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Abstract— Motion planning is one of the core modules for
autonomous driving. Among the current motion planning tech-
niques, optimization-based methods have unique advantages
since they allow planning in continuous space and they can
evaluate multiple objectives (such as hard constraints) in one
formulation. However, it is hard to implement optimization-
based methods in real-time in complicated environments due to
1) high computational complexity as the optimization problems
are usually non-convex; and 2) difficulty to guarantee closed-
loop performance because the low level trajectory tracking
controller cannot perform perfect tracking. To solve the first
challenge, convex feasible set algorithm (CFS) has been pro-
posed for real time non-convex optimization. To solve the second
challenge, a fast optimization-based autonomous driving motion
planner (FOAD) is proposed in this paper which implements
a soft constrained convex feasible set algorithm (SCCFS) as
an enhanced version of CFS. The concept of closed-loop
smoothness is defined and analyzed in this paper. Simulations
and real vehicle experiments verify the efficiency and capability
of the planner.

I. INTRODUCTION

It is widely viewed that autonomous driving can signif-
icantly improve future mobility. Furthermore, it attains a
number of benefits, such as freeing human drivers, easing
road congestion and improving transportation safety. Motion
planning is the core module in autonomous driving, which is
to take the information from the environment (e.g. motions
of the ego vehicle and the surrounding vehicles), and then
plan a trajectory for the autonomous vehicle to execute.

Although motion planning has been investigated for
decades, it is still difficult to plan a good trajectory in
complex urban environment scenarios. The following charac-
teristics need to be satisfied simultaneously: (1) computation
needs to be in real-time in order for the automated vehicle
to interact with the dynamic environment and deal with
emergencies, (2) planning needs to be spatiotemporal for the
automated vehicle to avoid dynamic obstacles, and (3) the
planer needs to be able to deal with non-convex constraints
such as collision avoidance.

Motion planning techniques for autonomous driving
can be classified into three categories: graph-search-based,
sampling-based and optimization-based methods [1], [2]. A
representative search-based method is A* search [3] and the
sampling-based method mainly refers to rapidly-exploring
random tree (RRT) [4]. Both the graph-search-based and
sampling-based methods plan in a discretized state space or
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action space. This will result in non-smooth trajectories and
suboptimal solutions. Increase of the discretization resolution
will largely lower the computation efficiency due to the
“curse of dimensionality”.

The optimization-based method formulates motion plan-
ning as a mathematical optimization problem [5]. The plan-
ning is spatiotemporal which can deal with dynamic ob-
stacles. It is performed in continuous space with infinite
small resolution, which leads to better solutions than search
and sampling. It is also easier to formulate the constraint
in mathematical optimization, which helps us to formulate
the complex environment in a uniform model. However, due
to the complex non-convex constraints and the limitation
of the existing numerical optimization techniques [6], the
optimization-based motion planner are usually inefficient for
real-time computation.

For optimization-based autonomous driving motion plan-
ning, Mercedes-Benz [7] utilized sequential quadratic pro-
gramming (SQP) to solve the non-convex optimization prob-
lem, but the computation time is around 0.5s when im-
plemented in C++, which is not fast enough for real time
requirement. [8] uses optimization to solve a safe set to avoid
collision, which is quite fast and reactive. But it only look for
one time step ahead, which allows only limited intelligence.
[9] proposed a constrained solution for the efficient iterative
LQR algorithm, but the nature of indirect method [5] makes
the problem easier to be trapped in local optima.

Convex feasible set (CFS) algorithm was proposed for
real time trajectory optimization [10], [11]. It handles the
non-convex constraints by convexification. Considering the
unique geometric structure of motion planning problem, the
algorithm breaks done the original problem into a sequence
of easy-to-solve problem, which greatly improves the effi-
ciency. When applied to a typical motion planning problem,
it is an order of magnitude faster than SQP. The latter one
is often seemed as the state-of-the-art technique for solving
trajectory optimization problems.

However, the CFS algorithm is only a tool to solve opti-
mization problems. Real-time implementation of autonomous
driving motion planning needs a closed-loop MPC structure.
In this paper, the fast optimization-based autonomous driving
motion planner (FOAD) is established to provide a closed-
loop MPC formulation for real-time implementation. Fur-
thermore, the soft constrained convex feasible set (SCCFS)
algorithm is proposed based on CFS to improve the smooth-
ness of the motion.

The remainder of the paper is organized as follows. Sec-
tion II reviews the CFS algorithm and introduces the SCCFS
algorithm. Section III introduces and analyze the closed-
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loop smoothness. Section IV describes the formulation of the
FOAD planner. Section V shows some simulation results.
Section VI presents experimental results and section VII
concludes the paper.

II. SOFT CONSTRAINED CONVEX FEASIBLE SET
ALGORITHM

A. Convex Feasible Set (CFS) Algorithm

The convex feasible set algorithm was proposed by Liu,
et.al to solve the following non convex optimization problem.
In this subsection we briefly describe this algorithm.
Problem 1 (Optimization problem with non convex con-
straints).

x∗ = arg min
x∈Γ⊂Rn

J (x) (1)

Here x is a variable of n dimension. J is the objective
function, which is smooth and convex. Γ is the state space
constraint, which is a subset of Rn and can be non convex.
x∗ is the optimal solution.

Like many other numerical optimization methods, the
problem is solved iteratively. There are three steps for CFS
algorithm:

1) Step 1 (Initialization): Give an initial value of the state
variable x(0). Note that x(0) does not have to satisfy x(0) ∈
Γ.

2) Step 2 (Find the convex feasible set): Given the state
variable of the last iteration x(k), the convex feasible set
is calculated corresponding to x(k): F

(
x(k)

)
⊂ Γ. Γ is

assumed to be the intersection of m constraints: Γ = ∩iΓi.
And Γi is defined as the space outside of the ith obstacle
which can be defined as Γi = {x : φi ≥ 0} where φi is the
signed distance function to the obstacle i.

In the original CFS algorithm, there are three cases for
calculating the convex feasible set [10], [11]. Here in our
autonomous driving application the main obstacles’ 2D shape
(bird view) is considered to be convex. Therefore, we only
consider the case where the complement of Γi is convex. In
this case the convex feasible set corresponding to obstacle i
is calculated as

Fi
(
x(k)

)
=
{
x : φi

(
x(k)

)
+∇φi

(
x(k)

)(
x− x(k)

)
≥ 0
}

(2)

Note that Fi
(
x(k)

)
is actually a polytope and is convex.

Thus, F
(
x(k)

)
= ∩iFi

(
x(k)

)
is also a convex set. It is

shown in [10] that F is non-empty if the obstacles are
disjoint.

3) Step 3 (Solve the subproblem): The improved state
variable of the next iteration x(k+1) is calculated as the
optimal value in the convex feasible set F

(
x(k)

)
:

x(k+1) = arg min
x∈F(x(k))

J (x) (3)

The algorithm works as follows: step 1 is applied to get the
initial value x(0), then step 2 and step 3 is applied iteratively
to get a sequence x(1), x(2), . . . , x(k), . . .. It is proved in

[10] that this sequence will converge to a local optimum x∗

of (1).
The iteration terminates at iteration n when some

stop criteria is satisfied, e.g.,
∥∥x(n) − x(n−1)

∥∥ < ε or∥∥J (x(n)
)
− J

(
x(n−1)

)∥∥ < σ.

B. Soft Constrained Convex Feasible Set (SCCFS) Algorithm

The convex feasible set algorithm can be extended to a
modified version called soft constrained convex feasible set
(SCCFS) algorithm. In this subsection, we directly describe
the SCCFS algorithm. In the next section, we will define the
concept of closed-loop smoothness and explain how SCCFS
improves it.
Problem 2 (Soft constraint optimization problem with non
convex constraints∗).

[x∗, s∗] = arg min
x∈Γ(s)

J (x) + ω‖s‖2

s.t. Γ (s) =
⋂
i Γi (s) =

⋂
i {x : φi (x) ≥ −s}

(4)

where J (x) is the objective function and ω‖s‖2 is the term
that penalizes the violation of the constraint.

The SCCFS algorithm uses the same three-step iteration
structure. With the introduction of slack variables, however,
step 2 and step 3 need to be modified. In step 2, the convex
feasible set needs to be calculated corresponding to the
augmented state variable z =

[
xT , sT

]T
and the augmented

distance function ϕi (z) = φi (x) + s:

Fi
(
z(k)

)
=
{
z : ϕi

(
z(k)

)
+∇ϕi

(
z(k)

) (
z− z(k)

)
≥ 0
}

=
{
φi
(
x(k)

)
+ s(k)

+
[
∇φi

(
x(k)

)
1T

]([ x
s

]
−
[

x(k)

s(k)

])
≥ 0

}
= {z : Liz + Si ≤ 0}

(5)

Then we have:

F
(
z(k)

)
= ∩iFi

(
z(k)

)
= ∩i {z : Liz + Si ≤ 0}

= {z : Lz + S ≤ 0} (6)

where L =
[
LT1 LT2 · · ·

]T
, S =

[
ST1 ST2 · · ·

]T
.

Then in step 3 we need to solve the subproblem with
the augmented state variable z and the augmented objective
function R (z):

z(k+1) = arg min
Lz+S≤0, s≥0

R (z)

= arg min
Lz+S≤0, s≥0

J (x) + w‖s‖2 (7)

Since the algorithm structure is the same as the orig-
inal CFS algorithm, we can conclude that the sequence
of augmented state variables z(1), z(2), . . . , z(k), . . .
will converge to the local optimum of Problem 2. The
stop criteria remains the same:

∥∥z(n) − z(n−1)
∥∥ < ε or∥∥R (z(n)

)
−R

(
z(n−1)

)∥∥ < σ.

∗Constraints refer to the regions where the vehicle is not supposed to
enter
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III. CLOSED-LOOP SMOOTHNESS

A. Replanning Mechanism

In [10] and [11], only the static planning is considered,
where all obstacles are static. For dynamic planning where
the obstacles are moving, the trajectory should be replanned
frequently to adapt to the change of the environment. Thus a
closed-loop replanning mechanism needs to be established.

A naive method to do replanning is to simply solve the
optimization problem based on the current state and then
execute the solved trajectory. However, the computation time
cannot be ignored. When the planned trajectory begins to be
executed, the current state has already changed. For example,
when the vehicle speed is 20m/s and the replanning time Tr†

for trajectory planning is 0.2s, the position will change by 4
meters, which is quite a big error and cannot be ignored.

Our replanning scheme is shown in Fig.1. At time step
k, we predict the position at time step k + 1 based on the
assumption of constant steering angle and constant speed.
We denote the position as xk+1. Then we take xk+1 as the
current position and plan the trajectory x∗k+1.

Fig. 1. The replanning scheme of the FOAD planner

B. Closed-loop Smoothness

For autonomous driving systems, there will usually be a
planning-control architecture, meaning there is a lower level
controller to track the planned trajectory. At time step k,
the vehicle control command will be computed based on
the planned trajectory x∗k. Denote the low level controller as
a mapping from a trajectory ck = C (x∗k), where ck is the
control command at time step k and C denotes the controller.
Note that the trajectory x∗k needs to be transformed to the
ego coordinate of the vehicle.

Intuitively, the difference between adjacent control com-
mand (e.g, ‖ck+1 − ck‖) indicates how smooth the motion
is. Since the controller C is a continuous mapping, the
motion smoothness can be further decided by the difference
between the planned trajectories of adjacent time steps (e.g,∥∥x∗k+1 − x∗k

∥∥). Now we can define the closed-loop smooth-
ness of trajectory planners.
Definition 1 (Closed-loop Smoothness) For two trajectory
planners P1 and P2, we say P1 is closed-loop smoother than
P2 if for the same initial states and constraints, we have:∥∥x1

k+1 − x1
k

∥∥ ≤ ∥∥x2
k+1 − x2

k

∥∥ (8)

†The time difference between the two time steps, k to k + 1, is called
the replanning time and denoted as Tr in this paper. It is different from the
sampling time, which is the time difference between two consecutive points
of the planned trajectory and denoted as Ts.

for any time step k. Here x1
k and x2

k are the planned trajectory
from P1 and P2 at time step k.

Although a rigorously proof to show that SCCFS is closed-
loop smoother than CFS is not available, some analysis about
it can be performed. First we show an intuitive example. As
shown in Fig. 2, the yellow rectangle represents the obstacle,
xk and xk+1 are initial states of two adjacent time steps.
The light and dark red/green curves are planned trajectories
of two adjacent time steps from planner 1/2 (correspond to
CFS/SCCFS). As we can see, the CFS algorithm (planner
1) uses hard constraint so the trajectory cannot violate the
constraint. Since xk+1 is very close to the constraint bound-
ary, the planned trajectory x1

k+1 changes a lot compared to
x1
k. On the contrary, since the SCCFS allows violating the

constraint a little bit, the planned trajectories x2
k+1 and x2

k

can stay close to minimize the cost function.

Fig. 2. The trajectory planned by CFS changes a lot near the constraint
boundary

More theoretically, SCCFS can be regarded as CFS aug-
mented with additional state dimension and constraints. As
shown in Fig. 3, suppose the original state dimension is 1,
denoted by x. s is the slack variable. For CFS, the planning
is done in the x axis, with the one dimensional constraint
Γ1
k (x) and cost function. The solutions of CFS for the kth

and k + 1th time steps are x1
k and x1

k+1 respectively. For
SCCFS, the planning is done in the x-s plane, where Γ2

k (x, s)
represents the constraint and the ellipse represents the cost
function. The solutions of SCCFS for the kth and k + 1th
time steps are

(
x2
k, sk

)
and

(
x2
k+1, sk+1

)
respectively. Their

projections on x axis are x2
k and x2

k+1. As we can see,
due to the dimension augmentation, the trajectory change
of SCCFS (

∥∥x2
k+1 − x2

k

∥∥) becomes smaller than that of CFS
(
∥∥x1

k+1 − x1
k

∥∥), which indicates the closed-loop smoothness.

IV. FAST OPTIMIZATION-BASED AUTONOMOUS DRIVING
MOTION PLANNER

A. Problem Formulation

For a robot motion planning problem, we need to first
define the configuration space. In our autonomous driv-
ing motion planning problem, the configuration is the 2D
position of the rear axle of the ego vehicle, denoted as
x ∈ R2. Then the trajectory can be represented as x =[
xT0 , x

T
1 , · · · , xTH

]T ∈ R2(H+1), where H is the preview
horizon; the subscript denotes the time step, where 0 means
the current time step.

The space occupied by the obstacles can be represented
by Oit which means the ith obstacle in time step t, where the
superscript means the ID of the obstacle and the subscript
means the time step. The traffic events (such as red traffic
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Fig. 3. Visualization of the planning process comparison for CFS and
SCCFS

light) can be represented by T jt . Both the obstacles and the
traffic events are set as soft constraints in the optimization
problem.
Problem 3 (Optimization-based Autonomous Driving Mo-
tion Planning Problem).

[x∗, s∗Γ, s
∗
T] = arg min J (x) + ω

(
‖sΓ‖2 + ‖sT‖2

)
x∈Γ(sΓ), x∈T(sT), sΓ≥0, sT≥0

s.t. Γ (sΓ) =
⋂
i Γi (sΓ) =

⋂
i {x : φi (x) ≥ −sΓ}

T (sT) =
⋂
j Tj (sT) =

⋂
j {x : τj (x) ≥ −sT}

(9)

where Γ is the constraint for obstacles and T is the
constraint for traffic events. φ and τ are some distance
functions relative to the obstacles and traffic events as will
be discussed in Section IV-C.

Problem 3 is a special case of problem 2 and can be solved
using SCCFS algorithm.

B. Objective Function

The objective function is modeled to be quadratic. Thus
J (x) = xTQx + xT q + r.

1) Offset from reference: One important object is to
maintain the vehicle close to the centerline of the lane. We
define a reference trajectory xref ∈ R2(H+1), which is of
the same length as the planning trajectory and can be set as
the points on the centerline of lane. Then the cost relative to
the tracking accuracy is:

coff = 1
2ωoff (x− xref )

T
(x− xref )

= 1
2ωoffx

Tx− ωoffxTxref + 1
2ωoffx

T
refxref

(10)

where we penalize the distance from the planned trajectory
to the reference trajectory. ωoff is a weighting coefficient.

2) Acceleration: Passenger comfort is another important
consideration. The main term related to passenger comfort
is the vehicle acceleration. When the acceleration is large,
either lateral or longitudinal, passengers will feel uncomfort-
able. Thus, we penalize the magnitude of the acceleration by

cacc =
1

2
ωacc(Ax)

T
(Ax) =

1

2
ωaccx

TATAx (11)

Fig. 4. Multiple local optima introduced by the rectangle obstacle

where ωacc is a weighting coefficient and A is the accelera-
tion matrix:

A =
1

T 2
s


I −2I I 0 · · · 0
0 I −2I I · · · 0
...

...
. . . . . . . . .

...
0 0 · · · I −2I I

 (12)

where Ts is the sampling time.
3) Trajectory Change: During replanning, the trajectory

between the adjacent time steps should not change too much
to maintain stability and smoothness. Here we record the
current vehicle position as xrec. Then at the next time step,
we penalize the acceleration calculated with the three point
pair (xrec, x0, x1):

cchange =
1

T 4
s

ωchange(xrec − 2x0 + x1)
T

(xrec − 2x0 + x1)

(13)

where x0 is the initial position and x1 is the first point in
the planned trajectory.

C. Constraints

There are two kinds of constraints. One is caused by the
obstacles; the body of the ego vehicle should not overlap
with the body of the surrounding vehicle. The other is
caused by the traffic rules; e.g., the ego vehicle should not
pass the crossroad until the traffic light becomes green. The
formulation of these two kinds of constraints are discussed
below.

1) Obstacles: Here we consider the main obstacles: sur-
rounding vehicles. Basically, a vehicle can be seen as a
rectangle. However, a constraint of a rectangle shape might
introduce multiple local optima. As shown in Fig.4, both the
blue and the red trajectory can be an optimal solution. In this
case, an addition module is needed to give a proper initial
value, which complicates the system architecture. Also, since
the SCCFS algorithm uses soft constraint, a margin is needed
to guarantee safety.

To address the above problems, we build a polygon to rep-
resent the constraint. As shown in Fig.5, the new constraint
is a trapezoid like polygon which contains the vehicle shape.
Four more parameters are needed to define this polygon, the
lateral margin llat, the front longitudinal margin llonf , the
back longitudinal margin llonb and the angle θang . The above
parameters determine the shape of the margin region and they
are tunable. This polygon constraint will not introduce local
optima and there is only one optimal trajectory.

To consider the shape of the ego vehicle, we introduce
vehicle discs. As shown in Fig.6, two discs are used to
represent the vehicle body, one of which has its center at the
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Fig. 5. The polygon representation of the obstacle

Fig. 6. The vehicle discs containing the ego vehicle body

rear axle, and the other has its center at front. As specified
previously, xk is the position of the rear axle of the ego
vehicle at time step k. Here we define the vehicle direction
at time step k to be aligned to xkxk+1. Thus the center of
the front disk can be calculated as:

Ofront = xk +
xk+1 − xk
‖xk+1 − xk‖

·∆l (14)

Thus we can define a transformation y = Fx ∈ R2(H+1),
of which y2k is the center of the rear disc, and y2k+1 is the
center of the front disc. The distance function for the ith
obstacle φi (x) = di (y) : R2(H+1) → R2(H+1) is a vector
function whose image is the vector of the signed distances at
each time step. For example, the 2kth value of φi (x) means
the distance from the rear disc center of the ego vehicle to the
ith obstacle at time step k, and the (2k + 1)th value means
the distance from the front disc center of the ego vehicle
to the ith obstacle. The distance value is positive when it is
outside the obstacle and is negative when inside the obstacle.
A margin r is added to the linearized constraint in (6):

Lz + S ≤ −r (15)

where r is the radius of the vehicle disc. This is to keep the
vehicle body outside the obstacle, not just at the center of
the vehicle disc.

2) Traffics: The main traffic constraints can be classified
as two categories: the static event and the dynamic event.
The idea is similar to one of our previous works [12].

A static event refers to the case that the position of the
constraint will not change. This includes the traffic light
scenario and the pedestrian crossroad scenario. Take the
pedestrian crossroad as an example, as shown in Fig.7, the
pedestrian is predicted to enter the crossroad at time t0 and
leave at time t1. The area between x0 and x1 is the crossroad.
According to the traffic rule, the vehicle should not enter the
crossroad while the pedestrian is on it.

There are two discrete decisions in this scenario: the ego
vehicle can decelerate to wait before the line of x0 within t1
(wait the pedestrian to pass), or to accelerate and exceed the
line of x1 after t0 (pass before the pedestrian comes). The
motion planner that we discuss here cannot decide which

Fig. 7. The crossroad scenario with pedestrian

maneuver to execute. To make this decision, a high-level
maneuver planner is needed, which is beyond the scope of
this paper. Here we assume we already get the command
that specifies which maneuver we should execute. Other
traffic events also contain discrete maneuvers and the same
assumption exists.

Suppose we decide to wait for the pedestrian to pass, then
the constraint area is the area at the right of x0, and the
constraint is active before t1. Suppose K = ceil

(
t1
Ts

)
, then

the related distance function is τ (x) = d (y) : R2(H+1) →
R2(K+1), where the 2kth value of τ (x) is the signed distance
from the rear center of the ego vehicle to the line of x0, and
the 2k+1th value is the signed distance from the front center
to the line.

A dynamic event means that the position of the constraint
will change with time. This is related to the road partici-
pants. It can model car following, merging, intersection and
roundabout scenarios. For car following, we can assume a
moving line behind the leading car l with the car following
distance, where lk is the line at time step k. Then the related
distance function is τ (x) = d (y) : R2(H+1) → R2(H+1),
where the 2kth value of τ (x) is the signed distance from
the rear center of the ego vehicle to the line of lk.

For merging, intersection and roundabout, they can all
be classified as merging scenario and have two discrete
maneuvers. Take the lane merging as an example, as shown
in Fig.8, the ego vehicle (red) needs to merge to the same
lane with a surrounding vehicle (yellow). Similarly, there
are two maneuvers, to wait the surrounding vehicle pass
and then merge, or to merge before the vehicle pass. The
surrounding vehicle is predicted to enter the conflict zone at
time step K. Suppose the automated vehicle decides to wait
for the surrounding vehicle to pass and then merge, then there
will be a car following constraint after time step K. So the
distance function is τ (x) = d (y) : R2(H+1) → R2(H+1−K)

where the 2kth value of τ (x) is the signed distance from
the rear center of the ego vehicle to the back line of the
surrounding vehicle at time step k +K.

V. SIMULATIONS

The planner is tested on simulations for two common
urban scenarios: an on-road driving scenario and a parking
lot driving scenario. The planner is implemented in Matlab
script and run on a laptop with 2.6GHz Intel Core i7-6600U.
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Fig. 8. The merging scenario

The performance is then analyzed by comparisons between
SCCFS, CFS and SQP.

A. The Matlab Simulator

In order to simulate the application of the planner, a com-
plete architecture of autonomous driving (e.g, the perception-
planning-control architecture) as well as the vehicle dynam-
ics simulation is needed. The vehicle dynamics simulation
is used to simulate the real-world vehicle reaction and
the perception-planning-control architecture is used to drive
the simulated vehicle (The planner alone cannot drive the
vehicle, only the low-level controller can drive the vehicle).

1) Vehicle Model: The model applied here is the vehicle
bicycle kinematic model, as shown in Fig.9.

Fig. 9. The vehicle bicycle kinematic model

The current vehicle state includes the 2D position
(x0, y0), the velocity v0 and the heading θ0. The control
input is the acceleration a and the steering angle δ. L is the
wheel base. According to the kinematic model, and under the
assumption that the steering angle maintains the same value
in a replanning time, then the vehicle will rotate around the
instant center O and r is the rotation radius. The distance the
vehicle moves in one replanning time Tr is l = v0Tr+ 1

2aT
2
r

and the curvature κ = tan δ
L . Then the updated vehicle state

after one sampling time is:

v1 = v0 + aTr

θ1 = θ0 +
∫ l

0
κds = θ0 + κl

x1 = x0 +
∫ l

0
cos (θ0 + κs) ds = x0 + sin(θ0+κl)−sin(θ0)

κ

y1 = y0 +
∫ l

0
sin (θ0 + κs) ds = x0 + cos(θ0)−cos(θ0+κl)

κ
(16)

2) Simulator Scheme: In our simulator, the perception
module can be removed because all the observations (e.g,
position, velocity of ego and surrounding vehicles) can be

Fig. 10. The simulator scheme

directly acquired from the simulator. The architecture is
then simplified to a planning-control scheme. The simulator
scheme is shown in Fig.10.

First, the current observation (such as position and velocity
of ego and surrounding vehicles) ok as well as the reference
trajectory xref are obtained and passed as the input to the
FOAD planner. The planner then plans an optimal trajectory
x∗ and passes it to the low-level controller. The controller
then compute the control command

[
a δ

]
to follow the

planned trajectory. The vehicle dynamics model then takes
the control command and calculate the observation for the
next timestep ok+1. The iteration continues every replanning
time Tr.

3) Low-level Controller: For the low-level control, we use
an iterative LQR (ILQR) controller. The objective function is
the difference to the planned trajectory and the acceleration.
Then the nonlinear vehicle model is linearized and an LQR
subproblem is solved at every iteration. The details of the
ILQR algorithm are described in [13], [14]. When converged,
the control input at the first time step is selected as the
control command. To avoid local optima and shorten the
computation time, the horizon for the ILQR controller is
selected to be shorter than the horizon of the FOAD planner,
e.g, half of it.

B. Scenarios

Two common urban scenarios are implemented in the
Matlab simulator. In both scenarios, both the sampling time
and the replanning time are set to be 0.2 second, which is
conservative enough to guarantee the worst case computa-
tion.

1) On-road Driving: The on-road driving scenario is very
common in urban driving, as most of the times the vehicle
needs to drive on the road, where the vehicle is supposed to
follow the centerline of the lane.

In this case, there are two lanes on the road. The ego
vehicle is required to maintain in the centerline of the right
lane with the reference speed vr while keep safe with the
surrounding vehicles. There are two front vehicles on the
right lane and one vehicle on the left lane. The reference
trajectory xref is set as a trajectory on the centerline of the
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Fig. 11. Simulation for on-road driving scenario with FOAD planner using
SCCFS algorithm

right lane, starting from the current ego vehicle position and
maintain the distance gap of vrTs.

The results are shown in Fig.11. The blue rectangles rep-
resent the trajectory of the ego vehicle, and the red rectangles
represent the trajectories of the three surrounding vehicles,
where the shallower color represents the future timesteps.
From the figure we can see that the ego vehicle successfully
overtakes the three surrounding vehicles smoothly and then
maintain in the centerline of the lane. The lateral acceleration
profile of the ego vehicle is also plotted in the figure,
where the lateral acceleration is well-bounded in the whole
scenario. The maximum lateral acceleration is only about
2m
/
s2. The driving is quite smooth and comfortable.

2) Parking Lot Driving: Parking lot driving is another
common scenario in urban driving. In this case, we first
drove a real car in a parking lot, started from the entrance
and parked into a target position, and then collect the GPS
data of the trajectory. The raw data is then transformed to
Universal Transverse Mercator (UTM) coordinate as ρUTM
for generating the reference trajectory for the FOAD planner,
and thus our simulation is also in the UTM coordinate. The
reference trajectory is then generated by finding the closest
point x0 on ρUTM to the current ego vehicle position, and
then pick N points from ρUTM start at x0 which maintain
the distance gap of around vrTs.

The results are shown in Fig.12. The blue rectangle
represents the ego vehicle, the red rectangle is the moving
front vehicle and the yellow rectangle is the pedestrian. From
the figure, we can see the ego vehicle first accelerates to
overtake the front vehicle, then waits for the pedestrian to
pass, and finally accelerates again and parked to the target
spot. One might note that the vehicle steers a little to the left
during waiting for the pedestrian, this is because the vehicle
is always required to go faster to maintain high efficiency,
steering to the left allows it to pass the pedestrian earlier.

C. Performance Analysis

The performance analysis of the SCCFS-based FOAD
planner comes with two folds: first, the comparison of
computation time shows SCCFS and CFS is much more
efficient than SQP, which is the state-of-the-art trajectory
optimization algorithm. Second, both SCCFS and CFS are

Fig. 12. Simulation for parking lot driving scenario with FOAD planner
using SCCFS algorithm

Fig. 13. Simulation for on-road driving scenario with FOAD planner using
CFS algorithm

applied to FOAD planner and tested in simulation and FOAD
planner with SCCFS is shown to be much better than with
CFS.

1) Computation time of SCCFS, CFS and SQP: In [10],
[11], the CFS algorithm is proved to be much faster than SQP
while SCCFS algorithm has comparable efficiency with CFS
algorithm. In our simulation, the average computation time
of SCCFS and CFS for the overtaking scenario is 0.14s and
0.17s respectively. SCCFS is even more efficient than CFS
in this case.

2) SCCFS and CFS applied to FOAD planner: We apply
CFS algorithm to FOAD planner and test it in the same
on-road driving scenario as in section V-B. The results are
shown in Fig.13. From the figure, we can see the trajectory
of the ego vehicle is not smooth especially when it is close to
the surrounding vehicles. The lateral acceleration is horrible,
where the maximum value exceeds 20m

/
s2. In simulation

we only consider the 2D movement and ignore tire sliding.
However in the real world, this level of lateral acceleration
can cause serious roll over and drift.

VI. VEHICLE EXPERIMENTS

We implement the FOAD planner in a real Lincoln MKZ
car equipped with GPS, camera, LIDAR and radar. The
details of the hardware setup can be found in [8]. The
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perception module gives the information of the ego vehicle
and surrounding vehicles, and the low level controller can
follow the trajectory given by the FOAD planner. In this
paper we only discuss details of the trajectory planning.

We did experimental tests on FT Techno of America
(FTTA) at Michigan. The satellite map of the track is shown
in Fig.14. In the figure, the blue box and the red box represent
the initial position of the ego vehicle and a surrounding
vehicle. The task for the ego vehicle is to overtake the
front vehicle safely while stay close to the centerline of
the lane. The test data is visualized in Fig.15. The ego

Fig. 14. The satellite map of FTTA track

vehicle accelerate from static and overtake the front vehicle
smoothly. The lateral acceleration for the whole process is
bounded in 1m

/
s2 and the ride is quite comfortable. We also

tried to test Foad planner using the original CFS algorithm
but the ego vehicle’s reaction appears to be too dangerous.

Fig. 15. Real vehicle experiments with FOAD planner using SCCFS
algorithm

VII. CONCLUSION

In this paper, the soft constrained convex feasible set
(SCCFS) algorithm was proposed based on the convex feasi-
ble set (CFS) algorithm to improve closed-loop smoothness
in real time implementation. The fast optimization-based
autonomous driving (FOAD) motion planner was then es-
tablished based on the SCCFS algorithm, which formulated
the objective functions and constraints for optimization-
based motion planning problem. A Matlab simulator was
established and simulations were done for on-road driving
scenario and parking lot scenario. Analysis shows the FOAD
planner with SCCFS algorithm performs the best comparing
to CFS and SQP algorithm. Real vehicle experiment for an
overtaking scenario was conducted on the FTTA track.

In the future, more work needs to be done in the decision
making level, such as to yield or to pass in a roundabout.
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