NCTCS 2018

ε-Coresets for Clustering (with Outliers) in Doubling Metrics

Jian Li, Tsinghua University

Joint work with Lingxiao Huang (EPFL), Shaofeng Jiang (Weizmann), Xuan Wu (Tsinghua -> JHU)

Paper appeared in FOCS18

Big data era and Coresets

- Why Coreset?
- Turn BIG DATA to small data

Motivation

- Huge datasets
 - Store all data expensive
 - How to analyze data efficiently
- Coreset: a small summary S of the full dataset
 - the objective computed from *S* approximates that computed from the full dataset.
- Benefits of coresets
 - Space: Save the storage space
 - Time: Since |S| is small, computing the objective over S is much faster
 - Approximation: used for developing efficient approximation algorithm
- By now a very powerful technique to handle big data

Coreset: a powerful technique

- Shape fitting
- Clustering
- Matrix approximation
- Submodular functions
- Logistic regression
- Nonparametric learning
- Deep learning
- Multidimensional queries in database
- Extension to stochastic points
- Distributed computing (decomposable coresets)
- Deep connection to streaming/sketch/summary

Clustering

Consider a metric space M(X, d) of n points

Definition ((k, z)-clustering)

The (k, z)-clustering of M is to compute a k-subset $C \subseteq X$ such that $\mathcal{K}_{Z}(X, C) \coloneqq \sum_{x \in X} d^{z}(x, C) = \sum_{x \in X} \min_{c \in C} d^{z}(x, c)$

is minimized, where \mathcal{K}_z is the clustering objective.

Special Cases > k-median when z = 1> k-means when z = 2> k-center when $z = \infty$

-2

0

2

Coreset for Clustering

Definition (ε -coreset for clustering)

A weighted subset $S \subseteq X$ with weight function $w: S \rightarrow \mathbb{R}_{\geq 0}$ is an ε -coreset for (k, z)-clustering of M(X, d), if for any k-subset $C \subseteq X$, $\sum_{x \in S} w(x) \cdot d^{z}(x, C) \in (1 \pm \varepsilon) \cdot \mathcal{K}_{z}(X, C).$

Goal: |S| is independent of n for "bounded dimensional" metric spaces (depends on $k, \frac{1}{\varepsilon}, z$)

Related Work

- Euclidean space \mathbb{R}^d
 - An ε -coreset for (k, z)-clustering of size $\tilde{O}(dk/\varepsilon^{2z})$ can be constructed in $\tilde{O}(nk)$ time [Feldman and Langberg, 2011]
 - [Braverman et al., 2016] improved the size to $\tilde{O}(k\epsilon^{-2}min\{d,k/\epsilon\})$ for k-means
 - [Sohler and Woodruff, 2018] removed the size dependence of *d* for *k*-median (and subspace approximation)
 - For k-center ($z = \infty$), size $O(k/\varepsilon^d)$ in $O(n + k/\varepsilon^d)$ time [Agarwal and Procopiuc, 2002; Har-Peled, 2004]
- For general metrics, an ε -coreset for (k, z)-clustering of size $\tilde{O}(k \log n / \varepsilon^{2z})$ can be constructed in $\tilde{O}(nk)$ time [Feldman and Langberg, 2011]
 - In general, we can't get rid of the dimensionality log *n*

Related Work

- Coreset in the streaming or distributed model (e.g., [Feldman and Langberg, 2011; Ackermann et al., 2012; Feldman and Schulman, 2012; Feldman et al., 2013; Balcan et al., 2013; Braverman et al., 2016; Braverman et al., 2017])
- Coreset for stochastic data
 - Stochastic minimum enclosing ball (1-center) [Munteanu et al., 2014]
 - Stochastic *k*-center [Huang and Li, 2017]

Coreset for Clustering in **Doubling Metrics**

Doubling Dimension

Definition (doubling dimension)

The doubling dimension of M(X, d), denoted as ddim(M), is the smallest integer t such that any ball can be covered by at most 2^t balls of half the radius.

• In general, metric l_p in \mathbb{R}^d has doubling dimension O(d) [Assouad, 1983]

Why Doubling Metrics?

Doubling metrics extensively studied

- Spanners [Cole and Gottlieb, 2006; Chan et al., 2016; etc]
- Metric embedding [Gupta et al., 2003; Abraham et al., 2006; Chan et al., 2010]
- Nearest neighbor search [Clarkson 1999; Har-Peled and Mendel, 2005; etc]
- Approximation algorithms [Chan and Elbassioni, 2011; Friggstad et al., 2016]
- Machine learning [Bshouty et al., 2009; Gottlieb et al., 2014]
- Force us to forget about the coordinate and think about the metric space per se
- Some metric data lives in high dimensional Euclidean space, but may inherently have low doubling dimension *ddim*
- Other examples: Earthmover distance (EMD), Edit distance with real penalty (ERP) [Gottlieb et al., 2014], machine learning classifiers [Bshouty et al., 2009]
- Natural attempt: embed doubling metrics to Euclidean spaces
 - There exists O(1)-distortion embedding to l_2 which leads to O(1)-coreset. However, there is also $\Omega(1)$ -distortion lower bound [Gupta eta al., 2013].
 - Constant size *ε*-coreset?

Our Result

Main Theorem (informal)

Given a metric space M(X, d) of n points, there exists a poly-time algorithm that constructs an ε -coreset of size $poly(k, ddim(M), 1/\varepsilon)$

for the (k, z)-clustering problem, with probability at least 0.99.

High-Level Sketch of Our Technique

Main Approach: Importance Sampling

Importance Sampling Framework [Langberg and Schulman, 2010; Feldman and Langberg, 2011]

Sensitivity:
$$\sigma(x) \coloneqq \max_{C \subseteq X: |C| = k} \frac{d^{Z}(x,C)}{\mathcal{K}_{Z}(X,C)}$$

Sensitivity measures the "importance" of each point

> Approx. compute sensitivities of all points

Sample points from a distribution proportional to sensitivities $\sigma(x)$, each sample has a weight $1/\sigma(x)$ for unbiased estimation.

Importance Sampling -> Coreset

Theorem [Feldman and Langberg, 2011]

An ε -coreset can be constructed in poly-time with size

$$\left(\frac{\sigma}{\epsilon}\right)^2 \left(\frac{dim}{dim} + \log 1/\delta\right)$$

 $\sigma = \sum_{x} \sigma(x) = O(2^{2z}k)$ [Varadarajan and Xiao, 2012]

Definition (shattering dimension)

For $x \in X, r \ge 0$, define ball $B(x, r) \coloneqq \{y \in X: d(x, y) \le r\}$. The shattering dimension $\dim(M)$ is the least integer t such that for any $A \subseteq X$ of size ≥ 2 , the number of different subsets of A intersected by balls

 $|\{A \cap B(x,r): x \in X, r \ge 0\}| \le |A|^t$

Shattering dimension plays a similar role as VC dimension: $\dim(M) \le VC \cdot \dim(M) \le \dim(M) \log \dim(M)$

Doubling Dimension v.s. Shattering Dimension

Does ddim(M) = O(1) imply dim(M) = O(1)?

> If M is Euclidean, then ddim(M)=O(1) implies dim(M)=O(1).

>How about general metric spaces?

The answer is unfortunately **NO**.

• Example:
$$ddim(M) = O(1)$$
 but $dim(M) = \Omega(\frac{\log n}{\log \log n})$

- Point set: $M = \{u_1, \dots, u_m, v_0, \dots, v_{2^m-1}\}$ where $m \approx \log n$
- Distance: $d(u_i, u_j) = |i j|$; $d(v_i, v_j) = |i j|$; $d(u_i, v_j) = 2^m$ if digit i of j's binary representation is 0 and otherwise $d(u_i, v_j) = 2^m + 1$
- Difficulty: how to relate ddim(M) and dim(M)?

Main Idea: Distortion

- We want to "distort" the distance d(·,·) such that the shattering dimension is bounded by the doubling dimension:
 - Low distortion: for any $x, y \in X$, $\delta(x, y) \in (1 \pm \varepsilon) \cdot d(x, y)$
 - Objective: For the "smoothed metric space" $M(X, \delta)$, we have

$$\dim(M(X,\delta)) \leq f(\underline{ddim}(M),\frac{1}{\varepsilon}).$$

- Next step: construct coresets via $M(X, \delta)$.
 - Since δ is a low distortion, an ε -coreset of $M(X, \delta)$ is a 3ε -coreset of M(X, d).
- Problem: how to construct such a distorted distance δ ?

Notations: Hierarchical Net and Net Tree

Scale the metric such that the minimum intra point distance is 1

{ $N_0, N_1, ..., N_L$ } is a *hierarchical net*, where N_i is a 2^{*i*}-net of N_{i-1} . >Useful concept in doubling metrics [Talwar 2004; etc]

Net tree: node set $\bigcup_i N_i$. The parent $par(u^{(i)})$ of $u^{(i)} \in N_i$ is its nearest point in N_{i+1} .

 $> par^{(j)}(u)$: the ancestor of u in N_j

Distortion: Smoothed Distance Function

Definition (smoothed distance function)

Given a net tree T, for $x, y \in X$, let j be the largest integer such that

$$d\left(par^{(j)}(x), par^{(j)}(y)\right) \ge \frac{2^{j}}{\varepsilon}$$

The ε -smoothed distance function is defined by

$$\delta(x, y) \coloneqq d\left(par^{(j)}(x), par^{(j)}(y)\right)$$

Lemma

 $\begin{aligned} \forall x, y \in X, \\ d(x, y) \in (1 \pm 4\varepsilon) \delta(x, y). \end{aligned}$

Smooth Property: Cross-Free

Lemma (cross-free property)

Consider $0 < \varepsilon \leq \frac{1}{8}$ and an integer j. Suppose $r \geq 100 \cdot \frac{2^{j}}{4}$. Then for any $x \in X$ and $v^{(j)} \in N_{j}$, either none or all descendants of $v^{(j)}$ are contained in $B^{\delta}(x, r)$.

Smooth Property \rightarrow Bounded Shattering Dimension Idea: Fix $A \subseteq X$. > Cross-free $\rightarrow A \cap B^{\delta}(x,r)$ is a disjoint union of $A \cap des(v_i^{(j)})$ > Packing property \rightarrow there are at most $O\left(\frac{r}{2^j}\right)^{O(ddim(M))}$ such $v_i^{(j)}$ > dim $(M(X,\delta)) \leq \varepsilon^{-O(ddim(M))}$

Weakness

- •We have constructed a smoothed distance function δ such that
 - For any $x, y \in X$, $\delta(x, y) \in (1 \pm \varepsilon) \cdot d(x, y)$
 - dim($M(X, \delta)$) $\leq \varepsilon^{-O(ddim(M))}$
- Weakness
 - The exponential dependence on ddim(M)
 - Only works for an unweighted ground set X.
 However for coresets, we need to relate
 ddim(M) and dim(M) for weighted point sets.

An Improved Framework

Definition (probabilistic shattering dimension, informal)

Let $M(X, \delta)$ be a metric space where δ is a randomized distortion function.

The probabilistic shattering dimension $\operatorname{pdim}_{\tau}(M)$ is the least integer t such that for any $A \subseteq X$ of size ≥ 2 , the number of different subsets of A intersected by balls

$$\left| \{A \cap B^{\delta}(x,r) \colon x \in X, r \ge 0 \} \right| \le |A|^t,$$

with probability at least $1 - \tau$.

An Improved Framework

Exponential Improvement via Randomness Introducing randomness in the distortion δ , $pdim_{\tau}(M) \leq O(ddim(M) \cdot \log \frac{1}{\epsilon} + \log \log \frac{1}{\tau})$ where pdim(M) is probabilistic shattering dimension. > Proof more involved. > The randomized δ is constructed based on a randomized

hierarchical decomposition [Abraham et al., 2006].

New framework: bounded pdim(M) + importance sampling - > coreset

Application: Centroid Set

Definition (centroid set)

Given an ε -coreset $S \subseteq X$ with weights w(x), an (ε, k, z) -centroid set of (S, w) is a subset H such that

 $\succ S \subseteq H \subseteq X$

> There exists a k-point set $C \subseteq H$ such that

$$\sum_{x \in S} w(x) \cdot d^{z}(x, C) \leq (1 + 2\varepsilon) \cdot \min_{C' \subseteq H: |C'| = k} \mathcal{K}_{z}(X, C').$$

Theorem (centroid set)

Given $S \subseteq X$ with weights w(x), there exists a poly-time algorithm that constructs an $(O(z, \varepsilon), k, z)$ -centroid set of size $O(\varepsilon)^{-O(ddim(M))} \cdot |S|^2$.

Application: Fast Local Search Algorithm

Local Search Yields a PTAS

As analyzed in [Friggstad et al., 2016; Cohen-Addad et al., 2016], the local search algorithm that swaps at most $\rho(\varepsilon, ddim(M), z)$ centers at each iteration satisfies

>
$$(1 + \varepsilon)$$
-approx. for (k, z) -clustering

- ≻Per-iteration running time: n^{ρ}
- >The number of iterations is polynomial in the input size

Accelerating via Centroid Set

- >As noted in [Friggstad et al., 2016], applying the centroid set for Euclidean spaces yields per-iteration running time $(k/\varepsilon)^{O(\rho)}$.
- Our results of coreset and centroid set can achieve a similar bound for doubling metrics.

Conclusion Remark

- (γ, ε) -robust coreset: allow outliers
 - Size $\tilde{O}(kd\gamma^{-2}\varepsilon^{-4})$ [Feldman and Langberg, 2011]
 - Improve to $\tilde{O}(kd\gamma^{-2}\varepsilon^{-2})$ [this paper]
- Is the probabilistic notion of dimension pdim(M) necessary, i.e., does there exist a deterministic distortion δ such that $dim(M, \delta) \approx O(ddim(M))$?
- We give the first coreset construction for doubling metrics
 - $\tilde{O}(dk/\epsilon^{2z})$ size in Euclidean spaces [Feldman and Langberg, 2011]
 - Can we improve our coreset size to match the Euclidean bound?
- Multidimensional queries in database (CLRWWZ ICDT 17)
- Extension to stochastic points (HLPW ESA16, HL SODA 17)

Thank you! Questions?

Jian Li lapordge@gmail.com

wechat: lapordge