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Uncertain Data 
 Uncertain data is ubiquitous  

 Data Integration and Information Extraction 

 Sensor Networks; Information Networks 

 

 

 
 

SSN Name 

208-79-4209 John Williams 

SSN Name 

208-79-4209 Michael Lewin 

SSN Name Prob 

208-79-4209 John Williams 0.5 

208-79-4209 Michael Lewin 0.5 

Data integration 

Sensor ID Temp. 

1 Gauss(40,4) 

2 Gauss(50,2) 

3 Gauss(20,9) 

… … 

Attribute uncertainty Sensor network 

Tuple uncertainty 



Uncertain Data 

OCR (Optical Character Recognition) data. [Kumar and Re, VLDB2011] 

Stochastic Finite Automata 

Social network 

? 

? 

Uncertain 
link 



Uncertain Data 
Decision making under uncertainty 

 Kidney exchange 

 

 

 

 

 Future data is destined to be uncertain 

 

• Estimation of the success prob. 
based on blood type etc.  
• Need to run the crossmatch test to 
ensure a match (more expensive and 
time-consuming). 



Dealing with Uncertainty 

 There is an increasing need for analyzing and reasoning 
over such data 

 Handling uncertainty is a very broad topic that spans 
multiple disciplines 
 Economics / Game Theory 

 Finance  

 Probability Theory / Statistics 

 Psychology 

 Computer Science 



Outline 

 Dealing with uncertainty in data management  

 Probabilistic databases 
 Possible world semantics 

 Conjunctive queries 

 Ranking and top-k queries  

 Other queries 

 Beyond expected values – expected utility theory 

 Some tools out there that may be useful (with applications) 
 Uncertainty resolution 

 Portfolio theory 

 Multi-arm bandit 

 



Probabilistic Databases 

 Probabilistic databases 
 Goal: Managing probabilistic data and support declarative (SQL) 

query processing 

 Many probabilistic database prototypes 
 Mystiq (U. Washington) 

 Trio (Stanford) 

 Orion (Purdue) 

 MayBMS (Cornell) 

 PrDB (UMD) 

 MCDB (Rice & IBM) 

 PODS (UMass) 

 



Probabilistic Databases 

 Probabilistic data models 

 Independent tuples 

 

 

 

 

 Block independent tuple / x-tuples 

 

 

ID Score Prob 

t1 200 0.2 

t2 150 0.8 

t3 100 0.4 

Sensor ID Temp. 

1 Gauss(40,4) 

2 Gauss(50,2) 

… … 

Tuple 
uncertainty 

Attribute 
uncertainty 

ID Score Prob 

t1 200 0.2 

t2 150 0.8 

t3 100 0.4 

Block 1 

Block 2 

At most one tuple exists in a block 



Probabilistic Databases 

 Probabilistic data models 

 Probabilistic c-table 

 Probabilistic and/xor trees 

 World set algebra 

 Graphical Models 

 …. 



Possible World Semantics 

w.p. 0.064 

w.p. 0.096 

w.p. 0.256 …
 

ID A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 

ID A 

t1 1 

t2 1 

t3 2 

ID A 

t1 1 

t2 1 

ID A 

t2 1 

t3 2 

A probabilistic table 
(assume tuple-independence) 

pw1 

pw2 

pw3 

…
 

View a probabilistic database as probability distribution 
over the set of possible worlds 

8 worlds 



Possible World Semantics 

w.p. 0.032 

w.p. 0.048 

w.p. 0.128 …
 

ID1 A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 

ID1 A 

t1 1 

t2 1 

t3 2 

ID1 A 

t1 1 

t2 1 

ID1 A 

t2 1 

t3 2 

pw1 

pw2 

pw3 

…
 

View a probabilistic database as probability distribution 
over the set of possible worlds 

ID2 B Prob 

s1 1 0.5 

ID2 B 

s1 1 

ID2 B 

s1 1 

ID2 B 

16 worlds 

T 

S 



Possible World Semantics 



Possible World Semantics 

 Conjunctive query: q(id2):= T(id1, a), S(id2,b), a=b  

w.p. 0.032 

w.p. 0.048 

w.p. 0.128 …
 

ID1 A 

t1 1 

t2 1 

t3 2 

ID1 A 

t1 1 

t2 1 

ID1 A 

t2 1 

t3 2 

pw1 

pw2 

pw3 

…
 

ID2 B 

s1 1 

ID2 B 

s1 1 

ID2 B 

16 worlds 

ID2 

s1 

ID2 

s1 

ID2 

ID2 Prob 

s1 0.42 

Ø  0.58 

Execute 
q on 
each pw 
 

Combine 
 

Return tuples with probs 
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Conjunctive Query 

 Safe plan 

 

 Conjunctive query: q(id2):= T(id1, a), S(id2,b), a=b  

 

Efficient query evaluation on probabilistic databases, Dalvi, N. and Suciu, D. VLDB Journal, 2007 

ID1 A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 

A Prob 

1 0.84 

2 0.4 𝜋A(T)  

1-(1-0.2)(1-0.8) 

A B ID2 Prob 

1 1 s1 0.42 

ID1 A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 

ID2 B Prob 

s1 1 0.5 T S 

𝜋A T      A=B S 

ID2 Prob 

s1 0.42 𝜋ID2(𝜋A T      A=B S) 

PLAN 1 
0.84 × 0.5 



Conjunctive Query 

Safe plan 

 

 Conjunctive query: q(id2):= T(id1, a), S(id2,b), a=b  

 ID1 A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 
T       A=B S 
 

ID1 A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 

ID2 B Prob 

s1 1 0.5 T S 

ID2 Prob 

s1 0.46 𝜋ID2(T       A=B S) 
 

PLAN 2 

ID1 A B ID2 Prob 

t1 1 1 s1 0.1 

t2 1 1 S1 0.4 

0.2 × 0.5 

0.8 × 0.5 

1 − (1 − 0.1) × (1 − 0. 4) 

Which one is correct?? 



Conjunctive Query 

Safe plan 

 

 Conjunctive query: q(id2):= T(id1, a), S(id2,b), a=b  

 ID1 A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 
T       A=B S 
 

ID1 A Prob 

t1 1 0.2 

t2 1 0.8 

t3 2 0.4 

ID2 B Prob 

s1 1 0.5 T S 

ID2 Prob 

s1 0.46 𝜋ID2(T       A=B S) 
 

PLAN 2 

ID1 A B ID2 Prob 

t1 1 1 s1 0.1 

t2 1 1 S1 0.4 

0.2 × 0.5 

0.8 × 0.5 

1 − (1 − 0.1) × (1 − 0. 4) 

Which one is correct?? Plan 1! 

NOT INDEPENDENT! 

Wrong! Not safe! 



Conjunctive Query 

 How to generate a safe plan (High-level):  

 Try to do all safe projections late in the query plan (safeness can 
be determined by functional dependencies) 

 If no safe projection is possible, try to perform a join (need to 

meet certain separateness condition) 

 The Dichotomy Theorem 

    For any conjunctive query q without self-join,  

 either there is a safe plan for q,  

 or the data complexity of q is #P-complete  

 

 Similar dichotomy results also hold for conjunctive query with 
self-joins, and union of conjunctive queries (SPJU) 

 

 

Efficient query evaluation on probabilistic databases, Dalvi, N. and Suciu, D. VLDB J, 2007 

The Dichotomy of Conjunctive Queries on Probabilistic Structures , Nilesh Dalvi, Dan Suciu, PODS, 2007 
Computing query probability with incidence algebras , Nilesh Dalvi, Karl Schnaitter, Dan Suciu, In PODS, 2010 



Conjunctive Query 

 What if the query is #P-hard?? 

 

 We can use the Karp-Luby-Madras method to approximate 
the probability. 
 The algorithm was developed for counting DNF solutions, but 

can be adopted to compute probabilities. 
 We can get a ϵ-approximation for any ϵ >0  

   (i.e., our estimate∈ 1 − 𝜖 , 1 + 𝜖 ×true value)  
   in Poly(n, 1/ϵ) time with high probability. 

      
Richard M. Karp, Michael Luby, Neal Madras: Monte-Carlo Approximation Algorithms for 
Enumeration Problems. J. Algorithms, 1989 



Monte Carlo Method 

 The Basic Monte Carlo: 

 Sample N possible worlds: pw1, pw2,……pwN. 

 Execute the query q for all worlds: q(pw1), q(pw2),……q(pwN). 

 Our estimate: Prob(t)=#{i |𝑡 ∈ 𝑝𝑤𝑖} / N 

 

 Estimator Theorem (Chernoff Bound Essentially): 
    The Monte Carlo method gives 

    Prob 𝑜𝑢𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ∈ 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝜖, 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝜖 ≥ 1 − 𝛿  

if the number of samples 𝑁 ≥ 𝑂(
1

𝜖2 log
1

𝛿
) 

  

 

 



Monte Carlo Method 

Use Monte Carlo for all queries! 
We can only get approximate answers (but the prob may not be accurate anyway!) 

MCDB: a monte carlo approach to managing uncertain data, Jampani, R. and Xu, F. and 
Wu, M. and Perez, L.L. and Jermaine, C. and Haas, P.J. SIGMOD 2008 



Monte Carlo Method 

 However, the above scheme is not efficient enough for 
estimating very small probabilities. 

 Estimator Theorem (Chernoff Bound Essentially): 
    The Monte Carlo method gives 

    Prob 𝑜𝑢𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ∈ 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝜖, 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝜖 ≥ 1 − 𝛿  

if the number of samples 𝑁 ≥ 𝑂(
1

𝜖2 log
1

𝛿
) 

 

 

 But estimating small probabilities is very important in many 
applications, such as risk management. Therefore, we need more 
advanced techniques. 

 Karp-Luby-Madras 

 MCMC (Markov Chain Monte Carlo) 

 Gibbs sampling, e.g.,  

 

 

 

If 𝜖 is extremely small, we need a lot of samples 

MCDB-R: Risk analysis in the database, Arumugam, S. and Xu, F. and Jampani, 
R. and Jermaine, C. and Perez, L.L. and Haas, P.J. VLDB 2010 
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Ranking over Probabilistic Databases 

 Our goal: support “ranking” or “top-k” query processing 
 Deciding which apartments to inquire about 

 Selecting a set of sensors to “probe” 

 Choosing a set of stocks to invest in 

 … 

 

 How? Choose tuples with large scores? Or tuples with higher 
probabilities?  

 A complex trade-off 

 



Top-k Query Processing 

w.p. 0.064 

w.p. 0.096 

w.p. 0.256 …
 

Score  values are used to rank the tuples in every pw.  

ID Score Prob 

t1 200 0.2 

t2 150 0.8 

t3 100 0.4 

ID Score 

t1 200 

t2 150 

t3 100 

ID Score 

t1 200 

t2 150 

ID Score 

t2 150 

t3 100 

pw1 

pw2 

pw3 

…
 

The top-1 answer for each possible world  

A probabilistic table 
(assume tuple-independence) 



Top-k Queries: Many Prior Proposals 
 Return k tuples t with the highest score(t)Pr(t) [exp. score] 

 

 Returns the most probable top k-answer [U-top-k] 

 [Soliman et al. ICDE’07] 

 At rank i, return tuple with max. prob. of being at rank i  [U-rank-k] 

    [Soliman et al. ICDE’07] 

 Return k tuples t with the largest Pr (r(t)· k) values [PT-k/GT-k]  

[Hua et al. SIGMOD’08] [Zhang et al. EDBT’08] 

 Return k tuples t with smallest expected rank: pwPr(pw) rpw(t)  

     [Cormode et al. ICDE’09] 

 Return k tuples t with expected score of best available tuple [k-
selection] [Liu et al. DASFAA’10] 

 

 

 



Top-k Queries: Many Prior Proposals 

 Probabilistic Threshold (PT-k/GT-k) [Hua et al. SIGMOD’08] 
[Zhang et al. EDBT’08] 

 Return k tuples t with the largest Pr(r(t)· k) values 

 

ID Score Prob 

t1 200 0.2 

t2 150 0.8 

t3 100 0.4 

Possible 
worlds 

Prob 

t1, t2,t3 0.064 

t1,t2 0.096 

t1, t3 0.016 

t2,t3 0.256 

t1 0.024 

t2 0.384 

t3 0.064 

Φ 0.096 

K=2 

ID Prob(r(t)≤2) 

t1 0.2 

t2 0.8 

t3 0.336 

Ranking: t2, t3, t1 



Top-k Queries 

TexPoint Display 

E-Score PT/GT U-Rank E-Rank U-Top 

E-Score ---- 0.864 0.890 0.004 0.925 

PT/GT 0.864 ---- 0.395 0.864 0.579 

U-Rank 0.890 0.395 ----- 0.890 0.316 

E-Rank 0.004 0.864 0.890 ---- 0.926 

U-Top 0.925 0.579 0.316 0.926 ---- 

Synthetic Dataset: 100,000 tuples, Top-100 

 Which one should we use??? 

 Comparing different ranking functions 
 

 

Normalized Kendall Distance between two top-k answers: 
 Penalizes #reversals and #mismatches 
 Lies in [0,1],  0: Same answers; 1: Disjoint answers 

E-Score PT/GT U-Rank E-Rank U-Top 

E-Score ---- 0.124 0.302 0.799 0.276 

PT/GT 0.124 ---- 0.332 0.929 0.367 

U-Rank 0.302 0.332 ----- 0.929 0.204 

E-Rank 0.799 0.929 0.929 ---- 0.945 

U-Top 0.276 0.367 0.204 0.945 ---- 

Real Data Set: 100,000 tuples, Top-100 



A Unified Approach 

 Define two parameterized ranking functions: PRFw; PRFe 

 .. that can simulate or approximate a variety of ranking functions 

 PRFe much more efficient to evaluate (than PRFw) 

Use PRFe to 
approximate  

Compute 
directly 

User 

Represent as a PRFw 

Preference information: e.g., a 
ranking on a small dataset 

A specific ranking function 

Learn PRFw parameters 

A unified approach to ranking in probabilistic databases, Li, J. and Saha, B. and Deshpande, A. , VLDB 2009 



Parameterized Ranking Function 

PRFω(h):  Weight Function : ! : rank! 

 

Return k tuples with the highest           values. 

C

Positional probability: 
Probability that t is ranked at  position i 

PRFe(α): !(i)=®i  where ® can be a real or a complex 

• E.g., ω(i)= 1 : Rank the tuples by probabilities 

• E.g., ω(i)=1 for 1≤i≤k, ω(i)=0 for i>k: PT-k (i.e., ranking by Pr(r(t)· k)) 

• Generalizes PT/GT-k, U-Rank, E-Rank 

• We can easily incorporate the score as an feature 

 
 



Probabilistic And/Xor Trees 

 Capture two types of correlations: mutual exclusivity and 
coexistence.  

 Generalize x-tuples which can model only mutual exclusivity 
 

 

 

V 

(1,500) 

V 

V V 

(1,950) (2,20) (2,30) (3,150) (3,200) 

And node: 

Xor nodes: 

0.5 0.3 0.3 0.2 0.2 0.8 

Possible Worlds Pr 

(3,150) 0.02 

(3,200) 0.08 

……. 

(1,500);(2,20);(3,150) 0.03 

(1,950);(2,20);(3,150) 0.018 

……. 

(1-0.5-0.3)*(1-0.3-0.2)*0.2=0.02 



Probabilistic And/Xor Trees 

 

 

(1,20) 

V 

(2,50) (2,20) (3,35) (1,30) (3,25) 

And nodes: 

Xor node: 

0.5 0.3 0.2 Possible Worlds Pr 

(1,20);(2,50) 0.5 

(2,20);(3,35) 0.3 

(1,30);(3,25) 0.2 

V V V 

• And/Xor trees can represent any finite set of possible 
worlds (not necessarily compact). 



Computing Probabilities on And/Xor Trees 

Generating Function Method: 

q+p1F1(x,y,…)+p2F2(x,y,…)+p3F3(x,y,…) 

V 

F1(x,y,…) F2(x,y,…) F3(x,y,…) 

F1(x,y,…)F2(x,y,…)F3(x,y,…) 

V 

F1(x,y,…) F2(x,y,…) F3(x,y,…) 

p1 p2 p3 
q=1-p1-p2-p3 

And Node: 

Xor Node: 

Leaves: x y x z 



Computing Probabilities on And/Xor Trees 

Generating Function Method: 

Root: F(x,y,…)=ij… cij…xiyj… 

THM: The coefficient cij… of the term xiyj…  
         = total prob. of the possible worlds which contain 
    i tuples annotated with x, 
             j tuples annotated with y,…… 



Computing Probabilities on And/Xor Trees 

V 

(1,500) 

V 

V V 

(1,950) (2,20) (2,30) (3,150) (3,200) 

0.5 0.3 0.3 0.2 0.2 0.8 

x x x x x x 

0.2+0.8x 0.5+0.5x x 

(0.2+0.8x)(0.5+0.5x)x = 0.4 x3+0.5 x2+0.1 x  
 

Pr(|pw|=3)=0.4 

Pr(|pw|=2)=0.5 

Pr(|pw|=1)=0.1 

Example: Computing the prob. dist. of the size of the pw 



r(i)=j   if and only if  (1) j-1 tuples with higher scores appear  

           (2) tuple i appears 

Pr(r(t4)=j) = coeff of xj-1y 

V 

(t2,500) 

V V 

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200) 

Xor nodes: 

0.5 0.3 0.3 0.2 0.2 0.7 

x x x y 1 1 

0.2+0.8x 1 0.1+0.2y+0.7x 

F(x,y)=(0.2+0.8x)(0.1+0.2y+0.7x) 

Computing PRF: And/Xor Trees 

O(n2) overall 

Construct generating function for t4 

V 



V 

(t2,500) 

V V 

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200) 

Xor nodes: 

0.5 0.3 0.3 0.2 0.2 0.7 

0.6 0.6 0.6 0.6 0.6 1 

0.2+0.8*0.6 0.92 0.1+0.2*0.6+0.7*0.6 

F5(0.6,0.6)=0.096*0.92*0.64 

O(d) for each 
new tuple 

Overall O(nd)  

We maintain only the numerical values of Fi(®,®) and Fi(®,0) at each node. 

E.g., ®=0.6.  Now we want to compute F5(0.6,0.6) 

Computing PRFe(®): And/Xor Trees 

V 



Learn the weight 



Summary of Results 

PRFw(h): 

 Independent tuples:  O(nh+nlogn) 
 Previous results for U-Rank: O(n2h) [Soliman et al. ICDE’07], 

O(nh+nlogn) [Yi et al. TKDE’09] 
 Previous results for PT-k: O(nh+nlogn) [Hua et al. SIGMOD’08] 

 And/Xor trees: O(dnh+nlogn)  (d is the height of the tree, d=2 for x-tuples) 

 Previous results for U-Rank over x-tuples: O(n2h) [Soliman et al. 
ICDE’07], O(n2h) [Yi et al. TKDE’09]  

 Previous results for PT-k over x-tuples: O(n2h) [Hua et al. 
SIGMOD’08] 

PRFe: 

 Independent tuples: O(nlogn) 

 And/Xor trees: O(nd+nlogn) 
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Consensus Answer 

Consensus Answer: 

 Think of each possible answers as a point in the space. 

 Suppose d() is a distance metric between answers. 

 Consensus Answer is a single deterministic answer 

 

where τpw is the answer for the possible world pw 

A 1 
w.p. 0.1 

A 2 
w.p. 0.3 

A 4 
w.p. 0.2 

A 5 
w.p. 0.05 

A 3 
w.p. 0.2 

the consensus Answer 
Centroid / Center of Mass 
 

…
 

…
 …

 

…
 

…
 

…
 

…
 

Consensus answers for queries over probabilistic databases, Li, J. and Deshpande, A., PODS, 2009 



Consensus Answer 

 Consensus Answer: 

 We show that PT-k is equivalent to Consensus-Top-k 
under symmetric difference 𝑇1Δ 𝑇2 = 𝑇1\T2 ∪ (𝑇2\T1) 

 More generally, PRFw is equivalent to Consensus-Top-k 
under weighted symmetric difference 

 

 We can use the framework for other types of queries, 
such as aggregate queries, clustering 
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Aggregate Queries 

 Aggregate Query:  

Example taken from The trichotomy of HAVING queries on a probabilistic database, 
Re, C. and Suciu, D.,  The VLDB Journal, 2009 

Answer: E[profit]=19.9K 
Answer: 

Prob[profit>0]=0.01 

Expected value may not be sufficient! 



Inadequacy of Expected Value 

 Be aware of risk! 



Inadequacy of Expected Value 

 Inadequacy of expected value: 

 Unable to capture risk-averse or risk-prone behaviors 
 Action 1: $100    VS   Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

 Risk-averse players prefer Action 1 

 Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play 
Double-or-Nothing) 

 St. Petersburg paradox  
 You pay x dollars to enter the game 

 Repeatedly toss a fair coin until a tail appears 

 payoff=2k where k=#heads 

 How much  should x be? 

 Expected payoff =1x(1/2)+2x(1/4)+4x(1/8)+……= 

 Few people would pay even $25 [Martin ’04] 



Expected Utility Maximization Principle:   
The most desirable answer a is the answer that max. the exp. 
utility, i.e., 
 
 
 
Von Neumann and Morgenstern provides an axiomitization of the 
principle (known as von Neumann-Morgenstern expected utility 
theorem). 
 

Expected Utility Maximization Principle 

𝑎 = max 𝑎′∈𝐴E𝑝𝑤[𝜇 𝑤𝑝𝑤 𝑎′ ]  

A :  The set of valid answers 

𝑤𝑝𝑤(𝑎) :  the cost of answer in pw 

𝑢:  𝑅 → 𝑅 :  the utility function 



Expected Utility Maximization Principle 

 The utility function: profit-> utility 

μ 

Risk-averse 

200$ 100$ 

E[μ(action 1)] 

E[μ(action 2)] 

$ 

Risk-prone 

200$ 100$ 

μ 

E[μ(action 2)] 

E[μ(action 1)] 

 Action 1: $100     
 Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

Expected Utility Maximization Principle: the decision maker 
should choose the action that maximizes the expected utility 

  Von Neumann and Morgenstern provides an axiomitization of the 
principle (known as von Neumann-Morgenstern expected utility theorem). 
 

𝑢:  𝑅 → 𝑅 : 



Expected Utility Maximization Principle:   
The most desirable answer a is the answer that max. the exp. 
utility, i.e., 
 
 
 
 

Expected Utility Maximization Principle 

Think A as the set of  tuples 

Think wpw(a) as the rank for tuple a in pw 

This gives us PRFw! 

A :  The set of valid answers 

𝑤𝑝𝑤(𝑎) :  the cost of answer in pw 

𝑎 = max 𝑎′∈𝐴E𝑝𝑤[𝜇 𝑤𝑝𝑤 𝑎′ ]  

𝑢:  𝑅 → 𝑅 :  the utility function 



Expected Utility Maximization Principle:   
The most desirable answer a is the answer that max. the exp. 
utility, i.e., 
 
 
 
 

Expected Utility Maximization Principle 

This gives us Consensus Answer! 

Think -𝜇 𝑤𝑝𝑤 𝑎  as the distance/dissimilarity between 

answer a and the actual answer for pw 

A :  The set of valid answers 

𝑎 = max 𝑎′∈𝐴E𝑝𝑤[𝜇 𝑤𝑝𝑤 𝑎′ ]  



Prob. DB Research 
 Many works on handling more general correlation – incorporating graphical 

models: E.g.,  
 Representing and Querying Correlated Tuples in Probabilistic Databases, Prithviraj Sen, Amol 

Deshpande, ICDE 2007 
 Indexing Correlated Probabilistic Databases, Bhargav Kanagal, Amol Deshpande, SIGMOD 2009 
 Scalable probabilistic databases with factor graphs and mcmc, Wick, M. and McCallum, A. and 

Miklau, G., VLDB, 2010 

 Other works 
 Probabilistic streams: E.g., 

 Estimating statistical aggregates on probabilistic data streams, Jayram, TS and McGregor, A. 
and Muthukrishnan, S. and Vee, TODS 2008 

 Sketching probabilistic data streams, Cormode, G. and Garofalakis, M., SIGMOD 2007. 

 Probabilistic graphs, E.g., 
 K-nearest neighbors in uncertain graphs, Potamias, M. and Bonchi, F. and Gionis, A. and Kollios, 

G. PVLDB, 2010 
 Distance-Constraint Reachability Computation in Uncertain Graphs. Ruoming Jin, Lin Liu, Bolin 

Ding, Haixun Wang , PVLDB, 2011 

 Other operators, such as probabilistic skylines. E.g., 
 Probabilistic skylines on uncertain data, Pei, J. and Jiang, B. and Lin, X. and Yuan,Y. , VLDB, 2007 

 Sensitivity analysis: E.g., 
 Sensitivity analysis and explanations for robust query evaluation in probabilistic databases. 

Bhargav Kanagal, Jian Li, Amol Deshpande. SIGMOD, 2011 



Prob. DB Research 

 Our strength: support declarative queries, query processing 
and optimization techniques (indexing etc.). 

 

 Current issues 

 Independence assumption. 

 Expressiveness/scalability trade off. 

 Different existing prototypes excels at different aspects (but not 
all). 

 Semantics not rich enough (need to go beyond expected values 
and probabilistic thresholds). 

 



Outline 

 Dealing with uncertainty in data management  

 Probabilistic databases 
 Possible world semantics 

 Conjunctive queries 

 Ranking and top-k queries  

 Other queries 

 Beyond expected values – expected utility theory 

 Some tools out there that may be useful (with applications) 
 Uncertainty resolution 

 Portfolio theory 

 Multi-arm bandit 

 



Uncertainty Resolution 

 Reduce the level of uncertainty by conducting extra experiments 
 E.g., let a human to recognize the characters to clean the uncertain OCR 

data 

 A typical problem 
 A set of random variables 𝑥1, 𝑥2, … … , 𝑥𝑛 

 Resolved the uncertainty of each 𝑥𝑖 costs 𝑐𝑖 

 We have a budget C 

 Goal: Estimate some function 𝑓(𝑥1, 𝑥2, … … , 𝑥𝑛) 

 E.g. f= min or max or other aggregate function or even some combinatorial 
optimization problems 

Adaptive Uncertainty Resolution in Bayesian Combinatorial Optimization Problems, Guha, S. and 
Munagala, K. ACM Transactions on Algorithms, 2012 

How to probe for an extreme value, Goel, A. and Guha, S. and Munagala, K., ACM Transactions on 
Algorithms, 2010 

Asking the right questions: Model-driven optimization using probes, Goel, A. and Guha, S. and Munagala, 
K., PODS 2006 



Uncertainty Resolution 

 Another typical problem 
 A set of random variables 𝑥1, 𝑥2, … … , 𝑥𝑛 

 Resolved the uncertainty of each 𝑥𝑖 costs 𝑐𝑖 

 We have a budget C 

 Goal: (Estimate some function 𝑓(𝑥1, 𝑥2, … … , 𝑥𝑛)?) But we don’t know 
what function f we will use, or we may need to estimate a lot of functions. 

 How? Reduce “the level of uncertainty” (measured using Entropy or 
Variance) 
 Quite nontrivial if the random variables are correlated. 

 Such problems are connected to the area of stochastic optimization, submodular 
optimization, statistical experiment design.  

 A large body of literature. 

 



Outline 

 Dealing with uncertainty in data management  

 Probabilistic databases 
 Possible world semantics 

 Conjunctive queries 

 Ranking and top-k queries  

 Other queries 

 Beyond expected values – expected utility theory 

 Some tools out there that may be useful (with applications) 
 Uncertainty resolution 

 Portfolio theory 

 Multi-arm bandit 

 



Portfolio Theory 

X1 X3 X2 X4 

Available securities: Rate of return: random variable! 
 

Budget: 

How to invest your money? 



Portfolio Theory 

X1 
P(r=2)=.5 
P(r=1)=.5 

 

X3 
P(r=2)=.5 
P(r=1)=.5 

 

X2 
P(r=2)=.5 
P(r=1)=.5 

 

X4 
P(r=2)=.5 
P(r=1)=.5 

 

Available securities: Rate of return: random variable! 
 

Do not put all your eggs in one basket! 

Assume Xi 
are 
independent 

Two strategy:  (assume we have 1$)  
(1): Invest 1$ to X1:                     E[return]=1.5   Var[return]=0.25   
(2): Invest .25$ to each Xi           E[return]=1.5   Var[return]=0.25/4=0.0625  

The risk is much smaller 

Budget: 



Portfolio Theory 

 What to optimize? 

 Maximize E[R] 

 Minimize  Var[R] 

 Minimize Var[R], subject to E[R]>=t 

 Maximize E[R], subject to Var[R]<=t 

 Maximize E[R] - b×Var[R] 
 b>0 : risk averse 

 b<0 : risk loving 



Portfolio Theory 

Attainable E,V 
combinations 

Var 

E 
Efficient 
frontier 

E+bVar=C   (b>0) 

E+bVar=C   (b<0) 



Portfolio Theory in IR 

Portfolio Theory of Information Retrival. Wang and Zhu. SIGIR 09 

X1 X3 X2 X4 

$ Budget: 

Securities 

Assignment: 
          $$         $$$          $         $$$$  

X1 X3 X2 X4 

Documents 

Ranking: 
          $$$$         $$$          $$         $ Corresponds 

to discount 
factors 

Find an assignment. Find a ranking. 
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Multi-armed Bandits 

 The multi-armed bandits problem  

K gambling machines. Playing machine i yield rewards xi1, xi2, ….  
which are i.i.d according to some unknown distribution. 
Find a strategy (how to play) to maximize the expected payoff.  

Play  reward  Play  reward  

There are strategies that can achieve 
: 
 
E[payoff up to time T] >= OPT – R(T) 
Where R(T)=o(T). 

Models the explore and exploit trade-off 



Multi-armed Bandit 

An application in ranking documents 

 A set of documents D={d1,…,dn}. 

 A population of users.  
 Users of type i will click dj with prob pij 

 Each time the system presents to the user a top-k list. 

 The user click the first doc she likes. 

 Objective: Maximizes E[#users who click at least once]   

Learning diverse ranking with multi-armed bandits. 
Radlinski, Kleinberg and Joachims. ICML08. 

Top-k  click  Top-k  click 



Multi-armed Bandit 

 For each slot (totally k of them), we run an MAB instance. 

 

 

 

 

 

 Each doc corresponds to an arm. 

 If the user click any doc in the list, we get payoff 1. 

 There exists a strategy that achieves a expect payoff  

of at least (1-1/e)OPT-O(k× Tn logn) 

 

A lot of other applications 

 e.g., data cleaning  

 

 

Top-k slots: 

d1 
d2 

d3 

d1 
d2 

d3 

d1 
d2 

d3 

Learning diverse ranking with multi-armed bandits. Radlinski, Kleinberg and Joachims. ICML08. 

Explore or exploit?: effective strategies for disambiguating large databases, Cheng, R. and 
Lo, E. and Yang, X.S. and Luk, M.H. and Li, X. and Xie, X. VLDB, 2010 



Thanks. 

Questions/Comments, please send to lijian83@mail.tsinghua.edu.cn 


