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Big data era and Coresets

* Why Coreset?
 Turn BIG DATA to small data
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Motivation

* Huge datasets
 Store all data - expensive
* How to analyze data efficiently

* Coreset: a small summary S of the full dataset

* the objective computed from S approximates that computed from the full
dataset.

e Benefits of coresets

* Space: Save the storage space
* Time: Since |S]| is small, computing the objective over S is much faster

* Approximation: used for developing efficient approximation algorithm

* By now a very powerful technique to handle big data



Coreset: a powerful technique

* Shape fitting

* Clustering

* Matrix approximation

e Submodular functions

* Logistic regression

* Nonparametric learning

* Deep learning

* Multidimensional queries in database

* Extension to stochastic points

* Distributed computing (decomposable coresets)
* Deep connection to streaming/sketch/summary



Clustering

Consider a metric space M (X, d) of n points

Definition ((k, z)-clustering)
The (k, z)-clustering of M is to compute a k-subset C € X such that
K,(X,C) = Dixex A% (%, C)= Dxex rCnEl(I:l d”(x,c)

is minimized, where K, is the clustering objective.

Special Cases

»k-median whenz =1
»k-means when z = 2

»k-center when z =




Coreset for Clustering

Definition (e-coreset for clustering)

A weighted subset S € X with weight function w: S —
R, is an g-coreset for (k, z)-clustering of M (X, d), if for
any k-subset C € X,

YxeswW(x) - d*(x,C) € (1 £¢) - K,(X,C).

Goal: |S| is independent of n for “bounded dimensional” metric

spaces (depends on k,i,z)




Related Work

* Euclidean space R4

* An e-coreset for (k, z)-clustering of size O(dk/£?%) can be constructed in O (nk)
time [Feldman and Langberg, 2011]

« [Braverman et al., 2016] improved the size to O (ke ?min{d, k/&}) for k-means

* [Sohler and Woodruff, 2018] removed the size dependence of d for k-median (and
subspace approximation)

* For k-center (z = o), size O(k/€%) in O(n + k /&%) time [Agarwal and Procopiuc,
2002; Har-Peled, 2004]

* For general metrics, an e-coreset for (k, z)-clustering of size

O(k logn /€2%) can be constructed in O (nk) time [Feldman and
Langberg, 2011]

* In general, we can’t get rid of the dimensionality logn



Related Work

» Coreset in the streaming or distributed model (e.g., [Feldman and
Langberg, 2011; Ackermann et al., 2012; Feldman and Schulman,
2012; Feldman et al., 2013; Balcan et al., 2013; Braverman et al.,
2016; Braverman et al., 2017])

* Coreset for stochastic data
 Stochastic minimum enclosing ball (1-center) [Munteanu et al., 2014]
 Stochastic k-center [Huang and Li, 2017]



Coreset for Clustering in Doubling Metrics



Doubling Dimension

Definition (doubling dimension)

The doubling dimension of M (X, d), denoted as ddim (M), is the
smallest integer t such that any ball can be covered by at most 2¢
balls of half the radius.

(a) ddim(15) = 3 (b) ddim(13%) =2

* In general, metric [, in R has doubling dimension 0(d)
[Assouad, 1983]




Why Doubling Metrics?

* Doubling metrics extensively studied
* Spanners [Cole and Gottlieb, 2006; Chan et al., 2016; etc]
* Metric embedding [Gupta et al., 2003; Abraham et al., 2006; Chan et al., 2010]
* Nearest neighbor search [Clarkson 1999; Har-Peled and Mendel, 2005; etc]
* Approximation algorithms [Chan and Elbassioni, 2011; Friggstad et al., 2016]
* Machine learning [Bshouty et al., 2009; Gottlieb et al., 2014]

* Force us to forget about the coordinate and think about the
metric space per se

* Some metric data lives in high dimensional Euclidean space, but may
inherently have low doubling dimension ddim

* Other examples: Earthmover distance (EMD), Edit distance with
real penalty (ERP) [Gottlieb et al., 2014], machine learning
classifiers [Bshouty et al., 2009]

* Natural attempt: embed doubling metrics to Euclidean spaces

* There exists O(1)-distortion embedding to [, which leads to O(1)-coreset.
However, there is also Q0(1)-distortion lower bound [Gupta eta al., 2013].

* Constant size s-coreset?



Our Result

Main Theorem (informal)

Given a metric space M (X, d) of n points, there exists a poly-time

algorithm that constructs an e-coreset of size
poly(k,ddim(M),1/¢)

for the (k, z)-clustering problem, with probability at least 0.99.




High-Level Sketch of Our Technique



Main Approach: Importance Sampling

Importance Sampling Framework [Langberg and Schulman, 2010;
Feldman and Langberg, 2011]

L d?(x,C)
»Sensitivity: o(x) := max
v:o(x) ccX:|C|=k Kz(X,C)

> Sensitivity measures the “importance” of each point
»Approx. compute sensitivities of all points

»Sample points from a distribution proportional to sensitivities
o(x), each sample has a weight 1/0(x) for unbiased estimation.




Importance Sampling -> Coreset

Theorem [Feldman and Langberg, 2011]
An e-coreset can be constructed in poly-time with size

N\ 2
(2)" (dim +10g1/8)
o =Y,0(x) = 0(2%%k) [Varadarajan and Xiao, 2012]

Definition (shattering dimension)

Forx € X,r = 0, define ball B(x,r) := {y €
X:d(x,y) < r}. The shattering dimension dim(M)
is the least integer t such that for any A € X of size

> 2, the number of different subsets of A
intersected by balls

{ANB(x,r):x € X,r =0} < |A|

Shattering dimension plays a similar role as VC dimension:
dim(M) < VC-dim(M) < dim(M) log dim(M)



Doubling Dimension v. s. Shattering Dimension

Does ddim(M) = O(1) imply dim(M) = 0(1)?
~If M is Euclidean, then ddim(M)=0(1) implies dim(M)=0(1).
»How about general metric spaces?

The answer is unfortunately NO.

® Example: ddim(M) = O(1) but dim(M) = Q(lolgolgogn)

® Point set: M = {uq, ..., Uy, Vg, ..., Vom_1 } Where m = logn
® Distance: d(ui,uj) = [i—=Jjl; d(vi,vj) = |i —j|; d(ui,vj) = 2" if digit i
of j’s binary representation is 0 and otherwise d(ui, vj) = 2M4]

e Difficulty: how to relate ddim(M) and dim(M)?




Main Idea: Distortion

* We want to “distort” the distance d(-,-) such that the shattering
dimension is bounded by the doubling dimension:

* Low distortion: forany x,y € X, §(x,y) € (1 + ¢) - d(x,y)
* Objective: For the “smoothed metric space” M (X, &), we have

dim(M (X, 8)) < f(ddim(M),>).

* Next step: construct coresets via M (X, 6).
* Since § is a low distortion, an g-coreset of M (X, §) is a 3e-coreset of M (X, d).

* Problem: how to construct such a distorted distance §7?



Notations: Packing, Covering and Net

N is a p-packing, if Vu,v € N,d(u,v) = p.

2Diam(N))ddim(M )
p .

Packing property: |[N| < (

N is a p-covering, if Vx € X, there exists u €

N such that d(u, x) < p.

v

N is a p-net, if N is both a p-packing and a p-
covering.




Notations: Hierarchical Net and Net Tree

Scale the metric such that the minimum intra point distance is 1

u@ .
R
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{No, Ny, ..., N; }is a hlierarchical net, where N; is a 2t-net of N;_;.
»Useful concept in doubling metrics [Talwar 2004; etc]

v

Net tree: node set U; N;. The parent par(u®) of u¥ € N; is its
nearest pointin N; 1.

»part) (u): the ancestor of u in N;




Distortion: Smoothed Distance Function

Definition (smoothed distance function)
Given a nettree T, for x,y € X, let j be the largest integer such that

d (par?(x), par?(y)) =
The e-smoothed distance function is defined by

5(x,y):= d (parP(x), par® ()

2J
-

Lemma
Vx,y € X,
d(x,y) € (1 +4¢e)d(x,y).




Smooth Property: Cross-Free

Lemma (cross-free property)

J
Consider0 < € < Zand an integer j. Suppose r = 100 - Z Then for any

x € X and v € N, either none or all descendants of vt are contained
in BO (x,1). !

Smooth Property = Bounded
Shattering Dimension

Idea: Fix A € X.

»Cross-free - A N B (x, 1) is a
disjoint union of A N des(v.(]))

l
»Packing property — there are at
o(ddim(M)) .
most O (;) l.(])

»dim(M(X, §)) < e~0ddim(m))

T
such v




Weakness

*\We have constructed a smoothed distance
function 0 such that
*Foranyx,y € X,6(x,y) € (1+¢)-d(x,y)
«dim(M(X, 5)) < g~0(ddim(M)

*\Weakness
* The exponential dependence on ddim(M)

* Only works for an unweighted ground set X.
However for coresets, we need to relate
ddim(M) and dim(M) for weighted point sets.



An Improved Framework

Definition (probabilistic shattering dimension, informal)
Let M(X, §) be a metric space where § is a randomized distortion
function.

The probabilistic shattering dimension pdim (M) is the least integer
t such that for any A € X of size = 2, the number of different

subsets of A intersected by balls
{A N B%(x,m):x € X,r = 0}] < |Al,
with probability at least 1 — 7.




An Improved Framework

Exponential Improvement via Randomness
Introducing randomness in the distortion 9,

1 1
pdim,(M) < 0(ddim(M) - log; + loglog;)

where pdim(M) is probabilistic shattering dimension.
Proof more involved.

The randomized ¢ is constructed based on a randomized
hierarchical decomposition [Abraham et al., 2006].

New framework: bounded pdim(M) + importance sampling -
> coreset



Application: Centroid Set

Definition (centroid set)

Given an e-coreset S € X with weights w(x), an (¢, k, z)-centroid set
of (S, w) is a subset H such that

rSCHCX
>There exists a k-point set C © H such that

- dZ < . i !
YxeswW(x) - d?(x,C) < (1 + 2¢) c'g?}?ﬂé‘q:k& (X,C").

Theorem (centroid set)

Given S € X with weights w(x), there exists a poly-time algorithm

that constructs an (0(z, €), k, z)-centroid set of size
0(8)—0(ddim(M)) , |S|2.




Application: Fast Local Search Algorithm

Local Search Yields a PTAS

As analyzed in [Friggstad et al., 2016; Cohen-Addad et al., 2016],
the local search algorithm that swaps at most p(&, ddim(M), z)
centers at each iteration satisfies

(1 + &) -approx. for (k, z)-clustering
Per-iteration running time: n”
The number of iterations is polynomial in the input size

Accelerating via Centroid Set

As noted in [Friggstad et al., 2016], applying the centroid set for
Euclidean spaces yields per-iteration running time (k/e)O(p).

Our results of coreset and centroid set can achieve a similar
bound for doubling metrics.



Conclusion Remark

* (v, €)-robust coreset: allow outliers
* Size O(kdy~2&~%*) [Feldman and Langberg, 2011]
* Improve to O (kdy ~2&72) [this paper]

* Is the probabilistic notion of dimension pdim(M) necessary, i.e.,
does there exist a deterministic distortion 6 such that dim(M, §) =~

O0(ddim(M))?
* We give the first coreset construction for doubling metrics

* 0(dk/??) size in Euclidean spaces [Feldman and Langberg, 2011]
* Can we improve our coreset size to match the Euclidean bound?

e Multidimensional queries in database (CLRWW?Z ICDT 17)
 Extension to stochastic points (HLPW ESA16, HL SODA 17)



Thank you! Questions?

Jian Li
lapordge@gmail.com

wechat: lapordge
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