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Combinatorial and Geometric 

Optimization problems

Minimum Spanning Tree Shortest Path Knapsack

Minimum j-fat center
Minimum Enclosing Ball

SVM



Stochastic Model Everywhere

 Data Integration and Information Extraction

 Sensor Networks; Information Networks

 Probabilistic models in machine learning

 Markov Decision Process - Reinforcement Learning

Sensor ID Temp.

1 Gauss(40,4)

2 Gauss(50,2)

3 Gauss(20,9)

… …

Probabilistic databases

Probabilistic Models in 

machine learning
Stochastic models in 

operation research



Stochastic Optimization

 Danzig in 1950s (linear programming with stochastic 

coefficients – stochastic programming)

 Depending on how the decision process interacts with the 

uncertainty, we may be able to formulate different versions 

of stochastic optimization problems 

 Estimation (no decision)

 Single-stage

 2-stage

 Multi-stage

 Online (adaptive/non-adaptive))



Simons Institute

 https://simons.berkeley.edu/



Outline

Estimation (no decision)

Single-stage

2-stage

Online (adaptive/non-adaptive))

Sample Complexity



A classic problem in the stochastic graph model

 A undirected graph with n nodes

 The length of each edge: i.i.d. Uniform[0,1]

 Question: What is E[MST]? [McDiarmid, Dyer, Frieze, 

Karp, Steele, Bertsekas, Goemans]



A classic problem in the stochastic graph model

 A undirected graph with n nodes

 The length of each edge: i.i.d. Uniform[0,1]

 Question: What is E[MST]? [McDiarmid, Dyer, Frieze, 

Karp, Steele, Bertsekas, Goemans]

 Ignoring uncertainty (“replace by the expected values” heuristic)

 each edge has a fixed length 0.5

 This gives a WRONG answer 0.5(n-1)

 But the true answer is (as n goes to inf)

𝜁 3 = σ𝑖=1
∞ 1/𝑖3<2 



 N points: i.i.d. uniform[0,1]×[0,1]

 Question: What is E[MST] ?  [Frieze, Karp, Steele, …]

A classic problem in the stochastic geometry model



 N points: i.i.d. uniform[0,1]×[0,1]

 Question: What is E[MST] ?  [Frieze, Karp, Steele, …]

 Answer: 𝜃( 𝑛) [Frieze, Karp, Steele, …]

A classic problem in the stochastic geometry model

The problems are similar, but the answers are not similar…………



Stochastic Graph Model
 The weight of each edge is a (discrete) random variable

FPRAS for computing the expectation (including higher moments) for a
family of problems including the diameter of G, minimum spanning tree 
[Emek et al. SODA’11]

 Open: shortest path, matching

 All terminal reliability problem [Moore and Shannon 56] [Valiant 79]

Estimate  Pr[the graph is (not) connected] 

FPRAS [Karger, SICOMP99]

 s-t reliability problem

Estimate  Pr[s and t are (not) connected] 

A long standing open problem



 The position of each point is random (non-i.i.d)

 All pts are independent from each other

 A popular model in wireless networks/spatial prob databases
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Stochastic Geometry Models

 A computational problem: Computing E[MST]

E MST = ෍

𝑟:𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

MST 𝑟 × Pr[𝑟]
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*(0.3*1*0.4*0.5*0.3)+ + ……

However, this does not give a polynomial time algorithm

The stochastic geometry model has been studied in several recent papers for many different problems. 

[Kamousi, Chan, Suri ‘11] [Afshani, Agarwal, Arge, Larsen, Phillips. ‘11][Agarwal, Cheng, Yi. ‘12] [Abdullah, 

Daruki, Phillips ‘13] [Suri, Verbeek, Yıldız ‘13] [Li, Wang ‘14] [Agarwal, Har-Peled, Suri, Yıldız, Zhang 14] 

[Huang, Li ‘15] [Huang, Li, Phillips, Wang ‘15]



A Computational Problem

 The position of each point is random (non-i.i.d)

 Question: What is E[MST] ?

 Of Course, there is no close-form formula

 We need efficient algorithms to compute E[MST]

0.1 0.5

0.4



MST over Stochastic Points

 The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11]

 So, let us focus on approximating the value

 FPTAS for existential model, constant approx for locational 

model [Kamousi, Chan, Suri. SoCG’11]

 FPRAS: Solution ∈ 1 ± 𝜖 × true value in time Poly(𝑛,
1

𝜖
)

 Other problems:

[Huang, L. ICALP’15]



Outline

Estimation (no decision)

Single-stage

2-stage/Multi-stage

Online (adaptive/non-adaptive))

Sample Complexity



(Single stage) Stochastic shortest path

 Find an s-t path P such that Pr[w(P)<1] is maximized

 Route planning: maximize the prob that one can reach the 

destination in 1 hour 

s t



 Deterministic version:

 A set of element {ei}, each associated with a weight wi

 A solution S is a subset of elements (that satisfies some property)

 Goal: Find a solution S such that the total weight of the solution w(S)=ΣiєSwi is 

minimized

 E.g. shortest path, minimal spanning tree, top-k query, matroid base

 Stochastic version:

 wis are independent positive random variables

 Goal: Find a solution S such that the threshold probability

Pr[𝑤 𝑆 ≤ 1] is maximized.

Threshold Probability Maximization

Even computing the threshold prob is #P-

hard in general! (generalizes #knapsack)

FPTAS exists [L, Shi, ORL’14]



Our Result
If the deterministic problem is “easy”, then for any 𝜖 > 0,

we can find a solution S such that

Pr 𝑤 𝑆 ≤ 1 + 𝜖 > 𝑂𝑃𝑇 − 𝜖

“Easy”: there is a PTAS for the corresponding O(1)-dim packing 
problem:

 Shortest path, MST, matroid base, matroid intersection, min-cut

 Related work: Special distributions [Nikolova, Kelner, Brand, 
Mitzenmacher. ESA’06] [Nikolova. APPROX’10] [Goel, Indyk. 
FOCS’99] [Goyal, Ravi. ORL’09] [Bhalgat, Goel, Khanna. SODA’11] 
[L, Deshpande. MOR’18]



 Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler)

1𝜖4

𝜖4 + 𝜖5

𝜖4 + 2𝜖5

pdf of Xi

1𝜖4
𝜖4 + 𝜖5

𝜖4 + 2𝜖5

Discretized version: ෩𝑋𝑖

0

0

0 0
0 0

The behaviors of ෩𝑋𝑖 and 𝑋𝑖 are close: 

Algorithm



 Step 2: Reducing the problem to the multi-dim problem

 Heavy items: E[Xi]>poly(𝜖)

 At most O(1/poly(𝜖)) many heavy items, so we can afford enumerating 

them

Algorithm



 Step 2: Reducing the problem to the multi-dim problem

 Heavy items: E[Xi]>poly(ϵ)

 At most O(1/poly(𝜖)) heavy items, so we can afford enumerating them

 Light items:

 Fix the set H of heavy items

 Each Xi can be represented as a O(1)-dim vector Sg(i) (signature)

𝐒𝐠 𝑖 = (Pr ෨𝑋𝑖 = 𝜖4 , Pr ෨𝑋𝑖 = 𝜖4 + 𝜖5 , …… )

 Enumerating all O(1)-dim (budget) vectors B

 Find a set S such that 𝑆 ∪ 𝐻 is feasible and

𝐒𝐠 𝑆 = σ𝑖∈𝑆 𝐒𝐠(𝑖) ≤ (1 + 𝜖)𝐵 (using the multi-dim PTAS)

(or declare there is none S s.t. 𝐒𝐠 𝑆 ≤ 𝐵 )

 Return 𝑆 ∪ 𝐻 for which Pr 𝑤 𝑆 ∪ 𝐻 ≤ 1 + 𝜖 is largest

Algorithm



Well known: Law of small numbers

n Bernoulli r.v. 𝑋𝑖 (1-p, p)

𝑛𝑝 = 𝑐𝑜𝑛𝑠𝑡

As 𝑛 → ∞,σ𝑋𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑝)

Poisson Approximation



Le Cam’s theorem (rephrased):

n r.v. 𝑋𝑖 (with common support (0,1,2,3,4,…)) with signature

𝐬𝐠𝑖 = (Pr 𝑋𝑖 = 1 , Pr 𝑋𝑖 = 2 ,… )

Let 𝐬𝐠 = σ𝑖 𝐬𝐠

𝑌𝑖 are i.i.d. r.v. with distr 𝐬𝐠/ 𝐬𝐠 1

𝑌 follows the compound Poisson distr (CPD) corresponding to sg

𝑌 = σ𝑖=1
𝑁 𝑌𝑖 where 𝑁 ∼ Poisson( 𝐬𝐠 1)

Then,   Δ σ𝑋𝑖 , 𝑌 ≤ σ𝑝𝑖
2 where 𝑝𝑖 = Pr[𝑋𝑖 ≠ 0]

Variational distance:

Δ 𝑋, 𝑌 = σ𝑖 | Pr 𝑋 = 𝑖 − Pr[𝑌 = 𝑖] |

Poisson Approximation



Poisson Approximation

 Le Cam’s theorem: Δ σ𝑋𝑖 , 𝑌 ≤ σ𝑝𝑖
2

 Ob: If 𝑆1 and 𝑆2 have the same signature, then 
they correspond to the same CPD

 So if σ𝑖∈𝑆1
𝑝𝑖
2 and σ𝑖∈𝑆2

𝑝𝑖
2 are sufficiently small, 

the distributions of 𝑋(𝑆1) and 𝑋(𝑆2) are close

 Therefore, enumerating the signature of light items 
suffices (instead of enumerating subsets)



Summary
 The #dimension needs to be 𝐿 = 𝑝𝑜𝑙𝑦(1/𝜖)

 We solve an 𝑝𝑜𝑙𝑦
1

𝜖
-dim optimization problem

 The overall running time is polynomial (PTAS) [L, Yuan STOC’13]

 Can be easily extended to the multi-dimensional case, other combinatorial 
constraints etc.

 Open problem: 

Remove the first 𝜖 in Pr 𝑤 𝑆 ≤ 1 + 𝜖 > 𝑂𝑃𝑇 − 𝜖

Related results: 

Bernoulli random variables, FPTAS [De SODA ’18] (Boolean function 
analysis)

fault tolerant storage problem [Daskalakis et al. SODA’14] (using results from 
linear threshold function)

Remove this?



Outline

Estimation (no decision)

Single-stage

2-stage/Multi-stage

Online (adaptive/non-adaptive))

Sample Complexity



2-stage facility location
 First stage: 

 We know a distribution of demand

 We can build a set of facilities

 Second stage

 The set of demand realizes

 We can build some extra facilities (but more expansive, inflation 
factor 𝛾 > 1)

 GOAL: minimize the expected total cost

A large body of literature. Constant approximation for many 
problems. Extensive studied.

Some general technique: boosted sampling [Gupta et al. STOC’04]



Outline

Estimation (no decision)

Single-stage

2-stage/Multi-stage

Online (adaptive/non-adaptive))

Sample Complexity



Weitzman’s Pandora problem

 Proposed by Weitzman in 

Econometrica 79

 A typical stochastic optimization 

problem



Pandora’s Boxes

 Pandora has n boxes. 

 Box i contains an unknown value 𝑥𝑖, distributed with known c.d.f. 𝐹𝑖. 

 At known fixed cost 𝑐𝑖, she can open box i and discover 𝑥𝑖. 

 Pandora may choose the order to open the boxes, and stop at will

 She (adaptively) opens a subset of boxes 𝑆 ⊆ 𝑛 , and wish to 

maximize the expected value of 



Adaptive Policies

 Policy 1: first open box 1. If 𝑥1 = 1, then open box 2. 

 E[reward]=0.5*(3-1)+0.5*5=3.5

 Policy 2: first open box 2. Then open box 1. 

 E[reward]=0.5*(3-1)+0.5*(5-1)=3.0

𝑥2 = 3 w.p. 1.0

𝑐2 = 1

𝑥1 = 1 w.p. 0.5

𝑥1 = 5 w.p. 0.5

𝑐1 = 0



Pandora rule

A surprisingly simple index policy, a so-called Pandora rule. 

 SELECTION RULE: If a box is to be opened, it should be 

that closed box with highest reservation price. 

 STOPPING RULE: Terminate search whenever the 

maximum sampled reward exceeds the reservation price of 

every closed box. 

Reservation price:



Pandora rule – we are lucky

 “That such an elementary decision strategy as Pandora’s Rule 

is optimal depends more crucially than might be supposed on 

the simplifying assumptions of the model. There does not 

seem to be available a sharp characterization of an optimal 

solution when certain features of the present model are 

changed. Pandora’s Rule does not readily generalize.” 

(Weitzman, 1979) 

 Like the famous Gittin’s index for Markovian Bandit 



Probe the MAX value

 Almost the same setting as Pandora’s problem, except that

 Boxes have no cost, but she can open at most a set S of k boxes

 Goal: maximize the expect value 𝐸[max
𝑖∈𝑆

𝑥𝑖]

 Seems easy: pick the boxes with highest reservation prices??

 The reservation price technique doesn’t work here!

 Unfortunately, no simple optimal policy is known

 Probably the optimal policy is an exponentially large decision tree

 Hardness? (could be PSPACE-hard. Open.)



A 1-1/e approximation

 Consider function defined over subsets of [n]

𝑓 𝑆 = 𝐸[max
𝑖∈𝑆

𝑋𝑖]

 It can be shown that 𝑓(𝑆) is a submodular function

(𝑓 𝑆 + 𝑓 𝑇 ≥ 𝑓 𝑆 ∪ 𝑇 + 𝑓(𝑆 ∩ 𝑇) for any 𝑆, 𝑇)

 By known result for online submodular optimization 

[Asadpour et al.], the greedy algorithm is a 1-1/e 

approximation

 IS there a PTAS??



A PTAS for ProbeMAX
 Decision Tree

Item 1

Exponential size!!!! (depth=n)

How to represent such a tree? Compact solution?

Size=𝜖 Size=3𝜖Size=10𝜖
Size=1-𝜖

Item 2 Item 3 Item 7

…
..



A PTAS for ProbeMAX

 By discretization, we make some simplifying assumptions:

 Support of the size distribution: （0, 𝜖, 2𝜖, 3𝜖, …… , 1）.

Still way too many possibilities, how 
to narrow the search space?



 Block Adaptive Policies: Process items block by block

Items 

1,5,7

Items 

2,3
Items 

3,6
Items 

6,8,9

LEMMA: There is a block adaptive policy that is nearly optimal

Item 2 Item 3 Key Properties:
(1) Depth=O(1)
(2) Degree=O(1)
So #nodes=O(1)
Note: O(1) depends on 𝜖

Block Adaptive Policies



Items 

1,5,7

Items 

2,3
Items 

3,6
Items 

6,8,9

Item 2 Item 3 Key Properties:
(1) Depth=O(1)
(2) Degree=O(1)
So #nodes=O(1)
Note: O(1) depends on 𝜖

Still exponential many possibilities, even in 

a single block

LEMMA: There is a block adaptive policy that is nearly optimal

Block Adaptive Policies

 Block Adaptive Policies: Process items block by block



 Outline: Enumerate all block structures with a signature 

(similar to that in Poisson approximation) associated with 

each node
(0.4,1.1,0,…)

(0,1,1,2.2,…)

(5,1,1.7,2,…)

(1.1,1,1,1.5,…)

(1,1,2,…)

(0,1.4,1.2,2.1,…)

(0,0,1.5,2,…)

- O(1) nodes

- Poly(n) possible
signatures for each node

- So total #configuration  
=poly(n)

Algorithm



2. Find an assignment of items to blocks that matches all 

signatures 

– (this can be done by standard dynamic programming)

Item 1

(0.2,0.04,0…..)

(0.2,0.04,0.1…..)

(0.1,0,0…..)

(0.1,0.2,0.1…..)

(0.15,0,0…..)

(0.15,0.2,0.22…..)

Item 2 Item 3
(0.4,1.1,0,…)

(0,1,1,2.2,…)

(5,1,1.7,2,…)

(1.1,1,1,1.5,
…)

(1,1,2,
…)

(0,1.4,1.2,2.1,…)

(0,0,1.5,2,…)

On any root-leaf path, each item appears at most once

Algorithm

Item 4 Item 5 Item 6



Stochastic Knapsack

 A knapsack of capacity C

 A set of items, each having a fixed profit

 Known: Prior distr of size of each item.

 Each time we choose an item and place it in the knapsack 

irrevocably

 The actual size of the item becomes known after the decision  

 Knapsack constraint: The total size of accepted items <= C

 Goal: maximize E[Profit] 

[Dean et al. FOCS05] [Dean et al. MOR08] [Bhalgat et al.SODA 11] 

[Gupta et al.FOCS 13] [LY STOC13] [Will SODA14] …..



Motivation 

 Stochastic Scheduling

 Jobs, each having an uncertain length, and a fixed profit

 You have C hours

 How to (adaptively) schedule them (maximize E[profit])

Jobs:

Running time:

Profits: 20$ 5$ 10$ 50$

C=5 hours



A unified approach

 We realize that the stochastic knapsack problem can be 

solved by similar technique

 Later, we found other variants of Pandora’s box problem can 

be solved by similar technique (have to change several places)

 Very tedious…..

 A unified approach

 Dynamic programming recursion:



Our result

THM(informal) [Fu, L, Xu, ICALP’18] Under some assumption of the 
number of states, and the properties of the transitions, we obtain a PTAS
for solving such stochastic dynamic program.

Example:

 ProbeMax (best known 1-1/e [Asadpour et al., Management science 15]) 

 ProbeMax-(m,k) (constant approx. [Munagala 16])

 Committed Pandora’s box (constant approx. by known technique)

 Stochastic Knapsack (recover results in [Balghat et al., SODA11] [L,Yuan, STOC13])

 Threshold Probability Stochastic Knapsack 

(previously only heuristic [İlhan et al. Operation Research 11])

 Bayesian online selection with knapsack constraint



Outline

Estimation (no decision)

Single-stage

2-stage/Multi-stage

Online (adaptive/non-adaptive))

Sample Complexity



The Stochastic Multi-armed Bandit

 We don’t know the distribution. We can only take samples.

 Stochastic Multi-armed Bandit

 Set of 𝑛 arms

 Each arm is associated with an unknown reward distribution 

supported on [0,1] with mean 𝜃𝑖
 Each time, sample an arm and receive the

reward independently drawn from the 

reward distribution 

classic problems in stochastic control, stochastic 

optimization and online learning



Best Arm Identification

 Best-arm Identification: Find the best arm out of n arms, 

with means 𝜇[1], 𝜇[𝑛],.., 𝜇[𝑛] (for simplicity, assume they 

follows Gaussian distr with unit variance)

 Goal: use as few samples as possible

 Formulated by Bechhofer in 1954

 Applications: medical trails, A/B test, crowdsourcing, team 

formation, many extensions….

 Close connections to regret minimization



Stochastic Multi-armed Bandit

 Statistics，medical trials (Bechhofer, 54) ,Optimal control，
Industrial engineering (Koenig & Law, 85), evolutionary 
computing (Schmidt, 06), Simulation optimization (Chen, Fu, 
Shi 08),Online learning (Bubeck Cesa-Bianchi,12)

 [Bechhofer, 58] [Farrell, 64] [Paulson, 64] [Bechhofer, Kiefer, 
and Sobel, 68],…., [Even-Dar, Mannor, Mansour, 02] 
[Mannor, Tsitsiklis, 04] [Even-Dar, Mannor, Mansour, 06] 
[Kalyanakrishnan, Stone 10] [Gabillon, Ghavamzadeh, 
Lazaric, Bubeck, 11] [Kalyanakrishnan, Tewari, Auer, Stone, 
12] [Bubeck, Wang, Viswanatha, 12]….[Karnin, Koren, and 
Somekh, 13] [Chen, Lin, King, Lyu, Chen, 14]

 Books:  

 Multi-armed Bandit Allocation Indices, John Gittins, Kevin 
Glazebrook, Richard Weber, 2011

 Regret analysis of stochastic and nonstochastic multi-armed bandit 
problems S. Bubeck and N. Cesa-Bianchi., 2012

 ……



Applications

 Clinical Trails

 One arm – One treatment

 One pull – One experiment

Don Berry, University of Texas 

MD Anderson Cancer Center



Best-1-Arm: – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is optimal

Exact version:



Instance Optimal Sample Complexity

 (almost) Instance optimal algorithm for best arm

 Gap Entropy:

 An instance-wise lower bound 

 An algorithm with sample complexity:

𝑒−1 𝑒−2 𝑒−3 𝑒−4 𝑒−5 𝑒−6 𝑒−7Δ

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6 𝐻7

[Chen, Li. ArXiv 15]

[Chen, Li., Qiao COLT 17]

We almost achieve the above bounds, modulo some small additive term 

(getting rid of it is an OPEN question) (for the  upper bound), and some 

mild assumption (for the lower bound). 



Combinatorial Pure Exploration

Combinatorial Pure Exploration in multi-armed bandit

 A general combinatorial constraint on the feasible set of arms

 Best-k-arm: the uniform matroid constraint 

 First studied by [Chen et al. NIPS14]

 E.g., we want to build a MST. But each time

get a noisy estimate of the true cost of each edge

 More general combinatorial constraints
 [Chen et al. NIPS 14][CGL. COLT’16] [CGLQW. COLT’17] [Cao et al. 

COLT’18]

 Optimal upper lower bounds for general constraints: Still OPEN.



Conclusion

 Bayesian mechanism design (essentially stochastic optimization problems)

 Learning+Optimization

 We don’t have to first learn the distributions first, and then solve 
the stochastic optimization problem. We can do it together and use 
less samples!

 Interesting connections to many subareas in TCS (counting, 
coresets, geometry, VC theory, Boolean functions, bandits, 
online algorithms, mechanism design,….) and probability 
theory/statistics

 A lot more interesting problems to be studied

 Many open problems

 A Survey:  Jian Li, Yu Liu. Approximation Algorithms for 
Stochastic Combinatorial Optimization Problems. 
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