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1 Gauss(40,4)
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 Often need to “rank” tuples or choose “top k”

◦ Deciding which apartments to inquire about

◦ Selecting a set of sensors to “probe”

◦ Choosing a set of stocks to invest in

◦ …



Ranking in Probabilistic Databases

 Possible worlds semantics

ID Score

t1 Uni(100,200)

t2 150

t3 Gauss(100,3)

ID Score

t1 125

t2 150

t3 97

ID Score

t1 200

t2 150

t3 102
A probabilistic table
(assume tuple-independence)
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…
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Motivation

 Much work on ranking queries in probabilistic databases.

◦ U-top-k, U-rank-k [Soliman et al. ICDE’07]

◦ Probabilistic Threshold (PT-k) [Hua et al. SIGMOD’08]

◦ Global-top-k [Zhang et al.  DBRank’08]

◦ Expected Rank [Cormode et al. ICDE’09]

◦ Typical Top-k [Ge et al. SIGMOD’09]

◦ Parameterized Ranking Function [Li et al. VLDB’09]

◦ …..

 Most of them focus on discrete distributions. 

◦ Some simplistic methods, such as discretizing the continuous 
distributions, have been proposed, e.g., [Cormode et al. ICDE’09]. 

◦ One exception: Uniform distributions [Soliman et al. ICDE’09]



Parameterized Ranking Functions

• Weight Function: ! : (tuple, rank)!

• Parameterized Ranking Function (PRF) 

Return k tuples with the highest           values.

R

Positional Probability: Probability that t is
ranked at position i across possible worlds



Parameterized Ranking Functions

• PRF generalizes many previous ranking functions.

◦ PT-k/GT-k: return top-k tuples such that Pr(r(t)≤k) is 
maximized. 
 ω(t,i) = 1 if i≤k and ω(t,i)=0 if i>k

◦ Exp-rank:  Rank tuple by an increasing order of E[r(t)].
 ω(t,i) = n-i

◦ Can approximate many others using linear 
combinations of PRFe functions.

 Weights can be learned using user feedbacks.



Outline

 A closed-form generating function for the 
positional probabilities.

 Polynomial time exact algorithms for uniform and 
piecewise polynomial distributions.

 Efficient approximations for arbitrary distributions 
based on spline approximation.

 Theoretical comparisons with Monte-Carlo and 
Discretization.

 Experimental comparisons.



A Straightforward Method

 Suppose we have three r.v. s1, s2, s3 with pdf ¹1, 
¹2, ¹3, respectively.

 Similarly,

Pr(s1 < s2 < s3) =

Z +1

¡1
¹1(x1)

Z +1

x1

¹2(x2)

Z +1

x2

¹3(x3)dx3dx2dx1

Pr(s1 < s2) =

Z +1

¡1
¹1(x1)

Z +1

x1

¹2(x2)dx2dx1

Pr(r(s1) = 3) = Pr(s1 < s2 < s3) +Pr(s1 < s3 < s2)

Pr(s1 < s2 j s1 = x1)

Difficulty 1: Multi-dimensional integral

Difficulty 2: #terms is possibly exponential



Generating Functions
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½i(`) = Pr(si < `) =
R `
¡1¹i(x)dx; ¹½i(`) = 1¡½i(`)

Let the cdf of si (the score of ti) be

Theorem:

zi(x)

zi(x) =
P

j¸1 Pr(r(ti) = j)xj:

Define

Then,               is the generating function of the positional probabilities.



Generating Functions
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A Polynomial of x

1-dim Integral

No exp. # terms

Advantages over the straightforward method:



Uniform Distribution: A Poly-time Algorithm
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Uniform Distribution: A Poly-time Algorithm

Pdf s
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Other Poly-time Solvable Cases

 Piecewise polynomial distributions.

◦ The cdf ρi is piecewise polynomial.

 Combine with discrete distributions.

◦ 100                   w.p.  0.5,

Uni[150,200]  w.p. 0.5     
Si=



General Distribution: Spline Approximations

Spline (Piecewise polynomial): a powerful class 
of functions to approximate other functions.
Cubic spline: Each piece is a deg-3 polynomial.

Spline(x) = f(x), Spline’(x) = f’(x) for all break points x.



Theoretical Convergence Results 

Monte-Carlo: ri(t) is the rank of t in the ith sample
N is the number of samples

Estimation:

Discretization: Approximate a continuous distribution by 
a set of discrete points. N is the number of break points.



Theoretical Convergence Results 

 Spline Approximation: We replace each 

distribution by  a spline with N=O(nβ) pieces.

◦ Under certain continuity assumptions.

 Discretization:  We replace each distribution by 
N=O(nβ) discrete pts.

◦ Under certain continuity assumptions.

 Monte-Carlo:  With                                   samples,N = (n¯ log 1
±
)

β=4

O(n-14.5β)

O(n-2.5β)

O(n-2β)



Other Results

 Efficient algorithm for PRF-l (linear weight func.)
◦ If no tuple uncertainty, PRF-l = Expected Rank

[Cormode et al. ICDE09] .

 Efficient algorithm for PRF-e (exp. weight func.)
◦ Using Legendre-Gauss quadrature for numerical 

integration.

 K-nearest neighbor over uncertain points.
◦ Semantics:  retrieve k pts. that have highest prob. 

being the kNN of the query point q. 
◦ This generalizes the semantics proposed in [Kriegel et al. 

DASFAA07] and [Cheng et al. ICDE08].

◦ score(point p) = dist(point p, query point q). 



Experimental Results

Convergence rates of different methods

Setup: Gaussian distributions. 1000 tuples.
30% uncertain tuples. 
Mean: uniformly chosen in [0,1000].
Avg stdvar:  5.   Truncation done at 7*stdvar.
Kendall distance: #reversals between two rankings.                     



Experimental Results
Setup:  5 dataset ORDER-d (d=1,2,3,4,5)
Gaussian distributions. 1000 tuples.
Mean:   mean(ti) = i * 10-d where d=1,2,3,4,5                 
Stdvar:  1.
Kendall distance: #reversals between two rankings.                     

Take-away:  Spline converges faster, but has a higher overhead.

Discretization is somewhere between Spline and Monte-Carlo.



Conclusion

 Efficient algorithms to rank tuples with 
continuous distributions.

 Compare our algorithms with Monte-
Carlo and Discretization.

 Future work: 

◦ Progressive approximation.

◦ Handling correlations.

◦ Exploring spatial properties in answering kNN
queries. 
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