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Motivation

~» Uncertain data with continuous distributions is ubiquitous

upur1 ents '(0 - Search for Rentals Moving Center ‘ Apartment Living ‘ Manager Center Place Ar

NODELS & OVEEVIEY

PHOTOS & FLOORPLANS || ANENITIES || EAP & DIRECTIONS |

1Bedroom | i || £ [/ <h Questions? Call: (866) 395-1207 | Contact the Property

Models Price Depozit S0, Ft Bath failability

Model 1A 5930 - 51060 Yaries 717 sq. t. 1 Bath(s) Yiew Available Units
2Bedrooms | K3 7 || Questions? Call: (866) 395-1207 | Contact the Property

Modelz Prce Depozit S0, Ft Bath fvailability

Model IA 51322 - 1376 Varies 935 sq. ft. 1 Bath(s) View Available Units
3Bedrooms i3 | 7| ik Questions? Call: (866) 395-1207 | Contact the Property

Modelz Price Deposit Sg. Ft Bath dailability

Model 3A 51480 - §1529 Varies 1053 sq. Ft. 1.5 Bathis) | View Available Units

Uncertain scores



Motivation

e Uncertain data with continuous distributions is
ubiquitous
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* Many probabilistic database prototypes support

continuous distributions.

o Qrion [Singh et al. SIGMOD’08], Trio [Agrawal et al. MUD’09], MCDB
[Jampani et al. SIGMOD’08], ], PODS [Tran et al. SIGMOD’10], etc.



Motivation

* Uncertain data with continuous distributions is
ubiquitous.
* Many probabilistic database prototypes support

continuous distributions.

o Qrion [Singh et al. SIGMOD’08], Trio [Agrawal et al. MUD’09], MCDB
[Jampani et al. SIGMOD’08], ], PODS [Tran et al. SIGMOD’10], etc.

o Often need to “rank” tuples or choose “top k”
> Deciding which apartments to inquire about
> Selecting a set of sensors to “probe”

> Choosing a set of stocks to invest in

o)



Ranking in Probabilistic Databases

e Possible worlds semantics
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Motivation

* Much work on ranking queries in probabilistic databases.

o U-top-k, U-rank-k [Soliman et al. ICDE’07]

> Probabilistic Threshold (PT-k) [Hua et al. SIGMOD’08]
o Global-top-k [Zhang et al. DBRank’08]

o Expected Rank [Cormode et al. ICDE’09]

o Typical Top-k [Ge et al. SIGMOD’09]

o Parameterized Ranking Function [Li et al. VLDB’09]

e Most of them focus on discrete distributions.

o Some simplistic methods, such as discretizing the continuous
distributions, have been proposed, e.g., [Cormode et al. ICDE’09].

° One exception: Uniform distributions [Soliman et al. ICDE’09]



Parameterized Ranking Functions

* Weight Function: w : (tuple, rank)— R

e Parameterized Ranking Function (PRF)

Yo () =Y w(t,i)-Pr(r(t) = ).

>0

Positional Probability: Probability that t is
ranked at position i across possible worlds

Return k tuples with the highest |Y.|values.



Parameterized Ranking Functions

- PRF generalizes many previous ranking functions.

o PT-k/GT-k: return top-k tuples such that Pr(r(t)<k) is
maximized.
w(t,i) =1 if i<k and w(t,i)=0 if i>k
o Exp-rank: Rank tuple by an increasing order of E[r(t)].
w(t,i) = n-i
o Can approximate many others using linear
combinations of PRFe functions.

* Weights can be learned using user feedbacks.



Outline

* A closed-form generating function for the
positional probabilities.

* Polynomial time exact algorithms for uniform and
piecewise polynomial distributions.

» Efficient approximations for arbitrary distributions
based on spline approximation.

» Theoretical comparisons with Monte-Carlo and
Discretization.

* Experimental comparisons.



A Straightforward Method

e Suppose we have threer.v.s,, s,, s; with pdf u,,
4y, 43, respectively.
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o Similarly, Pr(s; < s2|s1 =x1)
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Difficulty 1: Multi-dimensional integral ]

Pr(r(s1) =3) = Pr(s1 < s2 < s3) +Pr(s; < s3 < s2)

Difficulty 2: #terms is possibly exponential ]




Generating Functions

Let the cdf of s, (the score of t) be
pi(£) =Pr(s; < £) = f wi(z)de, p;(£) =1— p;(¢)

Theorem:

Define

Fi@ =o [ wOT] (0 +pi0)ac
- j#i

Then, Fi(x) isthe generating function of the positional probabilities.

Fi(x) =551 Prir(ts) = j)a?.



Generating Functions

Advantages over the straightforward method:
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Uniform Distribution: A Poly-time Algorithm

Consider thegf. Fi(z) =2 /Z ;i (£) H(pj (0) + p; (f):c) d/
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Uniform Distribution: A Poly-time Algorithm
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Uniform Distribution: A Poly-time Algorithm
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Other Poly-time Solvable Cases

» Piecewise polynomial distributions.
° The cdf p, is piecewise polynomial.

e Combine with discrete distributions.

OS— - 100 w.p. 0.5,
"L Uni[150,200] w.p. 0.5




General Distribution: Spline Approximations

Spline (Piecewise polynomial): a powerful class
of functions to approximate other functions.
Cubic spline: Each piece is a deg-3 polynomial.
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Spline(x) = f(x), Spline’(x) = f’(x) for all break points x.



Theoretical Convergence Results

Monte-Carlo: ri(t)is the rank of t in the jith sample
N is the number of samples

Estimation: Zw (¢, 7t

Discretization: Approximate a continuous distribution by
a set of discrete points. N is the number of break points.

/TN




Theoretical Convergence Results

» Spline Approximation: We replace each
distribution by a spline with N=0(n%) pieces.

To(t) — To(t)] < O(n/249).

B=4

O(n-'458)

° Under certain continuity assumptions.

* Discretization: We replace each distribution by
N=0(n®) discrete pts.

T (t) — Tu(t)] < O0*27P).

o Under certain continuity assumptions.

O(n258)

e Monte-Carlo: With N = Q(n” log 3) samples,

Pr(ITu(t) = T SOM™P2)) >1-6 | O@)



Other Results

o Efficient algorithm for PRF-/ (linear weight func.)

° |f no tuple uncertainty, PRF-/ = Expected Rank
[Cormode et al. ICDEO9] .

 Efficient algorithm for PRF-e (exp. weight func.)

o Using Legendre-Gauss quadrature for numerical
integration.

» K-nearest neighbor over uncertain points.

o Semantics: retrieve k pts. that have highest prob.
being the kNN of the query point g.

> This generalizes the semantics proposed in [Kriegel et al.
DASFAAO07] and [Cheng et al. ICDEOS].

o score(point p) = dist(point p, query point g).



Kendall Distance

Experimental Results
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Experimental Results

Setup: 5 dataset ORDER-d (d=1,2,3,4,5)
Gaussian distributions. 1000 tuples.

Mean: mean(t) =i* 10 where d=1,2,3,4,5
Stdvar: 1.

Kendall distance: #reversals between two rankings.
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Take-away: Spline converges faster, but has a higher overhead.
Discretization is somewhere between Spline and Monte-Carlo.



Conclusion

o Efficient algorithms to rank tuples with
continuous distributions.

 Compare our algorithms with Monte-
Carlo and Discretization.

e Future work:

> Progressive approximation.
> Handling correlations.

o Exploring spatial properties in answering kNN
gueries.
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Note

e Texpoint 3.2.1



