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Abstract. Zigzag pocket machining (or 2D-milling) plays an important role in the man-
ufacturing industry. The objective is to minimize the number of tool retractions in the
zigzag machining path for a given pocket (i.e., a planar domain). We give an optimal
linear time dynamic programming algorithm for simply connected pockets, and a linear
plus O(1)O(h) time optimal algorithm for pockets with h holes. If the dual graph of the
zigzag line segment partition of the given pocket is a partial k-tree of bounded degree
or a k-outerplanar graph, for a fixed k, we solve the problem optimally in linear time.
Finally, we propose a linear time algorithm for finding a machining path for a pocket
with h holes using at most OPT + ǫh retractions, where OPT is the smallest possible
number of retractions and ǫ > 0 is any constant.

1 Introduction

2D-milling, or zigzag pocket machining (ZPM), is an important problem in the
manufacturing industry [17, 28, 31, 33]. Either a workpiece is translated under a
spinning milling tool, or a cutter is moved across the workpiece. We model the
workpiece as an arbitrary planar domain, called a pocket. The actual shape of the
pocket is not really important for us, so we may just think of a polygon (possibly
containing holes). Usually, the cutter (or the workpiece moving below the milling
tool) can only cut while moving along a fixed direction, for example, parallel
to the x-axis (but it can cut moving in both directions along a line). When it
reaches the boundary of the workpiece, it must either move along the boundary
to another line parallel to the x-axis (usually the lines are assumed to be equally
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spaced with a zigzag step-over distance δ > 0, but this technical requirement
is not important for us), creating a zigzag movement pattern, or it must jump
to another part of the workpiece. A jump requires the cutter to be retracted.
Since retractions are time-consuming and may have other disadvantages due to
technological constraints, the goal is to find a machining path minimizing the
number of retractions, under the additional constraint that the cutter must work
on any interior part of the workpiece exactly once while it cannot traverse any
part of the boundary more than once.

Considerable work has been done on ZPM, see [33] for an extensive survey of
the current state-of-the-art. A few algorithms were given in [12, 21], but they
did not attempt to minimize the number of tool retractions or to optimize any
other criteria. Some heuristic methods were used to reduce the number of tool
retractions for general pockets [17, 18]. For pockets with holes, ZPM was shown
to be NP-hard by Arkin et al. [3] by a reduction from the Planar 3-Satisfiability
Problem [15, 22]. They also presented a linear time approximation algorithm with
at most 5 OPT +6h tool retractions based on a graph model, called the machining
graph, where OPT is the smallest possible number of retractions and h is the
number of holes in the pocket. Tang et al. [29] studied a special case when the
step-over distance is small with respect to the geometry of the pocket. However,
no quantitative measure was given on how small the step-over distance needs to
be in order for the solution to be optimal (see [19]).

Tang and Joneja [30] presented a linear time approximation algorithm for ZPM
with at most OPT + h + Nr retractions, where Nr is the number of the so-called
reducible blocks of the pocket. Although the coefficients of OPT and h are both
one, the third parameter Nr can be quite large, depending on the shape of the
given pocket, the step-over distance, the inclination of the reference line, etc. For
example, Nr will usually grow with a larger step-over distance. Thus, the results
in [3] and in [30] are not directly comparable. Some practical implications and
applications of ZPM were discussed in [17, 29].

It is worth pointing out that although ZPM for pockets with holes is NP-
hard [3], for the important case of simply connected pockets (i.e., without holes),
only approximation algorithms were previously known [3, 30]. In fact, it has been
an open problem to decide whether the simply connected pocket case is NP-hard.

Other optimization criteria for ZPM have also been considered. For example,
multi-tool retraction minimization was studied by Arya et al. [7]. The problem
of minimizing the total length of the tool path was studied by Arkin et al. [2].
Algorithms for determining a cutting direction in order to minimize the tool re-
traction length were given by Kim et al. [20]. Some algorithms were designed to
optimize the tool path length and the number of tool retractions [1, 27]. A survey
of the pocketing requirements can be found in [16]. Tang [28] summarized some
recent progress on developing efficient algorithms for several geometric optimiza-
tion problems in manufacturing.
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In this paper, we present significantly improved algorithms for ZPM. Our tech-
niques are different from the previous ones in [3, 30], and our algorithms are
superior in theoretical performance. Our algorithms may also be interesting for
practical applications (e.g., for k-outerplanar dual graphs, with a small k). More
specifically, our results are:

(1) We give an optimal linear time dynamic programming algorithm for simply
connected pockets, settling the open question on the complexity of this case.

(2) For pockets with holes, we introduce the concept of the boundary graph to
remodel the problem, and generalize our dynamic programming approach to
optimally solve in time O(n) the cases when the dual planar graph of the
pocket is a partial k-tree of bounded degree or a k-outerplanar graph, for any
fixed k. Here, we use the algorithmic framework for partial k-trees by Arnborg
et al. [6].

(3) Combining the ingredients of (1) and (2) with Baker’s shifting technique for
outerplanar graphs [8], we develop a linear time approximation algorithm for
finding a machining path with at most OPT + ǫh retractions for a pocket
with h holes, for any constant ǫ > 0. This substantially improves the previous
approximation solutions [3, 30], and in fact gives a best possible approximation
if the output quality is measured in terms of the number of holes.

(4) We give an exact dynamic programming algorithm running in linear plus
O(1)O(h) time for a pocket with h holes. This implies that, in particular, ZPM
with a logarithmic number of holes is still solvable in polynomia time.

The rest of this paper is organized as follows. In Section 2, we review some
definitions from [3] and state the problem formally. In Section 3, we describe an
optimal linear time dynamic program for simply connected pockets. In Section 4,
we propose an exact algorithm for the problem of pockets with h holes. In Sec-
tions 5 and 6, we first introduce the concept of a boundary graph and the MVPC

problem, and then present exact linear time algorithms if the dual graph of a
pocket with holes is a partial k-tree of bounded degree or a k-outerplanar graph.
In Section 7, we present a “best possible” linear time approximation algorithm
for the general problem.

2 Preliminaries

We mainly use the terminology from [3]. A pocket P is a compact connected
planar domain bounded by a contour B. It is simply connected (e.g., a simple
polygon) if it contains no holes, or multiply connected otherwise. For a pocket
with h holes, B consists of h + 1 unconnected loops (the boundary of the outer
face and the boundaries of the h holes). The edges of B can be straight line
segments or any types of simple curves.

Consider an arbitrary set L of non-crossing line segments (it could even be
curves) partitioning P into a set of regions. Each line segment connects two points
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Fig. 1. A simple pocket PG with horizontal c-edges (dashed) and its dual graph DP (solid straight
edges) rooted at m. Some c-edges are labeled by ec(x), the c-edge on the boundary of face(x) closest
to the root. Some c-edge endpoints are labeled by leftx and rightx, indicating the first/last encounter
with edge ec(x) when walking counterclockwise around B starting at the root.

on B. In 2D-milling, the line segments would be parallel and equally-spaced. Let
N be the set of all endpoints of the line segments, and let n denote the size of
N . On the node set N , we define the undirected machining graph MP = (N, E),
with two types of edges:

– compulsory edges (c-edges), connecting the two endpoints of a line segment;
the c-edges correspond to the line segments in L.

– non-compulsory edges (nc-edges), connecting two neighboring nodes on B not
already connected by a c-edge; the nc-edges correspond to paths on B between
neighboring points in N .

Note that every node in N is incident to exactly one c-edge and at most
two nc-edges. Fig. 1 shows an example of a pocket in the plane, partitioned into
regions by horizontal line segments (c-edges).

Given a machining graph MP , a tool traversing path (or machining path) is a
collection P of simple node-disjoint paths in MP , called no-retraction paths, such
that every c-edge is traversed exactly once and every nc-edge is traversed at most
once.

The machining tool must follow all no-retraction paths of P. When it reaches
the end of a path, it jumps to an unprocessed no-retraction path. This operation
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is called a retraction. The number of retractions is one less than the number of
no-retraction paths in P. An optimal (or minimum) machining path P minimizes
the number of retractions (or equivalently, the number of no-retraction paths in
P). If the pocket is multiply connected (i.e., has holes), then finding an optimal
machining path is NP-hard [3].

The c-edges and nc-edges of a machining graph MP induce a planar partition
PG of the pocket P . The faces F of PG induce the dual graph DP = (F, Ed) of
PG, see Fig. 1.

If P has holes, DP may be a multigraph. Note that the interior faces of DP

correspond exactly to the holes of P . Since structural properties like treewidth
and k-outerplanarity are usually only defined for simple graphs, we make DP

simple by splitting each edge of DP into two edges by adding a new node in
the middle of the edge, for example at the intersection between the edge and
the unique c-edge it is crossing (see Fig. 4). We call these new nodes c-nodes,
while the original nodes (corresponding to the faces of PG) are f-nodes. Note that
adding c-nodes for a simple DP would have no effect on k-outerplanarity and
treewidth.

Throughout this paper, we denote by OPT the minimum number of retrac-
tions of all feasible machining paths for P , the number of holes in P by h, the
number of nodes in MP by n, and the number of edges in MP by m. We also
abuse the notation by calling DP the dual machining graph of MP .

For a graph G, we sometimes denote its node and edge sets by V (G) and
E(G), respectively.

3 A Linear Time Algorithm for Simply Connected
Pockets

In this section, we optimally solve ZPM for a simply connected pocket P in linear
time based on dynamic programming. We first discuss some properties of an
optimal traversal of MP and then present our new algorithm. Observe that DP

is a tree if and only if P is a simply connected pocket. Fig. 1 shows an example.
For a node v ∈ F , let face(v) denote the corresponding face in PG.

Lemma 1 ([3]). There exists an optimal machining path P such that

1. each no-retraction path in P starts and ends with a c-edge, and
2. no two nc-edges are traversed consecutively. ⊓⊔

We will now show how to compute a machining path satisfying the conditions
of Lemma 1. We treat DP = (F, Ed) as a tree T rooted at an arbitrarily chosen
node root ∈ F . For a node v ∈ F , let Tv denote the subtree of T rooted at v, and
let PG/v denote the portion of the partition PG corresponding to Tv. If v 6= root,
then the boundary of face(v) contains a c-edge, ec(v), of MP separating face(v)
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from the face of v’s parent in T . This c-edge is closest to the root among all
c-edges on the boundary of face(v) and it lies on the boundary of PG/v.

Let Mv denote the machining subgraph of PG/v, where we require that ec(v)
is a c-edge of Mv. See Fig. 1 for an example. We denote the two endpoints of
ec(v) by leftv and rightv, respectively, where leftv is the endpoint we reach first
when we walk counterclockwise along B, starting somewhere in face(root).

We compute optimal machining paths for PG/v for all nodes v of T in a bottom-
up manner, starting at the leaves. This will give us a linear time algorithm. In
general, an internal v may have k children v1, . . . , vk, where we assume that
ec(v), ec(v1), . . . , ec(vk) appear counterclockwise along the boundary of face(v).
Let bridge(vi) denote the nc-edge connecting ec(vi) and ec(vi+1), for 1 ≤ i < k.

When we deal with an internal node v we have already (bottom-up) computed
the machining paths for the subtrees rooted at v1, . . . , vk, respectively. If v is not
the root, we must now extend these paths to integrate the edge ec(v). There are
a few cases. If leftv1

or rightvk
is the endpoint of a no-retraction path, we can

easily extend this path to include ec(v). If both these points are endpoints of two
different paths, we can directly connect both paths via ec(v), thus saving one
retraction. If both points are not path endpoints, ec(v) will form a new path by
itself. Since we do not know in advance which case can yield an optimal solution
for MP , we must provide for all cases, i.e., we use dynamic programming.

We first compute the best way to combine the different solutions for the
subtrees of the children. This is also done for the root of T . Let Mi,j =

⋃j
ℓ=i Mvℓ

∪⋃j−1
ℓ=i bridge(vℓ), for 1 ≤ i ≤ j ≤ k, be the connected portion of MP formed by

Mvi
, . . . , Mvj

and the bridges connecting the pieces. We characterize the feasible
machining paths for Mi,j into five classes.

P 0
i,j contains all machining paths such that no no-retraction path ends at leftvi

or
rightvj

;

P l
i,j contains all paths such leftvi

is the endpoint of some no-retraction path but
no no-retraction path ends at rightvj

;
P r

i,j contains all paths such rightvi
is the endpoint of some no-retraction path but

no no-retraction path ends at leftvj
;

P lr1
i,j contains all paths such that some no-retraction path starts at leftvi

and ends
at rightvj

;

P lr2
i,j contains all paths such that some no-retraction path ends at leftvi

and some
other no-retraction path ends at rightvj

;

Let hx(vi, vj), for x ∈ {0, l, r, lr1, lr2} and i ≤ j, be the minimum number of
retractions among all machining paths in P x

i,j. Let hx(vi) = hx(vi, vi) denote the
minimum number of retractions among all machining paths in P x

i,i.
We can in a natural way extend this definition to leaves. If v is a leaf of T ,

then there exists only one machining path for PG/v, namely the edge ec(v) itself.
Thus, we can define
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hlr1(v) = 0

and

h0(v) = hl(v) = hr(v) = hlr2(v) = NULL ,

where NULL means there is no machining path in this class. If a term NULL appears
in an arithmetic expression, the expression has value NULL.

If v is an internal node of T and all hx(vi) for all children v1, . . . , vk of v are
known, then we can iteratively compute the values hx(vi, vj) for all pairs of indices
i < j. Actually, we only need to compute the values hx(v1, v2), . . . , h

x(v1, vk).

h0(vi, vj+1) = min{ hr(vi, vj) + hl(vj+1), we use bridge(vj)

hr(vi, vj) + h0(vj+1) + 1, we cannot use bridge(vj)

h0(vi, vj) + hl(vj+1) + 1,

h0(vi, vj) + h0(vj+1) + 1}.

hr(vi, vj+1) = min{ hr(vi, vj) + hlr1(vj+1), we use bridge(vj)

hr(vi, vj) + hr(vj+1) + 1, we cannot use bridge(vj)

h0(vi, vj) + hlr1(vj+1) + 1,

h0(vi, vj) + hr(vj+1) + 1}.

hl(vi, vj+1) = min{ hlr1(vi, vj) + hl(vj+1), we use bridge(vj)

hlr2(vi, vj) + hl(vj+1),

hlr1(vi, vj) + h0(vj+1) + 1, we cannot use bridge(vj)

hlr2(vi, vj) + h0(vj+1) + 1,

hl(vi, vj) + hl(vj+1) + 1,

hl(vi, vj) + h0(vj+1) + 1}.

hlr1(vi, vj+1) = hlr1(vi, vj) + hlr1(vj+1) we use bridge(vj)
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hlr2(vi, vj+1) = min{ hlr2(vi, vj) + hlr1(vj+1), we use bridge(vj)

hlr1(vi, vj) + hr(vj+1) + 1, we cannot use bridge(vj)

hlr2(vi, vj) + hr(vj+1) + 1,

hl(vi, vj) + hlr1(vj+1) + 1,

hl(vi, vj) + hlr2(vj+1) + 1,

hl(vi, vj) + hr(vj+1) + 1} .

We can then compute the values hx(v), for all x, as follows. If v is not the
root, then

h0(v) = hlr2(v1, vk) − 1 ,

hl(v) = min
x∈{r,lr1,lr2}

{hx(v1, vk)} ,

hr(v) = min
x∈{l,lr1,lr2}

{hx(v1, vk)} ,

hlr1(v) = 1 + min
x∈{0,l,r,lr1,lr2}

{hx(v1, vk)} ,

hlr2(v) = NULL .

At the root, we can compute the optimal value for MP as

OPT (MP ) = min{ hlr2(v1, vk) − 1 ,

minx∈{0,l,r,lr1}{h
x(v1, vk)}} .

Theorem 2. The dynamic program above computes an optimal machining path
for simply connected pockets in linear time.

Proof. We prove correctness of the computation of hx(vi, vj) by induction for the
case x = lr1. The other cases are similar. Consider an optimal traversing plr1

i,j+1 of
Mi,j+1 satisfying the requirements of hlr1(vi, vj+1) and the properties of Lemma 1.

Let plr1(vi, vj) and plr1(vj+1, vj+1) denote plr1’s restriction to Mi,j and Mj+1,j+1,
respectively. If plr1(vi, vj) is not an optimal traversing path of Mi,j , then we can
substitute it by a traversal with hlr1(vi, vj) no-retraction paths for Mi,j , resulting
in fewer no-retraction paths and fewer retractions, contradicting our choice of
plr1(vi, vj+1) as an optimal traversing path for Mi,j. A similar argument holds for
Mj+1,j+1. This optimal substructure guarantees the correctness of our dynamic
program.

We prove correctness of the computation of hx(v) for the cases x = 0 and
x = r. The other cases are similar.
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For h0(v), note that the minus one occurs because we can link the two different
no-retraction paths ending at leftv1

and rightvk
, respectively, into a single path.

For hr(v), note that a traversing path in Pr(v) can be obtained in one of
three ways, where e denotes the nc-edge connecting an endpoint of ec(v) with an
endpoint of ec(v1).

1. a traversing path in P lr1(v1, vk) plus the edges e and ec(v);
2. a traversing path in P lr2(v1, vk) plus the edges e and ec(v);
3. a traversing path in P l(v1, vk) plus the edges e and ec(v).

⊓⊔

4 An Exact Algorithm for Pockets with Holes

If P has h ≥ 1 holes, the dual machining graph DP is not a tree. However, we can
identify O(h) pivot nodes that partition DP into a forest of trees such that each
tree is adjacent to at most two pivot nodes. The trees of the forest can be handled
similarly as in Section 3. Since each tree has only a constant size interface with
the pivot nodes via c-edges, we can test all possible choices for these c-edges of
these nodes in O(1)O(h) time. This implies that the problem is still solvable in
polynomial time for pockets with h = O(log(n + m)) holes.

We now give the details of the algorithm which is also based on dynamic pro-
gramming. First, we remove all the c-nodes by merging their two adjacent edges
into a single edge. Then, we partition the graph into biconnected components, see
Fig. 2 for an example. A biconnected component of DP is a maximal connected
induced subgraph that cannot be disconnected by removal of a single edge. If
we contract each non-trivial biconnected component (consisting of at least two
nodes) into a supernode, we get a tree T . We will handle this tree the same way
we handled trees in Section 3, except that we need to do some additional work for
the supernodes. We call the smallest subtree of T connecting all the supernodes
the backbone of T .

The edges of DP either appear as edges in T (if they are outside a bicon-
nected component), or they do not appear in T (if they are within a biconnected
component). We can therefore classify the edges of DP into three classes. Edges
within a biconnected component are component edges, edges on the backbone of
T are backbone edges, and all other edges are tree edges which form trees rooted
at nodes on the backbone or within a non-trivial biconnected component.

We now explain how to reduce the problem to a problem of size O(h) which can
be solved optimally in time O(1)O(h) by brute-force search. In FPT theory, this
is called a kernelization. A node of DP is a pivot node if it is adjacent to at least
three non-tree edges, i.e., backbone or component edges (nodes a, b, c, d, e, f, g in
Fig. 2). The pivot nodes divide the subgraph induced by component and backbone
edges into simple paths, called chains, that start and end at some pivot node
(possibly the same node, like the chains at nodes b and d in Fig. 3). Fig. 3 shows
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Fig. 2. A pocket with seven holes. The dashed edges are the c-edges. The f-nodes of DP are black,
while the c-nodes are white. The thick solid edges indicate the three biconnected components, the thin
solid edges are backbone edges, and the dotted edges are tree edges. The large nodes are the pivot
nodes.

the chains of the graph in Fig. 2. Conceptually, we may think of dividing the
pivot nodes into several independent nodes, at most one for each adjacent edge,
such that each of these new nodes is adjacent to exactly one chain or at least one
tree edge (node a in Fig. 3 has one new node adjacent to two tree edges which
are neighbors in the cyclic order of edges around a).

Lemma 3. There are at most 3h − 3 pivot nodes and 4h − 3 chains.

Proof. There can be at most 2h − 1 pivot nodes and 3h − 2 chains within the
biconnected components. Either use Euler’s formula to bound the number of
degree-three nodes in planar graphs, or observe that a biconnected component
consisting of a chain around a single hole (as the chain at node b in Fig. 3) induces
a single pivot node, while adding more holes to a component adds at most two
pivot nodes (start and end nodes of the new chain around the new hole) and at
most three chains (the new chain plus splitting an exisiting chain into at most
three chains, or splitting two existing chains into two chains each).
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Fig. 3. The pocket in Fig. 2 gives rise to 13 chains (thick solid edges). The dashed circles indicate the
pivot nodes.

Since the backbone edges form a tree connecting the at most h biconnected
components, there can be at most h− 2 pivot nodes and h− 1 chains outside the
biconnected components. ⊓⊔

While the trees rooted at the biconnected component and backbone nodes can
be treated the same way as in Section 3 (i.e., distinguishing five different classes of
no-retraction paths for the interface to the father node), chains are more complex
because they have two interfaces to the rest of the graph, one at each endpoint.
At each endpoint, we must know for the last c-edge crossed by the chain which of
its two adjacent nc-edges are used by the optimal machining path, and whether
the two c-edges of both endpoints lie on the same no-retraction path. Thus, the
interface for a chain consists of 32 functions hπ, where π ∈ {0, 1}5 is a five-tuple
of Boolean values encoding the five cases just described, giving the minimum
number of no-retraction paths according to constraint π. These 32 functions can
be computed in a similar way as the five functions hx in Section 3.
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After we have computed all optimal machining paths for all chains for all
possible interface combinations, it remains to combine all the chains into a global
solution for DP . Since the graph consisting of pivot nodes and chains has size
O(h) by Lemma 3, we can do this in time O(1)O(h) by brute force enumeration
of all possible interface combinations.

Theorem 4. We can find an optimal machining path for a pocket with h holes
in time O(n + m) + O(1)O(h). ⊓⊔

5 Dual Machining Graphs of Bounded Treewidth

In this section we will show how to compute an optimal machining path efficiently
on pockets with holes if the dual machining graph DP has bounded treewidth,
generalizing the algorithm for simple pockets in Section 3. We will first review
some useful definitions about bounded treewidth and partial k-trees. In Sec-
tion 5.2, we will then reduce the optimal machining path problem to a related
problem, the minimum valid path cover Problem (MVPC), which can efficiently be
solved if DP has bounded treewidth.

5.1 Partial k-Trees

In this section we review shortly the definitions of k-trees and bounded treewidth.
A good introduction of k-trees, partial k-trees, and treewidth can be found in [14].
We mainly follow the terminology and the dynamic programming framework
developed in [6].

A graph G = (V, E) is a k-tree if and only if we can obtain it from a k-clique
by repeatedly adding nodes connected exactly to a k-clique in the existing graph.
A partial k-tree is a spanning subgraph of a k-tree. A tree-decomposition of G is
a pair (X, T ), where T = (I, F ) is a tree and X = {Xi | i ∈ I} is a family of
subsets of V with one subset Xi corresponding to each node i of T , such that

(1) ∪i∈IXi = V , that is, every node of G is covered by some Xi,
(2) for every edge (v, w) ∈ E, there is an Xi containing both v and w, and
(3) for each node v ∈ V , the subgraph of T induced by {i ∈ I | v ∈ Xi} is a

connected subtree of T .

The treewidth of a tree-decomposition (X, T ) is maxi∈I |Xi|−1. The treewidth
of G is the minimum width over all tree-decompositions of G. Any graph of
bounded treewidth k is in fact a partial k-tree [24, 32]. Partial k-trees general-
ize trees, and many classes of graphs are partial k-trees for some constant k.
Computing the treewidth of an arbitrary graph [4] is NP-complete (the com-
plexity status for planar graphs is not known), but we can find a width 4k tree-
decomposition in time O(n log n) [23]. For planar graphs, we can find a width
3
2
k tree-decomposition in polynomial time [26] (that paper gives a polynomial
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time algorithm for computing the bandwidth of a planar graph which is a 1.5-
approximation for the treewidth). For the results in our paper, we only need to
compute tree-decompositions of trees whose treewidth is known to be constant
which can be done in linear time for any graph [10].

Considerable research has been done on the development of polynomial time
algorithm for NP-hard problems when instances are restricted to graphs of bounded
treewidth. One of the most fundamental results, by Courcelle, states that graph
properties defined in monadic second-order logic can be recognized in polynomial
time [13]. The result was further extended to include optimization and enumer-
ation problems [5, 11]. Using a dynamic programming approach, many NP-hard
graph problems become polynomial-time (usually linear-time) solvable on partial
k-trees, for example maximum independent set, graph coloring, and Hamilto-
nian circuit [6]. We also use dynamic programming to tackle the MVPC problem1.
Although dynamic programming is a simple generic programming method, the
actual technical details can be quite different for individual problems and new
twists are often needed. We will follow the framework and notations in [6]. We
will first briefly sketch the dynamic programming framework, for a more de-
tailed description and for some examples we refer to [6]. We note that dynamic
programming on k-trees can be extended to partial k-trees in a straightforward
manner.

We can check whether a graph G is a k-tree by repeatedly removing a node of
degree k whose neighbors in the remaining graph form a k-clique, until no such
nodes remain; then G is a k-tree if and only if the final remaining graph is a
k-clique [25], the root or root clique. This removal process generates a reduction
sequence of the k-tree: When we remove a node v, we say v becomes a k-leaf at
this point, and v is said to be a (direct) descendant of the k-clique Kv induced by
the k neighbors of v. More general, a node v is a descendant of some k-clique Kw

if and only if each node adjacent to v is either a member or descendant of Kw.
The connected components of the subgraph of G induced by the descendants of
K are the branches of K. Note that we can easily obtain a tree-decomposition of
G with treewidth k from a reduction sequence of a k-tree G, and vice versa.

5.2 The Minimum Valid Path Cover Problem (MVPC)

The dual machining graph DP is a planar graph. In Section 3 we have shown
that we can compute the optimal machining path in linear time if DP is a tree,
i.e., if the pocket is a simple polygon without holes. In this section, we will solve
the problem by dynamic programming in linear time if DP is nearly a tree, i.e.,
if it has bounded treewidth and bounded degree. This algorithm will be a key
ingredient for our “best possible” approximation algorithm for the general case
in Section 7.

1 We note that the MVPC problem cannot be expressed by a monadic second-order formula of constant
size, so we cannot apply Courcelle’s result [14].
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We reduce the optimal machining path problem to a new path cover problem
in a graph related to MP . Let the boundary graph BP = (NB, EB) of MP be the
graph obtained when we contract every c-edge into a single node, deleting self-
loops and multiple edges. BP is a planar graph of maximum degree four (every
c-edge is adjacent to two nc-edges at each endpoint) whose edges are exactly the
nc-edges of MP . However, not every path in BP is a feasible no-retraction path in
MP , because such a path should not use two consecutive nc-edges. This imposes
a restriction on the edges we can use when leaving a node we just entered on an
nc-edge. We call a pair of edges consistent if they can appear consecutively on
a no-retraction path. We call a path in BP valid if it corresponds to a feasible
no-retraction path in MP satisfying Lemma 1, i.e., all pairs of consecutive edges
are consistent. The minimum valid path cover problem (MVPC) is the problem of
finding a smallest set of node-disjoint simple valid paths in BP such that each
node of BP lies on exactly one path.

In the rest of this section we assume that BP has bounded treewidth, and
that a k-tree with root R is given together with its reduction sequence (it can
be computed in linear time [10]). Let K+v = Kv ∪ {v} denote the (k + 1)-clique
formed by v together with Kv, and let K−u

+v = K+v −{u}, for any node u ∈ K+v.
Let Bv denote the set of nodes in the branches of Kv.

We now extend the simple dynamic program from Section 3, where we worked
bottom-up in a tree, to k-trees. One difference is that we now work edge-by-edge
instead of node-by-node. We follow the general framework in [6]. We maintain a
state for each Kv. The state information for Kv represents the equivalence classes
of the solutions (usually for a slight generalization of the original problem) of
the subgraph induced by Kv and all its descendants. This generalizes the classes
P 0, P l, P r, P lr1, and P lr2 we introduced in Section 3. However, in a k-tree, the
interface between a node and its descendants is more complicated than in a tree
because a k-leaf is connected to a k-clique instead of a single parent node. Still, for
fixed k, the number of possible equivalence classes is a (possibly large) constant.

We use an index set to denote a state. The index set C(Kv) for Kv classifies
solutions to the problem on the subgraph induced by Kv∪Bv, where an index c ∈
C(Kv) represents an equivalence class of the solutions. The state value s(c, Kv)
of Kv with index c is the optimum value of the equivalence class of solutions
represented by c. The state values generalize the functions h0, hl, hr, hlr1, and
hlr2 we introduced in Section 3.

The key ingredients of the dynamic program are the definition of the index
sets and the update rules for the state values when we compute the state values
bottom-up in the reduction sequence of the k-tree. The state values s(c, Kv)
for every c ∈ C(Kv) depend on the state values for all K−u

+v , where u ∈ K+v,
which reflect each K−u

+v ’s influence on the state value of Kv for a particular index
c ∈ C(Kv).

Now we define the index set for our algorithm. Let a ve-pair be a pair (v, e),
where v is an end node of an edge e in the boundary graph BP . Let asc(v) denote

14



the edge e in the ve-pair (v, e). We say that two ve-pairs (v1, e1) and (v2, e2) are
disjoint if v1 6= v2. Intuitively, a no-retraction path can only enter and then leave
a Kv on a pair of disjoint ve-pairs.

The state of Kv is indexed by a set of triples (Dv, Sv, Iv), where Dv is a set of
mutually disjoint (unordered) pairs of ve-pairs (representing the nodes and edges
on which a path enters and leaves Kv), Sv is a set of disjoint ve-pairs (representing
a path ending in Kv), and Iv is a set of the ‘touched’ nodes (internal nodes of
a path) in Kv that are disjoint from Dv and Sv. Intuitively, an element in Dv

represents the two endpoints in Kv of a traversing path, and an element in Sv

represents a single endpoint in Kv of a traversing path. Let V (Dv) = {(w1, w2) |
((w1, e1), (w2, e2)) ∈ Dv} and E(Dv) = {(e1, e2) | ((w1, e1), (w2, e2)) ∈ Dv} denote
the set of node pairs and the set of edge pairs, respectively, corresponding to the
ve-pairs in Dv. Similarly, let V (Sv) = {w | (w, e) ∈ Sv} and E(Sv) = {e | (w, e) ∈
Sv} be the set of nodes and the set of edges, respectively, corresponding to the
ve-pairs in Sv.

A partial solution of index c = (Dv, Sv, Iv) ∈ C(Kv) means a set of |Dv|
disjoint simple valid paths with both endpoints in Kv, a set of |Sv| disjoint simple
valid paths with only one endpoint in Kv, and some other simple valid paths
with no endpoint in Kv in the subgraph induced by Kv ∪ Bv, such that no two
consecutive internal nodes on a path are both in Kv and such these paths cover
all nodes of Bv. The state value s((Dv, Sv, Iv), Kv) is a positive integer that is the
minimum number of valid paths covering Kv ∪Bv under the restrictions of index
(Dv, Sv, Iv), or is NULL if no such valid paths exist.

The state values s(c, Kv) are initially NULL for all c and Kv. To compute the
state values for Kv, we update s((Dv, Sv, Iv), Kv), where (Dv, Sv, Iv) arises from
a set of k + 1 triples (Du, Su, Iu) ∈ C(K−u

+v ), one for every u ∈ K+v, such that
the following five conditions are satisfied. The case for computing the root state
values is more complicated and will be described later separately. Intuitively,
satisfying the five conditions means that we can combine the partial solutions for
different K−u

+v ’s for u ∈ K+v.

(i) Iu ∩ Iw = V (Du) ∩ Iw = V (Su) ∩ Iw = ∅ for u 6= w, u, w ∈ K+v.
(ii) Each node pair in V (Du) occurs at most once.
(iii) Every node in K+v appears at most twice in the multi-set

M =
⋃

u∈K+v
(V (Du) ∪ V (Su)).

(iv) If a node v appears twice in M , then the two corresponding edges of the
ve-pairs with node v must be consistent.

(v) The graph F = (K+v,∪u∈K+v
E(Du)) is acyclic, i.e., F is a set of paths and

isolated nodes.

We first define an intermediate tripe (D′
v, S

′
v, I

′
v) as follows. Consider a path

in F . Suppose its two endpoints are v1 and v2. If the multiplicities of v1 and v2 in
M are both one, then ((v1, asc(v1)), (v2, asc(v2))) ∈ D′

v. If only one of v1 and v2
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has multiplicity one in M , say v1, then (v1, asc(v1)) ∈ S ′
v and v2 ∈ I ′

v. Moreover,
I ′
v contains the union of the Iu’s and the interior nodes of the paths of F .

Next, we compute (Dv, Sv, Iv) from (D′
v, S

′
v, I

′
v), and then we update the state

value s((Dv, Sv, Iv), Kv). It is possible that we obtain more than one (Dv, Sv, Iv)
from a single (D′

v, S
′
v, I

′
v), and we update the state value for every (Dv, Sv, Iv)

obtained. Recall that s((Dv, Sv, Iv), Kv) is initially NULL. Once we obtain a
(Dv, Sv, Iv) from (D′

v, S
′
v, I

′
v) and a value tv for it, called the temporary value,

we replace the value of s((Dv, Sv, Iv), K) by tv if it is smaller than the current
value of s((Dv, Sv, Iv), Kv). After processing all (D′

v, S
′
v, I

′
v), we will have found

the optimum state value for Kv. The temporary value is computed as

tv =
∑

u∈K+v

s((Du, Su, Iu), K
−u
+v ) − #(elements with multiplicity two in M) .

(Dv, Sv, Iv) is obtained from (D′
v, S

′
v, I

′
v) in one of the following ways.

(1) If v ∈ I ′
v, then Iv = I ′

v − {v}, Dv = D′
v, and Sv = S ′

v.
(2) If v ∈ V (S ′

v), then

(a) Sv = S ′
v − {(v, asc(v))}, Dv = D′

v, and Iv = I ′
v.

(b) If there is a node v1 ∈ K+v − I ′
v adjacent to v, then

(b.1) If v1 ∈ V (S ′
v) and asc(v1) and asc(v) are consistent with (v, v1), then

Sv = S ′
v − {(v, asc(v)), (v1, asc(v1))} and tv = tv − 1.

(b.2) If (v1, v2) ∈ V (D′
v) and asc(v1) and asc(v) are consistent with (v, v1),

then Dv = D′
v−{((v1, asc(v1)), (v2, asc(v2)))}, Sv = Sv−{(v, asc(v))}∪

{(v2, asc(v2))}, Iv = I ′
v ∪ {v1}, and tv = tv − 1.

(b.3) If v1 is neither in V (S ′
v) nor in any pair of V (D′

v) and asc(v) is consistent
with (v, v1), then Sv = S ′

v − {(v, asc(v))} ∪ {(v1, (v, v1))}.

(3) If (v, v1) ∈ V (D′
v) for some v1, then

(a) Dv = D′
v − {((v, asc(v)), (v1, asc(v1)))}, Sv = S ′

v ∪ {(v1, asc(v1))}, and
Iv = I ′

v.
(b) If there is a node v2 ∈ K+v − I ′

v adjacent to v, then

(b.1) If v2 ∈ V (S ′
v) and asc(v2) and asc(v) are consistent with (v, v2), then

Dv = D′
v− {((v, asc(v)), (v1, asc(v1)))}, Sv = S ′

v ∪ {(v1, asc(v1))}, and
tv = tv − 1.

(b.2) If (v2, v3) ∈ V (D′
v) and asc(v2) and asc(v) are consistent with (v, v2),

then Dv = D′
v−{((v, asc(v)), (v1, asc(v1))), ((v2, asc(v2)), (v3, asc(v3)))}∪

{((v1, asc(v1)), (v3, asc(v3)))}, Iv = I ′
v ∪ {v2}, and tv = tv − 1.

(b.3) If v2 is neither in V (S ′
v) nor in any pair of V (D′

v) and asc(v) is con-
sistent with (v, v2), then Dv = D′

v − {((v, asc(v)), (v1, asc(v1)))} ∪
{((v1, asc(v1)), (v2, asc(v2)))}.

(4) If v is neither in I ′
v nor in V (S ′

v) nor in any pair of V (D′
v), then

(a) Dv = D′
v, Sv = S ′

v, Iv = I ′
v, and tv = tv + 1.
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(b) If v is adjacent to v1 ∈ K+v − I ′
v, then let asc(v1) = (v, v1), I ′

v = I ′
v ∪ {v}.

We add v1 to the multi-set M , test whether conditions (i)–(v) are all
satisfied, then obtain (D′

v, S
′
v, I

′
v), and then compute (Dv, Sv, Iv) and tv

from (D′
v, S

′
v, I

′
v) in exactly the same way as above.

(c) If v is adjacent to v1 and v2 which are both in K+v − I ′
v, and (v, v1) and

(v, v2) are consistent with each other, then let asc(v1) = (v, v1), asc(v2) =
(v, v2), and I ′

v = I ′
v∪{v}. We add v1 and v2 to the multi-set M and augment

F with the edge (v1, v2). Further, we test whether conditions (i)–(v) are
all satisfied, then obtain (D′

v, S
′
v, I

′
v), and then compute (Dv, Sv, Iv) and tv

from (D′
v, S

′
v, I

′
v) in exactly the same way as above.

This finishes the discussion of the non-root case of the MVPC algorithm. For
the root clique R, we do the same as in the non-root case, but we also perform
some additional steps. For an obtained index (DR, SR, IR), we try all possible
combinations of the unused edges in the subgraph induced by R. We check the
validity (i.e., the consistency of all pairs of adjacent edges) of each path, and
decide the final value of tR. Note that an isolated node in R should be treated
as a no-retraction path in the final solution. Since the dynamic program runs in
linear time, we have shown the next theorem.

Theorem 5. If the boundary graph BP has bounded treewidth, then we can solve
MVPC optimally in linear time. ⊓⊔

Now we establish a close relation between the treewidth of DP and BP .

Lemma 6. If DP is a partial k-tree of maximum degree d, then BP is a partial
(kd + d − 1)-tree.

Proof. Suppose DP = (F, ED) has a tree-decomposition (X, T (I, F )) with
maxi∈I |Xi| ≤ k + 1. We construct a tree-decomposition (Y, TB(IB, FB)) of BP .
T and TBP

have the same topology. For a node i ∈ I representing Xi ⊆ F ,
the corresponding node Yi ⊆ ED in IB is defined as Yi = {e ∈ ED | e has an
end node in Xi}. It is easy to verify that TB is a tree-decomposition of BP and
maxi∈IB

|YI | ≤ (k + 1)d. ⊓⊔

Combining Theorem 5 and Lemma 6, we obtain the main result of this section.

Theorem 7. If DP has bounded treewidth and bounded degree, then we can com-
pute an optimal machining path in linear time. ⊓⊔

6 An Exact Algorithm for k-Outerplanar Dual Graphs

In this section we assume the dual graph DP is k-outerplanar. To be precise, we
always mean that the embedding of DP as induced by PG is k-outerplanar, we do
not try to find an embedding with smaller outerplanarity parameter. Intuitively,
a k-outerplanar graph is a planar graph such that nothing remains after we peel
off its outer nodes k times.
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Lemma 8. If DP is k-outerplanar, then BP is (2k)-outerplanar.

Proof. Given an embedding of DP = (F, ED) in the plane, we construct an em-
bedding of BP . One way to construct BP from DP is to connect the c-nodes
in F by edges cyclically around each f-node in F , removing self-loops and mul-
tiple edges (corresponding to nodes of degree one and two in F , respectively).
Obviously, this gives a planar embedding of BP .

If a node v ∈ F is lying on the outer layer of the embedding of DP , then there
is an edge e = (v, w) ∈ ED whose corresponding node ve ∈ BP is lying on the
outer layer of the embedding of BP . After peeling away the outer layer of BP ,
all nodes of BP corresponding to the edges adjacent to v in DP have either been
peeled off or have been exposed to the new outer face. Hence, peeling off the next
layer of BP will remove all nodes of BP corresponding to the edges adjacent to
v. Thus, BP has at most twice the number of layers as DP . ⊓⊔

Since any k-outerplanar graph has treewidth at most 3k − 1 [9], combining
Theorem 5 and Lemma 8 gives the main result of this section.

Theorem 9. If DP is k-outerplanar, then we can compute an optimal machining
path in linear time. ⊓⊔

7 An Approximation Algorithm for Pockets with Holes

In this section we give a “best possible” approximation algorithm for the zigzag
pocket machining problem for a pocket with h holes. We also treat the outside
of P as a hole, the exterior hole, we actually have a total of h + 1 holes. We
basically make the problem easier by merging holes, thus reducing the number
of holes, and sometimes even partitioning the pocket into several independent
sub-pockets.

If two holes are connected by a c-edge, we can merge them by connecting
them with a thin corridor along the c-edge. We then update DP by deleting the
c-node corresponding to the c-edge that just vanished and its two incident edges.
If these edges had been bridge edges, the pocket will actually be divided into two
unconnected pockets. Fig. 6 shows the result of merging four holes of the pocket
in Fig. 4 into a single hole.

Lemma 10. Merging two holes can change the minimum number of retractions
by at most one. ⊓⊔

Proof. Assume we merge two holes along c-edge e. If an optimal machining path
p for P ends with e or leaves e on the same side (up or down) as it entered e,
then p is still a valid machining path after merging the holes. Otherwise, we must
cut p at e, increasing the number of retractions by one. If an optimal machining
path p′ for the merged holes traverses the new corridor along e only on one side,

18



Fig. 4. A pocket with 23 holes. In particular, h1 = 9, h2 = 7, h3 = 4, and h4 = 3. The dashed edges are
the c-edges. The f-nodes of DP are black, while the c-nodes are white. The thick solid edges indicate
the four outer layers of DP , while the large black node in the middle together with its three white
neighbors forms the fifth layer. The thin solid edges are the paths connecting nodes on two neighboring
layers.

it can be used as a machining path for P (replacing the corridor by the c-edge
e). Otherwise, one of the two no-retraction paths using the corridor must be split
into two paths, increasing the number of retractions by one. ⊓⊔

Merging the h interior holes with the exterior hole would result in a simple
pocket without holes, so we can efficiently compute a machining path with at
most OPT +h retractions. To reduce the number of retractions, we use a similar
approach as in [8]. The idea is to use merging of holes to partition the original
pocket into several unconnected pockets whose dual graphs are k-outerplanar
for some small k, because we know how to solve these subproblems efficiently
(Theorem 9).

Let k be a fixed integer. Consider the layer structure of DP we obtain when
we repeatedly peel off the nodes on the outer face. Let D1 = DP and let L1 be
the set of nodes on the outer face of D1. For i = 2, 3, 4 . . ., we obtain Di from
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Fig. 5. The MVPC graph corresponding to the pocket in Fig. 4. The thick edges are the five layers of
the graph.

Di−1 by removing the nodes in Li−1 and any incident edges. Li is then again the
set of nodes on the outer face of Di. We call Li the i-th layer of DP . Note that
a k-outerplanar graph has exactly k layers.

Any two neighboring layers are connected by several node-disjoint paths. Note
that the subgraph induced by Ri = Li ∪ Li+1 consists of two rings (the layers Li

and Li+1) and node-disjoint paths connecting the two layers. Let hi denote the
number such paths. These paths divide Ri into hi cells, where each cell corre-
sponds to an interior hole of P . Thus,

∑
i hi = h. See Fig. 4 for an example.

If we merge the hi holes in Ri into a single ring-shaped hole (see Fig. 6), PG is
partitioned into two unconnected subpockets. If we do this for Rk, R2k, R3k, . . .,
we partition PG into small pockets that are at most (k + 1)-outerplanar (some
parts of the paths we cut may remain as interior nodes of the k-th layer, making
this embedding of the subpocket (k + 1)-outerplanar). We could also do this
for Rk+q, R2k+q, R3k+q, . . ., for some q = 0, 1, . . . , k − 1. Let Hq denote the total
number of holes in Rk+q, R2k+q, R3k+q, . . .. Then there exists a q such that Hq ≤

h
k
.
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Fig. 6. Considering the pocket in Fig. 4 with k = 3, we can separate layers three and four by merging
the four holes between the two layers in cyclic order. As a result, we obtain two independent components
that are at most 4-outerplanar.

Using the techniques developed in Section 5, we can in linear time compute an
optimal solution for each of the (k + 1)-outerplanar subpockets. The sum of the
retractions for all (k + 1)-outerplanar graphs is at most OPT + Hq ≤ OPT + h

k

by Lemma 10. Based on Lemma 10, we can then convert these solutions into a
solution for P with at most OPT + 2h

k
retractions. Choosing k = 2

ǫ
, we have the

following result.

Theorem 11. For arbitrary pockets, we can in liner time compute a machining
path with at most OPT + ǫ · h retractions, for any constant ǫ > 0, where h is the
number of holes of the pocket. ⊓⊔

Note that h is not considered as a constant in the theorem above. Also, note
that choosing k ≥ n actually means that we solve the original problem directly
(because DP is at most n-outerplanar).
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8 Conclusions

We have presented a variety of exact and approximation algorithms for the prob-
lem of minimizing the number of retractions in 2D-milling. All our algorithms
are based on dynamic programming techniques for trees (or graphs of bounded
treewidth) and Baker’s shifting technique for dividing a problem into independent
subproblems of small treewidth.

In Theorem 11, we gave an algorithm with an additive approximation term.
This is a good outcome if the optimal solution has a high cost. However, for the
cases with small optimum cost, we may prefer having an approximation algorithm
with a multiplicative approximation factor, instead.

Another possible extension of our research may be to study more general cost
functions. For example, the cost of a retraction might depend on the locations of
the two endpoints of a jump.
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