# New Models and Algorithm for Throughput Maximization in Broadcast Scheduling

#### Jian Li (University of Maryland)

Joint work with Chandra Chekuri, Sungjin Im, Benjamin Moseley (UIUC)
Samir Khuller, Richard McCutchen, Louiqa Raschid (UMD)
Avigdor Gal (Technion)

### **Broadcast Scheduling**

#### Problem definition:

- Given a set of pages  $P = \{p_1, p_2, ..., p_n\}$
- Time is slotted, *T*={1,2,...,*T*}
- Each client sends a request r for page p, with release time  $a_r$  and deadline  $d_r$
- The server broadcasts one page p in a time slot t, and all requests r of page p with  $t \in [a_r, d_r]$  can be satisfied

### **Broadcast Scheduling**

• Example:



### **Broadcast Scheduling**

- Traditional objectives.
  - Hard deadlines:
    - Throughput maximization (MAX-THP)
    - ...
  - No deadlines:
    - Minimizing the max response time.
    - Minimizing the flow time (i.e., avg. response time).
    - •
  - NP-hardness [Chang et al. 08].

#### Motivation

- Each client request the reading of some sensor at some time. The server can probe one sensor in a time slot.
  - A client requests the temperature reading at 5:30PM. She may be satisfied with a reading at 5:33PM. A reading at 5:40PM may be still useful, but not as much. But a reading in 6:00PM is useless.
- Traditional objectives are not sufficient in this example.
  - Minimizing response time ignores deadlines.
  - Minimizing throughput ignores the latency of satisfied requests.
- We capture this in two approaches.
  - A general time-dependent profit function.
  - Tradeoff between completeness and latency.

#### **Profit Maximization**

- A generalization of throughput maximization: Profit Maximization (MAX-PFT)
  - A time –dependent profit function  $g_r(t)$  for each request r.
  - If a request is satisfied multiple times, we take the maximum one.
  - A more nuanced view of "satisfying" a request.



#### **Our Results**

- Offline setting.
  - A (1-1/e)-approximation for MAX-PFT.
  - A 3/4-approximation for MAX-PFT when the profit functions are unimodal.
    - MAX-THP offline: A 3/4 -approximation [Gandhi et al. '06].
- Online settings.
  - An s-speed (1+1/s)—competitive algorithm for MAX-PFT.
    - MAX-THP online: A 1/2-competitive algorithm [Kim et al. '04].

#### Our Results

- Minimizing latency subject to completeness requirement.
  - A (3/4, 1)-approximation for the (completeness, latency) pair.
  - Note that both ratios are in expectation.
- Throughput Maximization with Relaxed Time Windows.
  - Suppose there is a fractional solution that satisfies all requests. We can find a schedule in polynomial time such that each request can be satisfied by right (or left) shifting the window by at most its length.



#### **Our Results**

- Offline MAX-THP:
  - 2-speed 1-approximation.
    - Such a result was known only if all request can be scheduled in a fractional solution [Chang et al. 08].
    - This directly implies a 2-approximation for MAX-THP.
- Minimizing the max response time
  - A  $(2-\epsilon)$ -lower bound for randomized algorithms in the oblivious adversary model.
    - The same bound was only known for deterministic algorithm [Bartal et al. 00, Chang et al. 08].
    - Note that FIFO is 2-competitive [Bartal et al. 00, Chang et al. 08, Chekuri et al. 09].

The slicing trick: Convert MAX-PFT to weighted MAX-THP



A unimodal profit function

**THM:** A 3/4 –approximation for MAX-PFT when the profit functions are unimodal.

Proof: The slicing trick and the 3/4-approximation for weighted MAX-THP.

**THM:** A (1-1/e) –approximation for MAX-PFT with general profit functions.

Proof 1: A simple independent rounding schema.

#### Proof 2:

(submodular maximization subject to a matroid constraint)

- f:  $2^N \to R$  is a submodular function if  $f(A+x) f(A) \cdot f(B+x) f(B) \quad \forall B \subseteq A, x \in N$
- Let N be  $\{(p,t)\}_{p,t}$ . The set of feasible solutions is a partition matroid.
- Let Profit(S) be the profit obtained by schedule S (S \( \sigma N \)).
   Profit(.) is submodular.
- Submodular function maximization subject to a matroid constraint: (1-1/e)-approximation [Calinescu et al. '07, Vondrak '08, Chekuri et al. '10].

- Maximum Additional Profit First (MAPF):
  - At any time t, broadcast s pages which give the maximum additional profits.

**THM:** MAPF is an *s*-speed (1+1/s)-competitive online algorithm for MAX-PFT.

The analysis is tight.

**THM:** For any  $\varepsilon > 0$  and  $s \ge 1$ , MAPF is not s-speed  $(1+1/s-\varepsilon)$ -competitive.

#### Proof (sketch):

 $\Delta(t)$ : the increase of the so-far-gained profit by OPT over the final profit by MAPF.

$$\Delta(t)=\Sigma_{p,i}\delta_{p,i}(t).$$





$$OPT \leq MAFP + \Sigma_t \Delta(t)$$
 -- by definition of  $\Delta$ .  
 $\leq MAFP + \Sigma_t (1/s) \Sigma_{p,i}(m_{p,i}(t)-m_{p,i}(t-1))$  --next slides.  
 $\leq (1+1/s) MAFP$ 

Additional profit obtained by MAFP

Proof (sketch):



It suffices to show  $\Delta(t) \leq (1/s) \sum_{p,i} (m_{p,i}(t) - m_{p,i}(t-1))$ 

- Assume OPT broadcast q at time t and  $\Delta(t)>0$ .
- We can show MAPF does not broadcast q. O.w.  $\Delta(t)=0$ .
- $\Delta(t) \leq \Sigma_i (m_{q,i}(t)-m_{q,i}(t-1)).$
- $(m_{q,i}(t)-m_{q,i}(t-1)) \le (m_{p,i}(t)-m_{p,i}(t-1))$  if MAPF broadcast p.

### Open Problems

- Is it possible to get a 4/3-speed 1-approximation for MAX-THP. Note this would imply a 3/4-approximation for MAX-THP (matching the bound by Gandhi et al. '06).
- Derandomizing the (3/4,1)-approximation for the (completeness, latency) pair.
- A better understanding of the completeness-latency tradeoff.

# Thanks

Proof 1: (LP rounding)

 $Y_p^{(t)} = 1$ : The server broadcasts p at time t.

 $X_{p,i}=1$ : The *i*th request of p is satisfied.

$$\begin{aligned} & \text{maximize} & & \sum_{p,i} w_{p,i} X_{p,i} \\ & \text{subject to} & & \sum_{t \in \mathcal{T}_{p,i}} Y_p^{(t)} \geq X_{p,i} \ \forall p,t, \\ & & & \sum_{p} Y_p^{(t)} \cdot \ 1, \ \forall t, \\ & & & X_{p,i} \in \{0,1\}, \forall p,t, \ Y_p^{(t)} \in \{0,1\}, \forall p,t \end{aligned}$$

Proof 1: (LP rounding)

Let  $x_{p,i}$ ,  $y_p^{(t)}$  be the optimal fractional solution.

Algorithm: (Independent rounding)

• At time t, choose p to broadcast with prob.  $y_p^{(t)}$ 

It is not hard to show that  $Pr(request J_{p,i} is satisfied) \ge (1-1/e) x_{p,i}$ 

- The fractional solution corresponds to a flow.
- There is integral flow.



 Suppose there is a fractional solution that satisfies all requests.



- For each page
  - Order the requests for page p in non-decreasing window length.

Insert each request as long as there is no overlap



• The fractional solution corresponds to a flow.

- The fractional solution corresponds to a flow.
- There is integral flow.

