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Problem

We consider the more general nonsmooth nonconvex case:

X

min ®(x) ‘= £(x) + h(x) = }?Zf}(x) 1 h(x). 1)

where each f;(x) is nonconvex with a Lipschitz continuous gradient (3L st.
IVEi(x) = VEi(y)ll < Lllx = yl),
while h(x) is nonsmooth (e.g., /i regularizer ||x||1 or indicator function
[c(x) for some constraint set C).
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Examples

min ®(x) := f(x) + h(x) = Z fi(x

X

We list some classical machine learning problems, where {x;. y;}"_, are the
training data samples (y; is the label of data x;):

Lasso: f(w) =3 2271 fiw) = 2 32:(vi = w'x)?, h(w) = [[w1.
h-SVM: fi(w) = max (0.1 — y;(w'x;)), h(w) = ||w||3.

Neural networks:

fi(Wi. ..., Wh) = {gk(Wk@—l(Wk 1o o (Waxi) - )) yff’

h(w) can be a regularization or an indicator function of a constraint set.
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Proximal Gradient Descent (ProxGD)

min (x) := f(x) + h(x).

X

Replace the GD update as the proximal gradient descent (ProxGD):
Xt pl‘(_)K”;.?(Xr_l — fjvf(}(t_l)), for t > 1,
where prox, ,(x) := arg min cga (h(y) + Z%Hy — x|?).

« The proximal operator can be viewed as a gradient step on certain
‘smoothed version” of h (Recall that h may be nonsmooth)

« Prox() is easy to compute for many regularizers
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Proximal SGD (ProxSGD)

Recall the problem:

min ®(x) := f(x) + h(x) = % Z fi(x) + h(x).
i=1

X

Drawback: GD needs to compute the full gradient in each update step,
e, Xp < Xp_1 — NVIF(xr1) = Xp_1 — nl] > Vii(xe—1).

n
SGD update: randomly choose a subset data samples 7, then update

Xp 4— Xi—1 — nﬁ > et Vii(xi—1).

Note that in the SGD setting, one needs to assume that variance is

bounded, i.e., E[||Vfi(x) — Vf(x)|?] < o2
Similarly, ProxSGD update: | x; + proxnh(xt_l — -n‘—% ZfEfo,-(xt_l)).
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Convergence Criterion

Define the convergence criterion:

% is called an e-accurate solution for problem (4) if E[||G,(X)[|%] <,
where the gradient mapping G, (x) := %(X — Prox,,(x — -T}Vf(x))).

Recall ProxGD update x; < prox,p (Xf_l — -an(xt_l)), thus it can be
rewritten as x; = x¢—1 — 1G,(X¢—1)-

Also, G, (x) = V®(x) = Vf(x) if h(x) is a constant function (e.g., 0).
Recall the definition prox,,(x) = argmin,cra (h(y) + Q%?Hy — x|?).
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Oracle Complexity

To measure the efficiency of a stochastic algorithm for achieving an
e-accurate solution, we use the following oracle complexity:

(1) Stochastic first-order oracle (SFO): given a point x, SFO outputs a
stochastic gradient Vfi(x) such that E;_,;[Vfi(x)] = Vf(x).

(2) Proximal oracle (PO): given a point x, PO outputs the result of its
proximal projection prox, ,(x).

For example, consider the ProxGD update:
Xt <= Prox, (Xt—l —nV f(xt_l)) = Prox,, (Xt_l - 'T)% S Vﬁ(xt_l)).
Each update uses n SFO and 1 PO.
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Convergence Results of ProxGD and ProxSGD

Theorem ([Ghadimi et al., 2016])

To obtain an e-accurate solution X (i.e., E[||G,(X)||?] <€), the SFO and
PO complexity of ProxGD are O(Z) and O(%) respectively. The SFO and
PO complexity of ProxSGD are O(2) and O(%) respectively, where b > %
and 0 = O(1).

m|u—-\-._.--"

Recall that ¢ comes from the bounded variance assumption, i.e.,

E[||Vfi(x) = VE(x)|*] < 0.
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Original Stochastic Variance Reduced Gradient (SVRG)

Original SVRG by Johnson and Zhang, for convex optimization
To reduce the variance of stochastic gradients

Algorithm 1 Original SVRG

l:

2: fors=1,2,...do
3 mf=a""

L @pr= ,1—1 2::[:] V(1)
5 fort=1,2,...,mdo

6

Randomly pick i € [n], then compute Unbiased estimation of the
vi_, =Vfilzl ) — Vf(z*1) + g° gradient, but with much
7 ;= Xy 3 — NV _4 smaller variance
8: end for
9:  OptionI: 7° = z;,

10:  Option II: Z° = 27 _, for randomly chosen ¢ &€ [m]
11: end for
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ProxSVRG+ (for nonsmooth nonconvex setting)

2: fors=1,2,...do

~s—1

32 x5 =X

4 9% =5 Yier, Vi@

5: fort=1,2,...,mdo

6: Vi_1 = %ZiEIh (Vfilz;_y) = Vfi(zs 1)) +¢°
7 x] =prox,,(xj_1 — Nvi_1)

8: end for

9:  z° =z

Some modification from the ProxSVGG (Reddi et al. NIPS 16)
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Our Results

Aleorithms Stochastic first-order | Proximal orcale | Additional
8 ‘ orcale (SFO) (PO) condition
ProxGD [Ghadimi et al., 2016]
(full gradient) O(n/e) O(1/e) -
ProxSGD [Ghadimi et al., 2016] O(b/e) O(1/e€) JI:‘:-OI{*’?.
- B
ProxSVRG/SAGA [Reddi et al., 2016b] O( T n) O(57) b < n2/3
SCSG [Leiet al., 2017] . s
(smooth nonconvex, O‘(b E (n A l)‘ ) NA a=0(1)
Le., h(z) = 01in (1))
Natashal.5 [Allen-Zhu, 2017b] O(1/e’/3) 2 O(1/e/3) o= 0(1)
Of b _
ProxSVRG+ {ffﬁ " E) 0(1/¢)
{thIS [JEI.F'EI') O((n A %) E;I_IE + %) D{I/F} g = G{l]
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Our Results

Table 2: Some recommended minibatch sizes b

Algorithm | Minibatches SFO PO Addi. cond. Notes
b1 O(n/e) O(1/¢) — Same as ProxGD
O(1/€%) O(1/e) | o=0(1) Same as ProxSGD
. . Better than ProxGD,
1 (1/¢) B
O(ar ) | O/€) does not need o = O(1)
b= Ezl, - Better than ProxGD and
ProxSVRG+ O(=4s) O(1/€) | o =0(1). ProxSVRG/SAGA,
n>1/e same as SCSG (in SFO)
5 2/3 Same as
" - f _
b=n O(*=) O1/e) ProxSVRG/SAGA
b=mn O(n/e) O(1/¢) — Same as ProxGD
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Our Results
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Figure: SFO complexity in terms of b
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Remarks of Our Results

Our simple ProxSVRG+ algorithm partially answers the open problem
proposed by [Reddi et al., 2016] in their ProxSVRG paper:
achieving better performance than ProxGD with constant minibatch

size b.

Concretely, ProxSVRG-+ is Vb times faster than ProxGD when b < n?/3
or, ProxSVRG- is v/ ben times faster than ProxGD when b < 1/62/3.
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Remarks of Our Results

Our simple ProxSVRG+ algorithm partially answers the open problem
proposed by [Reddi et al., 2016] in their ProxSVRG paper:

achieving better performance than ProxGD with constant minibatch
size b.

Concretely, ProxSVRG-+ is Vb times faster than ProxGD when b < n?/3
or, ProxSVRG- is v/ ben times faster than ProxGD when b < 1/62/3.

*  Our technical contribution mainly lies in our analysis (no time to discuss)

« Our analysis is arguably much simpler than in [Reddi et al. NIPS 16] and [Lei et al. NIPS 17]
 Achieves the best convergence with moderate minibatch size

* In particular, we show the “stochastic controlled” trick is not really necessary in [Lei et al. NIPS 17]
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Adapt to Local Convexity

The PL (Polyak-Lojasiewicz) condition [Polyak, 1963]):

3yt > 0, such that ||VF(x)||*> > 2u(f(x) — F(x")). Vx.

For the functions ®(x) = f(x) + h(x) satisfying PL condition

(Fp >0, [|G,(x)]|* = 2u(P(x) — ®(x*))), ProxSVRG+ directly achieves
the global linear convergence result O(-log +) instead of the previous O(-)
for obtaining an e-accurate solution X (i.e., E[||G,(X)]%] < ¢).

However, Reddi et al. [2016] used PL-SVRG to restart ProxSVRG O(log %)

times for achieving the global linear convergence result.
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Experimental results
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Figure: Comparison among algorithms with different minibatch size b

ProxSVRG+ and ProxSVRG both gets better as b increases.
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Experimental Results
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Figure: ProxSVRG+ and ProxSVRG under different minibatch size b

ProxSVRG+ achieves its best performance with smaller b than ProxSVRG.
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Concluding Remarks

Finding stationary points -> Finding local min
« Choice: Use Neon? [Allen-Zhu et al. NIPS18]. Complicated and unnatural.
» Choice: Use perturbation [Jin et al. ICML1/]. How to prove the same guarantee.

Very Recently, [Zhou et al. NIPS18] proposed SNVRG.
e Better SFO for smooth case (n1/2 instead of n2/3)
« Extension to nonsmooth case?
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