
Ranking Continuous Probabilistic Datasets

Jian Li, University of Maryland, College Park

Joint work with Amol Deshpande (UMD)

VLDB 2010, Singapore



Motivation

 Uncertain data with continuous distributions is ubiquitous
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 Many probabilistic database prototypes support 
continuous distributions. 
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Sensor ID Temp.

1 Gauss(40,4)
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3 Gauss(20,9)
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ubiquitous.  
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 Often need to “rank” tuples or choose “top k”

◦ Deciding which apartments to inquire about

◦ Selecting a set of sensors to “probe”

◦ Choosing a set of stocks to invest in

◦ …



Ranking in Probabilistic Databases

 Possible worlds semantics

ID Score

t1 Uni(100,200)

t2 150

t3 Gauss(100,3)

ID Score

t1 125

t2 150

t3 97

ID Score

t1 200

t2 150

t3 102
A probabilistic table
(assume tuple-independence)

pw1

pw2

…
…
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Motivation

 Much work on ranking queries in probabilistic databases.

◦ U-top-k, U-rank-k [Soliman et al. ICDE’07]

◦ Probabilistic Threshold (PT-k) [Hua et al. SIGMOD’08]

◦ Global-top-k [Zhang et al.  DBRank’08]

◦ Expected Rank [Cormode et al. ICDE’09]

◦ Typical Top-k [Ge et al. SIGMOD’09]

◦ Parameterized Ranking Function [Li et al. VLDB’09]

◦ …..

 Most of them focus on discrete distributions. 

◦ Some simplistic methods, such as discretizing the continuous 
distributions, have been proposed, e.g., [Cormode et al. ICDE’09]. 

◦ One exception: Uniform distributions [Soliman et al. ICDE’09]



Parameterized Ranking Functions

• Weight Function: ! : (tuple, rank)!

• Parameterized Ranking Function (PRF) 

Return k tuples with the highest           values.

R

Positional Probability: Probability that t is
ranked at position i across possible worlds



Parameterized Ranking Functions

• PRF generalizes many previous ranking functions.

◦ PT-k/GT-k: return top-k tuples such that Pr(r(t)≤k) is 
maximized. 
 ω(t,i) = 1 if i≤k and ω(t,i)=0 if i>k

◦ Exp-rank:  Rank tuple by an increasing order of E[r(t)].
 ω(t,i) = n-i

◦ Can approximate many others using linear 
combinations of PRFe functions.

 Weights can be learned using user feedbacks.



Outline

 A closed-form generating function for the 
positional probabilities.

 Polynomial time exact algorithms for uniform and 
piecewise polynomial distributions.

 Efficient approximations for arbitrary distributions 
based on spline approximation.

 Theoretical comparisons with Monte-Carlo and 
Discretization.

 Experimental comparisons.



A Straightforward Method

 Suppose we have three r.v. s1, s2, s3 with pdf ¹1, 
¹2, ¹3, respectively.

 Similarly,

Pr(s1 < s2 < s3) =

Z +1

¡1
¹1(x1)

Z +1

x1

¹2(x2)

Z +1

x2

¹3(x3)dx3dx2dx1

Pr(s1 < s2) =

Z +1

¡1
¹1(x1)

Z +1

x1

¹2(x2)dx2dx1

Pr(r(s1) = 3) = Pr(s1 < s2 < s3) +Pr(s1 < s3 < s2)

Pr(s1 < s2 j s1 = x1)

Difficulty 1: Multi-dimensional integral

Difficulty 2: #terms is possibly exponential



Generating Functions
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Let the cdf of si (the score of ti) be

Theorem:

zi(x)

zi(x) =
P

j¸1 Pr(r(ti) = j)xj:

Define

Then,               is the generating function of the positional probabilities.



Generating Functions
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A Polynomial of x

1-dim Integral

No exp. # terms

Advantages over the straightforward method:



Uniform Distribution: A Poly-time Algorithm
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Uniform Distribution: A Poly-time Algorithm
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Other Poly-time Solvable Cases

 Piecewise polynomial distributions.

◦ The cdf ρi is piecewise polynomial.

 Combine with discrete distributions.

◦ 100                   w.p.  0.5,

Uni[150,200]  w.p. 0.5     
Si=



General Distribution: Spline Approximations

Spline (Piecewise polynomial): a powerful class 
of functions to approximate other functions.
Cubic spline: Each piece is a deg-3 polynomial.

Spline(x) = f(x), Spline’(x) = f’(x) for all break points x.



Theoretical Convergence Results 

Monte-Carlo: ri(t) is the rank of t in the ith sample
N is the number of samples

Estimation:

Discretization: Approximate a continuous distribution by 
a set of discrete points. N is the number of break points.



Theoretical Convergence Results 

 Spline Approximation: We replace each 

distribution by  a spline with N=O(nβ) pieces.

◦ Under certain continuity assumptions.

 Discretization:  We replace each distribution by 
N=O(nβ) discrete pts.

◦ Under certain continuity assumptions.

 Monte-Carlo:  With                                   samples,N = ­(n¯ log 1
±
)

β=4

O(n-14.5β)

O(n-2.5β)

O(n-2β)



Other Results

 Efficient algorithm for PRF-l (linear weight func.)
◦ If no tuple uncertainty, PRF-l = Expected Rank

[Cormode et al. ICDE09] .

 Efficient algorithm for PRF-e (exp. weight func.)
◦ Using Legendre-Gauss quadrature for numerical 

integration.

 K-nearest neighbor over uncertain points.
◦ Semantics:  retrieve k pts. that have highest prob. 

being the kNN of the query point q. 
◦ This generalizes the semantics proposed in [Kriegel et al. 

DASFAA07] and [Cheng et al. ICDE08].

◦ score(point p) = dist(point p, query point q). 



Experimental Results

Convergence rates of different methods

Setup: Gaussian distributions. 1000 tuples.
30% uncertain tuples. 
Mean: uniformly chosen in [0,1000].
Avg stdvar:  5.   Truncation done at 7*stdvar.
Kendall distance: #reversals between two rankings.                     



Experimental Results
Setup:  5 dataset ORDER-d (d=1,2,3,4,5)
Gaussian distributions. 1000 tuples.
Mean:   mean(ti) = i * 10-d where d=1,2,3,4,5                 
Stdvar:  1.
Kendall distance: #reversals between two rankings.                     

Take-away:  Spline converges faster, but has a higher overhead.

Discretization is somewhere between Spline and Monte-Carlo.



Conclusion

 Efficient algorithms to rank tuples with 
continuous distributions.

 Compare our algorithms with Monte-
Carlo and Discretization.

 Future work: 

◦ Progressive approximation.

◦ Handling correlations.

◦ Exploring spatial properties in answering kNN
queries. 



Thanks



Note

 Texpoint 3.2.1


