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 Decision making with limited information

An “algorithm” that we use everyday

 Initially, nothing/little is known 

 Explore (to gain a better understanding)

 Exploit (make your decision)

 Balance between exploration and exploitation

 We would like to explore widely so that we do not miss really good choices

 We do not want to waste too much resource exploring bad choices (or try to 

identify good choices as quickly as possible)



The Stochastic Multi-armed Bandit

 Stochastic Multi-armed Bandit

 Set of 𝑛 arms

 Each arm is associated with an unknown reward distribution 

supported on [0,1] with mean 𝜃𝑖
 Each time, sample an arm and receive the

reward independently drawn from the 

reward distribution 

classic problems in stochastic control, stochastic 

optimization and online learning



The Stochastic Multi-armed Bandit

 Stochastic Multi-armed Bandit (MAB)

MAB  has MANY variations!

 Goal 1: Minimizing Cumulative Regret (Maximizing Cumulative 

Reward)

 Goal 2: (Pure Exploration) Identify the (approx) best K arms (arms 

with largest means) using as few samples as possible (Top-K Arm 

identification problem)

 K=1 (best-arm identification)



Stochastic Multi-armed Bandit

 Statistics, medical trials (Bechhofer, 54) ,Optimal control，
Industrial engineering (Koenig & Law, 85), evolutionary 
computing (Schmidt, 06), Simulation optimization (Chen, Fu, 
Shi 08),Online learning (Bubeck Cesa-Bianchi,12)

 [Bechhofer, 58] [Farrell, 64] [Paulson, 64] [Bechhofer, Kiefer, 
and Sobel, 68],…., [Even-Dar, Mannor, Mansour, 02] 
[Mannor, Tsitsiklis, 04] [Even-Dar, Mannor, Mansour, 06] 
[Kalyanakrishnan, Stone 10] [Gabillon, Ghavamzadeh, 
Lazaric, Bubeck, 11] [Kalyanakrishnan, Tewari, Auer, Stone, 
12] [Bubeck, Wang, Viswanatha, 12]….[Karnin, Koren, and 
Somekh, 13] [Chen, Lin, King, Lyu, Chen, 14]

 Books:  

 Multi-armed Bandit Allocation Indices, John Gittins, Kevin 
Glazebrook, Richard Weber, 2011

 Regret analysis of stochastic and nonstochastic multi-armed bandit 
problems S. Bubeck and N. Cesa-Bianchi., 2012

 ……



Applications

 Clinical Trails

 One arm – One treatment

 One pull – One experiment

Don Berry, University of Texas 

MD Anderson Cancer Center



Applications
 Crowdsourcing:

 Workers are noisy 

 How to identify reliable workers and exclude unreliable workers ? 

 Test workers by golden tasks  (i.e., tasks with known answers)

 Each test costs money. How to identify the best 𝐾 workers with minimum amount of 

money? 
Top-𝑲Arm Identification 

Worker Bernoulli arm with mean 𝜃𝑖
(𝜃𝑖: 𝑖-th worker’s reliability)

Test with golden task Obtain a binary-valued sample 

(correct/wrong)

0.95 0.99 0.5



Applications

We want to build a MST. 

But we don’t know the true cost of each edge.

Each time we can get a sample from an edge,

which is a noisy estimate of its true cost.

Combinatorial Pure Exploration

 A general combinatorial constraint on the feasible set of arms

 Best-k-arm: the uniform matroid constraint 

 First studied by [Chen et al. NIPS14]
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PAC 

 PAC learning: find an 𝜖-optimal solution with probability 1 − 𝛿

 𝜖-optimal solution for best-arm

 (additive/multiplicative) 𝜖-optimality

 The arm in our solution is 𝜖 away from the best arm

 𝜖-optimal solution for best-k-arm

 (additive/multiplicative) Elementwise 𝜖-optimality (this talk)

 The ith arm in our solution is 𝜖 away from the ith arm in OPT 

 (additive/multiplicative) Average 𝜖-optimality

 The average mean of our solution is 𝜖 away from the average of OPT 



Chernoff-Hoeffding Inequality



Naïve Solution (Best-Arm)
 Uniform Sampling

Sample each coin M times

Pick the coins with the largest empirical mean

empirical mean:  #heads/M

How large M needs to be (in order to achieve 𝜖-optimality)??



Naïve Solution (Best-Arm)
 Uniform Sampling

Sample each coin M times

Pick the coins with the largest empirical mean

empirical mean:  #heads/M

How large M needs to be (in order to achieve 𝜖-optimality)??

Then, by Chernoff Bound, we can have 

Pr 𝜇𝑖 −  𝜇𝑖 ≤ 𝜖 = 𝛿/𝑛

So the total number of samples is 𝑂(𝑛log𝑛)

𝑀 = 𝑂(
1

𝜖2
log𝑛 + log

1

𝛿
) = 𝑂(log 𝑛)

Is this necessary?

True mean of 

arm i

Emp mean of 

arm i



Naïve Solution

 Uniform Sampling

 What if we use M=O(1)  (let us say M=10)

 E.g., consider the following example (K=1):

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5)

 Consider a coin with mean 0.5,

Pr[All samples from this coin are head]=(1/2)^10

 With const prob,  there are more than 500 coins whose samples are all heads



Can we do better??
 Consider the following example:

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5)

 Uniform sampling spends too many samples on bad coins.

 Should spend more samples on good coins 

 However, we do not know which one is good and which is bad……

 Sample each coin M=O(1) times.

 If the empirical mean of a coin is large, we DO NOT know whether it 

is good or bad

 But if the empirical mean of a coin is very small, we DO know it is bad 

(with high probability)



Median/Quantile-Elimination

For i=1,2,….

Sample each arm 𝑀𝑖 times

Eliminate one quarter arms

Until less 4k arms

𝑀𝑖 ∶ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑒𝑥𝑝𝑜𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦

When n ≤ 4𝑘，use uniform sampling

We can find a solution with additive error  𝜖

PAC algorithm for best-k arm



Our algorithm



(worst case) Optimal bounds

Original Idea for best-arm [Even-Dar COLT02]

We solve the average (additive) version in [Zhou, Chen, L ICML’14]

We extend the result to both (multiplicative) elementwise and average in [Cao, L, Tao, Li, NIPS’15] 

Additive version



(worst case) Optimal bounds

We solve the average (additive) version in [Zhou, Chen, L ICML’14]

We extend the result to both (multiplicative) elementwise and average in [Cao, L, Tao, Li, NIPS’15] 

Multiplicative version: 𝜃𝑘: true mean of the k-th arm
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A More General Problem

Combinatorial Pure Exploration

 A general combinatorial constraint on the feasible set of arms

 Best-k-arm: the uniform matroid constraint 

 First studied by [Chen et al. NIPS14]

 E.g., we want to build a MST. But each time

get a noisy estimate of the true cost of each edge

 We obtain improved bounds for general matroid constaints

 Our bounds even improve previous results on Best-k-arm

[Chen, Gupta, L. COLT’16]



Application

 A set of jobs

 A set of workers

 Each worker can only do one job

 Each job has a reward distribution

 Goal: choose the set of jobs with the 

largest total expected reward

Jobs Workers

Feasible sets of jobs that can be 

completed form a transversal matroid



Our Results

 PAC: Strong eps-optimality (stronger than elementwise opt)

 Ours:

 Generalizes [Cao et al.][Kalyanakrishnan et al.]

 Optimal: Matching the LB in [Kalyanakrishnan et al.]

 PAC: Average eps-optimality

 Ours:                                      (under mild condition)

 Generalizes [Zhou et al.]

 Optimal (under mild condition): matching the lower bound in

[Zhou et al.]



Our Results

 A generalized definition of gap

 Exact identification

 [Chen et al.] 

 Previous best-k-arm [Kalyanakrishnan]:

 Ours:

 Our result is even better than previous best-k-arm result

 Our result matches Karnin’et al. result for best-1-arm



Our technique

 Attempt: try to adapt the median/quantile elimination technique

 Key difficulty:

 We cannot just eliminate half of elements, due to the matroid

constraint!



Our technique

 Attempt: try to adapt the median/quantile elimination technique

 Key difficulty:

 We cannot just eliminate half of elements, due to the matroid

constraint!

 Sampling-and-Pruning technique
 Originally developed by Karger, and used by Karger, Klein, Tarjan for the 

expected linear time MST

 First time used in Bandit literature

 IDEA: Instead of using a single threshold to prune elements, we use the solution 

for a sampled set to prune.



High level idea (for MaxST)

Sample-Prune

 Sample a subset of edges (uniformly and random, w.p. 1/100)

 Find the MaxST T over the sampled edges

 Use T to prune a lot of edges (w.h.p. we can prune a constant 

fraction of edges)

 Iterate over the remaining edges

T:  MaxST of the sample graph

the sample graph

Edge in the original graph



High level idea (for MaxST)

Sample-Prune

 Sample a subset of edges (uniformly and random, w.p. 1/100)

 Find the MaxST T over the sampled edges

 Use T to prune a lot of edges (w.h.p. we can prune a constant 

fraction of edges)

 Iterate over the remaining edges

T:  MaxST of the sample graph

the sample graph

Edge in the original graph

Consider an edge in the original graph. If it is the lightest 

edge in the cycle, it can be pruned.

OB: If e is the lightest edge in a cycle, e 

can not appear in the MaxST. 

There is a generalization of this statement 

in the more general matroid context.



Our technique

 Sampling-and-Pruning technique

 Originally developed by Karger, and used by Karger, Klein, 

Tarjan for the expected linear time MST

See our paper for the details!
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2 Arms (A/B test)

 Distinguish two coins（w.p. 0.999）

Needs approx. 10^10 samples

𝜃1 − 𝜃2
−2 = Δ−2

0.5/0.5 0.499999/0.500001

Sufficient：Chernoff-Hoeffding inequality

Necessary：Total variational distance/Hellinger distance

Assuming Δ is known!

0 1 0 1 2

1 sample 2 samples

0 100

100 samples

0 10^10

10^10 samples

1960s

Central limit thm



2 Arms (A/B test)

 Distinguish two coins（w.p. 0.999）

Needs 10^10 samples

Δ−2loglogΔ−1

0.5/0.5 0.499999/0.500001

Sufficient：Guess+Verify (loglog term due to union bound) 

Necessary：Farrell’s lower bound in 1964

(based on Law of Iterative Logarithm)

What if Δ is unknown?



Law of Iterative Logarithm

LIL:

Type equation here.

1

𝑡
 

𝑖=1

𝑡

𝑋𝑖

Both axes are non-linearly transformed



2 Arms

A subtle issue:

 If

then we can design an algorithm A such that

Hence, we cannot get a Δ−2loglogΔ−1 lower bound for every instance

 No instance optimal algorithm possible

 So the story is not over! (lower bound – density result, shortly) 



Best Arm Identification

 Find the best arm out of n arms, with means 𝜇[1], 𝜇[𝑛],.., 𝜇[𝑛]

 Formulated by Bechhofer in 1954

 Again, if we want to get the exact best arm, the bound has to 

depend on the gaps

 Some classical results:

 Mannor-Tsitsiklis lower bound:

It is an instance-wise lower bound



Are we done? – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is tight 
Jamieson et al.: “The procedure cannot be improved in the sense that the number of samples required 

to identify the best arm is within a constant factor of a lower bound based on the law of the iterated 

logarithm (LIL)”. 



Are we done? – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is tight 
• Of course, to completely close the problem, we need to show the 

remaining generalization from Farrell’s LB to n arms:  ∑Δ[𝑖]
−2loglogΔ[𝑖]

−1



Are we done? – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is tight 
• Of course, to completely close the problem, we need to show the 

remaining generalization from Farrell’s LB to n arms:  ∑Δ[𝑖]
−2loglogΔ[𝑖]

−1



New Upper and Lower Bounds

 Our new upper bound (strictly better than Karnin’s)

Farrell’s LB M-T LB lnlnn term seems strange……..



New Upper and Lower Bounds

 Our new upper bound (strictly better than Karnin’s)

 It turns out the lnlnn term is fundamental.

 Our new lower bound (not instance-wise)

Farrell’s LB M-T LB lnlnn term seems strange……..



High Level Idea of Our Algorithm

 Sketch of ExpGap-Halving [Karnin et al.]

ExpGap-Halving

𝒓 = 𝟏
Repeat

𝜖𝑟 = 𝑂(2−𝑟)
Find an 𝜖𝑟-optimal arm 𝑎𝑟 using Median-Elimination 

Estimate 𝑢[𝑎𝑟]
Uniformly sample all remaining arms 

Eliminate arms with empirical means ≤  𝑢[𝑎𝑟]
𝑟 = 𝑟 + 1

Until S is a singleton



High Level Idea of Our Algorithm

 Sketch of ExpGap-Halving [Karnin et al.]

ExpGap-Halving

𝒓 = 𝟏
Repeat

𝜖𝑟 = 𝑂(2−𝑟)
Find an 𝜖𝑟-optimal arm 𝑎𝑟 using Median-Elimination 

Estimate 𝑢[𝑎𝑟]
Uniformly sample all remaining arms 

Eliminate arms with empirical means ≤  𝑢[𝑎𝑟]
𝑟 = 𝑟 + 1

Until S is a singleton

Several previous 

elimination algorithms, 

e.g., eliminate ½ arms, 

eliminate arms below a 

threshold.

This is the most aggressive 

one.



High Level Idea of Our Algorithm

 Our idea

ExpGap-Halving

𝒓 = 𝟏
Repeat

𝜖𝑟 = 𝑂(2−𝑟)
Find an 𝜖𝑟-optimal arm 𝑎𝑟 using Median-Elimination 

Estimate 𝑢[𝑎𝑟]
Uniformly sample all remaining arms 

Eliminate arms with empirical means ≤  𝑢[𝑎𝑟]
𝑟 = 𝑟 + 1

Until S is a singleton

Can be wasteful if we 

can’t eliminate a lot of 

arms.

Don’t be too 

aggressive. Do 

elimination only when 

we have a lot of arms 

to eliminate.



High Level Idea of Our Algorithm

DistrBasedElimination

𝒓 = 𝟏
Repeat

𝜖𝑟 = 𝑂(2−𝑟)
Find an 𝜖𝑟-optimal arm 𝑎𝑟 using Median-Elimination 

Estimate 𝑢[𝑎𝑟]
If (we can eliminate a lot of arms)

Uniformly sample all remaining arms 

Eliminate arms with empirical means ≤  𝑢[𝑎𝑟]
else

Don’t do anything

𝑟 = 𝑟 + 1
Until S is a singleton

Do elimination only 

when we have a lot of 

arms to eliminate.

Do this test by 

Sampling arms



Our Algorithm

 A lot of details

 The analysis is intricate – need a potential function to amortize the cost



Our Lower Bound

 (almost) all previous lower bound for bestarm (even best-k-

arm) can be seen as a directed sum result:

 Solving the bestarm is as hard as solving n copies of 2 arm 

problems

 E.g., Mannor-Tsitsiklis lower bound:

 We can (randomly) embed a 2-arm instance in an n-arm instance

 By the lower bound of 2-arm, we can show an lower bound for n-arm



Our New Lower Bound

 However, our new lower bound is NOT a directed sum result!

 Solving the bestarm is HARDER than solving n copies of 2 arm 

problems!

 One subtlety: an 2-arm instance does NOT have a Δ−2loglogΔ−1

lower bound!

 We need a “density” Δ−2loglogΔ−1 lower bound for 2 arms as the 

basis

 We also need a more involved embedding argument to take 

advantage of the above density result

Δ−2loglogΔ−1

Δ−2

Any algorithm must be slow for most Δ

𝑒−1 𝑒−2 𝑒−3 𝑒−4 𝑒−5 𝑒−6 𝑒−7 𝑒−8 𝑒−9 𝑒−10Δ
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Open Question

 (almost) Instance optimal algorithm for best arm

 Gap Entropy:

 Gap Entropy Conjecture:

 An instance-wise lower bound 

 An algorithm with sample complexity:

𝑒−1 𝑒−2 𝑒−3 𝑒−4 𝑒−5 𝑒−6 𝑒−7Δ

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6 𝐻7



Future Direction

Learning + Stochastic Optimization
 Online/Bandit convex optimization

 Bayesian mechanism design without full distr. infor.

 A LOT of problems in this domain



Thanks.
lapordge@gmail.com
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