of the algorithm and its properties can be found
in [1] [2].

4 Relaxed Logarithmic Function
In this section we focus on the relaxed barrier function. The

original logarithmic barrier function has a serious issue when
calculating the trajectory, that is the numerical stability. This
is because log(x) is undefined when x ≤ 0. Especially, we will
encounter this issue when the nominal trajectory collides with
the obstacles. Fig. 1 depicts this situation. Red rectangles are
obstacles and blue dot line is the initial nominal trajectory.

Figure 1. Failed pattern when calculating nominal trajectory

There are two options to solve this problem. The first one
is to provide a strictly feasible initial trajectory, which means the
trajectory is dynamically feasible and has no collision with sur-
rounding objects. The other option is to modify the logarithmic

barrier function. The first one seems effective, but it is not easy
to generate a trajectory in real time that meets the requirements.
Therefore, instead of providing a strictly feasible initial trajec-
tory, we modify the standard barrier function to a relaxed barrier
function, which is inspired by [37]. The relaxed barrier function
is defined as below:

βδ(z) =

{
− log(z) (z > δ)
k−1

k

[
(z−kδ

(k−1)δ)
k−1

]
− logδ (z≤ δ)

(12)

where δ is a parameter in the range 0 < δ ≤ 1. k > 1 is also a
parameter and is an even integer. The authors in [37] suggest to
use k = 2 and this makes the function continuously differentiable
at z = δ. A visualization of the function is described in Fig. 2.

Figure 2. Relaxed Barrier Function

In Fig. 2, we set δ= 0.5. Orange line describes the graph for
z ≤ δ and green line for z > δ. The blue line represents original
function in 0 < z≤ δ.

This function prevents the numerical stability problem be-
cause the new logarithmic function is well defined when when
x < 0. This means the problem can be solved even when the
nominal trajectory is infeasible or collides with the obstacles. It
also benefits our initial trajectory creator, which is discussed in
the next section.

5 Initial Trajectory Creator
In this section, we give the details of a fast initial trajectory

creator for CILQR. As mentioned previously, CILQR itself has
unstable convergence rate which is significantly influenced by
the quality of the initial trajectory. To avoid this problem, we
decide to add a new algorithm that provides a good initial trajec-
tory for CILQR. However, we need to meet specific requirements
when generating the initial trajectory. First, the initial trajectory
should be in the vicinity of the global optimum trajectory. Sec-
ond, its computation time should be acceptable to use. Although

Copyright © 2020 ASMEV001T12A001-4

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

there are many approaches to generate a trajectory in real time,
most of them do not meet both requirements. For example, the
widely used polynomial curve method will generate dynamically
infeasible trajectories.

To satisfy the above requirements, we create a new initial
trajectory generator based on [14]. However we cannot directly
use the approach in [14] because the calculation time is high.
The approach in [14] first samples destination points and draws
a straight line to be a reference line. After that it smooths the
trajectories using DDP and selects the best trajectory defined by
cost functions. The approach can generate collision-free high
quality trajectories, but smoothing all trajectories by DDP will
cause unacceptable calculation time. To address this problem,
we modify the method in [14] by utilizing the characteristics of
the relaxed barrier function. The newly proposed algorithm has
four elements as depicted in Fig. 3. We now introduce each
component step by step.

Figure 3. The structure of Initial Trajectory Creator

5.1 Sampling
The first step is to sample points around a destination point.

Destination point is decided by a global reference trajectory. An
example of the sampling process is shown in Fig.4. The blue
dashed line denotes the reference trajectory and the blue point
and red points denote the sampled destination points.

5.2 Creating temporal reference paths
After sampling the destination points, we generate temporal

reference paths by linear interpolation. In Fig.5, the temporal
reference paths are represented by the straight green lines.

5.3 Selection
In this step, we select an optimal temporal reference path

among the paths generated in the previous step. The optimality
is defined by minimizing a defined cost function. We use three
types of cost as described in [16] [38], which are deviation cost
Jd , static safe cost Js and consistency cost Jc. They can be ex-
pressed in the following form.

Jd =
N

∑
i=1

(xi− xi,re f) (13a)

Js =
Ns

∑
k=1

r[k]g[i− k] (13b)

Jc =
N

∑
i=1

(xi− xi,prev) (13c)

J = wdJd +wsJs +wcJc (13d)

where xi, xi,re f and xi,prev represents the ith point on the gener-
ated temporal reference path, global reference path and previous
temporal reference path. Global reference path can be center line
of the road or generated by the upper layer planer. wd , ws and wc
are the weights for each cost, which are hyper parameters. Ns is
the number of the generated temporal reference paths, and N is
the horizon. r[k] and g[i− k] are defined as follows:

r[k] =
{

1.0 (i f k th path is passing the obstacle)
0.0 (otherwise)

(14)

g[i] =
1√
2πσ

exp(− i2

2σ2) (15)

σ represents the influence scope of the adjacent trajectory’s
value. After calculating the cost of each path, we select a path
which has the minimum cost. Fig.6 illustrates the process. In the
figure, the black rectangle represents an obstacle and red lines
represent the paths collided with the obstacle. The yellow line
represents the path that has minimal cost.

5.4 Smoothing
In this step we smooth the path. The path selected in the pre-

vious step is not dynamically feasible and the quality of the path
does not satisfy our requirements. In [14], all straight paths are
smoothed, which takes a lot of time. Furthermore, [14] uses DDP
which means they need to calculate Hessian matrices, which
costs further computation time. To prevent this issue we only
smooth the selected path. This makes the calculation time much
shorter than [14]. Therefore the smoothing problem can be de-

Copyright © 2020 ASMEV001T12A001-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

scribed as

x∗,u∗ = argmin
x,u
{φ(xN)+

N−1

∑
k=0

Lk(xk,uk,xre f ,k)} (16a)

s.t. xk+1 = f k(xk,uk), k = 0,1, ...,N−1 (16b)
x0 = xstart (16c)
g(u)< 0 (16d)

where xre f ,k is the point on the temporal reference straight path at
time step k and g(u) is the input constraint. Moreover, xstart indi-
cates current vehicle’s position. This problem can be efficiently
solved by CILQR. The generated trajectory is dynamically feasi-
ble but might not be collision-free. Fig. 7 illustrates this process.

6 Case Studies

In this chapter, we test the proposed algorithm in various sit-
uations where naive CILQR fails. Furthermore, we confirm that
our algorithm can be implemented in real time and is fast enough
to be used in real vehicle driving scenarios. In our experiments,
we use an open source platform called Autoware [39] [40], which
is an open source autonomous driving platform based on Robot
Operating System (ROS).

In our test scenario, we model the vehicle with a bicycle
kinematics model, which is shown in Fig. 8. This vehicle model
has four state variables. Position x,y, velocity v and heading
angle θ. Furthermore, the vehicle has two control inputs, which
are acceleration α and steering angle δ. Note that we can get the
relationship between steering angle δ and curvature κ from the
following equation

κ =
tan(δ)

L
(17)

where L is the length of wheel base of the vehicle. We use this
relationship to convert steering angle to curvature. Moreover, we
assume the steering angle is maintained during a sampling time
Tr and the vehicle will rotate around the instant center O with the
radius of r. The distance the vehicle moves in one sampling time
is

l = vTr +
1
2

aT 2
r (18)

Figure 4. Sampling

Figure 5. Straight Line Generator

Figure 6. Cost calculation

Figure 7. Smoothing

Therefore the vehicle state after one sampling time will be

vk+1 = vk +αTr (19a)

θk+1 = θk +
∫ l

0
κds = θk +κl (19b)

xk+1 = xk +
∫ l

0
cos(θ0 +κs)ds

= xk +
sin(θ0 +κl)− sinθ0

κ
(19c)

yk+1 = yk +
∫ l

0
sin(θ0 +κs)ds

= yk−
cos(θ0 +κl)− cosθ0

κ
(19d)

Copyright © 2020 ASMEV001T12A001-6

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

To summarize this equation, we transform the equation to the
vector form.

xk+1
yk+1
vk+1
θk+1

= f

xk

yk
vk
θk

 ,[α

κ

] (20)

Figure 8. Bicycle Kinematics Model

After formulating the vehicle model, we design our cost
functions. We have two types of cost functions, for CILQR in
initial trajectory creator and for CILQR used in planning/control
section. The first cost function J1 can be written in the following
form:

J1 = (xk− xk,re f)
T Q(xk− xk,re f)+uT

k Ruk− log(−g(u)) (21)

where xk and uk represents vehicle state and control input. xk,re f
is the reference trajectory generated in step B in section 5. g(u)
is the input constraint function which will be desribed later. On
the other hand, the cost function J2, which is used for CILQR in
planning/control section, is described in the following form,

J2 =(xk− xk,re f)
T Q(x1k− xk,re f) +

(uk−uk,re f)
T R(uk−uk,re f)− log(−g(x,u))

(22)

where xk,re f is the reference trajectory that is defined by a global
planner or waypoints collected from human driving experiences.
uk,re f is the reference input generated by our initial trajectory
creator. g(x,u) is the state and input constraint function and can
be split as g(x,u) = g(x)+g(u).

The constraint function also has two kinds of forms. One is
used in equation (21) that only constraints the control input and

the other one is used in equation (22) that constraints both input
and state. Input constraints can be written in the following form:

−
[

ak,lim
κk,lim

]
≤ uk ≤

[
ak,lim
κk,lim

]
(23)

where ak,lim and κk,lim are acceleration and curvature constraint
values at time step k. As a result, the input constraint function
takes the following two forms:

g(u) = uk−uk,lim (24a)
g(u) =−uk,lim−uk (24b)

State constraints are for collision avoidance. Let dmargin be the
safety distance between ego vehicle and an obstacle. Then the
constraint can be written as

g(x) = dmargin−d(xk,Oi) (25)

where d(xk,Oi) is the Euclid distance between the ego vehicle
position xk and ith obstacle position Oi. The parameters details
are given in Table 1.

Table 1. Parameters used in our simulation

Parameter value

klim 0.25

alim[
m
s2] 1.0

Sampling time [s] 0.2

Preview horizon 70

Vehicle length[m] 4.5

Vehicle width[m] 1.7

The code is written in C++ and ROS Melodic. We also use
Autoware version 1.13 and run on a laptop with 4.5GHz Intel
Core i7-9750H

6.1 Initial Trajectories generated by the proposed al-
gorithm

First of all, we show the result of initial trajectory gener-
ated by the proposed algorithm. Fig. 9 shows the result with
an obstacle. The pink trajectory is the generated trajectory and
other trajectories are reference straight paths. The red paths de-
scribe paths that will collide with the obstacle. Green trajectory

Copyright © 2020 ASMEV001T12A001-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

indicates global reference trajectory generated by a global plan-
ner. Moreover, we test the algorithm in a cluttered environment
which is shown in Fig. 10. As this picture shows, the algorithm
is effective even in a very complicated environment. We also find
that the algorithm is fast enough to use in a real driving situation.
Table. 2 shows the computation time of each environment. We
measures 400 times and give the average time, max time, min-
imum time and the standard deviation. “Simple” indicates the
environment with one obstacle, shown in Fig. 9 and “Cluttered”
describes the environment with many obstacles, shown in Fig.
10.

Figure 9. Initial Trajectory with one obstacle

Figure 10. Initial Trajectory with many obstacles

6.2 CILQR with Initial Trajectory Creator
In this subsection, we give the result of the CILQR with Ini-

tial Trajectory Creator. Fig. 11 shows the trajectory generated by
CILQR with Initial Trajectory Creator. In this situation, original
CILQR will fail as its nominal trajectory will pass the obstacle
which causes numerical stability problems. Fig. 12 gives the

Table 2. Calculation time of Initial Trajectory Creator

Time mean max min stddev

[ms] [ms] [ms] [ms]

Simple 5.54 14.0 2.08 2.32

Cluttered 5.66 17.8 2.11 2.72

resulting trajectory in a complicated environment. This result
verifies that CILQR with the initial trajectory can generate fea-
sible trajectory in a cluttered environment. Also, we measure
the calculation time in Table 3. The table shows that the aver-
age computational time is less than 10[ms], which suggests that
the algorithm can be used in a real driving situation. In addi-
tion to these results, Fig. 13 shows the trajectories generated by
Initial Trajectory Creator and CILQR, which are represented by
pink and blue lines respectively. Note that although the trajectory
generated by Initial Trajectory Creator is close to that generated
by CILQR, the latter one has better state constraint satisfaction,
which is the key point of using CILQR. Finally, we compare the
calculation time with the calculation time of SQP. The code is
written in C++ and use NLOPT to solve the nonlinear problem.
We show the result in Table 4. You can find that extended CILQR
is much faster than SQP.

Figure 11. Initial Trajectory and CILQR with one obstacle

Figure 12. Initial Trajectory and CILQR with many obstacles

Figure 13. Initial Trajectory and CILQR Predicted Trajectory

Copyright © 2020 ASMEV001T12A001-8

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

Table 3. Calculation time of CILQR with Initial Trajectory Creator

Time mean max min stddev

[ms] [ms] [ms] [ms]

Simple 16.5 43.7 6.06 7.01

Cluttered 29.8 65.0 9.06 13.9

Table 4. Comparison of calculation time between CILQR and NMPC

Algorithm Horizon Calculation Time [ms]

CILQR 70 29.8

SQP 30 213

7 Conclusion
In this paper, we modified the original CILQR and proposed

a new algorithm. First, we designed a relaxed barrier function
to solve the numerical problem. Second, we added an initial
trajectory creator to provide high quality initial trajectories to
help CILQR converge to a global trajectory faster. Simulations
showed that our algorithm can solve some complicated problems
well when the original CILQR algorithm cannot.

However, there are still some problems in the proposed ap-
proach. First, because of the relaxed barrier function, the re-
sulted trajectory cannot be guaranteed to satisfy the hard con-
straint. Furthermore, we need to plan the vehicle’s speed profile
to deal with the dynamic obstacles . These problems will be ad-
dressed in the future works.

ACKNOWLEDGMENT
The authors want to thank Dr. Hiroyuki Okuda for his as-

sistance on implementation of the base code of CILQR. In ad-
dition, Y.Shimizu was supported by JST CREST GrantNumber
JPMJCR19F3,Japan.

REFERENCES
[1] J. Chen, W. Zhan and M. Tomizuka, ”Autonomous Driving

Motion Planning With Constrained Iterative LQR,” in IEEE
Transactions on Intelligent Vehicles, vol. 4, no. 2, pp. 244-
254, June 2019.

[2] J. Chen, W. Zhan and M. Tomizuka, ”Constrained iter-
ative LQR for on-road autonomous driving motion plan-
ning,” 2017 IEEE 20th International Conference on Intelli-
gent Transportation Systems (ITSC), Yokohama, 2017, pp.
1-7.

[3] L. Sun, C. Peng, W. Zhan, and M. Tomizuka, “A Fast In-
tegrated Planning and Control Framework for Autonomous
Driving via Imitation Learning,” in ASME 2018 Dynamic
Systems and Control Conference, Sep. 2018, pp. 1–11.

[4] L. Sun, W. Zhan, M. Tomizuka, and A. D. Dragan, “Cour-
teous Autonomous Cars,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct.
2018, pp. 663–670.

[5] W. Zhan, J. Chen, C. Y. Chan, C. Liu, and M. Tomizuka,
“Spatially-partitioned environmental representation and
planning architecture for on-road autonomous driving,”
in 2017 IEEE Intelligent Vehicles Symposium (IV), Jun.
2017, pp. 632–639.

[6] Z. Li, W. Zhan, L. Sun, C.-Y. Chan, and M. Tomizuka,
”Adaptive sampling-based motion planning with a non-
conservatively defensive strategy for autonomous driving,”
in The 21st IFAC World Congress.

[7] D. González, J. Pérez, V. Milanés and F. Nashashibi, ”A
Review of Motion Planning Techniques for Automated Ve-
hicles,” in IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 4, pp. 1135-1145, April 2016.

[8] B. Paden, M. Čáp, S. Z. Yong, D. Yershov and E. Frazzoli,
”A Survey of Motion Planning and Control Techniques for
Self-Driving Urban Vehicles,” in IEEE Transactions on In-
telligent Vehicles, vol. 1, no. 1, pp. 33-55, March 2016.

[9] J. Ziegler, P. Bender, T. Dang and C. Stiller, ”Trajectory
planning for Bertha — A local, continuous method,” 2014
IEEE Intelligent Vehicles Symposium Proceedings, Dear-
born, MI, 2014, pp. 450-457.

[10] M. McNaughton, C. Urmson, J. M. Dolan and J. Lee, ”Mo-
tion planning for autonomous driving with a conformal spa-
tiotemporal lattice,” 2011 IEEE International Conference
on Robotics and Automation, Shanghai, 2011, pp. 4889-
4895.

[11] J. J. Kuffner and S. M. LaValle, ”RRT-connect: An effi-
cient approach to single-query path planning,” Proceedings
2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Pro-
ceedings (Cat. No.00CH37065), San Francisco, CA, USA,
2000, pp. 995-1001 vol.2.

[12] M. Lavalle, ”Rapidly-exploring random trees: A new tool
for path planning”, tech. rep., Computer Science Dept.,
Iowa State University, 1998

[13] W. Moritz, Z. Julius, K. Sören and T. Sebastian. (2010).
”Optimal Trajectory Generation for Dynamic Street Sce-
narios in a Frenet Frame.” Proceedings - IEEE Interna-
tional Conference on Robotics and Automation. 987 - 993.
10.1109/ROBOT.2010.5509799.

[14] N. Wu, W. Huang, Z. Song, X. Wu, Q. Zhang and S. Yao,
”Adaptive dynamic preview control for autonomous ve-
hicle trajectory following with DDP based path planner,”
2015 IEEE Intelligent Vehicles Symposium (IV), Seoul,
2015, pp. 1012-1017.

[15] M. Cibooglu, U. Karapinar and M. T. Söylemez, ”Hybrid
controller approach for an autonomous ground vehicle path
tracking problem,” 2017 25th Mediterranean Conference
on Control and Automation (MED), Valletta, 2017, pp.
583-588.

[16] Y. Zhang et al., ”Hybrid Trajectory Planning for Au-
tonomous Driving in Highly Constrained Environments,”
in IEEE Access, vol. 6, pp. 32800-32819, 2018.

Copyright © 2020 ASMEV001T12A001-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

[17] L. Bai and S. Zhijiang. (2015). ”Simultaneous dynamic
optimization: A trajectory planning method for nonholo-
nomic car-like robots,” Advances in Engineering Software.
10.1016/j.advengsoft.2015.04.011.

[18] J. van den Berg, ”Iterated LQR smoothing for locally-
optimal feedback control of systems with non-linear dy-
namics and non-quadratic cost,” 2014 American Control
Conference, Portland, OR, 2014, pp. 1912-1918.

[19] D.Ferguson and A. Stentz, ”Field d*: An interpolation-
based path planner and replanner”, in Robotics Research.
Berlin, Germany: Srpinger-Verlag, 207, pp.239-253

[20] P. T. Boggs and J. W. Tolle, ”Sequential quadratic program-
ming”, Acta Numer., vol. 4, pp. 1-51, 1995.

[21] D.H. Jacobson and D. Q. Mayne, ”Differential Dynamic
Programming,” New York, NY, USA: Elsiver, 1970.

[22] W. Li and E. Todorov, ”Iterative linear quadratic regula-
tor design for non-linear biological movement systems,” in
Proc. 1stInt. Conf. Infrom. Control Autom. Robot, 2004,
pp.222-229.

[23] E. Todorov and Weiwei Li, ”A generalized iterative LQG
method for locally-optimal feedback control of constrained
nonlinear stochastic systems,” Proceedings of the 2005,
American Control Conference, 2005., Portland, OR, USA,
2005, pp. 300-306 vol. 1.

[24] Y. Tassa, N. Mansard and E. Todorov, ”Control-limited dif-
ferential dynamic programming,” 2014 IEEE International
Conference on Robotics and Automation (ICRA), Hong
Kong, 2014, pp. 1168-1175.

[25] D. H. Jacobson, ”New second-order and first-order algo-
rithms for determining optimal control: A differential dy-
namic programming approach,” J. Optimi. thelory Appl.,
vol.2 no 6. pp. 411-440, 1968.

[26] D. Fassbender, B. C. Heinrich and H. Wuensche, ”Motion
planning for autonomous vehicles in highly constrained ur-
ban environments,” 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Daejeon,
2016, pp. 4708-4713.

[27] Á. Domina and V. Tihanyi, ”Comparison of path follow-
ing controllers for autonomous vehicles,” 2019 IEEE 17th
World Symposium on Applied Machine Intelligence and
Informatics (SAMI), Herlany, Slovakia, 2019, pp. 147-152.

[28] M. Pitvoraiko and A. Kelly, ”Efficient constrained path
planning via search in state lattices,” ” in International
Symposium on Artificial Intelligence, Robotics, and Au-
tomation in Space, 2005.

[29] J. Ziegler and C. Stiller, ”Spatiotemporal state lattices for
fast trajectory planning in dynamic on-road driving scenar-
ios,” 2009 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, St. Louis, MO, 2009, pp. 1879-
1884.

[30] X. Qian, F. Altché, P. Bender, C. Stiller and A. de La
Fortelle, ”Optimal trajectory planning for autonomous driv-
ing integrating logical constraints: An MIQP perspective,”
2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), Rio de Janeiro, 2016, pp.
205-210.

[31] C. Liu, C.-Y. Lin, and M. Tomizuka, ”The convex fea-

sible set algorithm for real time optimization in motion
planning,” SIAM J. Control Optim., vol. 56, no. 4 pp.
2712–2733, 2018.

[32] C. Liu, C. Lin, Y. Wang and M. Tomizuka, ”Convex fea-
sible set algorithm for constrained trajectory smoothing,”
2017 American Control Conference (ACC), Seattle, WA,
2017, pp. 4177-4182.

[33] J. Chen, C. Liu and M. Tomizuka, ”FOAD: Fast
Optimization-based Autonomous Driving Motion Planner,”
2018 Annual American Control Conference (ACC), Mil-
waukee, WI, 2018, pp. 4725-4732.

[34] C. Liu, W. Zhan and M. Tomizuka, ”Speed profile planning
in dynamic environments via temporal optimization,” 2017
IEEE Intelligent Vehicles Symposium (IV), Los Angeles,
CA, 2017, pp. 154-159.

[35] O. Arslan, K. Berntorp and P. Tsiotras, ”Sampling-based
algorithms for optimal motion planning using closed-
loop prediction,” 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 2017, pp.
4991-4996.

[36] C. Feller and C. Ebenbauer, ”Relaxed Logarithmic Barrier
Function Based Model Predictive Control of Linear Sys-
tems,” in IEEE Transactions on Automatic Control, vol. 62,
no. 3, pp. 1223-1238, March 2017.

[37] J. Hauser and A. Saccon, ”A Barrier Function Method
for the Optimization of Trajectory Functionals with Con-
straints,” Proceedings of the 45th IEEE Conference on De-
cision and Control, San Diego, CA, 2006, pp. 864-869.

[38] Y. Meng, Y. Wu, Q. Gu and L. Liu, ”A Decoupled Trajec-
tory Planning Framework Based on the Integration of Lat-
tice Searching and Convex Optimization,” in IEEE Access,
vol. 7, pp. 130530-130551, 2019.

[39] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M.
Hirabayashi, Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fu-
jii, and T. Azumi,”Autoware on Board: Enabling Au-
tonomous Vehicles with Embedded Systems,” In Proceed-
ings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS2018), pp. 287-296, 2018.

[40] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda,
and T. Hamada. ”An Open Approach to Autonomous Vehi-
cles,” IEEE Micro, Vol. 35, No. 6, pp. 60-69, 2015.

Copyright © 2020 ASMEV001T12A001-10

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T12A001/6622189/v001t12a001-dscc2020-3138.pdf by Tsinghua U

niversity user on 19 April 2022

