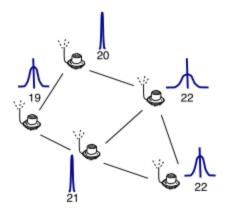
Ranking Continuous Probabilistic Datasets

Jian Li, University of Maryland, College Park

Joint work with Amol Deshpande (UMD)

VLDB 2010, Singapore

Motivation


• Uncertain data with continuous distributions is ubiquitous

apartments.com	TM Search for R	entals Mor	ving Center Apa	rtment Living	Manager Center	Place Ar		
MODELS & OVERVIEW PHOTOS & FLOORPLANS AMENITIES MAP & DIRECTIONS								
1 Bedroom Image: Call with the property Call: (866) 395-1207 Contact the Property Models Price Deposit Sq. Ft Bath Availability								
Model 1A	\$930 - \$1060	Varies	717 sq. ft.	1 Bath(s)	View Available Units			
2 Bedrooms 🖾 🔄 Auestions? Call: (866) 395-1207 Contact the Property Models Price Deposit Sq. Ft Bath Availability								
Model 2A	\$1322 - \$1376	Varies	935 sq. ft.	1 Bath(s)	View Available Units			
3 Bedrooms Image: Call Contact C								
Model 3A	\$1480 - \$1529	Varies	1053 sq. ft.	1.5 Bath(s)	View Available Units			
Uncertain scores								

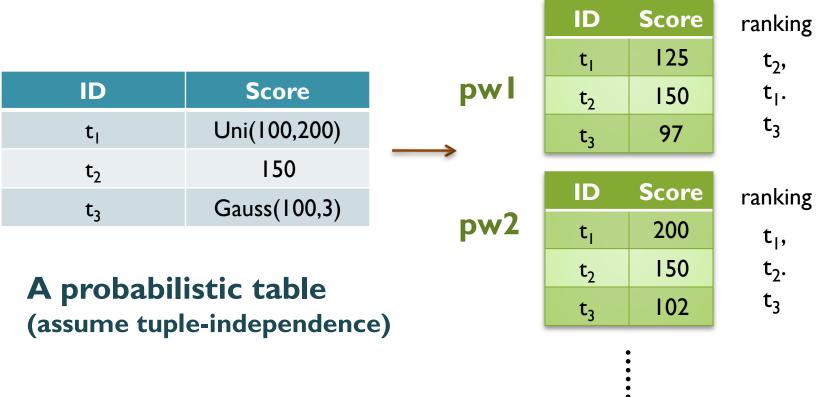
Motivation

 Uncertain data with continuous distributions is ubiquitous

Sensor ID	Temp.
I	Gauss(40,4)
2	Gauss(50,2)
3	Gauss(20,9)
•••	

- Many probabilistic database prototypes support continuous distributions.
 - Orion [Singh et al. SIGMOD'08], Trio [Agrawal et al. MUD'09], MCDB [Jampani et al. SIGMOD'08],], PODS [Tran et al. SIGMOD'10], etc.

0


Motivation

- Uncertain data with continuous distributions is ubiquitous.
- Many probabilistic database prototypes support continuous distributions.
 - Orion [Singh et al. SIGMOD'08], Trio [Agrawal et al. MUD'09], MCDB [Jampani et al. SIGMOD'08],], PODS [Tran et al. SIGMOD'10], etc.
- Often need to "rank" tuples or choose "top k"
 - Deciding which apartments to inquire about
 - Selecting a set of sensors to "probe"
 - Choosing a set of stocks to invest in

Ranking in Probabilistic Databases

Possible worlds semantics

Uncountable number of possible worlds A probability density function (pdf) over worlds

Motivation

0

....

- Much work on ranking queries in probabilistic databases.
 - U-top-k, U-rank-k [Soliman et al. ICDE'07]
 - Probabilistic Threshold (PT-k) [Hua et al. SIGMOD'08]
 - Global-top-k [Zhang et al. DBRank'08]
 - Expected Rank [Cormode et al. ICDE'09]
 - Typical Top-k [Ge et al. SIGMOD'09]
 - Parameterized Ranking Function [Li et al. VLDB'09]
- Most of them focus on discrete distributions.
 - Some simplistic methods, such as discretizing the continuous distributions, have been proposed, e.g., [Cormode et al. ICDE'09].
 - One exception: Uniform distributions [Soliman et al. ICDE'09]

Parameterized Ranking Functions

- Weight Function: ω : (tuple, rank) $\rightarrow \mathbb{R}$
- Parameterized Ranking Function (PRF)

$$\Upsilon_{\omega}(t) = \sum_{i>0} \omega(t,i) \cdot \Pr(r(t) = i).$$

Positional Probability: Probability that t is ranked at position i across possible worlds

Return *k* tuples with the highest $|\Upsilon_{\omega}|$ values.

Parameterized Ranking Functions

- PRF generalizes many previous ranking functions.
 - PT-k/GT-k: return top-k tuples such that Pr(r(t)≤k) is maximized.
 - $\omega(t,i) = 1$ if $i \le k$ and $\omega(t,i) = 0$ if i > k
 - Exp-rank: Rank tuple by an increasing order of E[r(t)].
 ω(t,i) = n-i
 - Can approximate many others using linear combinations of PRFe functions.
- Weights can be learned using user feedbacks.

Outline

- A closed-form *generating function* for the positional probabilities.
- Polynomial time *exact* algorithms for uniform and piecewise polynomial distributions.
- Efficient approximations for arbitrary distributions based on *spline* approximation.
- Theoretical comparisons with *Monte-Carlo* and *Discretization*.
- Experimental comparisons.

A Straightforward Method

• Suppose we have three r.v. s_1 , s_2 , s_3 with pdf μ_1 , μ_2 , μ_3 , respectively.

$$\Pr(s_1 < s_2) = \int_{-\infty}^{+\infty} \mu_1(x_1) \int_{x_1}^{+\infty} \mu_2(x_2) dx_2 dx_1$$

Similarly,
$$\Pr(s_1 < s_2 \mid s_1 = x_1)$$

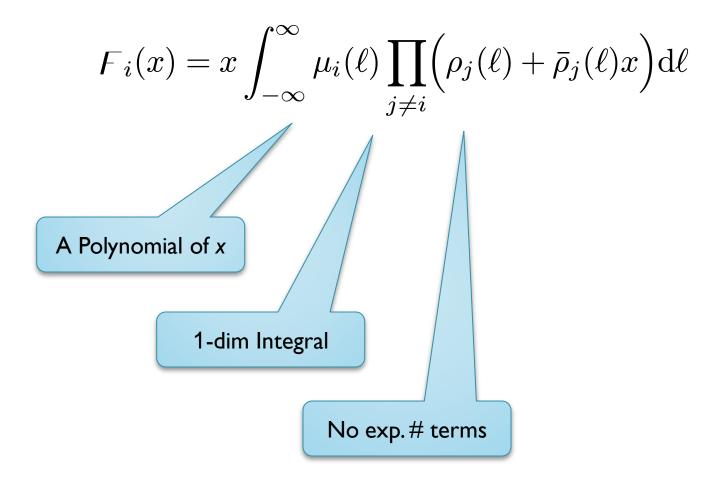
 $\Pr(s_1 < s_2 < s_3) = \int_{-\infty}^{+\infty} \mu_1(x_1) \int_{x_1}^{+\infty} \mu_2(x_2) \int_{x_2}^{+\infty} \mu_3(x_3) dx_3 dx_2 dx_1$ Difficulty 1: Multi-dimensional integral $\Pr(r(s_1) = 3) = \Pr(s_1 < s_2 < s_3) + \Pr(s_1 < s_3 < s_2)$ Difficulty 2: #terms is possibly exponential

Generating Functions

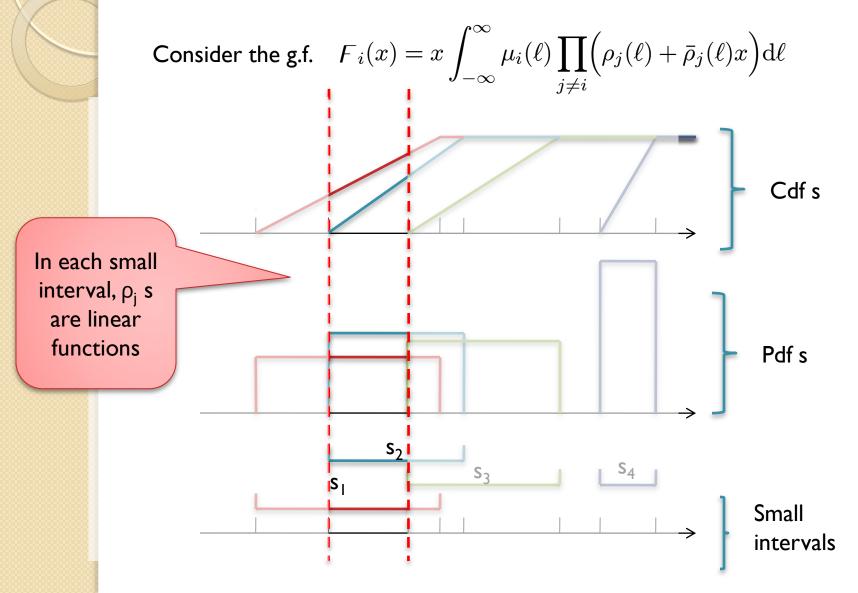
Let the **cdf** of \mathbf{s}_i (the score of t_i) be $\rho_i(\ell) = \Pr(s_i < \ell) = \int_{-\infty}^{\ell} \mu_i(x) dx, \ \bar{\rho}_i(\ell) = 1 - \rho_i(\ell)$

Theorem:

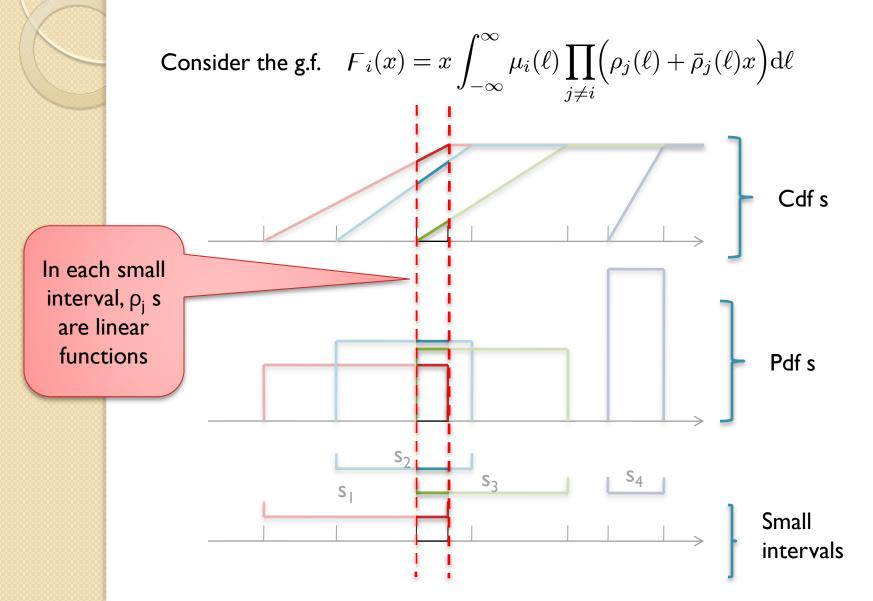
Define


$$F_i(x) = x \int_{-\infty}^{\infty} \mu_i(\ell) \prod_{j \neq i} \left(\rho_j(\ell) + \bar{\rho}_j(\ell) x \right) d\ell$$

Then, $F_i(x)$ is the generating function of the positional probabilities.


$$F_i(x) = \sum_{j \ge 1} \Pr(r(t_i) = j) x^j.$$

Generating Functions

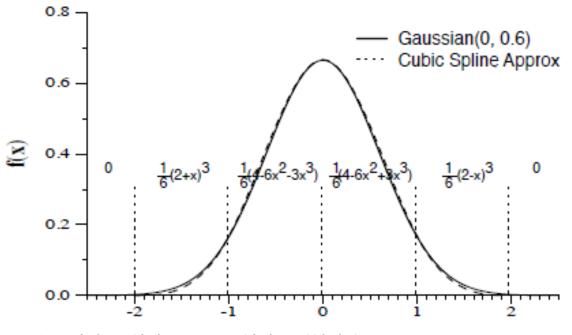

Advantages over the straightforward method:

Uniform Distribution: A Poly-time Algorithm

$$F_{i}(x) = x \int_{lo}^{h} \mu_{i}(\ell) \prod_{j \neq i} \left(\rho_{j}(\ell) + \bar{\rho}_{j}(\ell) x \right) d\ell$$
Cdf s
Constant
Linear func. of ℓ
Polynomial of x and ℓ
Expand in form
$$\sum_{j,k} c_{j,k} x^{j} \ell^{k}$$
lo hi
Small
intervals

Then, we get $F_i(x) = \mu_i(\ell) \sum_{j,k} c_{j,k} \int_{lo}^{hi} \ell^k d\ell \cdot x^{j+1}$

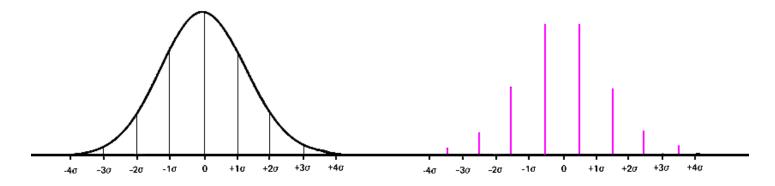
Other Poly-time Solvable Cases


- Piecewise polynomial distributions.
 - The cdf ρ_i is piecewise polynomial.
- Combine with discrete distributions.

$$^{\circ}S_{i} = \begin{cases} 100 & \text{w.p. 0.5,} \\ \text{Uni}[150,200] & \text{w.p. 0.5} \end{cases}$$

General Distribution: Spline Approximations

Spline (Piecewise polynomial): a powerful class of functions to approximate other functions. Cubic spline: Each piece is a deg-3 polynomial.


Spline(x) = f(x), Spline'(x) = f'(x) for all break points x.

Theoretical Convergence Results

Monte-Carlo: $r_i(t)$ is the rank of t in the *i*th sample N is the number of samples

Estimation:
$$\tilde{\Upsilon}_{\omega}(t) = \frac{1}{N} \sum_{i=1}^{N} \omega(t, r_i(t)).$$

Discretization: Approximate a continuous distribution by a set of discrete points. *N* is the number of break points.

Theoretical Convergence Results

Spline Approximation: We replace each distribution by a spline with N=O(n^β) pieces.

$$\widehat{\Upsilon}_{\omega}(t) - \Upsilon_{\omega}(t) | \le O(n^{3/2 - 4\beta}).$$

• Under certain continuity assumptions.

 Discretization: We replace each distribution by N=O(n^β) discrete pts.

$$\widehat{\Upsilon}_{\omega}(t) - \Upsilon_{\omega}(t)| \le O(n^{3/2-\beta}).$$

- Under certain continuity assumptions.
- Monte-Carlo: With $N = (n^{\beta} \log \frac{1}{\delta})$ samples,

$$\Pr\left(|\tilde{\Upsilon}_{\omega}(t) - \Upsilon_{\omega}(t)| \le O(n^{-\beta/2})\right) \ge 1 - \delta$$

 $O(n^{-14.5\beta})$

β=4

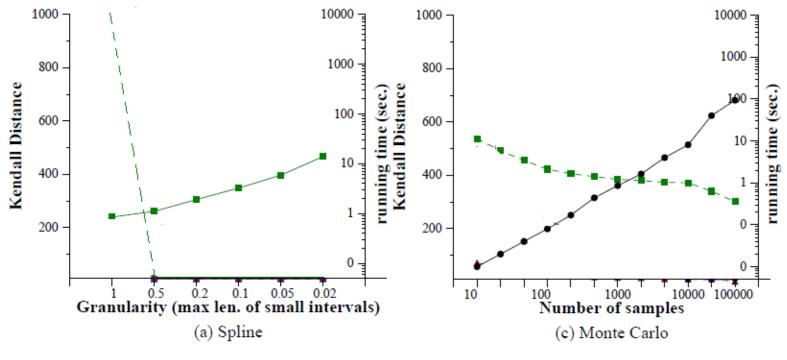
 $O(n^{-2.5\beta})$

O(n⁻²β

Other Results

- Efficient algorithm for *PRF-I* (linear weight func.)
 - If no tuple uncertainty, *PRF-I = Expected Rank* [Cormode et al. ICDE09].
- Efficient algorithm for *PRF-e* (exp. weight func.)
 - Using Legendre-Gauss quadrature for numerical integration.
- *K-nearest neighbor* over uncertain points.
 - Semantics: retrieve k pts. that have highest prob.
 being the kNN of the query point q.
 - This generalizes the semantics proposed in [Kriegel et al. DASFAA07] and [Cheng et al. ICDE08].
 - score(point p) = dist(point p, query point q).

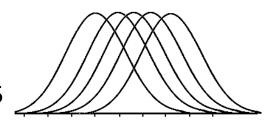
Experimental Results

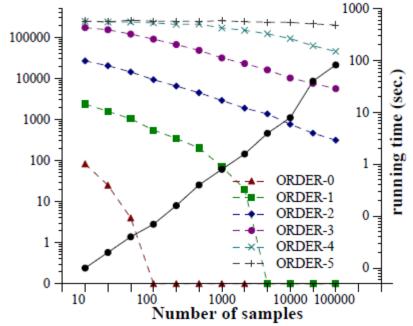

Setup: Gaussian distributions. 1000 tuples.

30% uncertain tuples.

Mean: uniformly chosen in [0,1000].

Avg stdvar: 5. Truncation done at 7*stdvar.


Kendall distance: #reversals between two rankings.


Convergence rates of different methods

Experimental Results

Setup: 5 dataset ORDER-d (d=1,2,3,4,5) Gaussian distributions. 1000 tuples. Mean: mean(t_i) = i * 10^{-d} where d=1,2,3,4,5 Stdvar: 1.

Kendall distance: #reversals between two rankings.

Take-away: Spline converges faster, but has a higher overhead. Discretization is somewhere between Spline and Monte-Carlo.

Conclusion

- Efficient algorithms to rank tuples with continuous distributions.
- Compare our algorithms with Monte-Carlo and Discretization.
- Future work:
 - Progressive approximation.
 - Handling correlations.
 - Exploring spatial properties in answering kNN queries.

Thanks

Note

• Texpoint 3.2.1