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Uncertain Data 
 Uncertain data is ubiquitous  

 Data Integration and Information Extraction 

 Sensor Networks; Information Networks 

 

 

 
 

Sensor ID Temp. 

1 Gauss(40,4) 

2 Gauss(50,2) 

3 Gauss(20,9) 

… … 

Sensor network 



Uncertain Data 

OCR (Optical Character Recognition) data.  

Stochastic Finite Automata 

Social network 

? 

? 

Uncertain 

link 



Uncertain Data 
 

 

 Future data is destined to be uncertain 

 



Dealing with Uncertainty 
 Handling uncertainty is a very broad topic that spans 

multiple disciplines 
 Economics / Game Theory 

 Finance  

 Operation Research 

 Management Science 

 Probability Theory / Statistics 

 Psychology 

 Computer Science 

Today: Problems in Combinatorial Optimization 



Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 
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 each edge has a fixed length 0.5 

 This gives a WRONG answer 0.5(n-1) 



Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 

 Ignoring uncertainty (“replace by the expected values” heuristic) 

 each edge has a fixed length 0.5 

 This gives a WRONG answer 0.5(n-1) 

 But the true answer is (as n goes to inf)  

                     𝜁 3 =  1/𝑖3∞
𝑖=1 <2  

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans] 



A Similar Problem 
 N points: i.i.d. uniform[0,1]×[0,1] 
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 N points: i.i.d. uniform[0,1]×[0,1] 

 

 

 

 

 

 Question: What is E[MST] ? 

 

 Answer:  𝜃( 𝑛)  [Frieze, Karp, Steele, …] 

 The problem is similar, but the answer is not similar………… 



A Generalization 
 The position of each point is random (non-i.i.d) 

 A model in wireless networks 

 

 

 

 

 

 

 Question: What is E[MST] ? 

 Of Course, there is no close-form formula 

 Need efficient algorithms to compute E[MST] 

 

0.1 0.5 

0.4 

[Huang, L. ArXiv 2012] 



MST over Stochastic Points 
 The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11] 

 So, let us focus on approximating the value 

 Attempt one: list all realizations? (Exponentially many) 

 Attempt two: Monte Carlo (variance can be very large) 

 

 

 

Small prob, 

large value 

PDF of a random var 



MST over Stochastic Points 
 Our approach: (sketch) 

 Law of total expectation:  

𝐄 𝑋 = Pr 𝑌 = 𝑦 𝐄[𝑋 ∣ 𝑌 = 𝑦]

𝑦

 

 

 

 

How to choose Y? 

 

A carefully chosen 

random event Y 

Easy to compute Low variance Hopefully, we have 



MST over Stochastic Points 
 The “home set” technique: 

 

 
home 

(1)Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 
(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated (due to low variance) 
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(1)Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 
(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated (due to low variance) 

𝐄 𝑀𝑆𝑇 = Pr 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒]

𝑦

 

≈ Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄 𝑋 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 + 

 Pr 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] 
 



Let us start to optimize: 
      Online stochastic optimization 



Stochastic Matching 
Stochastic Matching  

Given: 
 Existential prob. pe  for each edge e. 

 Patience level tv for each vertex v. 

 Probing e=(u,v): The only way to know the existence of e.  
 We can probe (u,v) only if tu>0, tv>0 . 

 If  e indeed exists, we should add it to our matching. 

 If not, tu =tu-1 , tv =tv-1. 

 Objective: Find a probing strategy to maximize the expected 
weight of the matching 

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra. ESA’10] 



Stochastic Matching 
Stochastic Matching  

Given: 
 Existential prob. pe  for each edge e. 

 Patience level tv for each vertex v. 

 Probing e=(u,v): The only way to know the existence of e.  
 We can probe (u,v) only if tu>0, tv>0 . 

 If  e indeed exists, we should add it to our matching. 

 If not, tu =tu-1 , tv =tv-1. 

 Objective: Find a probing strategy to maximize the expected 
weight of the matching 

 Our Results: we give constant approx. algo. for the weighted 
version, resolving an open question posed in previous work 

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra. ESA’10] 



Stochastic Matching 
Motivation: Online dating 

 Existential prob. pe : estimation of the success prob. 
based on users’ profiles.  
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Stochastic Matching 
Motivation: Online dating 

 Existential prob. pe : estimation of the success prob. based on 
users’ profiles.  

 Probing edge e=(u,v) : u and v are sent to a date.   

 Patience level: obvious. 

 

 

 

 

 

 Other motivations: Kidney exchange, online ad assignment 

 

 

 

 



A LP Upper Bound 
 Variable ye : Prob. that any algorithm probes e.    

At most 1 edge in ∂(v) is matched 

At most tv edges in ∂(v) are probed 

xe: Prob. e is matched 

The LP value is an upper bound of the optimal expected value 



A Simple 8-Approximation 

An edge (u,v) is safe if tu>0, tv>0  and neither u nor v is matched 

 

Algorithm: 

 Pick a permutation π on edges uniformly at random   

 For each edge e in the ordering π, do:     
  If e is not safe then do not probe it.     

 If  e is safe then probe it w.p. ye/α. 

 



A Simple 8-Approximation 

An edge (u,v) is safe if tu>0, tv>0  and neither u nor v is matched 

 

Algorithm: 

 Pick a permutation π on edges uniformly at random   

 For each edge e in the ordering π, do:     
  If e is not safe then do not probe it.     

 If  e is safe then probe it w.p. ye/α. 

 

• If e is always safe, we can recover the LP value  𝑤𝑒𝑦𝑒𝑝𝑒𝑒  
• We can show this algorithm can recover 1/8 of the LP value 
      by proving Pr[e is safe]>=1/8 



A Simple 8-Approximation 

Analysis: 

Lemma:  For any edge (u,v), at the point when (u,v) is 
considered  under π,  Pr(u loses its patience) ≤1/2α . 

 Proof: Let U be #probes incident to u and before e. 
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By the Markov  inequality: 

 



A Simple 8-Approximation 

Analysis: 

Lemma:  For any edge e=(u,v), at the point when (u,v) is 
considered  under π,  Pr(u is matched) ≤1/2α . 

Proof: Let U be #matched edges incident to u and before e. 

 

 

 

 

 

 

By the Markov  inequality: 

 

 



A Simple 8-Approximation 

Analysis: 

Theorem: The algorithm is a 8-approximation. 

 Proof:  When e is considered,  

Pr(e is not safe) ≤ Pr(u is matched)+ Pr(u loses its patience)+           
         Pr(v is matched)+ Pr(v loses its patience)  

     ≤ 2/α 
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A Simple 8-Approximation 

Analysis: 

Theorem: The algorithm is a 8-approximation. 

 Proof:  When e is considered,  

Pr(e is not safe) ≤ Pr(u is matched)+ Pr(u loses its patience)+           
         Pr(v is matched)+ Pr(v loses its patience)  

     ≤ 2/α 

Therefore, 

  

Recall Σe we ye pe is an upper bound of OPT 

Can be improved to a 3-approximation with a more careful algorithm 



Stochastic online matching 
 

 A set of items and a set of buyer 
types. A buyer of type b likes item 
a with probability pab.   
 G(buyer types, items): Expected 

graph) 

 The buyers arrive online.  
 Her type is an i.i.d. r.v. . 

 The algorithm shows the buyer (of 
type b)  at most t items one by 
one. 

 The buyer buys the first item she 
likes or leaves without buying. 

 Goal: Maximizing the expected 
number of satisfied users. 
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Expected graph [Bansal, Gupta, L, Mestre, Nagarajan, Rudra. Algorithmica ’11] 



Bayesian Online Selection Problem 
 A knapsack of capacity C 

 A set of items.  

 Known: Prior distr of (size, profit) of each item. 

 Items arrive one by one 

 Can see the actually size and profit of an item. But have 
to decide whether to accept the item immediately 

 Knapsack constraint: The total size of accepted items <= C 

 

 Goal: maximize E[Profit]  

[L, Yuan. ArXiv 2012] 

 Generalization of the Prophet inequalities in optimal control  

 Application in multi-parameter  mechanism design 



Bayesian Online Selection Problem 
 We can get a constant approx using the same LP 

technique (simple exercise) 

We can get a 1+𝜖 –approximate optimal policy 

We developed a new technique, called Poisson approximation technique 
 
The technique can be used in many other problems: 
    Stochastic knapsack problem 
    Stochastic Bin Packing Problem 
    Stochastic Shortest Path ……. 

[L, Yuan. ArXiv 2012] 



A More Fundamental Issue 



Inadequacy of Expected Value 

 Stochastic Optimization  

 Most common objective: Optimizing the expected value   

 

 Inadequacy of expected value: 

 Unable to capture risk-averse or risk-prone behaviors 
 Action 1: $100    VS   Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

 Risk-averse players prefer Action 1 

 Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play 
Double-or-Nothing) 



Inadequacy of Expected Value 

 Be aware of risk! 

 

 

 

 

 

 

 

 



Inadequacy of Expected Value 
 St. Petersburg paradox  

 You pay x dollars to enter the game 

 Repeatedly toss a fair coin until a tail appears 

 payoff=2k where k=#heads 

 



Inadequacy of Expected Value 
 St. Petersburg paradox  

 You pay x dollars to enter the game 

 Repeatedly toss a fair coin until a tail appears 

 payoff=2k where k=#heads 

 

 How much  should x be? 

 Expected payoff =1x(1/2)+2x(1/4)+4x(1/8)+……= infinity 

 Few people would pay even $25 [Martin ’04] 



Expected Utility Maximization Principle 

Expected Utility Maximization Principle: the decision maker 
should choose the action that maximizes the expected utility 

Remedy: Use a utility function 

 
Proved quite useful to explain some popular choices that seem to 
contradict the expected value criterion   
An axiomatization of the principle (known as von Neumann-
Morgenstern expected utility theorem). 

 



Expected Utility Maximization Principle 

 The utility function: profit-> utility 

μ 

Risk-averse 

200$ 100$ 

E[μ(action 1)] 

E[μ(action 2)] 

$ 

Risk-prone 

200$ 100$ 

μ 

E[μ(action 2)] 

E[μ(action 1)] 

 Action 1: $100     

 Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

Expected Utility Maximization Principle: the decision maker 

should choose the action that maximizes the expected utility 

𝑢:  𝑅 → 𝑅 : 



Problem Definition 
 Deterministic version: 

 A set of element {ei}, each associated with a weight wi 

 A solution S is a subset of elements (that satisfies some property) 

 Goal: Find a solution S such that the total weight of the solution 
w(S)=ΣiєSwi is minimized 

 E.g. shortest path, minimal spanning tree, top-k query, matroid base 

 Stochastic version: 

 wis are independent positive random variable 

 μ(): R+→R+ is the utility function (assume limx →∞μ(x)=0) 

 Goal: Find a solution S such that the expected utility E[μ(w(S))] is 
maximized 

 

[L. , Deshpande. FOCS’11] 



Our Results 
 THM: If the following two conditions hold 

 (1) there is a pseudo-polynomial time algorithm for the 
exact versionof deterministic problem, and 

 (2) μ is bounded by a constant and satisfies Holder 
condition |μ(x)- μ(y)|≤ C|x-y|α for constant C and α≥0.5,  

 then we can obtain in polynomial time a solution S 
such that E[μ(w(S))]≥OPT-ε, for any fixed ε>0 

 Exact version: find a solution of weight exactly K 
 Pseudo-polynomial time: polynomial in K 
 Problems satisfy condition (1): shortest path, minimum 
spanning tree, matching, knapsack. 



Our Results 
 Stochastic shortest path : find an s-t path P such that 

Pr[w(P)<1] is maximized 

 

 

 Previous results 
 Many heuristics 

 Poly-time approximation scheme (PTAS) if (1) all edge weights are 
normally distributed r.v.s (2) OPT>0.5[Nikolova, Kelner, Brand, 
Mitzenmacher. ESA’06] [Nikolova. APPROX’10] 

 Bicriterion PTAS for exponential distributions [Nikolova, Kelner, Brand, 
Mitzenmacher. ESA’06] 

 Our result 
 Bicriterion PTAS (Pr[w(P)<1+δ]>(1-eps)OPT) if OPT=  Const 

s t 

Uncertain length 



Our Results 
 Stochastic knapsack: find a collection S of items such that 

Pr[w(S)<1]>γ and the total profit is maximized 
 
 
 

 Previous results 
 log(1/(1- γ))-approximation [Kleinberg, Rabani, Tardos. STOC’97] 

 Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS’99] 

 PTAS for Bernouli distributions if γ= Const [Goel, Indyk. FOCS’99] [Chekuri, 
Khanna. SODA’00] 

 Bicriterion PTAS if γ= Const [Bhalgat, Goel, Khanna. SODA’11] 

 Our result 
 Bicriterion PTAS if γ= Const (with a better running time than Bhalgat et al.) 

 Stochastic partial-ordered knapsack problem with tree constraints 

Knapsack, capacity=1 
Each item has a deterministic profit and a 

(uncertain) size  
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Approx Algo for NP-hard problems 

Graph problems 

Scheduling Problems 

Data structures 

Stochastic Optimization 
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