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® Decision making with limited information

An “algorithm” that we use everyday
® Initially, nothing/little is known
® Explore (to gain a better understanding)

* Exploit (make your decision)

¢ Balance between exploration and exploitation
* We would like to explore Widely so that we do not miss really good choices

® We do not want to waste too much resource exploring bad choices (or try to

identify good choices as quickly as possible)




The Stochastic Multi-armed Bandit

® Stochastic Multi-armed Bandit

® Set of n arms

® Each arm is associated with an unknown reward distribution

supported on [0,1] with mean 0;
® Each time, sample an arm and receive the
reward independently drawn from the

reward distribution

classic problems in stochastic control, stochastic
optimization and online learning




The Stochastic Multi-armed Bandit

® Stochastic Multi-armed Bandit (MAB)
MAB has MANY variations!

® Goal 1: Minimizing Cumulative Regret (Maximizing Cumulative
Reward)

® Goal 2: (Pure Exploration) Identity the (approx) best K arms (arms
with largest means) using as few samples as possible (Top-K Arm
identification problem)

K=1 (best-arm identification)




MULTI-ARMED BANDIT
ALLOCATION INDICES

Stochastic Multi-armed Bandit I

ohn Gittnn, Kevin Glarebrook

Statistics, medical trials (Bechhofer, 54) ,Optimal control,
Industrial engineering (Koenig & Law, 85), evolutionary
computing (Schmidt, 06), Simulation optimization (Chen, Fu,

Shi 08),Online learning (Bubeck Cesa-Bianchi, 12)
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Multiarmed Bandit
Allocation Indices (Wiley
Interscience Series in

Systems and
Optimization)

[Bechhofer, 58] [Farrell, 64] [Paulson, 64] [Bechhofer, Kiefer,
and Sobel, 68],...., [Even-Dar, Mannor, Mansour, 02]
[Mannor, Tsitsiklis, 04] [Even-Dar, Mannor, Mansour, 06]
[Kalyanakrishnan, Stone 10] [Gabillon, Ghavamzadeh, bl f
Lazaric, Bubeck, 11] [Kalyanakrishnan, Tewari, Auer, Stone, |
12] [Bubeck, Wang, Viswanatha, 12]....[Karnin, Koren, and Dionorihs su S and
Somekh, 13] [Chen, Lin, King, Lyu, Chen, 14] e

vnaid A Bertry

Books:

® Multi-armed Bandit Allocation Indices, John Gittins, Kevin
Glazebrook, Richard Weber, 2011

® Regret analysis of stochastic and nonstochastic multi-armed bandit

problems S. Bubeck and N. Cesa-Bianchi., 2012




on Statistics anc
Applied Probability

Bandit

Applications Problems

¢ Clinical Trails

. _ ..
One arm — One treatment e NEW ENGLAND

JOURNAL o MEDICINE

ESTABLISHED IN 1812 JULY 7, 2016 VOL.375 NO.1

® One pull — One experiment

Adaptive Randomization of Neratinib in Early Breast Cancer

Hirst. A. S E A. Be

N ENGLJ MED 3751 NEJM.ORG JULY 7, 2016

Tht NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE ”

Adaptive Randomization of Veliparib—
Carboplatin Treatment in Breast Cancer

O.I.O

M.B. Buxtor

MATHEMATICS IN BIOLOGY

NEWS

The New Math of Clinical Trials

Other fields have adopted statistical methods that previous

experience, but the stakes ratchet up when it comes to medical research

Bayesian school of thought. then widely
viewed as an oddity within the field The
Bayesian approach calls for incorporating
Houston, Texas—If statistics were a reli-  Hutchinson Cancer Research Center in  “priors™ —knowledge gained from previous
gion, Donald Berry would be among its  Seattle, Washington. But cnitics and sup- work—into a new experiment. “The
most dogged proselytizers Head of biostatiss  porters alike have a grudging admimation for  Bayesian notion is one of synthesis ... [and]

Don Berry, University of Texas

MD Anderson Cancer Center

tics at the M. D. Anderson Cancer Center
here, he’s dropped all hobbies except reading
bndge columns in the newspaper He sends

Berry's persistence. “He isn't swayed by the
status quo. by people in power in hss field™
says Fran Visco, head of the National Breast

leamming as you go.” says Berry. He found
these qualities immensely appeziing. in part
because they reflect real-life behavior, in-
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Applications

° Crowdsourcing:

® Workers are noisy

0.95 0.99 0.5
e How to identify reliable workers and exclude unreliable workers ?

® Test workers by golden tasks (i.e., tasks with known answers)

+»» Each test costs money. How to identify the best K workers with minimum amount of

money?

Top—K Arm Identification

Worker Bernoulli arm with mean 6;

(0;: i-th worker’s reliability)

Test with golden task Obtain a binary-valued sample

(correct/wrong)

_



Applications

We want to build a MST.
But we don’t know the true cost of each edge.

Each time we can get a sample from an edge,

which is a noisy estimate of its true cost.

Combinatorial Pure Exploration

o A general combinatorial constraint on the feasible set of arms

® Best-k-arm: the uniform matroid constraint

® First studied by [Chen et al. NIPS14]
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PAC

e PAC learning: find an €-optimal solution with probability 1—-906

® €-optimal solution for best-arm
® (additive/multiplicative) €-optimality
The arm in our solution is € away from the best arm
® €-optimal solution for best-k-arm

® (additive/multiplicative) Elementwise €-optimality (this talk)
The ith arm in our solution is € away from the ith arm in OPT
® (additive/multiplicative) Average €-optimality

The average mean of our solution is € away from the average of OPT




Chernoff-Hoeffding Inequality

Proposition Let X;(1 < i < n) be independent random variables with values in [0,1]. Let X =
L5, Xi. The following statements hold:

For every t > 0, we have that

Pr[|X — E[X]| > t] < 2exp(—2t’n).

For every € > 0, we have that
Pr[|X < (1-¢)E[X]] < exp(—e’n E[X]/2), and

Pr[|X > (1+ ¢) E[X]] < exp(—€’n E[X]/3).




Nailve Solution (Best-Arm)

e Uniform Sampling
Sample each coin M times
Pick the coins with the largest empirical mean

empirical mean: Hheads/ M

How large M needs to be (in order to achieve €-optimality)??




Nailve Solution (Best-Arm)

e Uniform Sampling
Sample each coin M times
Pick the coins with the largest empirical mean

empirical mean: Hheads/M

How large M needs to be (in order to achieve €-optimality)??

1 1
M = O(E—2 (logn + log§>) = O(logn)

Then, by Chernoft Bound, we can have
Prilu; — ;| < el =6/n

Emp mean of

So the total number of samples is O (nlogn)
[ Is this necessary?




Nailve Solution

e Uniform Sampling

* What if we use M=O(1) (let us say M=10)

* E.g., consider the following example (K=1):
0.9,05,05, ....................L. , 0.5 (a million coins with mean 0.5)
Consider a coin with mean 0.5,

Pr[All samples from this coin are head]=(1/2)"10

With const prob, there are more than 500 coins whose samples are all heads




Can we do better??

® Consider the following example:
0.9,0.5,0.5, ....................L. , 0.5 (amillion coins with mean 0.5)

Uniform sampling spends too many samples on bad coins.

Should spend more samples on good coins

* However, we do not know which one is good and which is bad......

Sample each coin M=O(1) times.

* If the empirical mean of a coin is large, we DO NOT know whether it
is good or bad

* But if the empirical mean of a coin is very small, we DO know it is bad

(with high probability)




Median/Quantile-Elimination

PAC algorithm for best-k arm

Fori=1,2,....
Sample each arm M; times  u : increasing expoentially
Eliminate one quarter arms

Until less 4k arms

When n < 4k, use uniform sampling

We can find a solution with additive error e




Our algorithm

Algorithm 1: ME-AS

1 input: I3, ¢, 6, k
2 forp=1/2,1/4,...do

3 | §S=ME(B,¢6, k)

4 | {(a, 0 (a;)) |1 <i<k}=US(S,¢,6, (1 —¢/2)p, k);
5 | if@YS(ax) > 2u then

6 |_ return {ay,...,a; };

Algorithm 2: Median Elimination (ME)

1 input: 5, ¢, 6, u, &
28 =B,¢=¢/16,8) =6/8, py = p,and ¥ = 1;
3 while |Sy| > 4k do

4 sample every arm a € S for Q¢ = (12/€7)(1/pe) log(6k /8¢ ) times;

5 for each arm a € 5y do

6 |_ its empirical value ﬁ(u} = the average of the (}; samples from a;

7 ay,. .., s, =the arms sorted in non-increasing order of their empirical values;
8 35'4.1 = {{J.],..,..qur”g};

9 | e = Beg/4, 001 = 0 /2, ppgr = (1 — €y, and £ = £+ 1;

10 return Sy;

Algorithm 3: Uniform Sampling (US)

1 input: S, e, 0, pg, k

2 sample every arm a € S for (@ = (96/¢2)(1/ps) log(4|S]/d) times;

3 for eacharma € S do

4 |_ its US-empirical value gUs (a) = the average of the () samples from a;

5 ay,...,a)5 = the arms sorted in non-increasing order of their US-empirical values;
6 return {(ay,0"5(ay)), ..., (ax, 05 (ax))}




(worst case) Optimal bounds

Table 1: Comparison of our and previous results (all bounds are in expectation)

problem sample complexity source
upper O| Zlog% [14]
k bound
-AS o O | Zlog ’;—“ NIPS15
lower Q(E%logg) [11]
bound 0 (?z log %) NIPS15
O(% log =) [14]
Eggﬁé 0 (e% (1 + l—og{;:ﬁ))) ICML14
kavg
-AS | lower Q (fg (1 + —/—Iog{,: 5})) |CML14
bound

Additive version

Original Idea for best-arm [Even-Dar COLT02]
We solve the average (additive) version in [Zhou, Chen, L ICML’14]
We extend the result to both (multiplicative) elementwise and average in [Cao, L, Tao, Li, NIPS'15]




(worst case) Optimal bounds

Table 1: Comparison of our and previous results (all bounds are in expectation)

problem sample complexity source
upper O| % 79;6%3) log % [14]
k bound o X
-AS Ol\zom o8 s new
lower Q(E%logg) [11]
bound Q (Eng on (lB) 10g %) new
O(E%gk(lg) log ) [14]
upper 1 log(l log(1/5)
bound 0 (eﬂ (Bavg(B))ﬁ (1 + )) [16]
kavg n Dg! 1/4)
-AS O (—2 —(B) (1 + )) new
lower 0 (Eﬂf (1 n M)) (16]
bound o
(ot (1)

Multiplicative version: 8: true mean of the k-th arm

We solve the average (additive) version in [Zhou, Chen, L ICML’14]

We extend the result to both (multiplicative) elementwise and average in [Cao, L, Tao, Li, NIPS'15]
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A More General Problem

Combinatorial Pure Exploration

o A general combinatorial constraint on the feasible set of arms
® Best-k-arm: the uniform matroid constraint

® First studied by [Chen et al. NIPS14]

* E.g., we want to build a MST. But each time

get a noisy estimate of the true cost of each edge

® We obtain improved bounds for general matroid constaints

® Our bounds even improve previous results on Best-k-arm

[Chen, Gupta, L. COLT'16] /




Application

* A set of jobs
® A set of workers
e Each worker can only do one job

® Each job has a reward distribution

® Goal: choose the set of jobs with the

largest total expected reward

Jobs Workers

Feasible sets of jobs that can be
completed form a transversal matroid




Our Results

® PAC: Strong eps-optimality (stronger than elementwise opt)
® Ours: O(ne 2. (Ink+1Ino 1))
® Generalizes [Cao et al.]|[Kalyanakrishnan et al. ]

® Optimal: Matching the LB in [Kalyanakrishnan et al.]

® PAC: Average eps—optimality
® Ours: O(ne 2(1+41nd"'/k)). (under mild condition)
® Generalizes [Zhou et al.]

® Optimal (under mild condition): matching the lower bound in
[Zhou et al.]




Our Results

o A generalized definition of gap

AM# - OPT(M) — OPT(MS\{G}) e € OPT(M)
© | OPT(M) — (OPT(M jie1) + p(e)) e & OPT(M)

e Exact identification

o [ChGH ct al] (Z A;Q(IH S '+Inn+In ZeeS AEQ))

e€S
® Previous best-k-arm [Kalyanakrishnan]:

O o A[T;,]z(ln 0t + I}, A[E]z))

e Ours: O (Z A% (Ind! +1nk:+ln1nAel))

ecS
® Qur result is even better than previous best-k-arm result

® Our result matches Karnin’et al. result for best-1-arm




Our technique

* Attempt: try to adapt the median/quantile elimination technique
* Key difficulty:
® We cannot just eliminate half of elements, due to the matroid

constraint!




Our technique

Attempt: try to adapt the median/ quantile elimination technique

Key difficulty:
® We cannot just eliminate half of elements, due to the matroid

constraint!

Sampling-and-Pruning technique
Originally developed by Karger, and used by Karger, Klein, Tarjan for the
expected linear time MST
First time used in Bandit literature

IDEA: Instead of using a single threshold to prune elements, we use the solution

for a sampled set to prune.

/




-

High level idea (for MaxST)

Sample-Prune
® Sample a subset of edges (uniformly and random, w.p. 1/100)
® Find the MaxST T over the sampled edges

® Use T to prune a lot of edges (w.h.p. we can prune a constant

fraction of edges)

® Jterate over the remaining edges

Edge in the original graph




High level idea (for MaxST)

Sample-Prune
® Sample a subset of edges (uniformly and random, w.p. 1/100)
® Find the MaxST T over the sampled edges

® Use T to prune a lot of edges (w.h.p. we can prune a constant

fraction of edges)

® Iterate over the remaining edges
OB: If e is the lightest edge in a cycle, e
can not appear in the MaxST.

There is a generalization of this statement

in the more general matroid context.

Edge in the original graph

Consider an edge in the original graph. If it is the lightest }

edge in the cycle, it can be pruned.




Our technique

° Sampling—and—Pruning technique
® Originally developed by Karger, and used by Karger, Klein,
Tarjan for the expected linear time MST

Algorithm 3: PAC-SamplePrune (S, =, )
Data: A PAC-BASIS instance S = (S, M), with rank(M) = k, approximation error &,
confidence level 4.
Result: A basis I in M.
1if [S] < 2p~? -max(4 - In8& ' k) then
2 | Return Naive-I (S, ¢, §)
3
4 Sample a subset F' C S by choosing each element with probability p independently.
s gf3, A¢ef12
6 I < PAC-SamplePrune(Sr = (F, Mp),a,d/8)
7 [1 + UniformSample (S, A, ¢ - p/8k)
8 '« TUu{ecS\T| IE’%*“*ZA does not block e}
9 Return PAC-SamplePrune (Sg = (5", M), o, 0/4)

See our paper for the details!
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2 Arms (A/B test)

o Distinguish two coins (W.p. 0.999)

0.5/0.5 0.499999/0.500001

Needs approx. 1010 samples
(6, —60)72=A"?

Sufficient: Chernoff-Hoeffding inequality
Necessary: Total variational distance/Hellinger distance

Assuming A is known! Central limit thm

-

2 10710

1 sample 2 samples 100 samples 10710 samples




2 Arms (A/B test)

o Distinguish two coins (W.p. 0.999)

Needs 10710 samples

What if A is unknown? A~%loglogA™?

Sufficient: Guess+Verify (loglog term due to union bound)
Necessary: Farrell’s lower bound in 1964
(based on Law of Iterative Logarithm)

lim sup (Al

SUD S A1




Law of lterative Logarithm

/+/2tloglogt = 1 almost surely where X; ~ N (0, 1) for all i.

LIL: limsum|23:1 X,

LAH OF THE, ITERATED LOGARITHH
Type equation here.
T T

1
B . . I sqrt{i/n} —— |
.5 '.., iy ; : : sqrt{(2 log log n}/n)
— : X=bar
1

= W
.,
|
c i
8
¢ T T S B % g R EEETRN! FEN| ESPRTRRRY ERRRRSRRES | | BRSNS Ron [ | (RRE SRR s
1ZX5 | S
f— [ .
t 4 < 0 ' |’ ‘H (e
=1 S ‘ ie  BF
- -
ot e
- T T SEREESRRTISnI T | | OO TEE | EEEEE T EESSTERCRRES TUCCIPRSEE X : EEESTERRt SR & § ARSUIIETLLOE | B BVSEREE B EESRISLLLOTsy | .—corrUR I tRER L IR,
2 I |
-
................................... o ‘J‘i S - O SO
0.01 e
iAo 1
oa bl RaL S S HOO U NS
1 1
18 108 108k 1e+86 le+12 infinity
ple e

Both axes are non-linearly transformed /




2 Arms

A subtle issue:
o If limsupp_, (T (A)A* = 400
then we can design an algorithm A such that

Th(A
lim inf A(4)

A—+40 T(ﬂ) =0

Hence, we cannot get a A™*loglogA™" lower bound for every instance
* No instance optimal algorithm possible

® So the story is not over! (lower bound — density result, shortly)




Best Arm ldentification

® Find the best arm out of n arms, with means U1}, U], Kin]
* Formulated by Bechhofer in 1954

® Again, if we want to get the exact best arm, the bound has to

depend on the gaps Ay = ppy —

® Some classical results:
¢ Mannor-T( (Z 2 Ay nd™ ) Ali] = Hp) — Ay

It is an instance-wise lower bound




Are we done? - a misclaim

Source Sample Cﬂmplaxity

Even-Dar et al. [12] DA (]n 5 '+Inn+In ﬂ.[_l.]l)
. n —2 -1 =2

Gabillon et al. [16] i:gﬂ[t] (s +m ¥, A7)

Jamieson et al. | 19]

o A (nd l““‘“( )

kalyanakrishnan et al. [23]

>, AR (I + Y, A7)

Jamieson et al. [ 19]

lnﬁ'-(inlna—‘-z 2 AR+ &fln&ﬂll)

Karnin et al.|24], Jamieson et al.|20]

[z LA (hus +Inln A )]

Mannor-Tsitsiklis lower bound: €2 (Z?:z 5[212 In 5_1)

Farrell's lower bound (2 arms): A[Q] Inln A

Attempting to believe : Karnin’s upper bound is tight

Jamieson et al.: “The procedure cannot be improved in the sense that the number of samples required
to identify the best arm is within a constant factor of a lower bound based on the law of the iterated

logarithm (LIL)”.
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Are we done? - a misclaim

Source

Sample Complexity

Even-Dar et al. [ 12]

p D &[_]2 (]1115_' +Inn+ lnﬂ.[_l.]l)

Gabillon et al. [16]

AL (N6 +In .r.*».l;]‘-*)

Jamieson et al. | 19]

i Ay (]“'5 l‘H“l"( =2 ﬂ'ﬂlz))

kalyanakrishnan et al. [23]

n =2 -1 T -2
>, AR (I + Y, A7)

Jamieson et al. [ 19]

Ind~" - (™" 30, AGZ+ 30 &[:Blnﬁlll)

Karnin et al.|24], Jamieson et al.|20]

(X, A% (6™ + Ay

Mannor-Tsitsiklis lower bound: €2 (Z?:z Ay In 5_1)

Farrell's lower bound (2 arms): A2 Inln A‘

2]

Attempting to believe : Karnin’s upper bound is tight
» Of course, to completely close the problem, we need to show the

remaining generalization from Farrell's LB to n arms: ZA[_i]zloglogA[_i]l




-

Are we done? - a misclaim

Source Sample Cnmplaxity

Even-Dar et al. [12] DA (]1115_' +Inn+ lnﬂ.[_l.]l)

Gabillon et al. [16] " a[l] (5" + al;f)

Jamieson et al. [ 19] Ty &[{] (]né '+Inln ( =2 &B]‘!))

kalyanakrishnan et al. [23] Yoo ﬂ.[_{]z (]n S+, .&l_.]“)

Jamieson et al. [19] Indo" - (1n g~ 30, A+ Y, A AL
Karnin et al.[24], Jamieson et al.[20] >, AL (N +InnA;)

This paper (Thm 2.5) [Z ﬂ._‘a (]nL’F '+ Inln min(n, Ay }) + .&[2]‘; Inln &[2]]
This paper (clustered instances) Thm B.22 21—2 Ay 2 Iné~ "'+ ﬂ.[zjz Inln &[_z]

Mannor-Tsitsiklis lower bound: €2 (Z?:z 5[212 In 5_1)
Farrell's lower bound (2 arms): A[Q] Inln A

Attempting to believe : Karnin’s upper bound is tight
» Of course, to gompletely close the probl wegieed @ show the
remaining ger !




New Upper and Lower Bounds
® Our new upper bound (strictly better than Karnin’s)
O(A[_Q]2 Inln A[_Q]l - ZLQ A[_Z.]Q Iné '+ Zj:z A[_i]z In In min(n, A[_i]l))

Farrell's LB M-T LB Inlnn term seems strange........




New Upper and Lower Bounds

® Our new upper bound (strictly better than Karnin’s)

—2 —1 " —2 — " — : —
O(A[Q] Inln A + Z:@:g Agno Lt Z@':Q A[i]z In In min(n, A[i]l))

Farrell's LB M-T LB Inlnn term seems strange........

® [t turns out the Inlnn term is fundamental.

® Our new lower bound (not instance-wise)

Q (2?22 A[;ﬁ Inln n)




High Level Idea of Our Algorithm

® Sketch of ExpGap-Halving [Karnin et al. ]

ExpGap-Halving

r=1

Repeat
€. =0(277)
Find an €,-optimal arm a, using Median-Elimination
Estimate up,
Uniformly sample all remaining arms
Eliminate arms with empirical means < i, ;
r=r+1

Until S is a singleton




High Level Idea of Our Algorithm

® Sketch of ExpGap-Halving [Karnin et al. ]

ExpGap-Halving

Ui

r=1

Repeat
ehnfi,féiiiﬁiﬁl‘ims,\ €r = 0(27") _ _ . o
LR > Find an €,.-optimal arm a,. using Median-Elimination

threshold. Esti m ate u [ar]

This is the most aggressive

one.

Uniformly sample all remaining arms
Eliminate arms with empirical means < i, ;

r=r+1
Until S is a singleton




High Level Idea of Our Algorithm

® QOur idea

ExpGap-Halving
r=1
Can be wasteful if we R e p eat
can’t eliminate a lot of €, = 0 (Z—r)
il Find an €,.-optimal arm a, using Median-Elimination

aggressive. Do Estimate Ula,]

juiEa A A A \lUniformly sample all remaining arms
Ul Eliminate arms with empirical means < i, ;
r=r+1

Until S is a singleton

Don’t be too




High Level Idea of Our Algorithm

Do elimination only
when we have a lot of

arms to eliminate.

Do this test by
Sampling arms

h

J

DistrBasedElimination
r=1
Repeat
e =0(277)
Find an €,.-optimal arm a,- using Median-Elimination
Estimate u,
— If (we can eliminate a lot of arms)
Uniformly sample all remaining arms
Eliminate arms with empirical means < 1, ;

else
Don’t do anything
r=r+1

Until S is a singleton




Our Algorithm

® A lot of details

e The analysis 1S Intricate — need a potential function to amortize the cost

Algorithm 3: FractionTest(S, ¢;, ¢,, 4, t, £)

Data: Arm set S, range parameters ¢, ¢, confidence level d, threshold ¢, approximate parameter e.

1 cnt <0

2 tot « In(2-5 1)(g/3)%/2

3 fori =1 to tot do

4 Pick a random arm «a; € .S uniformly.

5 [ia;] + UniformSample({a; }, (¢, —c1)/2,2/3)
6 if jifa,) < (c1+¢;)/2 then cnt < cnt + 1

7 if cnt/tot > ¢ then

3 | Return True

9 else

10| Return False

Algorithm 1: DistrBasedEIlim(S, §)

1
2
3

S n &

Algorithm 4: Elimination(S, ¢;, ¢,., )

Data: Arm set S, range parameters ¢y, ¢, confidence level d.
Result: A set of arms after elimination,

Sl «— S

em 4 (1 +¢r)/2

for r = 1 to +0o do

5. =48/(10-27)

if FractionTest(S,, ¢;, ¢, 0, 0.075,0.025) then
UniformSample(S,, (¢, — ¢m)/2,6,)

Sr+1 «— {CL € S’r | ﬂ[a] > (cm + cr‘)/Q}

else
|_ Return S,

1 he1

2 51 — 8

3 for r =110 400 do
4 if | S| = 1 then

5 | Return the only arm in S,

6 Er 277

7 | 6, « 6/50r2

8 a, < MedianElim(S,, =,./4,0.01).

9 fi[a,] + UniformSample({a,},c,/4,4,)

10 if FractionTest(S,, fijo,] — 1.5, fija,] — 1.25¢,, ,,0.4,0.1) then
11 dp,  8/50n%

12 b, < MedianElim(S,., s, /4, ;)

13 fip,) < UniformSample({b.}, <, /4, 0r)

14 Sy11 + Elimination(S,., i, ] — 0.5, fifs,) — 0.25¢,., dp)
15 heh+1

16 else

17 |_ Sriq S,




Our Lower Bound

* (almost) all previous lower bound for bestarm (even best-k-

arm) can be seen as a directed sum result:

® Solving the bestarm is as hard as solving n copies of 2 arm
problems
E.g., Mannor-Tsitsiklis lower bound: € (Z?Zg AyfIn 5_1)
We can (randomly) embed a 2-arm instance in an n-arm instance

By the lower bound of 2-arm, we can show an lower bound for n-arm




Our New Lower Bound o (xi,A;2ninn)

® However, our new lower bound is NOT a directed sum result!

° Solving the bestarm is HARDER than solving n copies of 2 arm
problems!

® One subtlety: an 2-arm instance does NOT have a A"*loglogA™"
lower bound!

® We need a “density” A"?loglogA~" lower bound for 2 arms as the

basis
/—/\f,\/\‘\[\/\/\ > A_ZloglogA_l

B -2 -3 ) — ~ . — — — —> A2
A e~l e e e 5 g6 o7 g8 g9 =10

[ Any algorithm must be slow for most A }

® We also need a more involved embedding argument to take

advantage of the above density result




Outline

® Introduction

* Optimal PAC Algorithm (Best-Arm, Best-k-Arm):
® Median/Quantile Elimination

® Combinatorial Pure Exploration

® Best-Arm — Instance optimality

® Conclusion




Open Question

® (almost) Instance optimal algorithm for best arm

H= YA
weG;
H, H, Hs H, Hy Hg H;

d oo | o | | | |
[ [ [ [ i | .

A g1 o2 o3 et o5 o6 o7 T

® Gap Entropy: Ent(J) = Z pilogp; . pi = H;/ ZHJ'
G #0 J

® Gap Entropy Conjecture:
® An instance-wise lower bound £(1,8) = O (H(I)(Ind~" + Ent(I))) .
H(I) = Z?:z A[;]z-

® An algorithm with sample complexity:

O (C(I, 5) + A2 Inln A[—Q;) |




Future Direction

® Learning + Stochastic Optimization

® Online/Bandit convex optimization
* Bayesian mechanism design without full distr. infor.

® A LOT of problems in this domain




Thanks.

lapordge@gmail.com
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