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Broadcast Scheduling
Problem definition:

 Given a set of pages P={p1,p2,…,pn)

 Time is slotted, T={1,2,…,T}

 Each client sends a request r for page p, with release 
time ar and deadline dr

 The server broadcasts one page p in a time slot t, and 
all requests r of page p with t2[ar , dr] can be satisfied



Broadcast Scheduling
 Example:

Time slots:

requests

Several requests may be 

satisfied by one broadcast.



Broadcast Scheduling
 Traditional objectives.

Hard deadlines:
 Throughput maximization (MAX-THP)

 …

No deadlines:
 Minimizing the max response time.  

 Minimizing the flow time (i.e., avg. response time).

 ….

NP-hardness [Chang et al. 08].



Motivation
 Each client request the reading of some sensor at some 

time. The server can probe one sensor in a time slot. 
 A client requests the temperature reading at 5:30PM. She 

may be satisfied with a reading at 5:33PM. A reading at 
5:40PM may be still useful, but not as much. But a reading in 
6:00PM is useless. 

 Traditional objectives are not sufficient in this example.
 Minimizing response time ignores deadlines.

 Minimizing throughput  ignores the latency of satisfied 
requests.

 We capture this in two approaches.
 A general time-dependent profit function. 

 Tradeoff between completeness and latency.



Profit Maximization
 A generalization of throughput maximization: Profit 

Maximization (MAX-PFT)

 A time –dependent profit function gr(t) for each request r.

 If a request is satisfied multiple times, we take the 
maximum one.

 A more nuanced view of “satisfying ” a request.

The profit function for 

a request:



Our Results
 Offline setting.

 A (1-1/e)-approximation for MAX-PFT.

 A 3/4-approximation for MAX-PFT when the profit functions 
are unimodal. 
 MAX-THP offline: A 3/4 -approximation *Gandhi et al. ’06+.

 Online settings.

 An s-speed (1+1/s)–competitive algorithm for MAX-PFT.
 MAX-THP online: A 1/2-competitive algorithm *Kim et al. ’04+.



Our Results

 Minimizing latency subject to completeness requirement.

 A (3/4, 1)-approximation for the (completeness, latency) 
pair.

 Note that both ratios are in expectation.

 Throughput Maximization with Relaxed Time Windows.

 Suppose there is a fractional solution that satisfies all 
requests. We can find a schedule in polynomial time such 
that each request can be satisfied by right (or left) shifting 
the window by at most its length.

Relaxed window



Our Results

 Offline MAX-THP: 

 2-speed 1-approximation. 
 Such a result was known only if all request can be scheduled in a 

fractional solution [Chang et al. 08].

 This directly implies a 2-approximation for MAX-THP.

 Minimizing the max response time

 A (2-ε)-lower bound for randomized algorithms in the 
oblivious adversary model. 
 The same bound was only known for deterministic algorithm [Bartal

et al. 00, Chang et al. 08]. 

 Note that FIFO is 2-competitive [Bartal et al. 00, Chang et al. 08, Chekuri

et al. 09].



Offline – Profit Maximization
 The slicing trick: Convert MAX-PFT to weighted MAX-THP

A unimodal profit function

A general profit function



Offline – Profit Maximization
THM: A 3/4 –approximation for MAX-PFT when the 

profit functions are unimodal.

Proof: The slicing trick and the 3/4-approximation for 
weighted MAX-THP.

THM: A (1-1/e) –approximation for MAX-PFT with 
general profit functions.

Proof 1: A simple independent rounding schema.



Offline – Profit Maximization
Proof 2: 

(submodular maximization subject to a matroid constraint)

 f: 2N → R is a submodular function if

 Let N be {(p,t)}p,t. The set of feasible solutions is a partition 
matroid.

 Let Profit(S) be the profit obtained by schedule S (SµN). 
Profit(.) is submodular.

 Submodular function maximization subject to a matroid
constraint: (1-1/e)-approximation [Calinescu et al. ’07, Vondrak ’08, 

Chekuri et al. ’10+.

f(A+x)¡ f(A) · f(B+ x)¡ f(B) 8B µ A;x 2N



Online – Profit Maximization
 Maximum Additional Profit First (MAPF):
At any time t, broadcast s pages which give the 

maximum additional profits.

THM: MAPF is an s-speed (1+1/s)-competitive online 
algorithm for MAX-PFT.

The analysis is tight.

THM: For any ε>0 and s≥1, MAPF is not s-speed (1+1/s-
ε)-competitive.



Online – Profit Maximization
Proof (sketch):

∆(t): the increase of the so-far-gained profit by OPT over 
the final profit by MAPF. 

∆(t)=Σp,iδ p,i(t).

mp,i : final profit for request Jp,i by MAPF

t

m*
p,i(t): profit for request Jp,i by OPT at t

1 2 3 4 5

δ p,i(4)

δ p,i(5)

Request Jp,i



Online – Profit Maximization
Proof (sketch):

∆(t)=Σp,iδ p,i(t).

OPT ≤ MAFP + Σt ∆(t)        -- by definition of ∆.

≤ MAFP + Σt (1/s) Σp,i(mp,i(t)-mp,i(t-1)) --next slides.

≤ (1+1/s) MAFP
Additional profit 

obtained by MAFP

mp,i : final profit for request Jp,i by MAPF

t

m*
p,i(t): profit for request Jp,i by OPT at t

1 2 3 4 5

δ p,i(4)

δ p,i(5)

Request Jp,i



Online – Profit Maximization
Proof (sketch):

It suffices to show ∆(t) ≤(1/s)Σp,i(mp,i(t)-mp,i(t-1))

 Assume OPT broadcast q at time t and ∆(t)>0.

 We can show MAPF does not broadcast q. O.w. ∆(t)=0.

 ∆(t) ≤Σi (mq,i(t)-mq,i(t-1)). 

 (mq,i(t)-mq,i(t-1)) ≤ (mp,i(t)-mp,i(t-1)) if MAPF broadcast p.

mp,i : final profit for request Jp,i by MAPF

t

m*
p,i(t): profit for request Jp,i by OPT at t

1 2 3 4 5

δ p,i(4)

δ p,i(5)

Request Jp,i



Open Problems
 Is it possible to get a 4/3-speed 1-approximation for 

MAX-THP. Note this would imply a 3/4-approximation 
for MAX-THP (matching the bound by Gandhi et al. ’06).

 Derandomizing the (3/4,1)-approximation for the 
(completeness, latency) pair.

 A better understanding of the completeness-latency 
tradeoff.



Thanks



Offline – Profit Maximization
Proof 1: (LP rounding)

maximize
X

p;i

wp;iXp;i

subject to
X

t2Tp;i

Y (t)p ¸ Xp;i 8p; t;

X

p

Y (t)p · 1; 8t;

Xp;i 2 f0; 1g; 8p; t; Y (t)p 2 f0; 1g; 8p; t

Yp
(t) =1 : The server broadcasts p at time t.

Xp,i=1:  The ith request of p is satisfied.



Offline – Profit Maximization
Proof 1: (LP rounding)

Let xp,i ,yp
(t) be the optimal fractional solution.

Algorithm: (Independent rounding)

 At time t, choose p to broadcast with prob. yp
(t)

It is not hard to show that Pr(request Jp,i is satisfied) ≥ 
(1-1/e) xp,i



Throughput Maximization with Relaxed 
Time Windows

 The fractional solution corresponds to a flow.

 There is integral flow.

Time slots:



Throughput Maximization with Relaxed 
Time Windows

 Suppose there is a fractional solution that satisfies all 
requests.

Time slots:

requests



Throughput Maximization with Relaxed 
Time Windows

 For each page 

 Order the requests for page p in non-decreasing window 
length. 

 Insert each request as long as there is no overlap

 The fractional solution corresponds to a flow.

Time slots:

requests

source

sink



Throughput Maximization with Relaxed 
Time Windows

 The fractional solution corresponds to a flow.

 There is integral flow.

Time slots:

requests

source

sink


