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Big data era and Coresets

• Why Coreset?

• Turn BIG DATA to small data



Motivation

• Huge datasets
• Store all data - expensive

• How to analyze data efficiently

• Coreset: a small summary 𝑆 of the full dataset
• the objective computed from 𝑆 approximates that computed from the full 

dataset. 

• Benefits of coresets
• Space: Save the storage space

• Time: Since |𝑆| is small, computing the objective over 𝑆 is much faster

• Approximation: used for developing efficient approximation algorithm

• By now a very powerful technique to handle big data



Coreset: a powerful technique

•Shape fitting
•Clustering
•Matrix approximation
•Submodular functions
• Logistic regression
•Nonparametric learning
•Deep learning
•Multidimensional queries in database
•Extension to stochastic points
•Distributed computing (decomposable coresets)
•Deep connection to streaming/sketch/summary



Clustering

Definition ((𝑘, 𝑧)-clustering)

The (𝑘, 𝑧)-clustering of 𝑀 is to compute a 𝑘-subset 𝐶 ⊆ 𝑋 such that 

𝒦𝑧 𝑋, 𝐶 ≔ σ𝑥∈𝑋𝑑
𝑧(𝑥, 𝐶)= σ𝑥∈𝑋min

𝑐∈𝐶
𝑑𝑧(𝑥, 𝑐)

is minimized, where 𝒦𝑧 is the clustering objective.

Special Cases

𝑘-median when 𝑧 = 1

𝑘-means when 𝑧 = 2

𝑘-center when 𝑧 = ∞

Consider a metric space 𝑀(𝑋, 𝑑) of 𝑛 points  



Coreset for Clustering

Definition (𝜀-coreset for clustering)

A weighted subset 𝑆 ⊆ 𝑋 with weight function 𝑤: 𝑆 →
ℝ≥0 is an 𝜺-coreset for (𝑘, 𝑧)-clustering of 𝑀(𝑋, 𝑑), if for 
any 𝑘-subset 𝐶 ⊆ 𝑋,

σ𝑥∈𝑆𝑤 𝑥 ⋅ 𝑑𝑧 𝑥, 𝐶 ∈ 1 ± 𝜀 ⋅ 𝒦𝑧(𝑋, 𝐶).

Goal: 𝑆 is independent of 𝑛 for “bounded dimensional” metric 

spaces (depends on 𝑘,
1

𝜀
, 𝑧)



Related Work

• Euclidean space ℝ𝑑

• An 𝜀-coreset for (𝑘, 𝑧)-clustering of size ෨𝑂(𝑑𝑘/𝜀2𝑧) can be constructed in ෨𝑂(𝑛𝑘) 
time [Feldman and Langberg, 2011]

• [Braverman et al., 2016] improved the size to ෨𝑂(k𝜀−2min{d, k/𝜀}) for 𝑘-means

• [Sohler and Woodruff, 2018] removed the size dependence of 𝑑 for 𝑘-median (and 
subspace approximation)

• For 𝑘-center (𝑧 = ∞), size O(𝑘/𝜀𝑑) in O(𝑛 + 𝑘/𝜀𝑑) time [Agarwal and Procopiuc, 
2002; Har-Peled, 2004]

• For general metrics, an 𝜀-coreset for (𝑘, 𝑧)-clustering of size 
෨𝑂(𝑘 log 𝑛 /𝜀2𝑧) can be constructed in ෨𝑂(𝑛𝑘) time [Feldman and 

Langberg, 2011] 
• In general, we can’t get rid of the dimensionality log 𝑛



Related Work

• Coreset in the streaming or distributed model (e.g., [Feldman and 
Langberg, 2011; Ackermann et al., 2012; Feldman and Schulman, 
2012; Feldman et al., 2013; Balcan et al., 2013; Braverman et al., 
2016; Braverman et al., 2017])

• Coreset for stochastic  data
• Stochastic minimum enclosing ball (1-center) [Munteanu et al., 2014]

• Stochastic 𝑘-center [Huang and Li, 2017]



Coreset for Clustering in Doubling Metrics



Doubling Dimension

𝑎 𝑑𝑑𝑖𝑚 𝑙2
2 = 3 𝑏 𝑑𝑑𝑖𝑚 𝑙∞

2 =2

• In general, metric 𝑙𝑝 in ℝ𝑑 has doubling dimension 𝑂 𝑑

[Assouad, 1983]

Definition (doubling dimension)

The doubling dimension of 𝑀(𝑋, 𝑑), denoted as 𝑑𝑑𝑖𝑚(𝑀), is the 
smallest integer 𝑡 such that any ball can be covered by at most 2𝑡

balls of half the radius.



Why Doubling Metrics?
• Doubling metrics extensively studied

• Spanners [Cole and Gottlieb, 2006; Chan et al., 2016; etc]

• Metric embedding [Gupta et al., 2003; Abraham et al., 2006; Chan et al., 2010]

• Nearest neighbor search [Clarkson 1999; Har-Peled and Mendel, 2005; etc]

• Approximation algorithms [Chan and Elbassioni, 2011; Friggstad et al., 2016]

• Machine learning [Bshouty et al., 2009; Gottlieb et al., 2014]

• Force us to forget about the coordinate and think about the 
metric space per se

• Some metric data lives in high dimensional Euclidean space, but may 
inherently have low doubling dimension 𝑑𝑑𝑖𝑚

• Other examples: Earthmover distance (EMD), Edit distance with 
real penalty (ERP) [Gottlieb et al., 2014], machine learning 
classifiers [Bshouty et al., 2009]

• Natural attempt: embed doubling metrics to Euclidean spaces
• There exists O 1 -distortion embedding to 𝑙2 which leads to O 1 -coreset. 

However, there is also Ω 1 -distortion lower bound [Gupta eta al., 2013]. 

• Constant size 𝜀-coreset?



Our Result

Main Theorem (informal)

Given a metric space 𝑀 𝑋, 𝑑 of 𝑛 points, there exists a poly-time 
algorithm that constructs an 𝜀-coreset of size

poly(𝑘, 𝑑𝑑𝑖𝑚 𝑀 , 1/𝜀)

for the (𝑘, 𝑧)-clustering problem, with probability at least 0.99.



High-Level Sketch of Our Technique



Main Approach: Importance Sampling

Importance Sampling Framework [Langberg and Schulman, 2010; 
Feldman and Langberg, 2011]

Sensitivity: 𝜎 𝑥 ≔ max
𝐶⊆𝑋: 𝐶 =𝑘

𝑑𝑧 𝑥,𝐶

𝒦𝑧 𝑋,𝐶

Sensitivity measures the “importance” of each point

Approx. compute sensitivities of all points

Sample points from a distribution proportional to sensitivities 
𝜎(𝑥), each sample has a weight 1/𝜎(𝑥) for unbiased estimation.



Importance Sampling -> Coreset

Theorem [Feldman and Langberg, 2011]
An 𝜀-coreset can be constructed in poly-time with size

𝜎

𝜖

2
(𝑑𝑖𝑚 + log 1/𝛿)

𝜎 = σ𝑥 𝜎(𝑥) = 𝑂(22𝑧𝑘) [Varadarajan and Xiao, 2012]

Definition (shattering dimension)

For 𝑥 ∈ 𝑋, 𝑟 ≥ 0, define ball 𝐵 𝑥, 𝑟 ≔ {𝑦 ∈
𝑋: 𝑑 𝑥, 𝑦 ≤ 𝑟}. The shattering dimension 𝐝𝐢𝐦(𝑴)
is the least integer 𝑡 such that for any 𝐴 ⊆ 𝑋 of size 
≥ 2, the number of different subsets of 𝐴
intersected by balls

{𝐴 ∩ 𝐵 𝑥, 𝑟 : 𝑥 ∈ 𝑋, 𝑟 ≥ 0} ≤ 𝐴 𝑡

Shattering dimension plays a similar role as VC dimension:
dim 𝑀 ≤ 𝑉𝐶-𝑑𝑖𝑚 𝑀 ≤ dim 𝑀 log dim(𝑀)



Doubling Dimension 𝑣. 𝑠. Shattering Dimension

Does 𝑑𝑑𝑖𝑚 𝑀 = 𝑂(1) imply 𝑑𝑖𝑚 𝑀 = 𝑂(1)?

If 𝑀 is Euclidean, then 𝑑𝑑𝑖𝑚(𝑀)=𝑂(1) implies 𝑑𝑖𝑚(𝑀)=𝑂(1). 

How about general metric spaces?

The answer is unfortunately NO.

 Example: 𝑑𝑑𝑖𝑚 𝑀 = 𝑂(1) but 𝑑𝑖𝑚 𝑀 = Ω(
log 𝑛

log log 𝑛
)

Point set: 𝑀 = {𝑢1, … , 𝑢𝑚, 𝑣0, … , 𝑣2𝑚−1} where 𝑚 ≈ log𝑛

Distance: 𝑑 𝑢𝑖 , 𝑢𝑗 = |𝑖 − 𝑗|; 𝑑 𝑣𝑖 , 𝑣𝑗 = |𝑖 − 𝑗|; 𝑑 𝑢𝑖 , 𝑣𝑗 = 2𝑚 if digit 𝑖

of 𝑗’s binary representation is 0 and otherwise 𝑑 𝑢𝑖 , 𝑣𝑗 = 2𝑚+1

 Difficulty: how to relate 𝑑𝑑𝑖𝑚 𝑀 and 𝑑𝑖𝑚 𝑀 ?



Main Idea: Distortion

• We want to “distort” the distance 𝑑(⋅,⋅) such that the shattering 
dimension is bounded by the doubling dimension:
• Low distortion: for any 𝑥, 𝑦 ∈ 𝑋, 𝛿 𝑥, 𝑦 ∈ 1 ± 𝜀 ⋅ 𝑑(𝑥, 𝑦)

• Objective: For the “smoothed metric space” 𝑀 𝑋, 𝛿 , we have 

dim 𝑀(𝑋, 𝛿) ≤ 𝑓(𝑑𝑑𝑖𝑚 𝑀 ,
1

𝜀
).

• Next step: construct coresets via 𝑀(𝑋, 𝛿). 
• Since 𝛿 is a low distortion, an 𝜀-coreset of 𝑀(𝑋, 𝛿) is a 3𝜀-coreset of 𝑀(𝑋, 𝑑).

• Problem: how to construct such a distorted distance 𝛿?



Notations: Packing, Covering and Net

𝑀(𝑋, 𝑑)

𝑁

𝑁 is a 𝜌-packing, if ∀𝑢, 𝑣 ∈ 𝑁, 𝑑 𝑢, 𝑣 ≥ 𝜌.

Packing property: N ≤
2𝐷𝑖𝑎𝑚 𝑁

𝜌

𝑑𝑑𝑖𝑚(𝑀)

.

𝑁 is a 𝜌-covering, if ∀𝑥 ∈ 𝑋, there exists 𝑢 ∈
𝑁 such that 𝑑 𝑢, 𝑥 ≤ 𝜌.

𝑁 is a 𝜌-net, if 𝑁 is both a 𝜌-packing and a 𝜌-
covering.



Notations: Hierarchical Net and Net Tree

Scale the metric such that the minimum intra point distance is 1

𝑁1 𝑁𝐿𝑁0

⋯

{𝑁0, 𝑁1, … , 𝑁𝐿} is a ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 𝑛𝑒𝑡, where 𝑁𝑖 is a 2𝑖-net of 𝑁𝑖−1.

Useful concept in doubling metrics [Talwar 2004; etc]

Net tree: node set ڂ𝑖𝑁𝑖. The parent 𝑝𝑎𝑟(𝑢(𝑖)) of 𝑢(𝑖) ∈ 𝑁𝑖 is its 
nearest point in 𝑁𝑖+1. 

𝑝𝑎𝑟 𝑗 (𝑢): the ancestor of 𝑢 in 𝑁𝑗

𝑢(0)

𝑝𝑎𝑟(𝑢(0)) 𝑝𝑎𝑟 𝐿 (𝑢(0))



Distortion: Smoothed Distance Function

Lemma 

∀𝑥, 𝑦 ∈ 𝑋, 

𝑑 𝑥, 𝑦 ∈ 1 ± 4𝜀 𝛿(𝑥, 𝑦).

Definition (smoothed distance function)

Given a net tree 𝑇, for 𝑥, 𝑦 ∈ 𝑋, let 𝑗 be the largest integer such that

𝑑 𝑝𝑎𝑟 𝑗 𝑥 , 𝑝𝑎𝑟 𝑗 𝑦 ≥
2𝑗

𝜀
.

The 𝜀-smoothed distance function is defined by 

𝛿(𝑥, 𝑦):= 𝑑 𝑝𝑎𝑟 𝑗 𝑥 , 𝑝𝑎𝑟 𝑗 𝑦



Smooth Property: Cross-Free

Lemma (cross-free property)

Consider 0 < 𝜀 ≤
1

8
and an integer 𝑗. Suppose 𝑟 ≥ 100 ⋅

2𝑗

𝜀
. Then for any 

𝑥 ∈ 𝑋 and 𝑣(𝑗) ∈ 𝑁𝑗, either none or all descendants of  𝑣(𝑗) are contained 
in 𝐵𝛿(𝑥, 𝑟).

Smooth Property → Bounded 
Shattering Dimension

Idea: Fix A ⊆ 𝑋.

Cross-free → 𝐴 ∩ 𝐵𝛿 𝑥, 𝑟 is a 

disjoint union of A ∩ 𝑑𝑒𝑠(𝑣𝑖
(𝑗)
)

Packing property → there are at 

most 𝑂
𝑟

2𝑗

𝑂 𝑑𝑑𝑖𝑚 𝑀
such 𝑣𝑖

(𝑗)

dim 𝑀(𝑋, 𝛿) ≤ 𝜀−𝑂(𝑑𝑑𝑖𝑚 𝑀 )



Weakness

•We have constructed a smoothed distance 
function 𝛿 such that
•For any 𝑥, 𝑦 ∈ 𝑋, 𝛿 𝑥, 𝑦 ∈ 1 ± 𝜀 ⋅ 𝑑(𝑥, 𝑦)

•dim 𝑀(𝑋, 𝛿) ≤ 𝜀−𝑂(𝑑𝑑𝑖𝑚 𝑀 )

•Weakness
•The exponential dependence on 𝑑𝑑𝑖𝑚 𝑀
•Only works for an unweighted ground set 𝑋. 

However for coresets, we need to relate 
𝑑𝑑𝑖𝑚 𝑀 and 𝑑𝑖𝑚 𝑀 for weighted point sets.



An Improved Framework

Definition (probabilistic shattering dimension, informal)

Let 𝑀 𝑋, 𝛿 be a metric space where 𝛿 is a randomized distortion 
function. 

The probabilistic shattering dimension pdim𝜏(𝑀) is the least integer 
𝑡 such that for any 𝐴 ⊆ 𝑋 of size ≥ 2, the number of different 
subsets of 𝐴 intersected by balls

{𝐴 ∩ 𝐵𝛿 𝑥, 𝑟 : 𝑥 ∈ 𝑋, 𝑟 ≥ 0} ≤ 𝐴 𝑡, 

with probability at least 1 − 𝜏.



An Improved Framework

Exponential Improvement via Randomness

Introducing randomness in the distortion 𝛿,

pdim𝜏 𝑀 ≤ 𝑂 𝑑𝑑𝑖𝑚(𝑀 ⋅ log
1

𝜀
+ log log

1

𝜏
)

where 𝑝𝑑𝑖𝑚 𝑀 is probabilistic shattering dimension. 

Proof more involved.

The randomized 𝛿 is constructed based on a randomized 
hierarchical decomposition [Abraham et al., 2006].

New framework: bounded 𝑝𝑑𝑖𝑚 𝑀 + importance sampling -
> coreset



Application: Centroid Set

Definition (centroid set)

Given an 𝜀-coreset S ⊆ 𝑋 with weights w(x), an (𝜀, 𝑘, 𝑧)-centroid set 
of (𝑆, 𝑤) is a subset 𝐻 such that

𝑆 ⊆ 𝐻 ⊆ 𝑋

There exists a 𝑘-point set C ⊆ 𝐻 such that

σ𝑥∈𝑆𝑤 𝑥 ⋅ 𝑑𝑧 𝑥, 𝐶 ≤ 1 + 2𝜀 ⋅ min
𝐶′⊆𝐻: 𝐶′ =𝑘

𝒦𝑧 (𝑋, 𝐶
′).

Theorem (centroid set)

Given S ⊆ 𝑋 with weights w(x), there exists a poly-time algorithm 
that constructs an 𝑂 𝑧, 𝜀 , 𝑘, 𝑧 -centroid set of size

𝑂 𝜀 −𝑂(𝑑𝑑𝑖𝑚 𝑀 ) ⋅ 𝑆 2.



Application: Fast Local Search Algorithm

Local Search Yields a PTAS
As analyzed in [Friggstad et al., 2016; Cohen-Addad et al., 2016], 
the local search algorithm that swaps at most 𝜌(𝜀, 𝑑𝑑𝑖𝑚 𝑀 , 𝑧)
centers at each iteration satisfies 
 1 + 𝜀 -approx. for (𝑘, 𝑧)-clustering 
Per-iteration running time: 𝑛𝜌

The number of iterations is polynomial in the input size

Accelerating via Centroid Set

As noted in [Friggstad et al., 2016], applying the centroid set for 

Euclidean spaces yields per-iteration running time 𝑘/𝜀 𝑂(𝜌). 

Our results of coreset and centroid set can achieve a similar 
bound for doubling metrics.



Conclusion Remark

• (𝛾, 𝜀)-robust coreset: allow outliers 
• Size ෨𝑂(𝑘𝑑𝛾−2𝜀−4) [Feldman and Langberg, 2011]

• Improve to ෨𝑂(𝑘𝑑𝛾−2𝜀−2) [this paper]

• Is the probabilistic notion of dimension 𝑝𝑑𝑖𝑚 𝑀 necessary, i.e., 
does there exist a deterministic distortion 𝛿 such that dim 𝑀, 𝛿 ≈
𝑂(𝑑𝑑𝑖𝑚(𝑀))? 

• We give the first coreset construction for doubling metrics
• ෨𝑂(𝑑𝑘/𝜀2𝑧) size in Euclidean spaces [Feldman and Langberg, 2011] 

• Can we improve our coreset size to match the Euclidean bound? 

• Multidimensional queries in database (CLRWWZ ICDT 17)

• Extension to stochastic points (HLPW ESA16, HL SODA 17)



Thank you! Questions?

Jian Li
lapordge@gmail.com

wechat: lapordge

mailto:lapordge@gmail.com

