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Stochastic Model Everywhere

® Data Integration and Information Extraction

® Sensor Networks; Information Networks

® Probabilistic models in machine learning

® Markov Decision Process - Reinforcement Learning o
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Stochastic Optimization

® Danzig in 1950s (linear programming with stochastic

coefficients — stochastic programming)

® Depending on how the decision process interacts with the
uncertainty, we may be able to formulate ditferent versions
of stochastic optimization problems
® Estimation (no decision)
® Single-stage
® )-stage
® Multi-stage
® Online (adaptive/non-adaptive))




Simons Institute
® https://simons.berkeley.edu/

Algorithms and Uncertainty

Workshops

alg=:rithms
uncertaint

Algorithms and Uncertainty Boot Camp

Aug. 22— Aug. 26, 2016

Organizers: Avrim Blum (Camegie Mellon University), Anupam Gupta (Carnegie Mellon
University), Robert Kleinberg (Comell University), Stefano Leonardi (Sapienza University
of Rome), Eli Upfal (Brown University), Adam Wierman (California Institute of
Technology)

Optimization and Decision-Making Under Uncertainty

Sep. 19— Sep. 23, 2016

Organizers: Nikhil Bansal (Technische Universiteit Eindhoven; chair), Shipra Agrawal
(Columbia University), Robert Kleinberg (Cornell University), Kamesh Munagala (Duke
University), Jay Sethuraman (Columbia University), Adam Wierman (California Institute of
Technology)

Learning, Algorithm Design and Beyond Worst-Case Analysis

Nov. 14 — Nov. 18, 2016

Organizers: Avrim Blum (Camegie Mellon University; chair), Nir Ailon (Technion Israel
Institute of Technology), Nina Balcan (Carnegie Mellon University), Ravi Kumar (Google),
Kevin Leyton-Brown (University of British Columbia), Tim Roughgarden (Stanford
University)

Aug. 17 - Dec. 16, 2016

Organizers:

Anupam Gupta (Carnegie Mellon University; chair; co-chair), Stefano Leonardi (Sapienza University of Rome;
co-chair), Avrim Blum (Carnegie Mellon University), Robert Kleinberg (Cornell University), Eli Upfal (Brown University),
Adam Wierman (California Institute of Technology).

Long-Term Participants (including Organizers):

Nir Ailon (Technion Israel Institute of Technology). Susanne Albers (Technische Universitdt Mtinchen), Aris
Anagnostopoulos (Sapienza University of Rome), Peter Auer (University of Leoben), Yossi Azar (Tel Aviv University),
Nikhil Bansal (Technische Universiteit Eindhoven), Peter Bartlett (UC Berkeley), Eilyan Bitar (Cornell University), Avrim
Blum (Carnegie Mellon University), Nicold Cesa-Bianchi (University of Milan), Shiri Chechik (Tel Aviv University), Edith
GCohen (Google Research), Artur Czumaj (University of Warwick), Amit Daniely (Google Research), Amos Fiat (Tel Aviv
University), Fabrizio Grandoni (IDSIA), Anupam Gupta (Carnegie Mellon University; chair; co-chair), MohammadTaghi
Hajiaghayi (University of Maryland), Longbo Huang (Tsinghua University), Sungjin Im (UC Merced), Ravi Kannan
(Microsoft Research India), Sampath Kannan (University of Pennsylvania), Anna Karlin (University of Washington),
Robert Kleinberg (Cornell University), Elias Koutsoupias (University of Oxford), Ravi Kumar (Google), Stefano Leonardi
(Sapienza University of Rome; co-chair), Kevin Leyton-Brown (University of British Columbia), Jian Li (Tsinghua
University), Na Li (Harvard University), Katrina Ligett (Hebrew University and Caltech), Aleksander Madry
(Massachusetts Institute of Technology), Yishay Mansour (Tel Aviv University), Ruta Mehta (University of lllinois,
Urbana-Champaign), Jamie Morgenstern (University of Pennsylvania), Kamesh Munagala (Duke University), Viswanath
Nagarajan (University of Michigan), Seffi Naor (Technion Israel Institute of Technology), Kameshwar Poolla (UG
Berkeley), Kirk Pruhs (University of Pittsburgh), Ram Rajagopal (Stanford University), Satish Rao (UC Berkeley),
Benjamin Recht (UC Berkeley), Rhonda Righter (UC Berkeley), Tim Roughgarden (Stanford University), Piotr
Sankowski (University of Warsaw), C. Seshadhri (UC Santa Cruz), Jay Sethuraman (Columbia University), Cliff Stein
(Columbia University), Chaitanya Swamy (University of Waterloo), Marc Uetz (University of Twente), Eli Upfal (Brown
University), Marilena Vendittelli (Sapienza University of Rome), Maria Vlasiou (Eindhoven University of Technology),
Jan Vondrak (Stanford University), Jean Walrand (UC Berkeley), Gideon Weiss (University of Haifa), Adam Wierman
(California Institute of Technology), Bert Zwart (CWI Amsterdam).

Research Fellows:

llan Cohen (Tel Aviv University), Varun Gupta (University of Chicago), Thomas Kesselheim (Max-Planck-Institute for
Informatics and Saarland University), Marco Molinaro (PUC-Rio de Janeiro; Microsoft Research Fellow), Benjamin
Moseley (Washington University in St. Louis), Debmalya Panigrahi (Duke University), Xiaorui Sun (Columbia University;

Google Research Fellow), Matt Weinberg (Princeton University), Qiaomin Xie (University of lllinois at Urbana-




Outline

® Estimation (no decision)

® Single-stage

® )-stage

® Online (adaptive/non-adaptive))
* Sample Complexity




A classic problem in the stochastic graph model

¢ A undirected graph with n nodes
® The length of each edge:i.i.d. Uniform[0,1]

® Question: What is E[MST]? [McDiarmid, Dyer, Frieze,

Karp, Steele, Bertsekas, Goemans]




A classic problem in the stochastic graph model

e A undirected graph with n nodes

® The length of each edge:i.i.d. Uniform[0,1]

® Question: What is E[MST]? [McDiarmid, Dyer, Frieze,
Karp, Steele, Bertsekas, Goemans]

® Ignoring uncertainty (“replace by the expected values” heuristic)
® cach edge has a fixed length 0.5
® This gives a WRONG answer 0.5(n-1)

* But the true answer is (as n goes to inf)

((3) = X2, 1/i%<2




A classic problem in the stochastic geometry model
* N points: i.i.d. uniform[0,1] X[0,1]

® Question: What is E[MST] ? [Frieze, Karp, Steele, .. ]
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A classic problem in the stochastic geometry model
* N points: i.i.d. uniform[0,1] X[0,1]

® Question: What is E[MST] ? [Frieze, Karp, Steele, .. .]
o Answer: 8(y/n) [Frieze, Karp, Steele, ...]

The problems are similar, but the answers are not similar............




Stochastic Graph Model

® The weight of each edge is a (discrete) random variable

FPRAS for computing the expectation (including higher moments) for a
family of problems including the diameter of G, minimum spanning tree
[Emek et al. SODA’11]

® Open: shortest path, matching

* All terminal reliability problem [Moore and Shannon 56] [Valiant 79]
Estimate Pr[the graph is (not) connected]
FPRAS [Karger, SICOMP99]

® s-treliability problem
Estimate Pr[s and t are (not) connected]

A long standing open problem




Stochastic Geometry Models

® The position of each point is random (non-i.i.d)
* All pts are independent from each other

* A popular model in wireless networks/spatial prob databases
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Stochastic Geometry Models

* A computational problem: Computing E[MST]

E[MST] = z MST(r) X Pr[r]

r:realizations

0.3

*(0.7*1%0.5*0.5%0.3) + *(0.3%1*0.4*0.5*0.3) + ......

0.3 0.5

However, this does not give a polynomial time algorithm

The stochastic geometry model has been studied in several recent papers for many different problems.
[Kamousi, Chan, Suri “11] [Afshani, Agarwal, Arge, Larsen, Phillips. ‘11][Agarwal, Cheng, Yi. ‘12] [Abdullah,

Daruki, Phillips ‘“13] [Suri, Verbeek, Yildiz “13] [Li, Wang ‘“14] [Agarwal, Har-Peled, Suri, Yildiz, Zhang 14]
[Huang, Li ‘15] [Huang, Li, Phillips, Wang ‘195] /




A Computational Problem

® The position of each point is random (non-i.i.d)

® Question: What is E[MST] ?
e Of Course, there is no close-form formula

® We need efficient algorithms to compute E[MST]




MST over Stochastic Points

® The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11]

® So. let us focus on approximating the value
, PP 8

* FPTAS for existential model, constant approx for locational

model [Kamousi, Chan, Suri. SoCG’11]

e FPRAS: Solution € (1 + €) X true value in time Poly(n, %)

e Other problems:
[Huang, L. ICALP’15]

Problems Existential | Locational
E[C] FPRAS | FPRAS
Closest Pair (§2) PrlC<1] | FPRAS | FPRAS
Pr[C>1] | Inapprox | Inapprox
E]D] FPRAS | FPRAS
Diameter (52) PrD <1 | Inapprox | Inapprox
PrD>1] | FPRAS | FPRAS
Minimum Spanning Tree (§4) E[MST] | FPRAS[25] | FPRAS
k-Clustering (§3) E[kCL FPRAS
Perfect Matching (§5) E[PM] NA. | _FPRAS |
kth Closest Pair (§B.1) E[kC] FPRAS |__Open
Cycle Cover (§6) E[CC] FPRAS FPRAS
kth Longest m-Nearest Neighbor (§7) | ElkmNN] [ FPRAS /




Outline

* Estimation (no decision)
®Single-stage

® 2-stage/Multi-stage

® Online (adaptive/non-adaptive))
* Sample Complexity




(Single stage) Stochastic shortest path

® Find an s-t path P such that Pr[w(P)<I] is maximized

e Route planning: maximize the prob that one can reach the

destination in 1 hour




Threshold Probability Maximization

® Deterministic version:
* A set of element {e,}, each associated with a weight w,
® A solution S is a subset of elements (that satisfies some property)
* Goal: Find a solution § such that the total weight of the solution w(S)=2 w, is
minimized
® E.g. shortest path, minimal spanning tree, top-k query, matroid base
® Stochastic version:
® w;s are independent positive random variables
® Goal: Find a solution S such that the threshold probability
Pr{w(S) < 1] is maximized.

Even computing the threshold prob is HP-
hard in general! (generalizes #knapsack)
FPTAS exists [L, Shi, ORL 14]




Our Result

If the deterministic problem is “casy”, then for any € > 0,

we can find a solution S such that
Priw(S) <1+ €| > OPT — ¢

“Easy”: there is a PTAS for the corresponding O(1)-dim packing

problem:

® Shortest path, MST, matroid base, matroid intersection, min-cut

® Related work: Special distributions [Nikolova, Kelner, Brand,
Mitzenmacher. ESA’06] [Nikolova. APPROX"10] [Goel, Indyk.
FOCS’99] [Goyal, Ravi. ORL’09] [Bhalgat, Goel, Khanna. SODA’11]
[L, Deshpande. MOR’18]




Algorithm

® Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler)

0 et Y+ 2e° 1

Discretized version: X;

EE

0 et €t + 265 1

The behaviors of X; and X; are close:
1. PriX(S) < B] < Pr[X(S) < 5 + €] + O(e);
2. Pr[X(S) < 8] < Pr[X(S) < 8 + €] + O(¢).




Algorithm

* Step 2: Reducing the problem to the multi-dim problem
® Heavy items: E[X;]>poly(€)

At most O(1/poly(€)) many heavy items, so we can atford enumerating
them




Algorithm

* Step 2: Reducing the problem to the multi-dim problem
® Heavy items: E[X;]>poly(€)
At most O(1/poly(€)) heavy items, so we can afford enumerating them
* Light items:
Fix the set H of heavy items
Each X, can be represented as a O(1)-dim vector Sg(1) (signature)
Sg(i) = (Pr[X; = €*],Pr[X; = €* + €°],......)
Enumerating all O(1)-dim (budget) vectors B
* Find a set S such that S U H is feasible and
Sg(S) =2esSg()) < (1 +¢€)B (using the multi-dim PTAS)
(or declare there is none Ss.t. Sg(S) < B)
Return S U H for which Priw(SUH) <1 + €] is largest




Poisson Approximation

Well known: Law of small numbers
n Bernoulli r.v. X; (1-p, p)

np = const

Asn — 00,Y X; ~ Poisson(np)
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Poisson Approximation

Le Cam’s theorem (rephrased):

nr.v. X; (with common support (0,1,2,3,4,...)) with signature
S8 = (PI‘[XL — 1],Pr[Xl- — 2] ) )

Letsg = ).;sg
Y; arei.i.d. r.v. with distr sg/|sg|;
Y fo]]ows the compound Poisson distr ( CPD) corresponding to sg

Y = Zlivzl Y; where N ~ POiSSOH(lsgll)

Then, AQX;,Y) < Zplz where p; = Pr[X; # 0]
Variational distance:
\[ AX,Y) =Y,;|Pr[X =i] — Pr[Y =i]| } %




-

Poisson Approximation
* Le Cam’s theorem: A} X;,Y) < Zplz

® Ob: If 51 and 5, have the same signature, then
they correspond to the same CPD

* Soif )i S, piz and )¢ S, piz are sufficiently small,
the distributions of X(S7) and X(S,) are close

® Therefore, enumerating the signature of light items
suffices (instead of enumerating subsets)




Summary

The #dimension needs to be L = poly(1/€)

We solve an poly (i)—dim optimization problem
The overall running time is polynomial (PTAS) [, Yuan STOC"13]

Can be easily extended to the multi-dimensional case, other combinatorial
constraints etc.

Open problem:

Remove the first € in Pr[w(S) < 1 > OPT — €

Related results:

Remove this? ]

Bernoulli random variables, FPTAS [De SODA "18] (Boolean function
analysis)

fault tolerant storage problem [Daskalakis et al. SODA"14] (using results from

linear threshold function)

/




Outline

* Estimation (no decision)

® Single-stage

® )-stage/Multi-stage

® Online (adaptive/non-adaptive))
* Sample Complexity




2-stage facility location

® First stage:
® We know a distribution of demand

® We can build a set of facilities

® Second stage
® The set of demand realizes

® We can build some extra facilities (but more expansive, inflation

factor y > 1)
® GOAL: minimize the expected total cost

A large body of literature. Constant approximation for many
problems. Extensive studied.

Some general technique: boosted sampling [Gupta et al. STOC 04]




Outline

* Estimation (no decision)

® Single-stage

® 2-stage/Multi-stage

® Online (adaptive/non-adaptive))
* Sample Complexity




Weitzman’'s Pandora problem

® Proposed by Weitzman in

Econometrica 79

e A typical stochastic optimization

problem

Econometrica, Vol. 47, No. 3 (May, 1979)

OPTIMAL SEARCH FOR THE BEST ALTERNATIVE

By MARTIN L. WEITZMAN'

This paper completely characterizes the solution to the problem of searching for the best
outcome from alternative sources with different properties. The optimal strategy is an
elementary reservation price rule, where the reservation prices are easy to calculate and
have an intuitive economic interpretation.




Pandora’s Boxes

Pandora has n boxes.
Box i contains an unknown value X;, distributed with known c.d.f. F;.
At known fixed cost C;, she can open box i and discover X;.

Pandora may choose the order to open the boxes, and stop at will

She (adaptively) opens a subset of boxes § € In], and wish to

maximize the expected value of




Adaptive Policies

€1 = 0 C, = 1

Policy 1: first open box 1. If x; = 1, then open box 2.
o E[reward]|=0.5%(3-1)+0.5%5=3.5

Policy 2: first open box 2. Then open box 1.
® E[reward]=0.5%(3-1)+0.5%(5-1)=3.0




Pandora rule

A surprisingly simple index policy, a so-called Pandora rule.

* SELECTION RULE: If a box is to be opened, it should be

that closed box with highest reservation price.

e STOPPING RULE: Terminate search whenever the
maximum sampled reward exceeds the reservation price of

every closed box.

Reservation price: z; = inf{y : Y 2 —c¢; + Elmax{z;, y}]}

= inf{y : ¢; > Elmax{z; — y, O}]}




Pandora rule - we are lucky

® “That such an elementary decision strategy as Pandora’s Rule
is optimal depends more crucially than might be supposed on
the simplitying assumptions of the model. There does not
seem to be available a sharp characterization of an optimal
solution when certain features of the present model are

changed. Pandora’s Rule does not readily generalize.”
(Weitzman, 1979)

® [ike the famous Gittin’s index for Markovian Bandit




Probe the MAX value

Almost the same setting as Pandora’s problem, except that

Boxes have no cost, but she can open at most a set S of k boxes
Goal: maximize the expect value E [maSX X ]

LE
Seems easy: pick the boxes with highest reservation prices??
The reservation price technique doesn’t work here!

Unfortunately, no simple optimal policy is known

Probably the optimal policy is an exponentially large decision tree

Hardness? (could be PSPACE-hard. Open.)

/




A 1-1/e approximation

® Consider tfunction defined over subsets of [n]

f(8) = E[max X;]

IES
® It can be shown that f () is a submodular function
fS+f M) =fSUT)+f(SNT)forany S, T)

* By known result for online submodular optimization
[Asadpour er al |, the greedy algorithm isa 1-1/e

approx1mat10n

e IS there a PTAS??




A PTAS for ProbeMAX

® Decision ITree

Exponential size!!!! (depth=n)
How to represent such a tree? Compact solution?




A PTAS for ProbeMAX

* By discretization, we make some simplifying assumptions:

® Support of the size distribution: (0, €, 2¢, 3€, ... ... ;1)

Still way too many possibilities, how
to narrow the search space?




Block Adaptive Policies

* Block Adaptive Policies: Process items block by block

Key Properties:
(1) Depth=0(1)

(2) Degree=0(1)
So #nodes=0(1)
Note: O(1) depends on €

[
2 @

LEMMA: There is a block adaptive policy that is nearly optimal




Block Adaptive Policies

* Block Adaptive Policies: Process items block by block

Key Properties:
(1) Depth=0(1)
| (2) Degree=0(1)
MdeS:o(l)
Note: O(1) depends on €
[tems
/ N 689

Still exponential many possibilities, even in

a single block

kLEI\/IMA: There is a block adaptive policy that is nearly optimal




Algorithm

e Qutline: Enumerate all block structures with a signature
(similar to that in Poisson approximation) associated with

each node

(0.4,1.1,0,...)

O(1) nodes

Poly(n) possible
signatures for each node

- So total #configuration
(51,1.7,2,...) (0,0,1.5,2,...) =poly(n)

(1.1,1,1,1.5,...)

(1,1,2,...) (0,1,1,2.2,...)

- /




Algorithm

2. Find an assignment of items to blocks that matches all

signatures

— (this can be done by standard dynamic programming)
ltem 1 ltem m

ltem 4 ltem 5 It

/_\b

T i

\_ Onany root-leaf path, each item appears at most once

/




- < 7
Stochastic Knapsack !
P 35 k9"
.
* A knapsack of capacity C [%
* A set of items, each having a fixed profit
e Known: Prior distr of size of cach item.

Each time we choose an item and place it in the knapsack

irrevocably
The actual size of the item becomes known after the decision
Knapsack constraint: The total size of accepted items <= C

Goal: maximize E[Protfit]

[Dean et al. FOCSO05] [Dean et al. MORO0S8] [Bhalgat et al. SODA 11]
[Gupta et al.FOCS 13] [LY STOC13] [Will SODA14] .....

™~




Jobs:

Running time: (\ : /ﬂ\ \"
| 1| Al

-

Profits:

Motivation

e Stochastic Scheduling
® Jobs, each having an uncertain length, and a fixed profit
® You have C hours

® How to (adaptively) schedule them (maximize E[profit])

# calc.py - a Python calculator
I tkinter iy *

# the main ¢

155 Cald()

lef init_ (self):
self.total =0
self.current =
self.new_num = True
self.op_pending = False
ml!.u:) ; : 918 3

36 9

self.eq_flag = False

20% 5% 10$

lass

~| G
w o

o w| w
o




A unified approach

® We realize that the stochastic knapsack problem can be

solved by similar technique

* Later, we found other variants of Pandora’s box problem can

be solved by similar technique (have to change several places)
® Very tedious.....

* A unitied approach

° Dynamic programming recursion:

DP(A;, I;) = max EI:DPt+1(.At\at.f('l.[t.a{)) +g(-|[t.at)]. = [N { 5

a; €A,

- /
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Our result

THM(informal) [Fu, L, Xu, ICALP"18] Under some assumption of the
number of states, and the properties of the transitions, we obtain a PTAS
for solving such stochastic dynamic program.

Example:
® ProbeMax (best known 1-1/e [Asadpour et al., Management science 15])
® ProbeMax-(m,k) (constant approx. [Munagala 16])
® Committed Pandora’s box (constant approx. by known technique)
® Stochastic Knapsack (recover results in [Balghat et al., SODA11] [L,Yuan, STOC13])
® Threshold Probability Stochastic Knapsack
(previously only heuristic [[Than et al. Operation Research 11])

* Bayesian online selection with knapsack constraint




Outline

* Estimation (no decision)

® Single-stage

® 2-stage/Multi-stage

® Online (adaptive/non-adaptive))
® Sample Complexity




The Stochastic Multi-armed Bandit

® We don’t know the distribution. We can only take samples.
® Stochastic Multi-armed Bandit

® Set of n arms

® Each arm is associated with an unknown reward distribution

supported on [0,1] with mean 0;
® Each time, sample an arm and receive the
reward independently drawn from the

reward distribution

classic problems in stochastic control, stochastic
optimization and online learning




Best Arm ldentification

® Best-arm Identification: Find the best arm out of n arms,
with means 17, Un]s--, U] (for simplicity, assume they

follows Gaussian distr with unit variance)

® Goal: use as few samples as possible

¢ Formulated by Bechhofer in 1954

* Applications: medical trails, A/B test, crowdsourcing, team

formation, many extensions. ...

® Close connections to regret minimization




MULTI-ARMED BANDIT
ALLOCATION INDICES

Stochastic Multi-armed Bandit I

ohn Gittnn, Kevin Glarebrook

Statistics, medical trials (Bechhofer, 54) ,Optimal control,
Industrial engineering (Koenig & Law, 85), evolutionary
computing (Schmidt, 06), Simulation optimization (Chen, Fu,
Shi 08),Online learning (Bubeck Cesa-Bianchi,12)

R R e SR A A R A AL A

Multiarmed Bandit
Allocation Indices (Wiley
Interscience Series in

Systems and
Optimization)

[Bechhofer, 58] [Farrell, 64] [Paulson, 64] [Bechhofer, Kiefer,
and Sobel, 68],...., [Even-Dar, Mannor, Mansour, 02]
[Mannor, Tsitsiklis, 04] [Even-Dar, Mannor, Mansour, 06]
[Kalyanakrishnan, Stone 10] [Gabillon, Ghavamzadeh, bl f
Lazaric, Bubeck, 11] [Kalyanakrishnan, Tewari, Auer, Stone, |
12] [Bubeck, Wang, Viswanatha, 12]....[Karnin, Koren, and Dionorihs su S and
Somekh, 13] [Chen, Lin, King, Lyu, Chen, 14] e

vnaid A Bertry

Books:

® Multi-armed Bandit Allocation Indices, John Gittins, Kevin
Glazebrook, Richard Weber, 2011

® Regret analysis of stochastic and nonstochastic multi-armed bandit

problems S. Bubeck and N. Cesa-Bianchi., 2012




Bandit

Applications Problems

¢ (Clinical Trails

. _ ..
One arm — One treatment e NEW ENGLAND

* One pull — One experiment| JOURNALfMEDICINE

ESTABLISHED IN 1812 JULY 7, 2016 VOL.375 NO.1

Adaptive Randomization of Neratinib in Early Breast Cancer

. Liu, D. Yee, C. Yau, LJ. van 't Veer, W.F. Symmans, M. Paolor Perlmutter, N.M. Hylton, M. Hogartt

N ENGLJ MED 3751 NEJM.ORG JULY 7, 2016

The NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE ”

Adaptive Randomization of Veliparib—
Carboplatin Treatment in Breast Cancer

MATHEMATICS IN BIOLOGY

NEWS

The New Math of Clinical Trials

Other fields have adopted statistical methods that integrate previous Bayesian school of thought. then widely
experience, but the stakes ratchet up when it comes to medical research viewed as an oddity within the field The

Bayesian approach calls for incorporating
Houston, Texas—If statistics were a reli-  Hutchinson Cancer Research Center in  “priors™ —knowledge gained from previous
gion, Donald Berry would be among its  Seattle, Washington. But cnitics and sup- work—into a new experiment. “The

Don Berry, University of Texas Pt g o e ot e ke e e imton By ot e o s [

here, he’s dropped all hobbies except reading  status quo. by people in power in his field”  these qualities immensely appeziing. in part

MD Anderson Cancer Center el el it Vi 1 VA, LY Do N | o ik st S iy

- /




Best-1-Arm:

Exact version:

a misclaim

Source

Sample Cﬂmplaxity

Even-Dar et al. [ 12]

DA (]1115_' +Inn+In ﬂ.[_l.]l)

Gabillon et al. [16]

;‘zia[;]z (s +m ¥, A7)

Jamieson et al. | 19]

o A (nd l““‘“( )

kalyanakrishnan et al. [23]

>, AR (I + Y, A7)

Jamieson et al. [ 19]

Ind~ '-(lnlm’i LY LA+ Y, A A

Karnin et al.|24], Jamieson et al.|20]

I, A (hus '+ Inln Ay )

Mannor-Tsitsiklis lower bound: €2 (Z?:z 5[212 In 5_1)

Farrell's lower bound (2 arms): A[Q] Inln A

Attempting to believe : Karnin’s upper bound is optimal

misclaim




Instance Optimal Sample Complexity

® (almost) Instance optimal algorithm for best arm

® Gap Entropy: Ent(]) = Z Di logp,i_l. p; = H@/ZHJ
G #D J
* An instance-wise lower bound  £(1,5) = © (H(I)(In6 ! + Ent(I))) .
® An algorithm with sample complexity: H(I) = Y1, AL
O (L:(I, 5)+ A7 Inln A[;]l) |
We almost achieve the above bounds, modulo some small additive term [Chen Li ArXiv 15]

(getting rid of it is an OPEN question) (for the upper bound), and some
mild assumption (for the lower bound). [Chen, Li., Qiao COLT 19




Combinatorial Pure Exploration

Combinatorial Pure Exploration in multi-armed bandit

o A general combinatorial constraint on the feasible set of arms

® Best-k-arm: the uniform matroid constraint Graph G

® First studied by [Chen et al. NIPS14]

* E.g., we want to build a MST. But each time

get a noisy estimate of the true cost of each edge

® More general combinatorial constraints

® [Chen et al. NIPS 14][CGL. COLT’16] [CGLQW. COLT’17] [Cao et al.
COLT’ 18]

K ® Optimal upper lower bounds for general constraints: Still OPEN. /




Conclusion

Bayesian mechanism design (essentially stochastic optimization problems)

Learning+Optimization

® We don’t have to first learn the distributions first, and then solve
the stochastic optimization problem. We can do it together and use
less samples!

Interesting connections to many subareas in TCS (counting,

coresets, geometry, VC theory, Boolean functions, bandits,

online algorithms, mechanism design,....) and probability

theory/statistics

A lot more interesting problems to be studied
Many open problems

A Survey: Jian Li, Yu Liu. Approximation Algorithms for
Stochastic Combinatorial Optimization Problems.
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