Stochastic Combinatorial Optimization via Poisson Approximation

Jian Li, Wen Yuan Institute of Interdisiplinary Information Sciences Tsinghua University STOC 2013

lijian83@mail.tsinghua.edu.cn

Outline

- Threshold Probability Maximization
- Stochastic Knapsack
- Other Results

Threshold Probability Maximization

• Deterministic version:

- A set of element $\{e_i\}$, each associated with a weight w_i
- A solution *S* is a subset of elements (that satisfies some property)
- **Goal:** Find a solution *S* such that the total weight of the solution $w(S) = \sum_{i \in S} w_i$ is minimized
- E.g. shortest path, minimal spanning tree, top-k query, matroid base

Threshold Probability Maximization

Deterministic version:

- A set of element $\{e_i\}$, each associated with a weight w_i
- A solution *S* is a subset of elements (that satisfies some property)
- **Goal:** Find a solution *S* such that the total weight of the solution $w(S) = \sum_{i \in S} w_i$ is minimized
- E.g. shortest path, minimal spanning tree, top-k query, matroid base
- Stochastic version:
 - w_i s are independent positive random variables
 - **Goal:** Find a solution S such that the *threshold probability* $\Pr[w(S) \le 1]$ is maximized.

Related Work

Studied extensively before:

- Many heuristics
- Stochastic shortest path [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Nikolova. APPROX'10]
- Fixed set stochastic knapsack [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99] [Goyal, Ravi. ORL09][Bhalgat, Goel, Khanna. SODA'11]
- •
- Chance-constrained (risk-averse) stochastic optimization problem [Swamy. SODA'11]

Related Work

Studied extensively before:

- Many heuristics
- Stochastic shortest path [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Nikolova. APPROX'10]
- Fixed set stochastic knapsack [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99] [Goyal, Ravi. ORL09][Bhalgat, Goel, Khanna. SODA'11]

•

• Chance-constrained (risk-averse) stochastic optimization problem [Swamy. SODA'11]

A common challenge: How to deal with/ optimize on the distribution of the sum of several random variables.

Previous techniques:

- LP [Dean, Goemans, Vondrak. FOCS'04]
- Discretization [Bhalgat, Goel, Khanna. SODA'11],
- Characteristic function [Li, Deshpande. FOCS'11]

Our Result

• If the deterministic problem is "easy", then for any $\epsilon > 0$, we can find a solution S such that

$\Pr[w(S) \le 1 + \epsilon] > OPT - \epsilon$

"Easy": there is a PTAS for the multi-dimensional version of the problem: Shortest path, MST, matroid base, matroid intesection, mincut (strictly generalizing the result in [Li, Deshpande. FOCS'11])

• The above result can be generalized to the expected ultility maximization problem: maximize $E[\mu(X(S))]$ for Lipschitz utility μ

- Step 1: Discretizing the prob distr (Similar to [Bhalgat, Goel, Khanna. SODA'11], but much simpler)
- Step 2: Reducing the problem to the multi-dim problem

• Step 1: Discretizing the prob distr

(Similar to [Bhalgat, Goel, Khanna. SODA'11], but simpler)

• Step 1: Discretizing the prob distr

(Similar to [Bhalgat, Goel, Khanna. SODA'11], but simpler)

The behaviors of \tilde{X}_i and X_i are close:

1. $\Pr[X(S) \le \beta] \le \Pr[\widetilde{X}(S) \le \beta + \epsilon] + O(\epsilon);$ 2. $\Pr[\widetilde{X}(S) \le \beta] \le \Pr[X(S) \le \beta + \epsilon] + O(\epsilon).$

- Step 2: Reducing the problem to the multi-dim problem
 - Heavy items: $E[X_i] \ge poly(\epsilon)$
 - At most $O(1/poly(\epsilon))$ many heavy items, so we can afford enumerating them

- Step 2: Reducing the problem to the multi-dim problem
 - Heavy items: $E[X_i] \ge poly(\epsilon)$
 - At most $O(1/\text{poly}(\boldsymbol{\epsilon}))$ heavy items, so we can afford enumerating them
 - Light items:
 - Each X_i can be represented as a O(1)-dim vector **Sg(i)** (signature) **Sg**(*i*) = (Pr[$\tilde{X}_i = \epsilon^4$], Pr[$\tilde{X}_i = \epsilon^4 + \epsilon^5$],)
 - Enumerating all O(1)-dim (budget) vectors *B*
 - Find a set *S* such that

 $\mathbf{Sg}(S) = \sum_{i \in S} \mathbf{Sg}(i) \le B$ (using the multi-dim PTAS)

• Return *S* for which $\Pr[w(S) \le 1 + \epsilon]$ is largest

Poisson Approximation

Well known: Law of small numbers *n* Bernoulli r.v. X_i (*p*, 1-*p*), np = constAs $n \to \infty$, $\sum X_i \sim Poisson(np)$

Poisson Approximation

(Somewhat less well-known)

Le Cam's theorem:

n r.v. X_i (with common support (0, 1, 2, 3, 4, ...)) $p_i = \Pr[X_i \neq 0], \lambda = \sum p_i, q_i = \sum \Pr[X_i = j]$ Y_i is a r.v. with distr $(0, \frac{q_1}{\lambda}, \frac{q_2}{\lambda}, \frac{q_3}{\lambda}, \frac{q_4}{\lambda}, \dots)$ Y is a compound Poisson distr (CPD) $\sum_{i=1}^{N} Y_i$ where $N \sim Poisson(\lambda)$ $\Delta(\sum X_i, Y) \leq \sum p_i^2$ Variational distance: $\Delta(X,Y) = \sum_{i} |\Pr[X=i] - \Pr[Y=i]|$

Poisson Approximation • Le Cam's theorem: $\Delta(\sum X_i, Y) \le \sum p_i^2$

- If S_1 and S_2 have the same signature, then they correspond to the same CPD
- So if $\sum_{i \in S_1} p_i^2$ and $\sum_{i \in S_2} p_i^2$ are sufficiently small, the distributions of $X(S_1)$ and $X(S_2)$ are close
- Therefore, enumerating the signature of light items suffices

Outline

- Threshold Probability Maximization
- Stochastic Knapsack
- Other Results

- A knapsack of capacity C
- A set of items.
- Known: Prior distr of (size, profit) of each item.
- Items arrive one by one
- Irrevocably decide whether to accept the item
- The actual size of the item becomes known after the decision
- Knapsack constraint: The total size of accepted items <= C
- Goal: maximize E[Profit]

Previous work

- 5-approx [Dean, Goemans, Vondrak. FOCS'04]
- 3-approx [Dean, Goemans, Vondrak. MOR'08]
- $(1+\epsilon, 1+\epsilon)$ -approx [Bhalgat, Goel, Khanna. SODA'11]
- 2-approx [Bhalgat 12]
- 8-approx (size&profit correlation, cancellation)
 [Gupta, Krishnaswamy, Molinaro, Ravi. FOCS'11]

Our result:

 $(1+\epsilon, 1+\epsilon)$ -approx (size&profit correlation, cancellation) 2-approx (size&profit correlation, cancellation)

• Decision Tree

Exponential size!!!! (depth=n)

How to represent such a tree? Compact solution?

- By discretization, we make some simplifying assumptions:
 - Support of the size distribution: $(0, \epsilon, 2\epsilon, 3\epsilon, \dots, 1)$.
 - All prob. values are in the form of k/M, ($k \le M$ and M = poly(n))
 - Profit of each item *i* is a fixed value

Still way too many possibilities, how to narrow the search space?

Block Adaptive Policies

• Block Adaptive Policies: Process items block by block

Poisson Approximation

- Each heavy item consists of a singleton block
- Light items:
 - Recall if two blocks have the same signature, their size distributions are similar
 - So, enumerate Signatures! (instead of enumerating subsets)

Sg=Sg(*item2*)+Sg(*item3*) CPD(Sg) ~ *size*(*item2*) + *size*(*item3*)

Algorithm

• Outline: Enumerate all block structures with a signature associated with each node

Algorithm

2. Find an assignment of items to blocks that matches all signatures

- (this can be done by standard dynamic program)

Algorithm

2. Find an assignment of items to blocks that matches all signatures

- (this can be done by standard dynamic program)

Outline

- Threshold Probability Maximization
- Stochastic Knapsack
- Other Results

Other Results

- Incorporating other constraints
 - Size/profit correlation
 - cancellation
- Bayesian Online Selection Problem with Knapsack Constraint
 - Can see the actually size and profit of an item before the decision
 - $(1+\epsilon, 1+\epsilon)$ -approx (against the optimal adaptive policy)
 - Prophet inequalities [Chawla, Hartline, Malec, Sivan. STOC10] [Kleinberg, Weinberg. STOC12]
 - ✓ Close relations with Secretary problems
 - ✓ Applications in multi-parameter mechanism design
- Stochastic Bin Packing

Conclusion

- Using Poisson approximation, we can often reduce the stochastic optimization problem to a multi-dimensional packing problem
- More applications

Thanks

lijian83@mail.tsinghua.edu.cn