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Abstract

Abstract

In this dissertation, we study the geometric set cover and ¢-spanner problems. First,
we give the first polynomial-time approximation scheme (PTAS) for the weighted unit
disk set cover problem. We are given a set of weighted unit disks and a set of points
in the Euclidean plane. The minimum weight unit disk cover (WUDC) problem asks
for a subset of disks of minimum total weight that covers all given points. It is known
that the unweighted unit disk cover problem is NP-hard and admits a polynomial-time
approximation scheme (PTAS). For the weighted unit disk cover problem, several constant
factor approximation algorithms have been developed. However, whether the problem
admits a PTAS has been an open question. In this dissertation, we answer this question
affirmatively by presenting the first PTAS for WUDC. Our result implies the first PTAS
for the minimum weight dominating set problem in unit disk graphs. Combining with
existing ideas, our result can also be used to obtain the first PTAS for the maximum lifetime
coverage problem and an improved 4.475-approximation for the connected dominating
set problem in unit disk graphs.

Second, we study the Yao-Yao graphs (also known as sparse-Yao graphs) and prove
that odd Yao-Yao graphs are not spanners. It is a long standing open problem whether
Yao-Yao graphs YY, are all spanners!*. Bauer and Damian!?' showed that all YY, for
k > 6 are spanners. Li and Zhan® generalized their result and proved that all even
Yao-Yao graphs YY,; are spanners (for k > 42). However, their technique cannot be
extended to odd Yao-Yao graphs, and whether they are spanners are still elusive. In this
dissertation, we show that, surprisingly, for any integer k > 1, there exist odd Yao-Yao

graph YY,, instances, which are not spanners.

Key Words: Set Cover; t-Spanner; Unit Disk Graph; Yao-Yao Graph; PTAS
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Chapter 1 Introduction

Chapter 1 Introduction

In this dissertation, we study two important computational geometric problems. First,
we study the weighted unit disk set cover problem (WUDC). Whether there exists a PTAS
for WUDC or not is an open question mentioned in a number of previous papers!> %],
We settle this question affirmatively by presenting the first PTAS. Second, we study the
Yao-Yao graphs. We prove that for any integer k > 1, there exist odd Yao-Yao graph

YY1 instances which are not spanners, which is also a long standing open problem .

1.1 Weighted Unit Disk Set Cover

The set cover problem is a central problem in theoretical computer science and
combinatorial optimization. The input of the set cover problem consists of a ground
set U and collection S of subsets of U. Each set § € S has a non-negative weight
ws. The goal is to find a subcollection C € S of minimum total weight such that
U C covers all elements of U. The approximability of the general SC problem is rather
well understood: it is well known that the greedy algorithm gives an H,-approximation
(H, = /-, 1/i) and obtaining a (1 — €) Inn-approximation for any constant € > 0 is
NP-hard"!"12!, In the geometric set cover problem, U is a set of points in some Euclidean
space R9, and S consists of geometric objects (e.g., disks, squares, triangles). In the
geometric setting, we can hope for better-than-logarithmic approximations due to the
special structure of S. Most geometric set cover problems are still NP-hard, even for
the very simple classes of objects such as unit disks!314 (see!!>'®! for more examples
and exceptions). Approximation algorithms for geometric set cover have been studied
extensively for the past two decades, not only because of the importance of the problem
per se, but also its rich connections to other important notions and problems, such as

[20-22]

VC-dimension!7"1, e-net, union complexity , planar separators?*?*!, even machine

scheduling problems %!,
In this work, we study the geometric set cover problem with one of the simplest class

of objects — unit disks. The formal definition of our problem is as follows:

Definition 1.1 (Weighted Unit Disk Cover (WUDC)): Given aset ©® = {Dy,...,D,} of
n unit disks and a set P = {Py, ..., P,,} of m points in Euclidean plane R?, each disk D;

1



Chapter 1 Introduction

has a weight w(D;). The goal of WUDC is to choose a subset of disks covering all points

in $ with the minimum total weight.

WUDC generalizes the following minimum weight dominating set problem in unit

disk graphs (UDG).

Definition 1.2 (Minimum Weight Dominating Set (MWDS) in UDG): Given a unit disk
graph G(V, E), where V is a set of weighted points in R? and (u,v) € E iff ||u —v| < 1
for any u, v € V, a dominating set S is a subset of V such that for any node v ¢ S, there is
some u € S with (u,v) € E. The goal in the minimum weight dominating set problem is

to find a dominating set with the minimum total weight.

To see that WUDC is a generalization of MWDS, consider the following reduction.
Given a dominating set instance with point set V, we create a WUDC instance by placing,
for each point in v € V, a point (to be covered) co-located with v and a unit disk centered
at v, with weight equal to the weight of v. In this dissertation, we only state our algorithms

and results in the context of WUDC.

1.1.1 Previous Results and Our Contribution

We first recall that a polynomial time approximation scheme (PTAS) for a minimiza-
tion problem is an algorithm A that takes an input instance, a constant € > 0, returns a
solution of value SOL such that SOL < (1 + €)OPT, where OPT is the optimal value, and
the running time of A is polynomial in the size of the input for any fixed constant €.

WUDC is NP-hard, even when the weights are equivalent (i.e., w(D;) = 1)!'*]. For
unweighted dominating set in unit disk graphs, Hunt et al.!'! obtained the first PTAS in
unit disk graphs. For the more general disk graphs, based on the connection between
geometric set cover problem and e-nets, developed in!!""!°!, and the existence of e-net of
size O(1/¢) for halfspaces in R*[?®! (see also!?™), it is possible to achieve a constant factor
approximation. As estimated in'?}!, these constants are at best 20 (A recent result!®!
shows that the constant is at most 13). Moreover, there exists a PTAS for unweighted disk
cover and minimum dominating set via the local search technique 2324,

For the general weighted WUDC problem, the story is longer. Ambiihl et al.?
obtained the first approximation for WUDC with a concrete constant 72. Applying the
shifting technique of?°!, Huang et al.*"! obtained a (6 + €)-approximation algorithm for
WUDC. The approximation factor was later improved to (5 + €)', and to (4 + €) by

2



Chapter 1 Introduction

several groups!'®32-33. Willson et al improve the ratio to 3.63. © Very recently, Zhang et
al.*¥ give a (3 + €)-approximation algorithm. The quasi-uniform sampling method'*'-*
provides another approach to achieve a constant factor approximation for WUDC (even in
disk graphs). However, the constant depends on several other constants from rounding
LPs and the size of the union complexity. Very recently, based on the separator framework
of Adamaszek and Wiese®>!, Mustafa et al.!*®! obtained a QPTAS (Quasi-polynomial time
approximation scheme) for weighted disks in R? (in fact, weighted halfspaces in R*), thus
ruling out the APX-hardness of WUDC.

Another closely related work is by Erlebach and van Leeuwen!”!, who obtained
a PTAS for set cover on weighted unit squares, which is the first PTAS for weighted
geometric set cover on any planar objects (except those poly-time solvable cases!!>16]),
Although it may seem that their result is quite close to a PTAS for weighted WUDC,
as admitted in their paper, their technique is insufficient for handling unit disks and “a
completely different insight is required”.

In light of all the aforementioned results, it seems that we should expect a PTAS for
WUDC, but it remains to be an open question (explicitly mentioned as an open problem
in a number of previous papers, e.g.,>1% ). Our main contribution in this dissertation is
to settle this question affirmatively by presenting the first PTAS for WUDC.

Theorem 1.1: There is a polynomial time approximation scheme for the WUDC problem.

The running time is n®1/€”).

Because WUDC is more general than MWDS, we immediately have the following

corollary.

Corollary 1.1: There is a polynomial time approximation scheme for the minimum

weight dominating set problem in unit disk graphs.

We note that the running time nP°Y(/€) is nearly optimal in light of the negative
result by Marx®”!, who showed that an EPTAS (i.e., Efficient PTAS, with running time
f(1/€e)poly(n) ) even for the unweighted dominating set in UDG would contradict the
exponential time hypothesis.

Finally, in Section 2.8, we show that our PTAS for WUDC can be used to obtain im-
proved approximation algorithms for two important problems in wireless sensor networks,
the connected dominating set problem and the maximum lifetime coverage problem in

UDG.
@  The algorithm can be found in Du and Wan®!, who attributed the result to a manuscript by Willson et al.

3
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1.2 Odd Yao-Yao Graphs are Not Spanners

Let P be a set of points in the Euclidean plane R?. The complete Euclidean graph
defined on set P is the edge-weighted graph with vertex set  and edges connecting all
pairs of points in #?, where the weight of each edge is the Euclidean distance between its two
end points. Storing the complete graph requires quadratic space, which is very expensive.
Hence, it is desirable to use a sparse subgraph to approximate the complete graph. This
is a classical and well-studied topic in computational geometry (see e.g.,!**#11). In this
dissertation, we study the so called geometric t-spanner, formally defined as follows (see

e.g.,[4).

Definition 1.1: (Geometric #-Spanner) A graph G is a geometric t-spanner of the com-
plete Euclidean graph if (1) G is a subgraph of the complete Euclidean graph; and (2) for
any pair of points p and g in P, the shortest path between p and g in G is no longer than ¢

times the Euclidean distance between p and q.

The factor ¢ is called the stretch factor or dilation factor of the spanner in the
literature. If the maximum degree of G is bounded by a constant k, we say that G is a
bounded-degree spanner. The concept of geometric spanners was first proposed by L.P.
Chew!®!, See the comprehensive survey by Eppstein**! for related topics about geometric
spanners. Geometric spanners have found numerous applications in wireless ad hoc and
sensor networks. We refer the readers to the books by Li!*! and Narasimhan and Smid*°!
for more details.

Yao graphs are one of the first approximations of complete Euclidean graphs, intro-

duced independently by Flinchbaugh and Jones!*”! and Yao!*!l,

Definition 1.2 (Yao Graph Y;): Let k be a fixed integer. Given a set of points # in the
Euclidean plane R?, the Yao graph Y, () is defined as follows. Let C,(y1, -] be the cone
with apex u, which consists of the rays with polar angles in the half-open interval (y, v,].
For each point u € , Y;(#) contains an edge connecting u to a nearest neighbor v in
each cone C,(j0,(j + 1)0], for & = 2n/k and j € [0,k — 1]. We generally consider Yao
graphs as undirected graphs. For a directed Yao graph, we add directed edge uv to the

graph instead.

Molla!*8! showed that Y, and Y3 may not be spanners. On the other hand, it has
been proven that all Y, for k > 4 are spanners. Bose et al.[*! proved that Y, is a 663-

spanner. Damian and Nelavalli®” improved this to 54.6 recently. Barba et al.>!! showed
4



Chapter 1 Introduction

that Ys is a 3.74-spanner. Damian and Raudonis®? proved that the Y, graph is a 17.64
spanner. Li et al.'*>3! first proved that all Yy, k > 6 are spanners with stretch factor at most
1/(1 — 2sin(rr/k)). Later Bose et al.[**>* also obtained the same result independently.
Recently, Barba et al.'®!! reduced the stretch factor of Y from 17.6 to 5.8 and improved
the stretch factors to 1/(1 — 2 sin(37/4k)) for odd k > 7.

However, a Yao graph may not have bounded degree. This can be a serious limitation
in certain wireless network applications since each node has very limited energy and
communication capacity, and can only communicate with a small number of neighbors.
To address the issue, Li et al.[*! introduced Yao-Yao graphs (or Sparse-Yao graphs in the
literature). A Yao-Yao graph YY,(#) is obtained by removing some edges from Y, (#) as

follows:

Definition 1.3 (Yao-Yao Graph YY;): (1) Construct the directed Yao graph, as in Defini-
tion A.7. (2) For each node u and each cone rooted at u containing two or more incoming
edges, retain a shortest incoming edge and discard the other incoming edges in the cone.

We can see that the maximum degree in YY (%) is upper-bounded by 2k.

As opposed to Yao graphs, the spanning property of Yao-Yao graphs is not well
understood yet. Li et al.[* provided some empirical evidence, suggesting that YY;, graphs
are 7-spanners for some sufficiently large constant k. However, there is no theoretical
proof yet, and it is still an open problem>*#!_ It is also listed as Problem 70 in the Open

Problems Project.”

Conjecture 1.1 (see!?):  There exists a constant kg such that for any integer k > ko, any

Yao-Yao graph YY, is a geometric spanner.

Now, we briefly review the previous results about Yao-Yao graphs. It is known that
YY, and YY; may not be spanners since Y, and Y3 may not be spanners!*®!. Damian and
Molla*®3! proved that YY,, YY¢ may not be spanners. Bauer et al.’!! proved that YY5
may not be spanners. On the positive side, Bauer and Damian?' showed that for any
integer k > 6, any Yao-Yao graph YYg, is a spanner with the stretch factor at most 11.67
and the factor becomes 4.75 for k > 8. Recently, Li and Zhan"! proved that for any integer
k > 42, any even Yao-Yao graph YY»; is a spanner with the stretch factor 6.03 + O(k™).

From these positive results, it is quite tempting to believe Conjecture A.1. However,
we show in this dissertation that, surprisingly, Conjecture A.1 is false for odd Yao-Yao

graphs.

@®  http://cs.smith.edu/~orourke/TOPP/P70.html
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Theorem 1.4: For any k > 1, there exists a class of point set instances {,, },ncz+ such
that the stretch factor of YY,;.(%,,) cannot be bounded by any constant, as m approaches

infinity.®

Related Work It has been proven that in some special cases, Yao-Yao graphs are
spanners %%, Specifically, it was shown that YY, graphs are spanners in civilized graphs,
where the ratio of the maximum edge length to the minimum edge length is bounded by
a constant %371,

Besides the Yao and Yao-Yao graph, the ®-graph is another common geometric ¢-
spanner. The difference between ®-graphs and Yao graphs is that in a ®-graph, the nearest
neighbor to # in a cone Cis a point v # u lying in C and minimizing the Euclidean distance
between u and the orthogonal projection of v onto the bisector of C. It is known that
except for @, and @348, for k = 41601 51611 6l621 > 7163631 '@, _oraphs are all geometric
spanners. We note that, unfortunately, the degrees of ®-graphs may not be bounded.

Recently, some variants of geometric 7-spanners such as weak 7-spanners and power
t-spanners have been studied. In weak z-spanners, the path between two points may be
arbitrarily long, but must remain within a disk of radius ¢-times the Euclidean distance
between the points. It is known that all Yao-Yao graphs YY, for k > 6 are weak ¢-
spanners!%-%7! In power ¢-spanners, the Euclidean distance | - | is replaced by | - |< with a
constant k > 2. Schindelhauer et al.!®*"l proved that for k > 6, all Yao-Yao graphs YY
are power #-spanners for some constant . Moreover, it is known that any ¢-spanner is also
a weak #-spanner and a power t,-spanner for some t;, f, depending only on . However,
the converse is not true!®”..

Our counterexample is inspired by the concept of fractals. Fractals have been used
to construct examples for S-skeleton graphs with unbounded stretch factors!®®l. Here a
[B-skeleton graph is defined to contain exactly those edges ab such that no point ¢ forms an
angle Zach greater than sin™' 1/8if 8 > 1 or 7 —sin™! Bif 8 < 1. Schindelhauer et al.®”]
used the same example to prove that there exist graphs which are weak spanners but not
t-spanners. However, their examples cannot serve as counterexamples to the conjecture

that odd Yao-Yao graphs are spanners.

Remark 1.1: The work “A PTAS for Weighted Unit Disk Cover" has been published in
ICALP 2015 and “Odd Yao-Yao graphs are Not Spanners" has been published in SoCG

® Here, m is a parameter in our recursive construction. We will explain it in detail in Section A. Roughly speaking,

m is the level of recursion and the number of points in #,,, increases with m.

6
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Chapter 2 A PTAS for Weighted Unit Disk Cover

Chapter 2 A PTAS for Weighted Unit Disk Cover

2.1 Our Approach - A High Level Overview

By the standard shifting technique®”!, it suffices to provide a PTAS for WUDC when
all disks lies in a square of constant size (we call it a block, and the constant depends on

1/€). This idea is formalized in Huang et al.!*"!, as follows.

Lemma 2.1 (Huang et al.!*!):  Suppose there exists a p-approximation for WUDC in
a fixed L x L block, with running time f(n, L). Then there exists a (o + O(1/L))-
approximation with running time O(L-n- f (n, L)) for WUDC. In particular, setting L = 1/,

there exists a (p + €)-approximation for WUDC, with running time O (% -n- f(n, %))

In fact, almost all previous constant factor approximation algorithms for WUDC were
obtained by developing constant approximations for a single block of a constant size
(which is the main difficulty ©). The main contribution of the paper is to improve on the

previous work [>63%-31 for a single block, as in the following lemma.

Lemma 2.2: There exists a PTAS for WUDC in a fixed block of size L X L for L = 1/e.
The running time of the PTAS is n®(/€)

From now on, the approximation error guarantee € > 0 is a fixed constant. Whenever
we say a quantity is a constant, the constant may depend on e. We use OPT to represent the
optimal solution (and the optimal value) in this block. We use capital letters A, B, C, . . .
to denote points, and small letters a, b, c, . . . to denote arcs. For two points A and B, we
use AB to denote the line segment connecting A and B and use |AB| to denote its length.
We use D; to denote a disk and D; to denote its center. For a point A and a real r > 0, let
D(A, r) be the disk centered at A with radius r. For a disk D;, we use dD; to denote its
boundary. We call a segment of dD; an arc.

First, we guess whether OPT contains more than C disks or not for some constant
C. If OPT contains no more than C disks, we enumerate all possible combinations
and choose the one which covers all points and has the minimum weight. This takes

o (ZC (")) = O(n°) time, which is polynomial.

i=1 \;

®  For the unweighted dominating set problem in a single block, it is easy to see that the optimal number of disks is
bounded by a constant, which implies that we can compute the optimum in poly-time. However, for the weighted

dominating set problem or WUDC the optimal solution in a single block may consist of ®(n) disks.

8



Chapter 2 A PTAS for Weighted Unit Disk Cover

The more challenging case is when OPT contains more than C disks. In this case, we
guess (i.e., enumerate all possibilities) the set G of the C most expensive disks in OPT.
There are at most a polynomial number (i.e., O(n<)) possible guesses. Suppose our guess
is correct. Then, we delete all disks in G and all points that are covered by G. Let D,
(with weight w,) be the cheapest disk in G. We can see that OPT > Cw,. Moreover,
we can also safely ignore all disks with weight larger than w, (assuming that our guess is
correct). Now, our task is to cover the remaining points with the remaining disks, each
having weight at most w,. We use D’ = D\ G and P’ = P \ P(G) to denote the set of
the remaining disks and the set of remaining points respectively, where $(G) denote the
set of points covered by at least one disk in G.

Next, we carefully choose to include in our solution a set H C D’ of at most eC
disks. The purpose of H is to break the whole instance into many (still a constant) small
pieces (substructures), such that each substructure can be solved optimally, via dynamic
programming. ® One difficulty is that the substructures are not independent and may
interact with each other (i.e., a disk may appear in more than one substructure). Each
substructure has a direction (in the clockwise or counterclockwise) and all disks in the
substructure have a partial order based on the direction. In order to apply the dynamic
programming technique to all substructures simultaneously, we have to ensure the orders
of the disks in different substructures are consistent with each other. Choosing H to
ensure a globally consistent order of disks is in fact the main technical challenge of the
paper.

Suppose we have a set H which suits our need (i.e., the remaining instance (D’ \
H, P’\P(H)) can be solved optimally in polynomial time by dynamic programming). Let
S be the optimal solution of the remaining instance. Our final solutionis SOL = GUHUS.

First, we can see that
w(S) < w(OPT -G —‘H) < OPT — w(G),

since OPT — G — H is a feasible solution for the instance (D’ \ H, P’ \ P(H)). Hence,

we have that
SOL = w(G) + w(H) + w(S) < OPT + eCw, < (1 + €)OPT,

where the 2nd to last inequality holds because |H| < €C, and the last inequality uses the

@  Anindividual substructure can be solved using a dynamic program similar to 161,

9
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fact that OPT > w(G) > Cw,.

Constructing H: Now, we provide a high level sketch for how to construct H C D’.
First, we partition the block into small squares with side length u = O(e) such that any
disk centered in a square can cover the whole square and the disks in the same square
are close enough. Let the set of small squares be = = {I';;},<; <k Where K = L/u. For
a small square I', let Dy, € I' and D,. € I be the furthest pair of disks (i.e., |Dy.D;,| is
maximized). We include the pair Dy, and D, in H, for every small square I € E, and call
the union of the two disks the square gadget for I'. See Figure A.1 for an example. We
only need to focus on covering the remaining points in the uncovered region U(H).

We consider all disks with centers in a small square I'. The portion of those disks
in the uncovered region defines two disjoint connected regions (See right hand side of
Figure A.1, the two shaded regions). We call such a region, together with all relevant arcs,
a substructure (formal definition in Section A). In fact, we can solve the disk covering
problem for a single substructure optimally using dynamic programming (which is similar
to the dynamic program in'>!®!). It appears that we are almost done, since (“intuitively””)
all square gadgets have already covered much area of the entire block, and we should be
able to use similar dynamic program to handle all such substructures as well. However, the
situation is more complicated (than we initially expected) since the arcs are dependent. See
Figure A.2 for a “not-so-complicated” example. Firstly, there may exist two arcs (called
sibling arcs) which belong to the same disk when the disk is centered in the core-central
area, as shown in Figure A.1). The dynamic program has to make decisions for two
sibling arcs, which belong to two different substructures (called R(emotely)-correlated
substructures), together. Second, in order to carry out a dynamic program, we need a
suitable order of all arcs. To ensure such an order exists, we need all substructures to
interact with each other “nicely".

In particular, besides all square gadgets, we need to add into H a constant number of
extra disks. This is done by a series of “cut" operations. A cut can either break a cycle, or
break one substructure into two substructures. To capture how substructures interact, we
define an auxiliary graph, called substructure relation graph €, in which each substructure
isanode. The aforementioned R-correlations define a set of blue edges, and geometrically
overlapping relations define a set of red edges. Through the cut operations, we can make
blue edges form a matching, and red edges also form a matching, and & acyclic (we call

S an acyclic 2-matching). The special structure of © allows us to define an ordering of all
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Figure 2.1 A square gadget. Dy and D, are the furthest pair of disks in square I' whose centers
are Dy and D;. On the left hand side, the blue region is the central area € = D(Dy, ;) ND(Dy, 1),
where ry; = |DgD;|. The brown region is the core-central area €, = D(P, 1) N D(Q, 1). On the
right hand side, the green area is the active regions, defined as (Uiequ D; — (D; UD,)) N H* and

(Uiee, Di = (Dy U D)) NH™.

arcs easily. Together with some other simple properties, we can generalize the dynamic

program from one substructure to all substructures simultaneously.

2.2 Square Gadgets

We discuss the structure of a square gadget Gg(I') associated with the small square
I'. Recall that the square gadget Gg(I') = Dy U D,, where D, and D, are the furthest pair
of disks in I'. We can see that for any disk D; with center in I', there are either one or
two arcs of dD; which are not covered by Gg(I'). Without loss of generality, assume that
DD, is horizontal. The line DyD, divides the whole plane into two half-planes which
are denoted by H* (the upper half-plane) and H~ (the lower half-plane). dD, and 9D,
intersect at two points P and Q. We need a few definitions which are useful throughout
the paper. Figure A.1 shows an example of a square gadget.

1. (Central Area and Core-Central Area) Define the central area of Gg(I') as the
intersection of the two disks D(Dy, ry,) and D(Dy, ry,) in the square I', where ry, =
|DyD,|. We use €(T) to denote it. Since D, and D, are the furthest pair, we can see
that every other disk with center in I is centered in the central area €(I").

We define the core-central area of Gg(I') as the intersection of two unit disks
centered at P, Q respectively. Essentially, any unit disk centered in the core-central
area has four intersections with the boundary of the square gadget. Let us denote

the area by €, (I).
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Overlapping
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Figure 2.2 The general picture of the substructures in a block. The red points are the grid points
of small squares. Dash green disks are what we have selected in . There are five substructures
in the block.

2. (Active Region) Consider the regions

U Di—(DSUD,))ﬂH+ and (U Di—(DsUDt))nH‘.

D;eC, D;eC,

We call each of them an active region associated with square I'. We use Ar(I') to
denote an active region. Note that an active region is covered by the union of disks

centered in the core-central area.

2.3 Substructures

Initially, H consists of the disks belonging to the square gadgets. In Section 2.6,
we will include in 9 a constant number of extra disks. For a set S of disks, we use
R(S) to denote the region covered by disks in S (i.e., Up,esD;). Assuming a fixed H, we
now describe the basic structure of the uncovered region R(D’) — R(H). © For ease of
notation, we use U(H) to denote the uncovered region R(D’) — R(H). Figure A.2 shows
an example. Intuitively, the region consists of several “strips” along the boundary of H.
Now, we define some notions to describe the structure of those strips.

1. (Arcs) Consider a disk D € 9’ and suppose the center of D is in the square I'. Let
D,D;, be the square gadget Gg(I'), and without loss of generality assume the line
DD, is horizontal and divides the plane into two halfplanes H* and H~. D may

contribute at most two uncovered arcs, one in H* and one in H~. Let us first focus

®  Recall that D’ = D \ G where G is the set of C most expensive disks in OPT.
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on H*. In general, D intersects O at several points® in H*. The intersections
are located on 9D in order in the clockwise (or counterclockwise) direction.?
The uncovered arc is the segment of dD starting from the first intersection point
and ending at the last intersection point.® We define the uncovered arc for H-
analogously (if |0D N dH| # 0). Figure 2.3 illustrates why we need so many words
to define an arc. Essentially, some portions of an arc may be covered by some other
disks in H, and the arc is broken into several pieces. Our definition says that those
pieces should be treated as a whole. In this dissertation, when we mention an arc,
we mean an entire uncovered arc (w.r.t. the current ). Note that both endpoints
of an arc lie on the boundary of R(H).

2. (Subarcs) For an arc a, we use a[A, B] to denote the closed subarc of arc a from
point A to point B. Similarly, we only write a(A, B) to denote the corresponding
open subarc (with endpoints A and B excluded).

3. (Central Angle) Suppose arc a is part of dD for some disk D with center D. The
central angle of a, denoted as /(a) is the angle whose apex (vertex) is D and both
legs (sides) are the radii connecting D and the endpoints of a. We can show that
/(a) < m for any arc a (See Lemma 2.19 in Appendix 2.9.1)

4. (Baseline) We use dH to denote boundary of R(H). Consider an arc a whose
endpoints P;, P, are on 0H. We say that the arc a covers a point P € 9H, if P lies
in the boundary between P; and P, of H. We say a point P € dH can be covered
if some arc covers P. A baseline is a consecutive maximal segment of dH that can
be covered. We usually use b to denote a baseline.

5. (Substructure) A substructure St(b, A) consists of a baseline b and the collection
A of arcs which can cover some point in b. The two endpoints of each arc a € A
are on b and Z(a) is less than 7. Note that every point of b is covered by some arc
in A. Figure A.3 illustrates the components of a substructure.

Occasionally, we need a slightly generalized notion of substructure. For a set A of
uncovered arcs, if they cover a consecutive segment of the boundary of H, A also

induces a substructure denoted as St[A].

Arc Order: Now we switch our attention to the order of the arcs in a substructure St(b, A).

@®  The number must be even.

@  Whether the direction is clockwise or counterclockwise does not affect the definition of arc.

®  Note that an uncovered arc may not entirely lie in the uncovered region U(H) (some portion may be covered by
some disks in H).
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Figure 2.3 The figure gives an example of an arc. The blue curves are part of the boundary of

H. The red curve is an uncovered arc.

envelope a c

MQ

C
Qs baseline

Figure 2.4 A substructure. The baseline b consists of the red arcs which are the part of
consecutive boundary of dH. Qs, O, are the endpoints of b. The black curves are uncovered arcs.

The bold black arcs form the envelope. The arc a < ¢ because A < C and B < D.

Suppose the baseline b starts at point Q; and ends up at point Q,. Consider any two points
P; and P, on the baseline b. If P, is closer to Q; than P, along the baseline b, we say
that P, appears earlier than P, (denoted as P; < P,). Consider any two arcs a and c in
A. The endpoints of arc a are A and B, and the endpoints of arc ¢ are C and D. All of
points A, B, C, D are on the baseline b. Without loss of generality, we assume that A < B,
C <Dand A < C. If B < D, we say arc a appears earlier than arc ¢ (denoted as a < c).
Otherwise, we say a and ¢ are incomparable. See Figure A.3 for an example. It is easy to

see that < defines a partial order.

Adjacency: Consider two arcs a (with endpoints A < B) and ¢ (with endpoints C < D).
If a < c and C < B, we say that a and ¢ are adjacent (we can see that they must intersect
exactly once), and c is the adjacent successor of a. Similarly, we can define the adjacent
successor of subarc a[ Py, P,]. If ¢ is the adjacent successor of a, meanwhile ¢ intersects
with subarc a[ Py, P, ], we say that c is the adjacent successor of subarc a[ Py, P,]. Among
all adjacent successors of a[ Py, P,], we call the one whose intersection with a[ Py, P;] is
closest to P; the first adjacent successor of a[ Py, P,].

In order to carry out the dynamic program in Section A, we need to properly orient
each substructure so that the (partial) order of the arcs is consistent. Our final solution in
each substructure can be represented as a path (which is a segment of the boundary of the

union of chosen disks). Our dynamic program essentially needs to determine such a path.
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To be precise, we provide a formal definition of a valid path, as follows.

Definition 2.1 (A Valid Path): Consider a substructure St(b, A). Suppose the baseline
b is oriented from Q; to Q,. A valid path is a path from Q; to Q; which consists of a
sequence of subarcs {a;[Qs, O1], a2[Q1, Q2], ..., ax[Qk-1, O]} (baseline segments are
considered as subarcs as well). For any a;, a;,; is its adjacent successor (so a; < a;4+1). QO;

is the intersection point of the arcs a; and a;,.

Note that the baseline from Q; to Q; is a trivial valid path (we do not consider any
coverage requirement yet). Among all the valid paths in a substructure, there is one that is

maximal in terms of the coverage ability, which we call the envelope of the substructure.

Definition 2.2 (Envelope of a Substructure): Consider a substructure St(b, A). Suppose
the baseline b is oriented from Qg to Q,. The envelope of St is the valid path {a,[Q;, O1],

@[04, O], - . ., ar[Qk-1, O]} where a;, is the first adjacent successor of g; for all i € [k].

Coverage: Consider a substructure St(b, A). Consider an arc a with endpoints A and B
on baseline b. We use b[A, B] to denote the segment of b that is covered by a. We say
that the region surrounded by the arc a and b[A, B] is covered by arc a and use R(a) to
denote the region. We note that the covered region R(a) is with respect to the current
9H. Similarly, consider a valid path Path. The region covered by Path is U,cpanR(a) (the
union is over all arcs in Path) and is denoted by R(Path). Finally, we define the region
covered by the substructure St, denoted by R(St), to be the region covered by the envelope
of St.

2.4 Simplifying the Problem

The substructures may overlap in a variety of ways. As we mentioned in Section 2.1,
we need to include in H more disks in order to make the substructures amenable to the
dynamic programming technique. However, this step is somewhat involved and we decide
to postpone it to the end of the paper (Section 2.6). Instead, we present in this section
what the organization of the substructures and what properties we need after including

more disks in H for the final dynamic program.

Self-Intersections: In a substructure St, suppose there are two arcs a and ¢ in A with
endpoints A, B and C, D respectively. If A < B < C < D and a and ¢ cover at least one and

the same pointin #, we say the substructure is self-intersecting. In other words, there exists
15
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at least one point covered by two non-adjacent arcs in a self-intersecting substructure. See
Figure 2.9 for an example. Self-intersections are troublesome obstacles for the dynamic
programming approach. So we will eliminate all self-intersections in Section 2.6. In the
rest of the section, we assume all substructures are non-self-intersecting and discuss their

properties.

Lemma 2.3 (Single Intersection Property): For any two arcs in a non-self-intersecting

substructure St, they have at most one intersection in R(St).

Proof We prove by contradiction. Suppose a; and a; belong to the same substructure. a;
and a; intersect at point A and B. Since the substructure is non-self-intersecting, a; and
a; lie on the same halfplane divided by line AB. Since the two radii of a; and a; are equal,
the sum of central angles of a; and a; equals 27. Thus, at least one central angle of a; and
a; is no less than 7, rendering a contradiction to the fact that the central angle (defined in

Section A) of any arc is less than 7. O

Based on the single intersection property, we can easily get the following property.

Lemma 2.4: Consider two arcs a and b in a non-self-intersecting substructure. If a and
b intersect in the substructure and there is a point in the substructure being covered by

two arcs a and b, then a is adjacent to b.

Order Consistency: There are two types of relations between substructures which affect
how the orientations should be done. One is the overlapping relation and the other is
remote correlation. See Figure A.2 for some examples.

First, we discuss the case when two substructures overlap. For an arc a, we use D(a)
to denote the disk associated with a. For a substructure St(b, A), we let D(b) be the set of

disks that contributes an arc to the baseline b.

Definition 2.3 (Overlapping Relation): Consider two substructures St;(b;, A;) and
Sty(b,, A,) and the point set . We say that St; and St, overlap when there is a point in
% that is in R(Stl) N R(Stz)

Our dynamic program requires the overlapping substructures satisfying the overlap-

ping order consistency defined as follows.

Definition 2.4 (Overlapping Order Consistency): We say the overlapping order consis-
tency holds for two overlapping substructures if their orientations are different (i.e., if one

is clockwise, the other should be counterclockwise).
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The other type of relation is remote correlation. As we alluded in Section 2.1, the two
substructures which contain different related active regions of the same gadget interact

with each other.

Definition 2.5 (Remote correlation): Consider two substructures St, and St; which are
not overlapping. Suppose they contain two different active regions of the same gadget
respectively (recalling that one gadget may have two different active regions, one in H™,
one in H~). We say that the two substructures are remotely correlated or R-correlated.
See Figure A.2.

There are two possible baseline orientations for each substructure (clockwise or
anticlockwise around the center of the arc), which gives rise to four possible ways to
orient both St, and St;. However, there are only two (out of four) of them that are
consistent (thus we can do dynamic programming on them). More formally, we need the

following definition:

Definition 2.6 (Remote Order Consistency): We say that remote order consistency holds
for two substructures St,(b,, A,) and St;(b;, A;) if there is an orientation for each sub-
structure, such that it can not happen that a; < b; in substructure St, but a; > b; in St;,

where a;, aj € 6D1, bi’ bj S aDz and a;, bi S ﬂu, aj, b] S ﬂl.

We show in the following simple lemma that the local order consistency can be easily

achieved for the two substructures containing different active regions of the same square.

Lemma 2.5 (Remote Order Consistency): Consider two substructures St,, and St; which
are R-correlated. Each of them contains only one active region. Then the remote order

consistency holds for the two substructures St, and St;.

Proof We consider two substructures St, and St;. The arcs not in the active regions have
no influence on the order consistency since each of them only appears in one substructure.
So, we only need to consider the order of the arcs in two active regions. We use the same
notations as those on the RHS of Figure A.1. We orient the upper baseline from Q; to
Q,, and the lower baseline from P, to P,. Suppose two arcs cy, c3 belong to disk D,,, and
two arcs ¢, ¢4 belong to the disk D,. Assume c¢; < c¢3 in substructure St, and ¢; < ¢;
in substructure St;. There must exist another intersection point on each side of the line
connecting the two intersections of (cy, ¢2), (¢3, ¢4). This contradicts the fact that two unit

disks have at most two intersections. O
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As different substructures may interact with each other, we need a dynamic program
which can run over all substructures simultaneously. Hence, we need to define a globally

consistent ordering of all arcs.

Definition 2.7 (Global Order Consistency): We have global order consistency if there is
a way to orient each substructure, such that (1) for any pair of overlapping substructures,
the local order consistency holds, and (2) for any pair of remote-correlated substructures,

the remote order consistency holds.

Substructure Relation Graph S: we construct an auxiliary graph &, called the sub-
structure relation graph, to capture all R-correlations and overlapping relations. Each
node in & represents a substructure. If two substructures are R-correlated, we add a blue
edge between the two substructures. If two substructures overlap, we add a red edge.

Consider a red edge between St;(b;, A;) and St,(b,, A,). If baseline b; is oriented
clockwise (around the center of any of its arc), then b, should be oriented counterclock-
wise, and vise versa. The blue edge represents the same orientation relation, i.e., if
Sti(by, A;) and Sty(b,, A») are R-correlated, by and b, should be oriented differently.

It is unclear how to orient all baselines if S is an arbitrary graph. So we need to

ensure that S has a nice structure.

Definition 2.8 (Acyclic 2-Matching): We say the substructure relation graph S is an
acyclic 2-matching, if S is acyclic and is composed by a blue matching and a red matching.
In other words, S only contains paths, and the red edges and blue edges appear alternately

in each path.

If S is a acyclic 2-matching, we can easily assign each substructure an orientation

that achieve global order consistency .

Point-Order Consistency: Similarly to the arc order consistency, we also need to define

the point-order consistency, which is also crucial for our dynamic program.

Definition 2.9 (Point Order Consistency): Suppose a set P, of points is covered by both
of two overlapping substructures St;(by, A;) and Sty(by, A,). Consider any two points
Py, P, € P, and four arcs a,a, € Ay, by, by € A,. Suppose P; € R(a;) N R(b;) and
P, € R(ap;) NR(by). But Py ¢ R(ay) UR(b,) and P, ¢ R(a;) UR(b;). We say P, and P,
are point-order consistent if a; < a, in St; and b, < b, in St, (or if a; > a, in St; and
by > b, in St;). We say the points in P, satisfy point order consistency if all pairs of

points in #,, are point-order consistent.
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After introducing all relevant concepts, we can finally state the set of properties we

need for the dynamic program.

Lemma 2.6: After choosing H, we can ensure the following properties holds:

P1. (Active Region Uniqueness) Each substructure contains at most one active region.

P2. (Non-self-intersection) Every substructure is non-self-intersecting.

P3. (Acyclic 2-Matching) The substructure relation graph & is an acyclic 2-matching,
i.e., S consists of only paths. In each path, red edges and blue edges appear
alternately.

P4. (Point Order Consistency) Any point is covered by at most two substructures. The

points satisfy the point order consistency.

How to ensure all these properties will be discussed in detail in Section 2.6. Now,

everything is in place to describe the dynamic program.

2.5 Dynamic Programming

Suppose we have already constructed the set H such that Lemma A.3 holds (along
with an orientation for each substructure). Without loss of generality, we can assume
that the remaining disks can cover all remaining points (otherwise, either the original
instance is infeasible or our guess is false). In fact, our dynamic program is inspired by,

and somewhat similar to those in-¢161,

DP for Two Overlapping Substructures: For ease of description, we first handle the
case where there are only two overlapping substructures. We will extend the DP to the
general case shortly. Suppose the two substructures are St (b, A;) and Sty(by, A»), by is
oriented from Py to P, and b, is oriented from Q; to Q,. See Figure 2.5 for an example.
A state of the dynamic program is a pair ® = (P, Q) where P is an intersection point
of two arcs in substructure St; and Q is an intersection point of two arcs in substructure
St,. Fix the state ® = (P, Q) and consider St;. Let bp and 7p be the two arcs intersecting
at P. Suppose bp < tp with endpoints (A, B), (C, D) respectively. We call arc bp the
base-arc and tp the top-arc for point P. ® Our DP maintains that the base-arc is already

paid in the subproblem.

@®  If P is the tail endpoint of an arc (so P is on the baseline), P only has a base-arc (no top-arc), which is the baseline

arc it lies on.
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(®) P,

Figure 2.5 The figure explains the dynamic program of two overlapping substructures. The left
figure shows the subproblem OPT(P, Q). The goal of OPT(P, Q) is to find minimum valid paths
for PP, and QQ; respectively in set A;[P]UA,[Q] such that the paths cover all points of P[P, O].
The right figure illustrates one of its four smaller subproblems OPT(P?, Q).

Given state ® = (P, Q), now we describe the subproblem associated with the state.®
Intuitively, a feasible solution to the subproblem restricted to St; (resp. St,) is a valid path
starting from point P (resp. Q) and terminating at P, (resp. Q;). More specifically, we
construct a substructure StEP](bl [P], A,[P]) :

* by[P] is the concatenation of subarc bp[P, B] and the original baseline segment
b[B, P,]. All arcs in b;[P] have cost zero.

* A[P] consists of all arcs @’ € A; such that bp < a’ (of course, with the portion
covered by b;[P] subtracted). The cost of each such arc is the same as its original
cost.

Similarly, we consider St, and the intersection point Q, and construct St;[Q] with baseline
b,[Q] and arc set A,[Q]. We use P(a) (or P(A)) to denote the points covered by a (or
A) (w.rt. the original baseline). Let the point set $p o that we need to cover in the

subproblem ®(P, Q) be
Pp.o = P(ALP]) UP(AQ] - P(bp) — P(bo). (2-D

We note that the minus term —P(bp) — P(bo) is not vacuous as bp (resp. by) may cover
some points in A,[Q] (resp. A;[P]), and it is important that we do not have to cover
those point (this subtlety is crucial in the correctness proof of the DP). The goal for the
subproblem ®(P, Q) is to find two valid paths with minimum total weight, one from P to
P; and one from Q to Q;, such that they together cover all points in $p . Note that the

weights of both base-arcs bp and b, should be included in any feasible solution as well.

®  Note that each state corresponds to exactly one subproblem. Hence, we do not distinguish “state” and “subproblem"
in the following and use ® = (P, Q) to represent the subproblem too.
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Suppose bp(P, B] intersects its first successor at P? (called base-adjacent point) and
tp(P, D] intersects its first successor at P’ (called top-adjacent point). Similarly, we define
0%, Q' in St, in exactly the same way.

Now, computing the optimum for subproblem ®(P, Q) reduces to computing the op-
tima for four smaller subproblems OPT(P?, Q), OPT(P!, Q), OPT(P, Q") and OPT(P, Q").
We define two Boolean variables Ip (reps. Ip) indicating whether we can move from
Ppv o to Pp o without choosing a new arc. Formally, if Ppo = Ppsvg, Ip = 0. Oth-
erwise, Ip = 1. Similarly, if Ppo = Ppgr, Ip = 0. If not, Ip = 1. The dynamic

programming recursion is:

OPT(P, Q") + Iy - 0, add no new arc ;
OPT(P,0") + w[byp], add base-arc by
OPT(P, Q) = min (P.O") +wlbol 0 (2-2)
OPT(P?,Q) + Ip - o0, add no new arc ;

OPT(P',Q) + w|bp], add base-arc bp.

The optimal value we return is OPT(Pg, Q). Now, we prove the correctness of the DP
in the following theorem. We note that both the point-order consistency and the subtlety

mentioned above play important roles in the proof.

Theorem 2.1: Suppose that we have two overlapping substructures St;(by, A;) and
Sty(b,, Ay). Further suppose that b; and b, are oriented in a way such that the point-
order consistency holds. Then, the cost of the optimal solution is equal to OPT(Py, Q)
(which is computed by (2-2)).

Proof Consider subproblem OPT(P, Q). As we know the optimal solution of OPT(P, Q)
should be two valid paths. One is from P to P, and the other is from Q to Q,. Suppose
they are Path, = {a[P, P1], a:[ Py, P2], ..., a;[Pi-1, P;], ..., ax[Px-1, P;]} and Path, =
{010, 01], b2[Q1, 03], ..., bi[Qi-1, Qi - .., bi[Qi-1, O;]}. We can see that it suffices to
prove that at least one of the two statements is true.

* The pair of paths (Path; — {a,[P, P;)}, Path,) is an optimal solution to subproblem

OPT(Py, Q).
* The pair of paths (Path;, Path, — {b;[Q, Q1)}) is an optimal solution to subproblem
OPT(P, Q). a

We prove by contradiction. Assume that both of the above statements are false. Suppose
bp and by are the base-arcs for state (P, Q), i.e., bp intersects with a; at point P and

bo intersects with b, at point Q. We use #(Path) to denote the point set which is covered
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by path Path. Recall that P[P, Q] = P(A[P]) U P(A[Q]) — P(bp) — P(bg). Since
Path; UPath;, is the optimal solution for OPT(P, Q) (hence feasible), we have that P[P, Q] =
P(Path;)UP(Path,) —P(bp)—P(bo). Then, the pair of paths (Path, — {a,[P, P,)}, Path,)
is the optimal solution for the subproblem in which we need to pick one path from P; to

P, and one from Q to Q, to cover the points in
P(Pathl) U P(Pathz) - P(bp) - P(bQ) - P(al) = P[P, Q] - P(al).

If not, we can get a contradiction by replacing Path; —a,[ P, P,| and Path, with the optimal
solution of the above subproblem, resulting in a solution with less weight than OPT(P, Q)

for ®(P, Q). Since the first statement is false, we must have that

PP, Q] - P(a) # P[P, O]

(otherwise (Path; — {a;[P, P;)}, Path,) is optimal for ®(P;, Q)). We note that the LHS C
RHS. Plugging the definition (2-1), we have that

P(A[PNYUP (A Q) -P(bp)-P(bo)-P(a1) # P(A[PIDUP(AAQD-P(a1)-P(bo).

A careful (elementwise) examination of the above inequality shows that it is only possible

if
P(bp) N (P(AUQ]) - P(bo)) # 0.

Repeating same argument, we can see that if the second statement is false, we have that
P(bo) N (P(ALP]) — P(bp)) # 0.

Hence, there exist b; € A,[Q] and a; € A,[P] such that P(bp) NP (b;) # 0, and P(by)N
P(a;) # 0. However, this contradicts the point-order consistency because of bp < a; and
bo < b;.

Thus, one of the two statements is true. W.l.0.g, suppose (Path; —{a,[P, P;]}, Path,)
is the optimal solution to subproblem OPT(P;, Q). Suppose P’, Q' is the top-adjacent
point of P, Q. If P, is the top-adjacent point of P (i.e., P; = P"), through OPT(P, Q) =
OPT(Py, Q)+w|[bp]in DP(2-2), we can get the optimal solution of subproblem OPT(P, Q).
If not, i.e. P, # P, P, and P’ are on the same arc bp. According to (2-2), we have
OPT(P!, Q%) = OPT(P;, Q). Then, OPT(P, Q) = OPT(P!,Q) + w[bp] = OPT(P;, Q) +
w[bp]. Thus, we can prove that (Path;, Path,) is the optimal solution to at least one of

22



Chapter 2 A PTAS for Weighted Unit Disk Cover

the subproblems OPT(P, Q") or OPT(P!, Q). Thus, we can get the optimal solution for
OPT(P, Q) by our DP.

DP for the general problem: Now, we handle all substructures together. Our goal is
find a valid path for each substructure such that we minimize the total weight of all the
paths. We can see that we only need to handle each path in the substructure relation graph
S separately (since different paths have no interaction at all). Hence, from now on, we
simply assume that © is a path.

Suppose the substructures are {Sti(bk, Ax)}tkeim). We use Ay and By to denote
two endpoints of by. Generalizing the previous section, a state for the general DP is
® = {Py}kepm), Where Py is an intersection point in substructure St,. We use bp,, tp,,
P,i’ , P to denote the base-arc, top-arc, base-adjacent point, top-adjacent point (w.r.t. Py)
respectively. For each k € [m], we also define StLP"](bk [Pr], Ai[Pr]) in exactly the same

way as in the previous section. The point set we need to cover in the subproblem is:

P [{(Pidiaim] = | ) PALPD - | ] Pbro).

ke[m] ke[m]
The subproblem OPT({ P }x¢[m) is to find, for each substructure St;, a valid path from Py
to By, such that all points in P[{Px }xe[n] can be covered and the total cost is minimized.

The additional challenge for the general case is caused by R-correlations. If two arcs
(in two different substructures) belong to the same disk, we say that they are siblings of
each other. If we processed each substructure independently, some disks would be counted
twice. In order to avoid double-counting, we should consider both siblings together, i.e.,
select them together and pay for the disk only once in the DP.

In order to implement the above idea, we need a few more notations. We construct
an auxiliary bipartite graph B. The nodes on one side are all disks in D’ \ H, and the
nodes on the other side are substructures. If disk D; has an arc in the substructure St;, we
add an edge between D; and St;. Besides, for each arc of the baselines, we add a node
to represent it and add an edge between the node and the substructure which contains the
arc. Because the weight of any arc of any of the baselines is zero, it shall not induce any
contradiction to regard them as independent arcs. In fact, there is a 1-1 mapping between
the edges in B and all arcs. See Figure 2.6 for an example.

Fix a state ® = {Py}kem). For any arc a in Sty (with intersection point Py and
base-arc bpy ), a has three possible positions:

1. a < bpy: we label its corresponding edge with “unprocessed”;
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Disks

A D [ \ D,

Substructures

Figure 2.6 The bipartite graph which is used for marking the ready disks. The nodes on upper
side represent the disks. The nodes on the lower side represent the substructures. If D; has an arc

in St;, we add an arc between them.

2. a = bpy: we label its corresponding edge with “processing”;
3. Others: we label its corresponding edge with “done”.
As mentioned before, we need to avoid the situation where one arc becomes the base-arc
first (i.e., being added in solution and paid once), and its sibling becomes the base-arc
in a later step (hence being paid twice). With the above labeling, we can see that all
we need to do is to avoid the states in which one arc is “processing” and its sibling is
“unprocessed”. If disk D is incident on at least one “processing” edge and not incident
on any “unprocessed” edge, we say the D is ready. Let R be the set of ready disks. For
each ready disk D, we use N,(D) to denote the set of neighbors (i.e., substructures) of D
connected by “processing” edges. We should consider all substructures in N,(D) together.
Again, we need in our DP indicator variables to tell us whether a certain transition
is feasible: Formally, if P[{Pi}ceim] = PIPIIP’1iy]), let I; = 0. Otherwise, let
I; = 1. Here, for ease of notation, for a set {ey }re[m) and S C [m], we write [ex][e/]s =

{ex}kepmps U {e/}ies. Hence,

[P I[Py = {Pixepmi U PP and

[PiIP{ In,0) = {Pitremnn,0) Y {P} }ien,0)
Then we have the dynamic program as follows:

min; ey {OPT ([Pe][P?]qiy) + I - oo},  add no disk

OPT ({Pk}ke[m]) = min ) .
miNpeR {OPT ([Pk][Pf]NP(D)) + WD} , add disk D
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Note that in the second line, the arc(s) in N,(D) are base-arcs (w.r.t. state @({ Py }repm))-
In the rest of the section, we prove the correctness of the dynamic program. If we
use the solution of a smaller subproblem OPT(®’) to compute subproblem OPT(®), we
say @ can be reached from @’ (denoted as @ — ®). If ® can be reached from initial state
Do({Px | Px = Bi}kepm)), We say the state is reachable, which is denoted by @y, — .

We start with a simple consequence of our DP: there is no double-counting.

Lemma 2.7: If two arcs in the solution belong to the same disk, their weights are counted

only once in the DP (A-1).

Proof From the DP, we can see that the weight of an arc is counted only when it becomes
a base-arc (its label changes from “unprocessed” to “processing”). If the two sibling arcs
a, b (belonging to disk D) in the solution are counted twice, there exist two states ®; and
@, such that (1)®; — @,, (2)a is a base-arc in @y, but b is not a base-arc in ®;, (3) bisa
base-arc in @,. So, in ®@; or any state before that, arc b is “unprocessed”. However, a can

become a base-arc only when D is ready, rendering a contradiction. O

Now, we prove the correctness of the dynamic program. The proof is a generalization
of Theorem 2.1.

Theorem 2.2: Suppose S is a path. All baselines are oriented such that all properties
in Lemma A.3 hold. Then, the optimal cost for the problem equals to OPT({Ag }xe[m])
(computed by our DP (A-1)).

Proof Suppose the set {Pathy }xc[m) of paths is the optimal solution. We need to prove
(1) the final state ®({A}rem)) is reachable, (2) for any reachable state @ = {Py }iefm)s
OPT({Px }kepm) is the optimal solution for the corresponding subproblem (that is to find
one valid path from P, to By for each substructure St,EPk] to cover all point in P[{Px }xe[m)],
such that the total cost is minimized).

We first prove the first statement. Suppose the state @ is reachable, we prove it can
reach another state if @ is not the final state (i.e., we do not get stuck at ®). Let us prove it
by contradiction. Assume we get stuck at state @. That means there is no ready disk in ®.
Note that each substructure, say St, is incident on exactly one “processing” arc, say arc a
(which is the base-arc in St). a’s sibling, say b (in St’), must be labeled “unprocessed”

(otherwise the disk would be ready). Consider the base-arc (or “processing” arc), say a’,
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in St’. So we have a’ < b in St’. Again the sibling b’ of @’ must be an “unprocessed” arc
in St. © So we have b’ < a in St, which contradicts the global arc-order consistency.
Now, we prove the second statement. We consider state @ = {Py }xc[m). Suppose the
optimal solution for subproblem ®{Py }ie[m is the set of paths PS = {Pathy }x¢[n) Where
Pathy = (ax,ax,...,ax,). Consider the states @y ) := [Prl[P{]n,p) for all D € R.
Obviously, we can see from our DP that CDNP(D) — @. Define for each D € R, a set of

paths

PSw,) = {Pathy }reim)-n,0) Y {Path; — {a;, } }ien,0)-

It suffices to prove that there exists at least one D € R such that PSy, p) is the optimal
solution for OPT(®, (p)).

Consider a substructure St;. Suppose the intersection point in St; of ® is P; and the
base-arc at point P; is bp;. For each i € [m], let St be the only substructure (if any)
overlapping with St;. So bp,(; is the base-arc of St,;). Using exactly the same exchange
argument in Theorem 2.1, we can show that if PSy (o) is not the optimal solution for
OPT(®n,(p)), there exists some i € N,(D) such that &; happens, where &; is the following

event: there exists an arc S in Sty with B > bp ;) such that
Pbpi) NP (Brw) # 0.

We use &; to denote the above event. Thus if there is no D € R such that PSn,p) is the

optimal solution for OPT(®y,p)), we have

/\ \/ &; | = True. (2-4)

DeR \ieN,(D)

Converting the conjunctive normal form (CNF) to the disjunctive normal form (DNF), we

get

\/ ( /\ &k, | = True, O

(kt,....kig|) €llper Np(D) \ieR

where IIpcr N, (D) means the Cartesian product of all N,(D) in R. We call each \;¢ x| Ex,
a clause (note that k; indexes a substructure). If we can prove that every clause is false,

then obviously, (2-4) is false, resulting in a contradiction.

® To see that &’ is in St, note that & is a path and St is only R-correlated with St’ (and vice versa).
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Now, we show that every clause is false. First, we consider the case that both end
nodes of G are incident to red edges. W.l.0.g., suppose the two nodes of S are St; and St,.
Thus, they are not R-correlated with other substructures. We know if one substructure
St; is not R-correlated with others, every clause must contain the corresponding event &;
(since the disk corresponding to its base-arc must be ready and in R). Hence, every clause
contains &; and &,. Moreover, for each pair (St;, St;) of R-correlated substructures, each
clause should contain either &; or &;. Suppose the length of the path € is £. Because red

and blue edges alternates, there are ‘)—51 R-correlated substructure pairs and ‘izl overlapping

substructure pairs. We should select % + 2 terms in each clause. Because % +2> %,
there exists a pair of overlapping substructures (St;, St;(;)) such that both &; and &,

appear in the clause. To make the clause true, we must have
Ei = (P(bp;) N Pri) #0) =True and  Eri) = (P(bpriy) N Bi # 0) = True,

where B > bp,;) and B; > bp;. It yields a contradiction to the point-order consistency.

Next, we consider the remaining case where at least one end of the path & is a blue
edge, meaning the substructure on the end does not overlap with any other substructure.
W.L.o.g., suppose the end node is St; and it is R-correlated with St,. The event &, =
P(bp1) N P(Bra)) # 0) is always false since B,(1) does not exist. So all clause containing
&, is false. To make each of the remaining clauses true, &, must be true, and the case
reduces to the previous case (by simply omitting node St;). So the same argument again

renders a contradiction. This completes the proof of the theorem.

2.6 Constructing H

In this section, we describe how to construct the set / in details. We first include
in H all square gadgets. Hence, the boundary of H consists of several closed curves, as
shown in Figure A.2. H and all uncovered arcs define a set of substructures.

First, we note that there may exist a closed curve that all points on the curve are
covered by some arcs (or informally, we have a cyclic substructure, with the baseline
being a cycle). We need to break all such baseline cycles by including a constant number
of extra arcs into . This is easy after we introduce the label-cut operation in Section 2.6.1,
and we will spell out all details then. Note that we cannot choose some arbitrary arcs on

the envelope of the cycle since it may ruin some good properties we want to maintain.
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From now on, we assume that all baselines are simple paths. Now, each closed curve
on JR(H) contains one or more baselines. So, we have an initial set of well defined
substructures. The main purpose of this section is to cut these initial substructures such
that Lemma A.3 holds.

We will execute a series of operations for constructing H. We first provide below a
high level sketch of our algorithm, and outline how the substructures and the substructure
relation graph & evolve along with the operations.

* (Section 2.6.1) First, we deal with active regions. Sometimes, two active region
may overlap significantly and become inseparable (formally defined later), they
essentially need to be dealt as a single active region. In this case, we merge the two
active regions together (we do not need to do anything, but just to pretend that there
is only one active region). We can also show that one active region can be merged
with at most one other active region. For the rest of cases, two overlapping active
region are separable, and we can cut them into at most two non-overlapping active
regions, by adding a small number of extra disks in H. After the merging and
cutting operations, each substructure contains at most one active region. Hence,
the substructures satisfy the property (P1) in Lemma A.3. Moreover, we show that
if any substructure contains an active region, the substructure is limited in a small
region.

* (Section 2.6.2) We ensure that each substructure is non-self-intersecting by a simple
greedy algorithm. After this step, (P2) is satisfied.

* (Section 2.6.3) In this step, we ensure that substructure relation graph © is a acyclic
2-matching (P3). The step has three stages. First, we prove that the set of blue
edges forms a matching. Second, we give an algorithm for cutting the substructures
which overlap with two or more other substructures. After the cut, each substructure
overlaps with no more than one other substructure. So after the first two stages, we
can see that S is composed of a blue matching and a red matching. At last, we prove
that the blue edges and red edges cannot form a cycle, establishing € is acyclic.

* (Section 2.6.4) The goal of this step is to ensure the point-order consistency (P4).
We first show there does not exist a point covered by more than two substructures,
when G is an acyclic 2-matching. Hence, we only need to handle the case of two
overlapping substructures. We show it is enough to break all cycles in a certain

planar directed graph. Again, we can add a few more disks to cut all such cycles.
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* (Section 2.6.5) Lastly, we show that the number of disks added in H in the above
four steps is O(K?), where K = ;% and L and u are side lengths of block and small

square respectively.

2.6.1 Merging and Cutting Active Regions

If two active regions overlap in the same substructure, we need to either merge them
into a new one or cut them into two non-overlapping new ones. As we know, each gadget
may have two active regions. Suppose active regions Ar; and Ar, belong to the same
gadget Gg, while Ar| and Ar} belong to a different gadget Gg’. Due to R-correlations, we
need consider the four active regions together.

First, we consider the case where Ar; overlaps with Ar{, and Ar, overlaps with Ar}.
We need the following important concept order-separability, which characterizes how the

two sets of arcs overlap.

Definition 2.10 (Order-separability): Consider a substructure St(b, A). A;, A, are two
disjoint subsets of A. If A, A, satisfy that

a < b, forany a € A, and b € A, (2-5)
or
a > b, for any a € A, and b € A,, (2-6)
we say that A, A, are order-separable.

We use A, , Aj, Az, A to denote the set of arcs associated with active regions Ary,
Ar, Ar,, Ar}, respectively. If A; and A; are not order-separable, we say the pair (Ar;, Ar)
is a mixture. If both of (Ary, Ar}) and (Ar,, Ar}) are mixtures, we say the two pairs form a
double-mixture. When they are double-mixture, we merge them simultaneously. It only
means that we regard the two active regions (Ar;, Ar{) as a new single active region, and
(Ar,, Ar) as another single active region.

To show an active region cannot grow unbounded, we prove that the merge operations
do not generate chain reactions. The rough idea is that if two active regions form a
mixture, their corresponding small squares must be adjacent and their core-central areas
must overlap. Due to the special shape of core-central areas (a narrow spindle shape), the

overlapping can only happen between two of them, not more.
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Lemma 2.8: Consider two non-empty small squares I', I'". Suppose the square gadgets
in the two squares are Gg(I') = (D, D;) and Gg(I'") = (D, D;). The active region
pairs (Ary, Ar,) and (Arj, Ar}) are associated with gadget Gg(I') and Gg(I'”) respectively.
(Ary, Arp) and (Ar], Ar;) form a double-mixture. Then, the following statements hold:

1. Their corresponding squares I', " are adjacent;

2. The core-central areas of Gg(I') and Gg’(I"”) overlap;

3. The angle between DD, and D;D; is O(e)

4. Neither of the two core-central areas can overlap with any small squares other than

["and I".

Next, we consider the case where only one of (Ary, Ar}) and (Ar,, Ar}) is a mixture.
However, we show that it is impossible as follows. We use notation Ar(:A) to denote an

active region with arc set A.

Lemma 2.9: Suppose active region pairs (Ar;(A;), Aro(A)) and (Ar{(A]), Ary(A})) are
associated with gadget Gg and Gg’ respectively. If A; and A are order-separable, then

A, and A are also order-separable.

The proofs of Lemma 2.8 and Lemma 2.9 are elementary planar geometry and we

defer them to Appendix 2.9.2.

Cutting Overlapping Active Regions: After the merging stage, even if any two active
regions overlap in the same substructure, their arcs are order-separable. We define label-
cut operation as below to further separate them such that the baselines of all the active
regions are non-overlapping.

We consider two overlapping active regions Ar (A;) and Ar,(A;) in a substructure
St(A). Suppose A, A, € A and A, A, are order-separable. We can add two consec-
utive arcs in the envelope of A into H. Then, St is cut into two substructures St; and
St, with disjoint baselines, such that R(Ar;) ¢ R(St;) and R(Ar,) c R(St,). We call the
process label-cut. In other words, if we assign arcs in A; one kind of label and arcs in A,
a different kind of label, after the label-cut operation, the arcs with different labels belong

to different new substructures.

Lemma 2.10:  Consider a substructure St(b, A) and two subsets A;, A; of A. There

exists a label-cut when A| and A are order-separable.

Figure 2.7 illustrates the process of construction. Note that A{ and A, are order-separable.

We travel along the envepole of A. We defer its proof in Appendix 2.9.2.
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Figure 2.7 The example of label-cut. The left hand side illustrates the whole substructure before
cutting. The arcs have two different labels. One is green and the other is brown. The bold black
subarcs are what we select in the envelope. The right hand side illustrates that each of the two

separable substructures induced by the label-cut operation only contains arcs with the same label.

After the label-cut operation, in each substructure, the baselines for all active regions
are not overlapping. Thus, if any substructure contains more than one active region,
consider any two of them, say A; and A,. Note that A; and A, are not overlapping.
Thus, we can add into H one arc a along the envelope which satisfies a; < a < a,, Va, €
Ay, ar € A,. After the addition of arc a, A; and A, are separated into two different new
substructures. Repeat the above step whenever one substructure contains more than one

active region. This establishes the active region uniqueness property (P1).

Limiting the size of substructure which contains an active region: Now, we discuss
how to make substructure which contains an active region bounded inside a small region.
This property is particular useful later when we show the substructure relation graph & is
acyclic.

Suppose the gadget of square I is (D, D,). The line DD, divides the plane into two
halfplanes H* and H~. D, and D, intersect at points P and Q. The boundary of disk
D(P,?2) is tangent to Dy and D, at point Q; and Q, respectively. D(Qy, 1) and D(Q;, 1)
intersect at point D. See Figure 2.8. We call D the dome-point of gadget Gg(I') and use
Dom(I'*) to denote the region (D(D, 1)) — Dy — D;) N H*. Similarly, we use Dom(I'") to
denote the region (D(D, 1)) — Dy — D,) " H~. Dom(I'*) and Dom(I"") covers the active

region associated with I'. Formally speaking, we give the following lemma.

Lemma 2.11: Consider the substructure St which contains an active region of square I'.
The substructure can be cut into at most three smaller substructures, by doing label-cut
at most twice. At most one of them contains the active region. Moreover, this new

substructure (if any) is covered by the region Dom(I"*) (or Dom(I'™)) associated with T".

We defer the proof to Appendix 2.9.2.
There may exist a substructure which contains a merged active region (i.e. an active

region which is the union of two initial active regions). Based on Lemma 2.8, the arcs
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Figure 2.8 The farthest disk pair of square I" is (Dy, D;). Suppose D and D; intersect at point
P,Q. The disk D(P,?2) is tangent to Dy and D; at point Q; and Q; respectively. D(Qy, 1) and
D(Q;, 1) intersect at D. The active region of ' in H* is totally covered by Dom(I'").

of the two initial active regions belong to two adjacent small squares. Suppose the two
squares are I', I'", with square gadgets (D, D,) and (D¢, D;) respectively. The dome-points
of I' and I'"” in H* are respectively D and D’. We apply the operations in Lemma 2.11
for each initial active region. Since the angle between DD, and D/ D; is O(e), obviously,
the substructure containing the merged active region is small as well, i.e. bounded in
Dom(I"*) U Dom(I""*).

Since each substructure which contains an active region is small enough, we can show
the following lemma, which will be useful for proving the acyclicity of the substructure

relation graph S.

Lemma 2.12 (Highly parallel arcs): Suppose substructure St(b, A) contains an active
region. The central angle of any arc in St is no more than O(¢). Meanwhile, there exists
a line / such that the angle between / and the tangent line at any point of any arc a € A is

at most O(¢).

The correctness is directly followed by Lemma 2.8. Actually, for the initial active region,
the line DgD, satisfy the property. For the merged active region, we know the angle
between DD, and D.D; is O(e) based on Lemma 2.8. Hence, we can still see that the
line D, D, satisfies the property.

To summarize, after all operations in this subsection, we can ensure that each sub-
structure contains at most one active region (i.e., (P1) in Lemma A.3). Moreover, we
have that each substructure which contains an active region is small enough (so that
Lemma 2.12 holds).

Handling cyclic substructures: At the end of this subsection, we deal with the problem
we left in the very beginning of Section 2.6, to break all cyclic baselines. Note that this

step should be done in the beginning. First, we consider that case that there exists a point
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(@) )

Figure 2.9 The process to avoid self-intersection. The left hand side is a self-intersection
substructure. We search from point Q, along the envelope. Let arc set A; be {ay,ay,...,a;}.
Then we have a set {St;[A;]}ie[x) of substructures. If St; is non-self-intersecting but St;; is
self-intersecting, we add arc a;; in H. The right hand side illustrates the two new substructures

after the cut.

on the baseline which cannot be covered by any arc of any active region. We can include
any envelope arc that covers the point into H, which is enough to break the cycle. This
is essentially a label-cut and does not separate any single connected active region into
disconnected pieces. Then we consider the case where every point on the baseline is
covered by some arc of active regions. Note that the merge operation only depends on the
local property of two active regions, thus, we can merge active regions even in a “cyclic
substructure”. Assume that we have done all merge operations. Based on Lemma 2.12,
we know one active region is very small and thus cannot cover all points on a closed curve.
We pick one active region. Using the same operation as Lemma 2.11 (do two label-cuts),
we can essentially isolate the active region and cut the original cyclic baseline to two new

baselines.

2.6.2 Eliminating Self-intersections

The goal of this part is to add a few more disks into H so that any substructure
is non-self-intersecting (Recall the definition in Lemma 2.3). Note that after merging
and cutting process in Section 2.6.1, substructures which contain active region are non-
self-intersecting. We just need to process the substructures without active regions in this
part.

We use a simple greedy approach. We consider one substructure St(b, A). Suppose
the endpoints of b are O and Q,, and the envelope is {a1[Qy, O1],- . ., ax[Qk-1, O/}, where
Q; is the intersection point of a;_; and a;. We denote the endpoints of a; on the baseline
b by P; and P/ (Note that P; = Q). Let arc set A; be {ay, a,, ..., a;}. Then we have a set
{St;[A;:]}iepk) of substructures, where St;[A;] is the substructure induced by arc set A;.
We consider the arcs lying on the envelope one by one and check whether we should add

it into H or not. Concretely, we add D(a;,) in H if the following condition holds:
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* St; is non-self-intersecting, but St; is self-intersecting,
The addition of D(a;, ) cuts the substructure into two smaller substructures. One of which
is certainly non-self-intersecting. The other is induced by arc set A = {a;s2, ..., ar}-
See Figure 2.9. We repeat the above process until there is no self-intersection in all
substructures. Furthermore, we can easily prove the following nice property. The proof

can be found in Appendix 2.9.3.

Lemma 2.13: In each of the above iterations, one substructure St(b, A) is cut into at
most two new substructures. Any original arc in A cannot be cut into two pieces, each of

which belongs to a different new substructure.

To summarize, we have obtained the non-self-intersection property ((P2) in

Lemma A.3).

2.6.3 Ensuring that S is an Acyclic 2-Matching

We discuss how to add some extra disks in H to make S an acyclic 2-matching ((P3)

in Lemma A.3).
Blue edges: First we show that the set of blue edges form a matching.

Lemma 2.14: Two blue edges cannot be incident to the same node.

Proof Before the merge operation, the set of active region pairs forms a matching. To see
this, note that our merge operations always apply to a double-mixture (which corresponds
to merging two blue edges into one). Moreover, any cut operation cannot break one active
region into two, thus has no effect on any blue edge. Hence, after all merge and cut

operations, the set of active region pairs is still a matching. m|

Red edges: Then, we prove that any node which has more than one incident red edges
can be cut such that each new node(i.e., substructure) only has at most one incident red
edge.

First, we prove a simple yet useful geometric lemma stating that a point cannot be
covered by three or more substructures. Note that from now on, all substructures have no

self-intersections.

Lemma 2.15: We are given a substructure St(b, A) and an arc a € A. Consider two
arcs by, by, ¢ A. If by, b, cover the same point on a, by, b, should belong to the same

substructure.
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Intuitively, if the two disks corresponding to b, and b, cover the same point, they
should be close enough such that their corresponding square gadgets overlap (which
implies b, and b, share the same baseline). First we prove that the minimum distance
between any two disks in two different substructure should not be too small, i.e., their
overlapping region cannot be too large. The proof can be found in Appendix 2.9.4.

In fact, essentially the same proof can be used to prove that any two different
substructures cannot both intersect with subarc whose central angle is O(€), as in the

following corollary.

Corollary 2.1:  Suppose St(b, A) is a substructure without any self-intersection. Con-
sider an arc a € A and two arcs by, b, ¢ A. Suppose a’ is a subarc of a whose central
angle is O(e). If both by, b, cover some part of a’, by, b, should belong to the same

substructure.

Combining with Lemma 2.12, we can easily see the following lemma.

Lemma 2.16: Any substructure which contains an active region cannot overlap with two

or more different substructures.

Then we show how to cut the substructure St(b, A) which overlaps with more than
one other substructures. Note that such substructure does not contain an active region
based on Lemma 2.16. Suppose the envelope of St is {a[Qs, O1], ..., ar[Qk-1, O:]}. St
overlaps with k substructures St;(b;, A;),i = 1,2,..., k.

If St; overlaps with St, there exists an arc a € St; intersecting some envelope arc of
St. Thus, the envelope St is subdivided into several segments by those intersection points.
We can label those segments as follows:

* If the segment is covered by some arc in St;, we label it as ‘i’.

* If there is no arc in any St; covering the segment, we label it as ‘0’.

See Figure 2.10 for an example. According to the Lemma 2.15, we know there is no point
on the envelope covered by two substructures. Thus the above labeling scheme is well
defined.

Traversing those segments along the envelope, we obtain a label sequence. First, for
each label i, we identify those maximal consecutive subsequence, which consists of only
letter O and i, and starts with and end with i, and replace the subsequence by a single
letter i. We obtain a compressed sequence. In fact, each letter, say i (i # 0), in the

compressed sequence corresponds to one or more segments labeled with either i or 0, and
35



Chapter 2 A PTAS for Weighted Unit Disk Cover

Figure 2.10 The arcs in substructures St; and St, cut the envelope of St into 7 segments. The
sequence of the labels for those segments is 0101020. The compressed label sequence is 01020.

So we have 5 1-segments.

the first and last one must be labeled with i. We call the concatenation of those segments
an 1(ong)-segment. Of course, a letter 0 in the compressed sequence corresponding to a
segment with label 0. Actually, the sequence is Davenport-Schinzel sequence of order
21701 "because two segments with different labels cannot intersect (because the baselines of
two substructures cannot intersect). For example, the pattern “1212” should never appear.
Thus, the length of the compressed sequence, i.e., the number of I-segments, is at most
O(k).

Now, we discuss how to cut St into several new ones based on 1-segments. Keep in
mind that our goal is to make sure each new substructure only overlap with one substructure
of {St;}icix)- The cut operation is again a simple greedy procedure. Consider two
consecutive l-segments. Suppose they are {a;[Q;-1, Q;], ai+1[Q:, Qi+1], - - ., a;[Q;-1, O;1}
and {a;1[Q;, Qj+1], . . ., ak[Qx-1, Ox]}. We add into H the last arc a; of former 1-segment
and the first arc a;,, of the later I-segment. St is thus cut into two new ones. Repeat the
above step for all two consecutive 1-segments in order.

We still need to show that after the cut, every new substructure overlap at most
one of {St;};cx). Consider one new substructure. Notice such an original arc in A can
only belong to one new substructure. By our cut operation, all envelope arcs of the new
substructure can intersect at most one of {St;};,cxj. Hence, the new substructure can

overlap at most one St;.

Blue edges and red edges: After the above operations, the set of all blue edges forms a
matching, while the set of all red edges also forms a matching. To show & is an acyclic
2-matching, it suffices to prove © contains no cycle. So, the rest of the section is devoted

to prove the following lemma.

Lemma 2.17: Suppose the side length of square is u, where u = O(e) and the block
contains K X K small squares, where K = Cy/€” and C, is an appropriate constant. Then,

after all operations stated in this section, there is no cycle in &.
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If there is a cycle Cyc in &, the red edges and blue edges alternate in Cyc, which
correspond to a sequence of substructures, each containing an active region (since it is
R-correlated with another active region). Now, we provide a high level explanation why
Lemma 2.17 should hold. Each active region is associated with a small square. A small
square is very small (comparing to a unit disk or the whole block), and an active region
is also very small. We pick a point in each small square and each substructure. If two
substructures in Cyc overlap, the two points in them are also very close (i.e., O(¢)). So
we can pretend the two points as one point (or we just pick a point in their overlapping
region). For each active region Ar, we connect the point in Ar and the point in the small
square associated with Ar. Since Both the small square and the active region are very
small, the distance between two point is about 1 — O(e). Thus, a cycle Cyc would present
itself geometrically as a polygon. We can show the angle between two adjacent edges of
the polygon is close to 7. So the size of the polygon cannot be not small (it takes a lot of
edges to wrap a loop). However, the polygon cannot be much larger than the block. By
contradiction, we prove that there is no cycle in .

Now, we formally prove Lemma 2.17. We first prove a geometric lemma which will

be useful for bounding the angle between the two adjacent edges of the aforementioned

polygon.

Lemma 2.18: Consider two substructures St; (b, A;) and St,(by, A,) in Cyc. Suppose
St; and St, overlap (there is a red edge between them). For any two arcs a € A; and
b € Aj,, suppose that D(a) and D(b) overlap and their intersection points are A and B. The
central angles of a, b are 6, 6, respectively. The centers of D(a), D(b) are D, D;,. Then
(AD,B (or /AD},B) is at most (6, + 6},).

Proof We distinguish a few cases depending on whether the intersection points A and B
lie on a or b or none of them. All cases are depicted in Figure 2.11.
* Both A and B lie on one arc (see Figure (a)(b)). W.l.o.g., suppose they lie on arc a.
Obviously, ZAD,B is no more than 6, (or 6,) .
* If one intersection is on neither a nor b (see Figure (c)), we prove that the case
cannot happen. Suppose A is on neither of a and b. The endpoint A, of a is covered
by disk D(b) and the endpoint A, of a is covered by disk D(a). Thus the baseline b,
must intersect with b, which contradicts the fact that St; and St, are two different

substructures.
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Figure 2.11 The four kinds of cases for two overlapping arcs.

* If one intersection point is on a but not on b and the other intersection point is on
b but not on a (see Figure (d)), it is easy to see that By is covered by arc b, and A,
is covered by a since their baselines do not intersect. Thus, the length of arc AB
(w.r.t. D(a)) is no more than the sum of lengths of a and b. So ZAD,B is at most
6, +0,.

The above cases are exhaustive, thus our proof is completed. m|

Based on Lemma 2.12, Lemma 2.18, we can prove Lemma 2.17 below:

Proof of Lemma 2.17: Consider two substructures St; and St,. Suppose St; contains the
active region Ary , and St, contains the active region Ar,. The centers of arcs of Ar; and
Ar, locate in small squares I'; and I'; respectively. The square gadgets of the two squares
are Gg(Dy,, D;,) and Gg(Dy,, D,,) respectively. If St; and St, overlap, there must exist an
arc a in Sty and an arc b in St, such that @ and b intersect. Suppose D(a) and D(b) intersect
at points A and B. The center of D(a) and D(b) are D, and D,,.

Based on Lemma 2.12, we know both central angle of a and b are no more than
O(e€). According to Lemma 2.18, the central angle of the arc AB is at most O(€). It means
angle between the tangent lines of D(a) and D(b) at point A is no more than O(e). Thus,
(D, ADy is at least 7 — O(e).

We know that all disks in the same active region are centered in one small square or
two adjacent small squares. Moreover Lemma 2.12 implies all disk centers should lie in
one or two squares. Hence, the distance between (any point in) the square and (any point
in) its active region is at least 1 — O(e). Construct the aforementioned polygon. Consider
two adjacent edges XY and Y Z in the polygon. We consider two cases:

1. Y is in the intersection of two substructures St; and St,. We can easily see that (1)
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|[YA| = O(e); (2) |XD,| = O(¢); (3) |ZD,| = O(e). Hence, we can see /XY Z is at
least 7 — O(e).
2. Y is in a small square I' and X and Z are in the two substructures associated with
I'. Since both substructures are bound in an O(e) size region (by Lemma 2.12), we
can see that /XY Z is at least 7 — O(¢) as well.
Hence, we can see the polygon contains at least Q(27/€) nodes and the diameter of the
polygon is at least Q(1/¢€). But this cannot be larger than the diameter of a block, rendering
a contradiction.
O

To summarize, we have ensured that € is an acyclic 2-matching ((P3) in Lemma A.3).

2.6.4 Ensuring Point Order Consistency

We have ensured that the set of red edges is a matching in . Hence, one substructure
can overlap with at most one other substructure. Therefore, if we can guarantee that the
points which are covered by any pair of overlapping substructures satisfy order consistence,
then all points in # satisfy order consistency (after all, point-order consistency is defined
over a pair of substructures).

Consider two overlapping substructures St;(by, A;) and Sty(b,, A,) and a set P, of
points covered by A; U A,. Suppose Py, P, € P, and ay,a, € Ay, by, b, € A,. Recall
point-order consistency requires that when

* Py € R(a;) NR(by) and P, € R(az) NR(by)
* P ¢ R(ay) UR(D,) and P, & R(a;) UR(Dy).
then

e (a1 < ar) © (b) < by).

It is helpful to consider the following directed planar graph © induced by all arcs in
A UA, in the uncovered region U(H ). Regard each intersection point of arcs in A; U A,
as a node. Each subarc is an directed edge with a direction consistent with its baseline.
We use A — B to denote that there is a directed edge between nodes A and B in D. If
there is no directed cycle in D, we can verify that all conditions listed above hold. Indeed,
suppose the condition is not satisfied, which means a; < a,, by > b,, a;,a, € A, and
by, b, € A,. Suppose ay, b; intersect at (A, B;) and A; — B, meanwhile a,, b, intersect
at (A,, B;) and A, — B,. Since a; < a,, there exists a path in St; which goes from B; to

A,. Similarly, there exists a path in St, from B, to A;. Thus, the two paths and a,, a, form
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St,

Figure 2.12  Substructure St;(by, A;) and Sty(by, A) are overlapping. b, starts from Qg and

ends up with Q, and b starts from P and ends up with P;. There are two paths forming a cycle.

a directed cycle.

So all we have to do is to break all cycles in ©. When D contains a cycle, we can cut
the cycle through adding an arc on the envelope into H. See Figure 2.12 for an example.
Only arcs A, (or in A,) cannot form a cycle. So if there is a cycle, the cycle must pass
through the envelope of A; and A,. Moreover, based on Lemma 2.12, if St; and St, form
a cycle, either St; or St, does not contains any active region. W.l.o.g., suppose it is St,.
Based on these observations, we have our algorithms as follows:

Suppose the envelope of St; is Path; = {a;,as,...,ar}. a; and a; are the first and
last arcs respectively which intersect St,. Suppose the arc b, € A, overlaps with q;, (if
there is more than one such arc, we select a minimal one, w.r.t. the arc ordering) and the
arc by € A, overlaps with a; (if there is more than one such arc, we select a maximal
one). Since a; < a; and they do not satisfy point-order consistency, we have b;; > b;. We
can see that all arcs between b;; and b; cannot intersect with Path;. So we can select one
arc between b, and b;, to add in H for cutting St, into two. After the cut, any cycle in D
can be broken.

After cutting St,, St; overlaps with both of the new substructures obtained from St,.
Then, we encounter the same situation as in Section 2.6.3 (a node in & has two incident
red edges). We can apply the operation in Section 2.6.3 to cut St; such that the set of red

edges in & is still a matching.

2.6.5 The number of disks in H

Finally, we count collectively the total number of disks that we have added in H.
First, we add the square gadget for each nonempty small square in . The number of the

disks is O(K?), where K = L/u = O(1/€?). In order to cut overlapping active regions, the
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number of disks we add in H is bounded by the number of active regions. Since there are
O(K?) gadgets, we add O(K?) disks in Section 2.6.1. In Section 2.6.2, to ensure that each
substructure is non-self-intersecting and contains at most one active region, we design a
greedy algorithm. We can see that each arc we added in H covers at least one intersection
point of two disks in H’, where H" is the set H before this step. The algorithm guarantees
that each arc which we add in H do not cover the same intersection point on the boundary
of H’. Since the union complexity of unit disks is linear!’!! and '’ contains at most
O(K?) disks, there are at most O(K?) intersection points on dH’. So, we add at most
O(K?) in this step. In Section 2.6.3, we break the cycles in S. The number of disks we
add H is proportional to the number of substructures. So, again, we add at most O(K?)
disks. Similarly, in Section 2.6.4, we also add at most O(K?) disks. To summarize, we
have added at most O(K?) disks in H.

2.7 Time Complexity

The time complexity contains three parts. The first part is to enumerate all com-
bination of G. We set C = O(K?z) (since we need C > |H|/e). Since K = 0(?12)’ the
number of combinations is bounded by n€ = n®(/€"). The second part is the construction
of set H. It is easy to see that the time cost for each operation (i.e., label-cut) is no more
than O(n?). Thus, the time cost is O(K?n?) = O(n?/€*). The last part is the dynamic
program. There are at most O(K?) substructures and at most O(n?) intersection points
2)1{2

in each substructure. Thus, the number of total states is at most O((n*)*"). For each

recursion, the time cost is at most O(n). Thus, the overall time complexity of the dynamic
program is O(n2K°+1) = pO/eh),
Overall, the total time cost is (/€ - max{n?/e* n®1/<"}) = n00/€) This finishes

the proof of Lemma A.2.

2.8 Applications

The weighted dominating set problem (MWDS) in unit disk graphs has numerous
applications in the areas of wireless sensor networks!®. In this section, we show that our
PTAS for WUDC can be used to obtain better approximation algorithms for two important

problems in this domain.
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2.8.1 Connected Dominating Set in UDG

The goal for the minimum-weighted connected dominating set problem (MWCDS) is
to find a dominating set which induces a connected subgraph and has the minimum total
weight. Clark et al.!'" proved that MWCDS in unit disk graphs is NP-hard. Ambiihl et
al.[®! obtained the first constant factor approximation algorithm for MWCDS(the constant
is 94). The ratio was subsequently improved in a series of papers!®3%3!, The best ratio
known is 7.105"! pp.78.

One way to compute an approximation solution for MWCDS is to first compute
minimum weighted dominating set (MWDS) and then connect the dominating set using a
node-weighted steiner tree (NWST)[%721 The optimal MWDS value is no more than the
optimal MWCDS value. After zeroing out the weight of all terminals, the optimal NWST
value (for any set of terminals) is also no more than the optimal MWCDS value. Hence,
if there is an a-approximation for MWDS(or equivalently WUDC) and a -approximation
for NWST, then there is an « + S factor approximation algorithm for MWCDS.

Zou et al.[”?! show that there exists a 2.5 p-approximation for NWST if there exists a p-
approximation for the classical edge-weighted minimum steiner tree problem. The current
best ratio for minimum steiner tree is 1.391731, Thus, there exists a 3.475-approximation
for NWST. Combining with our PTAS for WUDC, we obtain the following improved result
for MWCDS.

Theorem 2.3: There exists a polynomial-time (4.475 + €)-approximation for MWCDS

for any fixed constant € > 0.

2.8.2 Maximum Lifetime Coverage in UDG

The maximum lifetime coverage problem (MLC) is a classical problem in wireless
sensor networks: Given n targets t4, . . ., t, and m sensors sy, ...S,,, €ach covering a subset
of targets, find a family of sensor cover S, ..., S, with time lengths 7y,..., 7, in [0, 1],
respectively, to maximize 7, +. . . + 7, subject to that the total active time of every sensor is
at most 1. MLC is known to be NP-hard”*. Berman et al.!”>! reduced MLC to the minimum
weight sensor cover (MSC) problem through Garg-Kénemann technique!”®!. In particular,
they proved that if MSC has a p-approximation, then MLC has a (1 + €)p-approximation
for any € > 0. Ding et al.!*}! noted that, if all sensors and targets lie in the Euclidean plane
and all sensors have the same covering radius, any approximation result for WUDC can
be converted to almost the same approximation for MLC. Hence, the current best known
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result for MLC is a (3 + €)-approximation®*!. Using our PTAS, we obtained the first PTAS
for MLC.

Theorem 2.4: There exists a PTAS for MLC when all sensors and targets lie in the

Euclidean plane and all sensors have the same covering radius.

Let us mention one more variant of MLC, called maximum lifetime connected cover-
age problem, studied by Du et al.[””!. The problem setting is the same as MLC, except that
each sensor cover S; should induce a connected subgraph. They obtained a (7.105 + €)-
approximation when the communication radius R, is no less two times the sensing radius
R,. Essentially, they showed that an a-approximation for WUDC and a S-approximation
for NWST imply an « + S-approximation algorithm for the connected MLC problem. Using

our PTAS, we can improve the approximation ratio to (4.475 + €).

2.9 Delayed Proofs of PTAS for WUDC
2.9.1 Delayed Proofs in Section A

Lemma 2.19: The central angle of any uncovered arc is less than 7.

Proof We only need prove the arc of a gadget is less than 7. As we union all gadgets and
add more and more disks in H, the central angle of an arc only becomes smaller. So,
now we fix a square gadget Gg(I"). Consider the substructure above line D;D,. See the
right hand side of Figure A.1 for an example. Suppose an arc a with endpoints M and M’
on the boundary of Gg. The center of the arc is in the central area of Gg. If the central
angle /(a) > m, its center should lie in the cap region bounded by a and the chord M M’.
Without loss of generality, we suppose M is closer to the line DgD, than M’. Draw a
auxiliary line at M which is parallel to D,;D,. If the line does not intersect the central
area, the center a locates below the line MM’ (Hence, outside the cap region), thus the
central angle is less than x. If the auxiliary line intersects the boundary of central area at

point N. Then, we can see that

I[MN| = VlMDs|2 - x4 |DsD,| — VlNDz|2 - X2,

where x is the vertical distance between point M and line DyD,. It is not difficult to see
that |[M N| > 1. It means that the center of the arc locates below the line M N (Otherwise,
the distance from the center to M is larger than |N M|, which is larger than 1, rendering a

contradiction). So, the central angle of any arc is less than 7. O
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2.9.2 Delayed Proofs in Section 2.6.1

Lemma 2.8 Consider two non-empty small squares T, T”. Suppose the square
gadgets in the two squares are Gg(I') = (Dy, D) and Gg(I'’) = (D., D;). The active region
pairs (Ary, Arp) and (Ar}, Ar}) are associated with gadget Gg(I') and Gg(I'””) respectively.
(Ary, Ary) and (Ary, Ar}) form a double-mixture. Then, the following statements hold:

1. Their corresponding squares I',1"" are adjacent;

2. The core-central areas of GQ(I') and Gg'(I'’) overlap;

3. The angle between DD, and DD is O(¢)

4. Neither of the two core-central areas can overlap with any small squares other than

Tand .

Proof Suppose the core-central areas of Gg and Gg” are €, and € respectively. Since
(Ary, Arp) and (Ar}, Ar) form a double-mixture, there exists at least one disk centered in I’
which appears in Ar,. Thus, the disk is centered in €,. It means that €, and €/ overlap.
Hence, I and I'” are adjacent. See Figure 2.13.

It is easy to see that any core-central area can overlap with at most two squares.
Since €, and € overlap, at least one of them overlaps with both I and I'". Without loss
of generality, suppose €, overlap with both I and I"”. We only need to prove €, cannot
overlap with other squares other than I" and I"™".

Our proof needs a useful notion, called apex angle. Consider a square gadget. See
the left one of Figure A.1 (and we use the notations there). The line DyE and D, F are the
tangent lines to the boundary of core-central area at point D;. We define apex angle 0,
to be ZEDF. We notice that 6, only depends on the distance |D;D;|. When the side
length of a small square is €, 6¢, is O(e). In fact, even the core-central area is completely
determined by D, and D,. Thus, we can generalize the concept core-central area by using
any two overlapping disks in H.

Now go back to our proof. See Figure 2.13. The segments DD, and DD, cannot
intersect because they belong to different small squares. Suppose the squares I and I'” are
A1AyAsAg and Ay A3A4As, respectively. A, As is the common side. W.l.0.g, suppose Dy, is
closer to line A,As than D;. If any disk centered in € can appear in Ar; but outside the
disk Dy (i.e., outside the disks Dy U D, U D), the core-central areas defined by DD, ® and
€/ should overlap nontrivial (not only touch at point D?). Thus, the angle 2D, D; D; should

be less than O(e). It means angle between DD, and DD is at most O(e). Moreover,

® D) and D, do not locate in the same square. This is core-central area in the generalized sense..
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Figure 2.13 The case that arcs in two different active regions are not order-separable. The two
adjacent squares are I' = AjAyAs5Ag and IV = A, A3A4As. (D, D;) is the square gadget in I and
(D}, Dy) is the square gadget in I'". The active regions Ar; and Ar; belong to the Gg(I"), while the
Ar| and Ar), belong to the Gg'(I"").

angle between line D;D; and AsA, is no less than 5 — O(e) > O(e). Thus, €, cannot

intersect AsA4. Hence, €/ cannot overlap other squares. O

Lemma 2.9 Suppose active region pairs (Ari(A,), Ary(A,)) and (Ari(A;]), Arj(AY)) are
associated with gadget Gg and Gq’ respectively. If A, and A are order-separable, then

Ay and A are also order-separable.

Proof We prove the lemma by contradiction. We only consider the arcs which have
siblings. Suppose A; and A are order-separable but A, and A are not order separable.
W.lo.g., assume a < a’,Ya € A, Va' € Aj]. Since A, and A are not order-separable,
there exist arcs by, b, € A, and b” € A such that by < b’ < b,. (If not, there exist
arcs b € A, and b}, b, € A’ such that b} < b < b).) Suppose a; is the sibling of b,, a’
is the sibling of »’. Thus, a’ < a, based on the same proof to Lemma 2.5. It yields a

contradiction to the assumption that a < a’,Va € A, Ya' € Aj. m|

Lemma 2.10 Consider a substructure St(b, A) and two subsets A{, A, of A. There exists

a label-cut when A| and A, are order-separable.

Proof We only discuss the case that some arcs of A; are adjacent to some arcs of A;. (If

not, we can trivially select one arc a along the envelope which satisty a] < a < aj,Va] €
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AL, a; € A to separate them. ) Along the envelope of substructure St, there exist two
consecutive arcs such that one is in A] but the other is in A. we use a, b to denote the
two arcs and add them in H. Suppose the endpoints of a and b on b are (A, B), (C, D)
respectively. a and b intersect at P’. Let region R, to be R(a) UR(D). It is easy to see that
R, separate the St into two new ones. Suppose the endpoints of baseline b are (Q;, Q;).
Regard b[Q,, AU al A, P’] as the baseline b, of St; and b[P’, D]Ub[D, Q] as the baseline
b, of St,. The subarcs of A in region R(St) — R, are separated two different group based
on the two different baselines. We denote them by A, and A,. Since a’ < b,Va’' € A
and b" > a, Vb’ € A, a’ cannot intersect with b[P’, D] and b’ cannot intersect with
alA, P’]. Thus, no subarc in A| belongs to A, and no subarc in A’ belongs to A;. So,
we construct two suitable substructures St; (b, A;) and St;(b,, A,). Figure 2.7 illustrates

the process of construction. O

Lemma 2.11 Consider the substructure St which contains an active region of square T.
The substructure can be cut into at most three smaller substructures, by doing label-cut
twice. At most one of them contains the active region. Moreover, this new substructure

(if any) is bounded by the region Dom(I'*) associated with T

Proof See Figure 2.8. We use the same notations defined in Section 2.6.1. The entire
active region [U;.p, ¢, Di — (Ds U D,)] N H" is a sub-region of (D(P,2) - D, = D;) N H".
Thus, any disk centered in D(Q,, 1) N D(Q;, 1) N H* can cover the active region. So, if
there is a disk centered in D(Qy, 1) N D(Q,, 1) N H*, we add it into H such that the entire
active region is covered. If not, we prove we can cut St such that the new substructure
containing the active region is bounded by the region (D(D, 1) — Dy — D,) N H*. The disks
centered in R(I') N D(Qy, 1) — D(Qy, 1) N D(Qy, 1)) cover point Q. Thus, the arcs of these
disks are order-separable to the arcs in active region. Similarly, the arcs of disks centered
inR(INND(Q;, 1)-D(Q;, 1)ND(Qy, 1) are also order-separable to the arcs in active region.
Thus, we can add two disks in H to label-cut St into at most three new substructures.
Obviously, there is only one of them containing arcs centered in I' — D(Qy, 1) U D(Q;, 1).
Hence, this new substructure is bounded in the region (D(D, 1) — Dy, — D,) N H*. O

2.9.3 Delayed proofs in Section 2.6.2

Lemma 2.13 In each of the above iterations, one substructure St(b, A) is cut into at
most two new substructures. Any original arc in A cannot be cut into two pieces, each of

which belongs to a different new substructure.
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Figure 2.14 D,, and D; intersect at point A and B. Suppose the side length of square is u. If the
central angle of arc a[A, B] is more than 24/2u. Dy, D should overlap, where Dy € Gg(I',), D}, €

Go(I7).

Proof Figure 2.9 gives an explanation about the change of substructures before and after
the process. Suppose the envelopeis {a;[Qy, Q1], . . ., ax[Qk-1, O/]}. After we add the disk
D(a;) in H, the baselines of the two new substructures are b; = b[Q,, Piy1]Uais1[Pis1, Qi
and by = a;1[Q;+1, P/,,] U D[P/

’.» O:]. Since a;,, is an arc lying on the envelope, there

does not exist an arc b with endpoints (A, B) such that A < P;,; < P/, < B. So the

endpoints of any arc in St; cannot be in R(St;). Thus, any arc cannot be separated into

two substructures. O

2.9.4 Delayed proofs in Section 2.6.3

Lemma 2.20: Consider two disks D, and D; in squares I',, I'; respectively. Suppose
D, ¢ Gg(I',),D; ¢ Gg(I';) and D,, and D, intersect at points A and B. Suppose the side
length of square is u. If ZAD,B (or LAD;B) is more than 2\/2_, Gg(T',) and Gg(I7;)
should overlap. Moreover, if A (resp. B) is in U(H), the two arcs which intersect at point

A (resp. B) are in the same substructure.

Proof Suppose D, and D; intersect at point A and B. Dy € Gg(I',), D € Gg(I';). Thus,
D,, D locate in the same square I',, and D, D locate in the same square. The line D, D,
intersect disk Dy at point E and intersect disk D/ at point F. |D,E| and |D,F| are no less
than 1 — u according to the triangle inequality. Suppose ZAD,B is 6. Then the length
|D,,Dy| equals 2 cos(6/2). Since 8 > 24/2u, we have | D, E| +|D,F| > |D,Dy|,i.e. D, and
D’ overlap. Figure 2.14 illustrates the situation. If A (or B) is in U(H), it is obvious that
the two arcs which intersect at A (or B) can cover the same point on the baseline (i.e., the

intersection point of Dy and D). Hence, they are in the same substructure. O

Based on the Lemma 2.20, we prove Lemma 2.15 as follows.

Lemma 2.15 We are given a substructure St(b, A) and an arc a € A. Suppose two
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Figure 2.15 Consider a point P on D. a, by, by which belong to disks D, Dy, D, respectively, can
cover the point P. D and D; intersect at A; and By, meanwhile D and D, intersect at A, and B;.

Then, D; and D, belong to the same substructure.

arcs by, by ¢ A. If by, by cover the same point on a, by, b, should belong to the same

substructure.

Proof We prove the lemma by contradiction. Suppose the arcs a, by, b, are parts of
D, D,, D, respectively. Consider a point P on D that can be covered by all of a, by, b,. D
and D, intersect at A; and By, meanwhile D and D, intersect at A, and B,. See Figure 2.15.
Since D and D, belong to different substructures, we know ZA; DB is less than 2\/@
based on Lemma 2.20. Similarly, £A, DB, is less than 2@. Itis easy to see that £D; DD,
is less than 2@. (D DD, is O(y/€) when u = O(e). |DD,| is less than 1 as |DD,| and
|DD;| are more than 1 and less than 2. Suppose A3 and Bj; are the two intersection points
of D; and D,. Thus, we have /A3;D B3 > /3 > 2@. Moreover, P is in U(H). By
Lemma 2.20, we can see that it contradicts the fact that D; and D, belong to two different

substructures. m]

2.10 Final Remarks

Much of the technicality comes from the fact that the substructures interact with
each other in a complicated way and it is not easy to ensure a globally consistent order.
The reader may wonder what if we choose more than two disks (but still a constant) in a
small square, hoping that the uncovered regions become separated and more manageable.
We have tried several other ways, like choosing a constant number of disks in the convex
hull of the centers in a small square. However, these seemed to only complicate, not to

simplify, the matter.

48



Chapter 2 A PTAS for Weighted Unit Disk Cover

We believe our result and insight are useful to tackle other problems involving unit
disks or unit disk graphs. On the other hand, our approach strongly relies on the special
properties of unit disks and does not seem to generalize to arbitrary disks with disparate
radius. Obtaining a PTAS for the weighted disk cover problem with arbitrary disks is
still a central open problem in this domain. An interesting intermediate step would be
to consider the special case where the ratio between the longest radius and the shortest

radius is bounded.

49



Chapter 3 Odd Yao-Yao Graphs are Not Spanners

Chapter 3 Odd Yao-Yao Graphs are Not Spanners

3.1 Overview of our Counterexample Construction

We first note that both the counterexamples for YY3; and YYs are not weak ¢-

S [48,51] . S [65-67] .

spanner However, Yao-Yao graphs YY, for k > 7 are all weak z-spanner
Hence, to construct the counterexamples for YY, for k > 7, the previous ideas for YY3 and
YY5 cannot be used. We will construct a class of instances {#,, }»z+ such that all points
in $,, are placed in a bounded area. Meanwhile, there exist shortest paths in YY ., 1(P)
whose lengths approach infinity as m approaches infinity.

Our example contains two types of points, called normal points and auxiliary points.
Denote them by £, and P, respectively and P, = ;, U P},. The normal points form the
basic skeleton, and the auxiliary points are used to break the edges connecting any two
normal points that are far apart.

We are inspired by the concept of fractals to construct the normal points. A fractal
can be contained in a bounded area, but its length may diverge. In our counterexample,
the shortest path between two specific normal points is a fractal-like polygonal path. Here
a polygonal path refers to a curve specified by a sequence of points and consists of the line
segments connecting the consecutive points. Suppose the two specific points are A and B,
AB is horizontal, and |[AB| = 1. When m = 0, the polygonal path is just the line segment
AB. When m increases by one, we replace each line segment in the current polygonal
path by a sawteeth-like path (see Figure A.4(a)). If the angle between each segment of
the sawteeth-like path and the base segment (i.e., the one which is replaced) is 7y, the total

length of the path increases by a factor of cos™

v. An important observation here is that
the factor is independent of the number of sawteeth (see Figure A.4(b)). If we repeat this
process directly, the length of the resulting path would increase to infinity as m approaches
infinity since cos™!y > 1 (see Figure A.4(c)). However, we need to make sure that such
a path is indeed in a Yao-Yao graph and it is indeed the shortest path from A to B. There
are two technical difficulties we need to overcome.
1. As m increases, the polygonal path may intersect itself. See Figure A.4(d). The
polygonal path intersects itself around the point O. This is relatively easy to

handle: we do not recurse for those segments that may cause self-intersection. See

Figure A.4(e). We do not replace the bold segment further. We need to make sure
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I I T N S

\/\/\/\/\/\/

M/

(a) Replace a horizontal segment by a (b) The lengths of the sawteeth-like
sawteeth-like path. paths are independent of the number
of sawteeth.
A o} B

(c) Replace the segments by sawteeth-like path

recursively.

(d) An enlarged view of Figure A.4(c)

around point O.
A o B

D e

(e) Do not replace the bold segments further.
A o} B

(f) The paths have different numbers of sawteeth and

the sizes of sawteeth may not be the same.

Figure 3.1 The overview of the counterexample construction. Figure A.4(a)-A.4(f) illustrate the

fractal and its variants.

that the total length of such segments is proportionally small (so that the total length

can keep increasing as m increases).

2. In the Yao-Yao graph defined over the normal points constructed in the recursion,

there may be some edges connecting points that are far apart. Actually, how to break

such edges is the main difficulty of the problem. We outline the main techniques

below.

First, we do not replace all current segments using the same sawteeth, like in the

usual fractal construction. Actually, for each segment, we will choose a polygonal path

such that the paths have different numbers of sawteeth and the sizes of the sawteeth in the

path may not be the same. See Figure A.4(f). Finally, we construct them in a specific
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sequential order. Actually, we organize the normal points in an m-level recursion tree
7 and generate them in a DFS preorder traversal of the tree. We describe the details in
Section A.

Second, we group the normal points into a collection of sets such that each normal
point belongs to exactly one set. We call such a set a hinge set. Refer to Figure A.5 for an
overview. Then, we specify a total order of the hinge sets. Call the edges in the Yao-Yao
graph YY1 (#),) connecting any two normal points in the same hinge set or two adjacent
hinge sets (w.r.t. the total order) hinge connections and call the other edges long range
connections. We describe the details in Section 3.3.

As we will see, all possible long range connections have a relatively simple form.
Then, we show that we can break all long range connections by adding a set P of
auxiliary points. Each auxiliary point has a unique center which is the normal point
closest to it. Let the minimum distance between any two normal points in #;, be A. The
distance between an auxiliary point and its center is much less than A. Naturally, we can
extend the concepts of hinge set and long range connection to include the auxiliary points.
An extended hinge set consists of the normal points in a hinge set and the auxiliary points
centered on these normal points. We will see that the auxiliary points break all long
range connections and introduce no new long range connection. We describe the details
in Section 3.4.

Finally, according to the process above, we can see that the shortest path between
the normal points A and B in YY1 (P,,) for m € Z* should pass through all extended
hinge sets in order. Thereby, the length of the shortest path between A and B diverges as

m approaches infinity. We describe the details in Section 3.5.

3.2 The Positions of Normal Points

In this section, we describe the positions of normal points. Note that, in the section,
we only care about the positions of the points. The segments in any figure of this section
are used to illustrate the relative positions of the points. Those segments may not represent
the edges in Yao or Yao-Yao graphs. See Figure 3.2 for an overview of the positions of

the normal points.
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M1 83 Q2 Qdy—1 2

L ﬁ 1 62 ﬂS ﬁdu

Figure 3.2 The overview of the positions of normal points. There exists a point at each intersec-
tion of these segments. ujuy is horizontal. {a@y, @y, ..., @g,-1} partitions the segment yu, into
dp equal parts. For each B;, Za;-18ia; = m — 0 and |a;—18i| = |Biai|. Wecall {a1, s, ..., ag,-1}
the partition set and {1, B2, . . ., B4, } the apex set of pair (u1, o).

3.2.1 Some Basic Concepts

Let k > 3 be a fixed positive integer.” We consider YY,,; and let 8 = 27/(2k + 1).

Definition 3.1 (Cone Boundary): Consider any two points u and v. If the polar angle of
uv is jO = j-2m/(2k + 1) for some integer j € [0, 2k], we call the ray uv a cone boundary

for point u.

Note that in an odd Yao-Yao graph, if v is a cone boundary, its reverse v is not
a cone boundary. In retrospect, this property is a key difference between odd Yao-Yao
graphs and even Yao-Yao graphs, and our counterexample for odd Yao-Yao graphs will

make crucial use of the property. We make it explicit as follows.

Property 3.2:  Consider two points  and v in . If uv is a cone boundary in YY,,;(P),

. > .
its reverse vit is not a cone boundary.

Definition 3.3 (Boundary Pair): A boundary pair consists of two ordered points, denoted

by (w1, w,), such that wywj is a cone boundary of point w.

For convenience, we refer to the word pair in the dissertation as the boundary pair
defined in Definition A.10. According to Property A.4, if (wy, w,) is a pair, its reverse
(wo, wy) is not a pair. For a pair ¢ = (w, w,), we call w the first point in ¢ and w, the
second point in ¢. Moreover, if a pair ¢ is (i, -) or (-, u), we say that the point u belongs

to ¢ (i.e., u € ¢).

Gadget: Now, we introduce the concept of a gadget generated by a pair ¢ = (wy, wy).
Such a gadget is a collection of points which is a superset of ¢ (see Figure A.6). If the

recursive level m increases by 1, we use a gadget generated by pair ¢ to replace ¢.

@ Note that the cases k = 1,2 have been proved in 8,
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Parent-Pair ¢ = (wy, ws)
Partition Set Ay = {ov, ..., a7}

Apex Set By = {84, B2, 05, 55, 57}

) The direction
Br w2 of the cone boundary

Figure3.3 Anexample of one gadget. ¢ = (w1, wy)is the parent-pair in the gadget. Ay = {1, as,

@3, ..., a7} is the partition set and By = {81, B2, B5, Bs, 87} is the apex set. There are eight pieces,

in which wiay, a1, asas, asas, aga; are non-empty pieces and aras3, @3as, 7wy are empty

pieces.

One gadget Gg,, consists of three groups of points. We explain them one by one. See

Figure A.6 for an example.

1. The first group is the pair ¢ = (wy, wy). We call the pair the parent-pair of the
gadget Gg,.

. The second group is a set A, of points on the segment of (w, w,). We call the set
Ay a partition set and call the points of A, the partition points of ¢. For example,
in Figure A.6, {a), @y, ..., a7} (here, |w ;| < |wia;| if i < j) is a partition set of
(w1, wy). The set A, divides the segment into |A,| + 1 parts, each we call a piece
of the segment. There are two types of pieces. One is called an empty piece and
the other a non-empty piece. Whether a piece is empty or not is determined in the
process of the construction, which we will explain in Section A.0.0.2.

. For each non-empty piece, @;_1@;, we add a point g; such that Za;_B;a; = nm -6
and |a;_1B;| = |Bia;|.° All ;s are on the same side of w;w,. We call such a point
Bi an apex point of (w;, w,). Let B, be the set of apex points generated by ¢, which
is called the apex set of pair ¢. B, is the third group of points. For any empty piece,
we do not add the corresponding apex point. In Figure A.6, {B1, B2, Bs, B, 57} is an
apex set of (wy, wy).

We summarize the above construction in the following definition.

Definition 3.4 (Gadget): A gadget Gg, generated by a pair ¢ is a set of points which

consists of the pair ¢, a partition set A, and an apex set B, of ¢. We denote the gadget

® Note that the subscript i of §; is consistent with the subscript of the piece a;_;a;. Hence, the subscripts may not

be consecutive among all 3;s.
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w1 (e %] Qy i3 Oy

Figure 3.4 An example of the gadgets which are generated in a recursive manner. a3 is an
isolated partition point. The arrow of a segment indicates the order of two points in the pair. For

example, the arrow from wy to w; indicates that (wy, w») is a pair.

(w1, wo)
(h)_tercTT T ap) o gtng) (un )
< < <N <N
R e [ 8T8 ol )
(&5:115) (16, &5) (€62 m6) (w1, &6) |, (630 1) (13, &) (€ 113) (11, Ea) (€1, 11) (2, €1) (€2 12) (u1, €2)

Figure 3.5 The recursion tree of our construction. Each node of the tree represents a pair (e.g.,
(B1, w1)) or a point (e.g., a3) in Figure 3.4. Pair (w, w») is the root at level-0. Any pair at

level-(i + 1) is generated from a pair at level-i.

Consider a gadget Gg,[Ay, Bs], where ¢ = (wy, w,). For any non-empty piece
a;_1a; and the corresponding apex point 3;, the rays ,El-;i__l) and c_y—l-ﬁ (note the order of the
points) are cone boundaries.” Thus, each point 8; € B, induces two pairs (8;, @;—1) and
(@i, B;). We call all pairs (B;, @;-1) and (a;, B;) induced by points in B4 the child-pairs of
(w1, wy), and we say that they are siblings of each other. Now, we define the order of the
child-pairs of pair (wy, w;), based on their distances to w;. Here, the distance from a point

w to a pair ¢ is the shortest distance from w to any point of ¢.

Definition 3.5 (The Order of the Child-pairs): Consider a gadget Gg,,, ., Suppose ©
is the set of the child-pairs of (w, w,). Consider two pairs ¢, ¢ in ®. Define the order

¢ < @, if ¢ is closer to w; than ¢.

For example, in Figure A.6, (85, @) < (as,B5). We emphasize that the order of the

child-pairs depends on the direction of their parent-pair.

3.2.2 The Recursion Tree

In this subsection, we construct an m-level tree. When the recursion level increases

by 1, we need to replace each current pair by a gadget generated by the pair. The recursion

®  Suppose the polar angle of ww, is —t6. Note that (2k + 1)§ = 2. Then, we can obtain that the polar angle of
— — — —
a;B; is (k — t + 1)6 and the polar angle of B; ;- is (k — t)6. Hence, a;8; and B;;_, are cone boundaries.
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can be naturally represented as a tree 7. Each node of the tree represents either a pair or
a point. To avoid confusion, we use point to express a point in R? and node to express
a vertex in the tree. The pair (uy, uo) is the root of the tree (level-0). The child-pairs of
(1, 4o) are the child-nodes of the root (they are at level-1). Recursively, each child-pair
of a pair ¢ is a child-node of the node ¢ in 7. Besides, there are some partition points of
the empty pieces (e.g., the point @3 in Figure 3.4) which may not belong to any pair. We
call it an isolated point. Let an isolated point be a leaf in 7~ and the parent of such a point
be its parent pair. For example, the parent of «; is the pair (wy, w,) in Figure 3.4. We
provide the recursion tree in Figure 3.5, which corresponds to the points in Figure 3.4.

The nodes with the same parent are siblings. According to Definition A.11, we define
a total order “<”of them. In tree 7, if “p < ¢”, we place ¢ to the left of ¢, (e.g., (&s,75)
is at the left of (1, &) in Figure 3.5). However, “¢ < ¢” does not mean that ¢ is on the
left hand side of ¢ geometrically. For example, in Figure 3.4, pair (£s,7175) < (176, &5) in the
tree 7, but in the Euclidean plane, point 75 is on the right side of 7.

For a pair ¢ (corresponding to a node in 77), we use 7, to denote the subtree rooted
at ¢ (including ¢), or all the points involved in the subtree.

Our counterexample $,, corresponds to a recursion tree with m levels. We have not
yet specified how to choose the partition set for each gadget and decide which pieces are
empty for each pair. We will do it in the next subsection. We note that we do not construct

the tree level by level, but rather according to the DFS preorder.

3.2.3 The Construction

Now, we describe the process of generating the m-level recursion tree 7. See
Figure A.7 for an example. We call a pair a leaf-pair if it is a leaf node in the tree and
an internal-pair otherwise. W.l.o.g, we assume that the root of 7 is (uy, up) and u; s,
is horizontal. The tree is generated according to the DFS preorder, starting from the
root. When we are visiting an internal-pair, we generate its gadget. Note that generating
its gadget is equivalent to generating its children in 7. We, however, do not visit those
children immediately after their generation. They will be visited later according to the
DFS preorder. Whether a pair is a leaf or not is determined as the gadget being created.
Note that not all leaf-pairs are at level-m.

The process generating the gadget for an internal-pair includes two steps, which

are called projection and refinement. We will explain the detail soon. We denote the
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R

Figure 3.6 The process of generating a tree according to the DFS preorder. In each subfigure, ¢

represents a node we are visiting. The nodes generated in the step are denoted by o. e represents

a node which has already been visited. e represents a node which has been created but not visited

yet. The nodes covered by light brown triangles are related to the projection process.

Algorithm 1: GenGadget(¢): Generate the Normal Points in 7

1 if ¢ is a leaf-pair then
2 Return ;
3 else

4 Gg,, < Proj-Refn(¢);

s foreach child-pair ¢ of ¢ do

6 GenGadget(yp) ;

procedure to construct the recursion tree 7 by GenGadget(¢) and the pseudocode can be
found in Algorithm 1. We call the points generated by Algorithm 1 normal points and

denote them by #;, where m is the level of the tree and n represents the word “normal”.
Root gadget: Let d, be a large positive constant integer.® Consider a pair ¢ = (uy, i)

Let A, be its partition set which contains points

do—i
do

+M2'L,i€ [1,do — 1].

a; =l - do

For convenience, let ay = uj, g, = 2. The points in Ay partition the segment y; p, into
dy pieces with equal length |u;us|/dy. All pieces in the root gadget are non-empty. For
each piece @;_;a;, we add an apex point 8; below u 1r. Let By = {B;}ie1.4,) be the apex

set. See Figure 3.7 for an example.

Projection and Refinement: Let 7, be the set of points in the subtree rooted at ¢. The

@® dp depends on k, but on the number of points. We will determine the exact value of d, in Section 3.5.
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Figure 3.7 The root gadget Gg,(Ag, By) where ¢ = (w1, u2). u1p2 is horizontal. Ay is the

equidistant partition. Each piece is non-empty.

projection and refinement process for ¢ is slightly more complicated, as it depends on the
subtrees 7, rooted at the siblings ¢ of ¢ such that ¢ < ¢. Recall that when we visit a pair
¢ (and generate Gg,,) in the tree 7~ according to the DFS preorder, we have already visited
all pairs ¢ < ¢.

The projection and refinement generate the partition points of pair ¢. The purpose of
the projection is to restrict all possible long range connections to a relatively simple form.
See Section 3.3 for the details. The purpose of the refinement is to make the sibling pairs
have relatively the same length, hence, make it possible to repeat the projection process
recursively. Formally speaking, the refinement maintains the following property over the

construction.

Property 3.6:  We call the segment connecting the two points of the pair the segment of
the pair and call the length of that segment the length of the pair. Consider an internal-pair
¢. Suppose ¢ is a sibling of ¢. The length of pair ¢ is at least half of the length of pair ¢.

—Projection: Consider a pair (8, ) with the set @ being its child-pairs. We decide whether
a pair in @ is a leaf-pair or an internal-pair after introducing the process projection and
refinement. We provide the property of the order here and prove it in the end of the

section.

Property 3.7: Consider a pair (8, @) with the set ® of its child-pairs. For ¢, ¢», ¢3 € D,

if ¢ < ¢, <¢3 and ¢; and ¢5 are two internal-pairs, then ¢, is an internal-pair.

Next, we describe the projection operation for a pair ¢ € ®. W.l.o.g., suppose ¢
is an internal-pair since only internal-pairs have children. We define the first internal-
pair in direction ,B_C)L’ as the first internal-pair of ®. Depending on whether ¢ is the first
internal-pair of @, there are two cases.

* Pair ¢ is the first internal-pair of ®@: In Figure 3.8, suppose pair ¢ = (17, ¢) is the first

internal child-pair of (3, @) and the length of ¢ is 6. Point & is the partition point
58



Chapter 3 Odd Yao-Yao Graphs are Not Spanners

First Internal-Pair

Leaf-Pairs

&)

Figure 3.8 An example of the projection for the first internal-pair ¢ = (1, £). First, we add a

point A such that |A¢| = §/dy where ¢ is the length |n£]|. Second, for each leaf-pair ¢ < ¢, project

its apex point p to the segment of ¢ along the direction E)y, i.e., add the point ¢ in the figure.

Figure 3.9 The projection for pair ¢. Here, p is a point in subtree 7. g is a projection point of

p; i.e., the point on segment of pair ¢ such that pq is parallel to Ba. The set Proj[U, <4 pco 7ol

consists of all projection points of (U, <4 ,eqp 7, On segment of ¢.

in ¢. First, we add a point A on the segment of ¢ such that |éA| = §/d,. Second,
for each leaf-pair ¢ < ¢, project the apex point in ¢ to the segment of ¢ along the
direction ,8_&, P e.g., project p to g in Figure 3.8. Note that the length of leaf-pair ¢
is at least 6/2 according to Property 3.6. Thus, there is no point between A and &
as long as dy > 2. Formally, we denote the operation by

Ay — Proj | T, ua. 3-1)

p<pped ¥

Pair ¢ is not the first internal-pair: According to the DFS preorder, we have already

constructed the subtrees rooted at ¢ < ¢. We project all points p € | J Tys tO

@<¢,pcd®
the segment of ¢ along the direction ,8_<)1/. Let the partition set ﬁ¢ of ¢ be the set of
the projected points falling inside the segment of ¢. If several points overlap, we
keep only one of them. See Figure 3.9 for an example. Formally, we denote the

operation by

A, — Proj [Uw’mfi;] . (3-2)

0]

If the projected point falls outside the segment of ¢, we do not need to add a normal point.
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— Refinement: After the projection, we obtain a candidate partition set ﬁ(,; of ¢ (defined
in (3-1) and (3-2)). However, note that the length between the pieces may differ a lot.
In order to maintain Property 3.6, we add some other points to ensure that all non-empty
pieces of ¢ have approximately the same length. We call this process the refinement
operation.

W.l.o.g., suppose pair ¢ has unit length and |ﬁ¢| =nandn > dy. ©

Suppose ¢ = (uy, up). We distinguish into two cases based on whether the first point
u; is a partition point or an apex point.

e If u; is an apex point, we mark the piece incident on u,. See Figure 3.10(a) for an

illustration, in which (u, u>) = (B, @) and piece a7, is the marked piece.

* If u, is a partition point, we mark the pieces incident on u; and u,. See Figure 3.10(b)
for an illustration, in which (uy, uy) = (@,, B) and piece a,7, and &, are the marked
pieces.

We do not add any point in the marked pieces under refinement. Consider two sibling
pairs (B, a;) and (a,, B) where 3 is an apex point. Suppose a1, @21, &8 are the marked
pieces of the two pairs and & is the point on the segment Ba; which is projected to
&.% Then |B&| = |B&| and |ayni| = |aans| after the refinement. See Figure 3.10 for an
example.

Denote the length of the ith piece (defined by ﬁ¢) by 6;. Let 5, = 1/n%. Except
for the marked pieces®, for each other piece which is at least twice longer than §,, we
place |6;/d,] — 1 equidistant points on the piece, which divide the piece into |d;/d, ]
equal-length parts.

We call this process the refinement and denote the resulting point set by
Ay — Refine[Ay]. (3-3)

The number of points added in the refinement process is at most O(n?) since the
segment of pair ¢ has unit length and 6, > 1/n2. We call each piece whose length is less
than ¢,, a short piece. The short pieces remain unchanged before and after the refinement.

Moreover, the refinement does not introduce any new short piece for the pair.

Deciding Emptiness, Leaf-Pairs and Internal-Pairs: Next, we discuss the principle

©® Ifn < dy, we repeatedly split the inner pieces (i.e., all pieces except for the two pieces incident on the points of ¢
) into two equal-length pieces until the number of the points in ﬁ¢ is larger than d,.

@ Point & must exist since &; is a projected point and there is no point in the marked piece & .

® Keeping the marked pieces unchanged maintains Property 3.8 and helps a lot to decompose the normal points into
hinge sets. See Section 3.3 for details.
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us = 3

(b) (ur, uz) = (a2, B)

Figure 3.10 The two cases for refinement. The first case is ¢ = (8B, @) in which the first point
is an apex point. We mark the piece incident on a1, i.e., the piece a;n;. The second case is
¢ = (ay, B), in which the first point is a partition point. We mark the two pieces incident on a;
and B respectively, i.e., the pieces apn, and & 8. Note that after refinement, |8£(| = |B&;| and
|a@in1| = |azn2| since there is no point added on the marked pieces after refinement.

to decide whether a piece is empty or non-empty. See Figure 3.11 for an illustration.

Consider a pair ¢ whose apex point is B and partition point is a.®

We let the piece
incident on the apex point 8 and the short pieces be empty and the other pieces be
non-empty.

For each non-empty piece, we generate one apex point. The apex set 8, induces the
set @ of child-pairs of ¢. The types of these pairs are determined as follows. Let the three
pairs closest to a and two pairs closest to 8 be leaf-pairs. We do not further expand the
tree from the leaf-pairs. Let the other pairs be the internal-pairs. Naturally, there is no
leaf-pair between any two internal-pairs among pairs in ®. Hence, Property 3.7 maintains
in the construction. Further, we can see that each other normal point belongs to at most
two pairs, except for the two points in the root pair.

For convenience, we call the piece generating two leaf-pairs a near-empty piece and
generating one leaf-pair and one internal-pair a half-empty piece. Note that the near-
empty and half-empty pieces are special non-empty pieces. We can see that, except for
the near-empty piece incident on the partition point in ¢ (e.g., u;&4, in Figure 3.11), the
maximum length among the non-empty pieces is at most twice longer than the minimum

one according to refinement.

® Note that the first point of a pair can be either apex point or partition point. Here, ¢ = (a,B) or ¢ = (B, @)
depending on whether first point of ¢ is apex point or not.
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Near-Empty

Piece

, Half-Empty
M1 Vs Piece %1
’ Short Piece

L4
Tldg~1%
Leaf-Pairs <“*" 7" ¥ Near-Empty

Piece

Empty Piece

2 4

) e
First Internal !,L

Child-Pair
Leaf-Pairs ‘dl

Figure 3.11 The figure illustrates the emptiness of each piece. Consider the pair (83, i) with
partition points after refinement. Segment u&,, and &£, are two near-empty pieces and $1£ is

an empty piece. Pair (u1,174y-1) and (nay-1, €ay)» (Edg Ndp-2)> (§2,m1), (1, 1) are the five leaf-pairs.
Eay,-1€4, is the half-empty piece. Pair (172, &2) is the first internal-pair.

ﬁ(o=ﬁ¢

Figure 3.12 The figure illustrates Property 3.8. After projection and refinement, |agvy| =

|Vl

Overall, after the projection and refinement process, we can generate the gadget for

any pair in the tree. We denote this process by

Gg, < Proj-Refn(¢). (3-4)

Property 3.8: Consider two sibling pairs ¢ and ¢. Suppose both of them are internal-
pairs and have partition point sets A, and A, respectively. Suppose a, € ¢ and o, € ¢,
and both @, and a,, are partition points. The point in A, closest to ay is v4. Meanwhile,

the point in A, closest to @, is v,. Then |a,vy| = |,v,|. See Figure 3.12 for an example.

Proof W.l.o.g., we prove that any two adjacent siblings satisfy the property. Suppose
¢ and ¢ are adjacent siblings. W.l.o.g., assume ¢ < ¢. ¢ has the candidate partition
set ﬁ¢ after projection. Suppose the point in ﬁ¢ closest to @, is V. According to the
projection, we know |a4V4| = |a,V,|. Since we do not add any new point between a, ¥y
after refinement, ¥4 and v, are the same point. Hence, any two adjacent siblings have the

property. O
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Corollary 3.9: Consider a pair ¢ with partition point set Ag. Suppose @ € ¢ and « is
a partition point. Among all pieces determined by A, the piece incident on « has the

maximum length.

Proof It is not difficult to check the root pair holds the property. Then, consider a pair ¢
with its child pair set ®. We prove that any pair in ® holds the property when ¢ holds
the property. Suppose ¢ is the first internal-pair in ®, the corollary is trivially true for
¢ according to the projection process (the first projection case). Otherwise, according to
Property 3.8 and the projection process, we know that for any ¢ in @, the piece incident

on the partition point in ¢ has the same length. Thus, any pair in ® holds the property. O

Now, we prove Property 3.6 that we claimed at the beginning of the construction.
Proof of Property 3.6: Consider an arbitrary pair with partition point @ and the set @ of
its child-pairs. Consider an internal-pair ¢ € ®. Note that the length of a child-pair is
determined by its corresponding partition piece. According to the construction, except
for the near-empty piece incident on «, the length of any non-empty piece is at most twice
and at least half the length of another one. Thus, except for the sibling pairs generated by
the piece incident on «, the length of any pair ¢ < ¢ is at least half of the length of ¢.
Finally, the piece incident on @ only induces two leaf-pairs and has the maximum length
among other empty pieces of ¢ according to Corollary 3.9. Hence, we have proven the
property. <

Finally, we summarize the properties of half-empty, near-empty, and empty pieces

below.

Property 3.10: Consider an internal-pair ¢ with partition point set As. Suppose the
length of ¢ is 6. The pieces determined by A, have the following properties.

* The sum of lengths of empty pieces is less than 26/ d.

* There are two near-empty pieces with sum of lengths less than 36/d.

* There is one half-empty piece with length less than ¢/d.

* The sum of lengths of empty, near-empty and half-empty pieces is less than 66/d.

Proof Consider the first property. Suppose 8 € ¢ and S is an apex point. There are two
kinds of empty pieces. One is the short pieces and the other is a piece incident on S
(denoted by &£p). First, the sum of lengths of the short pieces is less than 6/d,. Because
the length of each short piece is less than §/n? and there are less than n short pieces where

n > dy is the number of partition points in A after projection and before refinement. On
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the other hand, we prove that the length of £ is less than ¢/d,. If B is the first point in ¢
(refer to ¢ = (B, @) in Figure 3.10), according to refinement (the first refinement case),
the length of £8 is less than §/dy. Next consider the case that 3 is the second point in
¢ = (a1, B) in Figure 3.10). Suppose ¢ shares the point 8 with its sibling ¢. Hence, ¢ and
¢ share the point 8 and g is the first point in ¢. Denote the piece of ¢ incident on 8 by
nB. In this case, we have that ¢ and ¢ have the same length and |£3| = |nB]|. Since S is
the first point in ¢, we have proven that |8| < 6/d,. Thus, |£8| < §/d,.

Consider the second property. Suppose « is a partition point and S is an apex point,
and a, B € ¢. First, consider the near-empty piece incident on a. If ¢ is the first internal-
pair of its parent, according to projection, we add a point A on the segment of ¢ such that
|da| = 6/dy. Otherwise, according to Property 3.6 and 3.8, we know the piece incident
on « is at most 26/dy. Second, we consider the other near-empty piece closer to S. Its
length is no more than §/d, based on refinement. Thus, the sum of lengths of near-empty
pieces is less than 36/d.

For the third property, through refinement, the length of half-empty piece is less than
0/dy. Above all, we get the fourth property. O

3.3 Hinge Set Decomposition of the Normal Points

All points introduced so far are referred to as normal points and their positions have
been defined exactly. Recall that we denote the set of normal points by #,,. In this
section, decompose %, into a collection of sets of points such that each normal point
exactly belongs to one set. We call these sets hinge sets. See Figure A.5 for an overview
of the hinge set decomposition.

Based on the hinge sets, the edges among normal points in YY.1(#)) can be
organized in the clear way. For convenience, we regard the Yao-Yao graph as a directed
graph. Recall the construction of the directed Yao-Yao graph in Algorithm 2. Note that
C.(y1, y2] represents the cone with apex u and consisting of the rays with polar angles in
the half-open interval (yy, y,] in counterclockwise. We call the first iteration (line 2 to 5)
the Yao-step and call the second iteration (line 6 to 9) the Reverse-Yao step.

Then, we define a total order among hinge sets. We call an edge in the Yao-Yao graph
a hinge connection which connects any two points in the same hinge set or in two adjacent
hinge sets w.r.t. the total order. Call other edges long range connections. In Section 3.4,

we prove that we can break all long range connections without introducing new ones by
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Algorithm 2: Construct the Yao-Yao graph
Data: A point set £ and an integer k > 2

Result: YY2k+1(p)
1 Initialize: 8 = 27/(2k + 1) and two empty graphs Y, and YYq; 4 5

2 foreach point u in P do
3 foreach j in [0,2k] do
4 Select v in C,(j6, (j + 1)0] such that |uv| is the shortest ;

5 Add edge uv into Yo, ;

6 foreach point u in P do

7 foreach j in [0,2k] do

8 Select v in C,(jO, (j + 1)6], Vil € Yoy, such that |uv| is the shortest ;
9 Add edge VI into YY o,

10 return YYp, ;

w Hinge set

Figure 3.13 The overview of hinge set decomposition. Roughly speaking, each set of points
covered by a green rectangle [J is a hinge set. Recursively, we can further decompose the points
covered by shadowed rectangle &7 into hinge sets. The hinge connections are the edges between
any two points in a hinge set or between two adjacent hinge sets. The other edges in the Yao-Yao
graph are long range connections.

adding some auxiliary points. In Section 3.5, we show that, in the graph with only hinge

connections, the shortest path between the two points of the root pair approaches infinity.

3.3.1 Hinge Set Decomposition

We discuss the process to decompose the set $,, into hinge sets such that each point
in #,, belongs to exactly one hinge set. Briefly speaking, each hinge set is a set of points
which are close geometrically.

Consider a pair ¢ at level-I (I < m — 1) with partition point set A and apex point set

B,;. Denote the set of the child-pairs of $ by ®. Recall that we say a point u belongs to ¢
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Leaf-Pairs

Leaf-Pairs

(a) The hinge set centered on an apex point (b)) The hinge set centered on a partition point

wy

Leaf-Pairs

(d) The hinge set consisting of the leaf-pairs at

(c) Merge two hinge sets to a new one level-m. (wy, wy) is a pair at level-(m — 1)

Figure 3.14 The hinge sets centered on a point in an internal-pair.

(i.e., u € @), if the ¢ is (u, -) or (-, u). Just for convenient to describe, we call some point
center of a hinge set and other points affiliated point. Formally, the hinge sets are defined
as follows.

* The hinge set centered on a point 8 € B such that  belongs to one or two internal-
pairs in ®:® We denote the two internal-pairs by ¢ and ¢.2 See Figure 3.14(a) for
an illustration. The hinge set centered at 8 includes: g itself, the child-pair of ¢
closest to B (denote the pair by (£1, &)) and the child-pair of ¢ closest to 8 (denoted
the pair by (171,1m2)). &1, &, 11, 1> are affiliated points. According to the way to
determine the leaf-pairs (see Section A), they only belong to leaf-pairs.

* The hinge set centered on a point @ € Ay such that a belongs to one or two
internal-pairs in @, or « is an isolated partition point:

— First, suppose a belongs to one or two internal-pairs in &, which we denote
as ¢ and ¢.° See Figure 3.14(b). The hinge set centered on « includes: «

itself, the two child-pairs closest to @ of ¢ and ¢ (denote the pairs by (&, &)

® B must belong to two child-pairs of ¢ since each 8 induces two pairs. However, 8 may belong to two leaf-pairs
(i.e., do not belong to any internal-pair). In this case, (3 is affiliated to a hinge set centered on other point.

@  If one of the two child-pairs is a leaf-pair, let ¢ = 0.

@  If a belongs to only one internal-pair of ®, let ¢ = 0.
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and (171, 172)) respectively. &, &, ny, 1, are affiliated points which only belong
to leaf-pairs.

— Second, « is an isolated point in A, i.e., @ is an end point of a short piece
and does not belong to any internal-pair in ®. See Figure 3.14(c). Then, for
each direction of segment of ¢, we find the closest non-isolated point in Ag.
Denote them by ; and a,. Merge the two hinge sets centered on @; and a, as
anew one and add « to the new hinge set.

W.l.o.g., we process the points y; and w, in the root pair in the same way as the
partition points in A, ,.,). So far, some points at level-m still do not belong to any hinge
set.

* The hinge set consisting of the leaf-pairs at level-m: Consider any pair ¢ = (wy, w»)

at level-(m — 1). Define the set difference of A, U B, and the hinge sets centered
on w; and w, as a hinge set. © See Figure 3.14(d).

Overall, we decompose the points £}, into a collection of hinge sets.

Lemma 3.11: Each point p in Py, belongs to exactly one hinge set.

Proof First, we prove that any two hinge sets are not overlapping. It means that any point
in a hinge set does not belong to any other hinge set. First, consider a point 4 which
only belongs to a leaf-pairs i.e., an affiliated point in the first two type hinge sets (see
&1, &, my1,m, in Figure 3.14(a) 3.14(b) 3.14(c)) or a point in a third type hinge set. It has
unique parent-pair ¢ such that 1 € Gg,. Let ¢ = (@, B). If ¢ is the closest child-pair to a,
A belongs to the hinge set centered on «. Or if ¢ is the closest child-pair to 38, A belongs
to the hinge set centered on 8. Otherwise, A belongs to a third type hinge set. It is not
difficult to check that the three cases do non overlap. Thus, point A belongs to at most one
hinge set. Next, consider a point 4 which belongs to some internal-pair or is an isolated
partition point. Then, A can only belong to the first two type hinge sets. A cannot be a an
affiliated point for any hinge set since affiliated point only belongs to leaf-pairs. Besides,
according to the definition, the hinge set centered on A is unique. Therefore, A belongs to
at most one hinge set.

On the other hand, we prove that each point in #;, belongs to at least one hinge set.
First, any point of level-m belongs to a hinge set according to the third case. Second,

consider a point A on level-1,] < m. If A belong to any internal-pair, it should be a center

®  Although these points form the leaf-pairs at level-m, these leaf-pairs are the “candidate internal-pairs” to generate
the points at level-(m + 1).
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(w1, ws)
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Figure 3.15 The illustration for order <;. In the example, notice that the order of the level-2 in
TR is different with the order in 7~ (see Figure 3.5).?

of a hinge set. If A is an isolated partition point, it merges two hinge sets and belongs to
the new hinge set. If A only belongs to a leaf-pair ¢ and ¢ is a child-pair of ¢ = (a, B),
then, based on the way to determine the leaf-pairs, A belongs to hinge set centered on «
or 3.

Overall, each point in #,, belongs to exactly one hinge set. O

Order of the hinge sets: We define the total order of all hinge sets. We denote the order
by “<;”, which is different from the previous order “<”. The <, is in fact consistent with
the order of traversing the fractal path from y; to u,. Rigorously, we define <, below. For
comparison, in Figure 3.15, we reorganize the tree in Figure 3.5 according to the order
<p.

First, consider the root pair (u;, i,). We denote the hinge set centered on p; by Ay,
and denote the hinge set centered on u, by A,,. Define A, as the first hinge set and A,
as the last hinge set w.r.t. <;. Then, A, <, A,.

Second, we define the orders of other hinge sets. Consider an internal-pair ¢ with
parent pair (wy, wy) (or (wp, wy)) and A,,, <, A,,. Note that there are two hinge sets
centered on the points in ¢ respectively. We call the one closer to (in Euclidean distance)
A,,, the former hinge set of ¢, denoted by A;_). Call the other the latter hinge set of ¢,
denoted by Af;). Let Ay, <n Afb_) <n Af;) <n A,,. Besides, recall that for any internal-
pair ¢ at level-(m — 1), the points in A4 U B, but not in Afﬁ_) U Af;) also form a hinge set.
We denote it by A4 and define Afp_) <n Mg <n Af;').

Note that we have organized all pairs in the recursion tree 7. We can transform the
tree consisting of all internal nodes of 7 to a topological equivalent tree 7 & which has a

different ordering of the nodes. The order of the sibling pairs in 7 ¥ is determined by their

® Note that 7R only contains the internal nodes of 7. Consider that level-2 nodes still have their child nodes. Thus,

we do not remove the pairs on level-2 in the example.
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Algorithm 3: TravelHinge(¢): Travel the hinge sets in the tree 7;R

1 Visit(Ag)) ;

2 if ¢ isatlevel-l (I < m— 1) then

3 foreach child-pair ¢ of ¢ in ‘7;R do
4 t TravelHinge(¢p) ;

5 else
6 Visit(Ay)

7 Visit(Af;)) ;

Euclidean distances to the former hinge set of their parent. Overall, the ordering <, of the
hinge sets can be defined by a DFS traversing of 7%. When we reach a pair ¢ at level-/
(I < m — 1) for the first time®, we visit its former hinge set Ag;). Next, we recursively
traverse its child-pairs in the order we just defined. Then we return to the pair and visit
its latter hinge set AE;). When we reach a pair ¢ at level-(m — 1), we visit AD, Ay, Af;) in
order and return.? We denote the procedure by TravelHinge(¢) and the pseudocode can

be found in Algorithm 3.

3.3.2 Long Range Connection

We call the edges connecting two non-adjacent hinge sets long range connections.

Definition 3.12 (Long range connection): A long range connection is an edge connect-

ing two points in two non-adjacent hinge sets.

If there is no long range connection, the total order of the hinge sets corresponds to
the ordering of the shortest path from w; to u, in the final construction. It means that
each hinge set has at least one point on the shortest path between y; and w, and the order
of these points is consistent with <;,. However, there indeed exist long range connections
among normal points. In order to achieve the above purpose, we should break the edges
connecting two non-adjacent hinge sets. Fortunately, the long range connections in #;,
have relatively simple form. We claim that after introducing some auxiliary points (in

Section 3.4), we can cut the long range connections without introducing any new long

@  level-(m — 1) is the second to last level of 7~ and the last level of 7 R.
@  Note that two adjacent sibling pairs share the same hinge set. So the same hinge set may be visited twice, and the
two visits are adjacent in the total order. So it does not affect the order between two distinct hinge sets.
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Figure 3.16 The possible relative positions of p and g. Although, in the figure, p and g are
partition points, it does not induce any new case when p or ¢ is an apex point according to our

divided condition in the proof.

range connections. Hence, only adjacent hinge sets in the above order <, have edges in
the Yao-Yao graph.

Now, we examine the long range connections in YY1 (#,). First, we show that we
only need to consider the long range connections between the points in 7, and 7, for any
two sibling pairs ¢ and ¢. Recall that 7, denotes the subtree rooted at ¢ (including ¢). If
there exist two points p € 7, — 75 N T, and g € T, — T, N T, such that pq is a long range

connection, we say there is a long range connection between 7, and 7.

Claim 3.13: Suppose that for any two sibling pairs ¢ and ¢ in 7 at level-l for ] < m—1,
there is no long range connection between the points in 7, and 7. Then, there is no long

range connection.

Proof Consider two non-adjacent hinge sets A, and A, (if two hinge sets are adjacent,
the edges between them are hinge connections) and 4; € A, and 1, € A,. We prove that
we can find two sibling pairs ¢ and ¢ such that 7, and 7, contains A, and A, respectively.
Then, we consider the possible cases about the two non-adjacent hinge sets.

First, we consider the case that each of the two hinge sets is centered on a point of

some internal-pair. Denote the two center points by p and ¢ and the two hinge sets by A,
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and A,. p belongs to one or two adjacent internal-pairs. W.1.0.g., suppose they are $; and
$> (¢> = 0 if p only belongs to one internal-pair). Meanwhile, ¢ belongs to one or two
adjacent internal-pairs. Suppose they are ¢; and ¢,. W.l.0.g., suppose the level of ¢; and
¢, is no more than the level of ¢, and ¢,. Then, we distinguish two cases. In the first one,
none of ¢, and @, is an ancestor of ¢; and ¢,. Otherwise, it is the second case.

Consider the first case. Suppose the closest common ancestor of @y, ¢,, ¢; and ¢, is
pair  in 7. If p and ¢ do not belong to A, U B,, there are two different child-pairs ¢
and ¢ of ¢ (see Figure 3.16(a)), such that A, belongs to 7 and A, belongs to 7,. Since
points between 7, and 7, have no long range connection according to the assumption,
points between A, and A, have no long range connection. Then consider the case that g
belongs to A, U B, (see Figure 3.16(b)). Note that A, is a subset of 75, U 7;,. Because
there is no long range connections for the points between 7, 75, and 75, A, and A, have
no long range connection. Finally, if both p and ¢ belong to A, U B, (see Figure 3.16(c)),
since there is no long range connection for points between 7, 75, and 7,, 75,, A, and A,
have no long range connection.

Consider the second case. See Figure 3.16(d). W.Lo.g., suppose ¢, and ¢, are in
the subtree of 7;,. A, is a subset of 75, U 75,. Moreover, according to the assumption,
the points between 73, and 7z, have no long rang connections. Since $, and ¢, are in the
subtree of 7z, we know that the points in A, N 75, have no long range connections to
A,. Then we consider the long range connection between A, N 7, and A,,. Actually, it
is reduced to the first case, thus they have no long range connection.

Above all, we have discussed the case that each of the two hinge sets is centered on
a point of some internal-pair. Next, suppose that at least one of the hinge sets is a third
type hinge set which contains only leaf-pairs at level-m. If both of them are the third type
hinge sets, denoted by A, and A, there must exist two sibling pairs $ and ¢ such that
Ay € 75 and A, € 7;. According to the hypothesis that there is no long range connection
between the points in 7; and 7, there is no long range connection between A, and A,,.
Finally, consider the case that there is only one third type hinge set, denoted by A, and
the other is centered on ¢, denoted by A,. Suppose g is the shared point of ¢, and ¢;. We
distinguish two cases according to whether ¢ € 7; U 73, or not. As we have discussed

above, we can prove that there is no long range connection between A, and A,. O

According to Claim 3.13, next, we discuss the possible long range connections

between 7, and 7, for two sibling pairs ¢ and ¢. Suppose p belongs to 7, and g belongs
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v

Figure 3.17 The points of 7, locate in at most two cones of p.

to 7,. In the following, we prove that if the directed edge pq is an edge in YY1 (P,
then ¢ < ¢. Moreover, note that the points of 7, locate in at most two cones of p. See
Figure 3.17 for an illustration. p € 7, and 7, locates in two cones of p according to the
angular relation. We prove that for each point p, only one of the two cones may contain
a long range connection. Intuitively, these properties (Observation 3.14, Lemma 3.15
and 3.16) result from Property A.4 which does not hold for even Yao-Yao graphs.

We prove the properties formally below. Consider two sibling pairs ¢ < ¢. First,
suppose ¢ is a leaf-pair (see Observation 3.14). Second, we consider that ¢ is an internal-

pair (see Lemma 3.15 and 3.16).

Observation 3.14: Consider two sibling pairs ¢ and ¢ such that ¢ < ¢. If ¢ is a leaf-pair,

there is no long range connection between 7, and 7, (i.e., ¢ itself).

Proof See Figure 3.18 for an illustration. Suppose ¢ = (w3, wy). First, we consider the
case that ¢ and ¢ share one point. Let ¢ = (wy, w»). Then, 7, N7, = w;. We should prove
that for any p € 7, — wy (i.e., p = p'V in Figure 3.18), there is no edge pws in Yao-Yao
graph. Let (171, 72) be the pair in Gg,, closest to wy. There is no edge wsp in the Yao-step
since 1, and p are in the same cone of w3 and |pws| < |pws|. Note that n,w; is a hinge
connection. If directed edge pw3 is accepted in the Yao-step, pws cannot be accepted in
the reverse-Yao step since 172w exists in the Yao-step, and 7, and p are in the same cone
of ws and |,ws| < |pws|. Thus, there is no long range connection between 7, and ¢.
Second, we consider the that ¢ and ¢ do not overlap, i.e., Then, 7,7, = 0. W.l.o.g.,
let ¢ = (wy, wy) and p € ¢ (i.e., p = p®). Similar to the first case, we can prove that there
is no long range connection pws;. Then we consider the point w;. There is edge from
wy to p in the Yao-step since n; and p are in the same cone of w; and |win| < |wp|.
Besides, if directed edge pw; is accepted in the Yao-step, pw; cannot be accepted in the

reverse-Yao step since n;wj exists in the Yao-step and |p;wy| < |pwy]. |

72



Chapter 3 Odd Yao-Yao Graphs are Not Spanners

Figure 3.18 ¢ and ¢ are sibling pairs such that ¢ < ¢. ¢ is a leaf-pair. There is no long range

connection between 74 and the points of 7, (i.e., ¢ itself).

Given a pair (v, v;) with child-pair set @, consider two sibling pairs ¢ and ¢ in ®
where ¢ = (wy, w,). For convenience, let Zu u; be the polar angle of vector uju,. Let
L(uiun, vivy) be Zvivy — Zuju,, i.e., the angle from u;u, to viv; in the counterclockwise
direction.

Recall that there are two kinds of normal points according to the definition of gadget:
partition points and apex points. According to the type of point w; and the relative position
between ¢ = (wy, w,) and (v, v;), there are four cases: (1) wy is a partition point and ¢ is
on the right side of v{v,, (2) w; is an apex point and ¢ is on the left side of v{v,, (3) wy is
a partition point and ¢ is on the left side of v;v,, (4) w; is an apex point and ¢ is on the
right side of v;v,. See Figure 3.19 and 3.21 for illustrations.

We prove the possible long rang connections between the points of 7, and 7, case by
case. Lemma 3.15 covers case (1) and case (2) which satisfy the condition Z(v{v,, wowy) =
0/2. Lemma 3.16 covers case (3) and case (4) which satisfy the condition Z(v,v,, wow;) =

~0/2.

Lemma 3.15: Given a pair (v, v,) with child-pair set ®@, consider two sibling pairs ¢ and
@ in ® where ¢ = (wy, w;). ¢ and ¢ are at level-I for | < m — 1. Suppose point p belongs
to 7, and g belongs to 7. If Z(viv,, wow;) = 0/2 and there is a directed edge from p to
q in YY1 (Ph), then £(viva, pq) = 0 (i.e., pq is parallel to v;v,), and ¢ is a point in the
gadget Gg,, generated by ¢.

Proof As we have discussed above, there are two cases under the conditions. Consider
case (1). See Figure 3.19(a). First, we prove that Z(v,v,, pg) should belong to (-6/2,0].
If g belongs to 7, and ¢ < ¢ (i.e., ¢ = ¢V in Figure 3.19(a)), w, and ¢ are in the
same cone of p. There is no edge from p to ¢ since |pw;| < |pg| and the edge pq is
rejected in the Yao-step. Then consider that g belongs to 7, and ¢ > ¢ (i.e., g = g? in
Figure 3.19(a)). According to Observation 3.14, we safely assume that ¢ is an internal-

pair. Denote the point in Gg,, closest to wy by n. If Z(viv, pg) > 0, 17 and q are in the
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(%1 w1
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0 4,2 w3 v

U1 w2

(b) Case 2: wj is the apex point and ¢ is on the left side of v;v,

Figure 3.19 The two cases about Z(vivy, wowi) = 6/2. Here ¢ = (w1, w;) and p € 7.

same cone of p since wyn has the maximum length among its sibling pairs according to
Corollary 3.9. Thus, there is no edge from p to ¢ in the Yao-step since |pn| < |pg|. Thus,
L(viva, pq) € (—0/2,0]. Then, we prove that Z(viv,, pg) = 0. Suppose the projection
point of p to pair ¢ is A; (the A; must exist according to the projection process) and ¢®
is an apex point of the piece 4;4,. Note that § < n/3 for k > 3 and the maximum
length among child internal-pairs of ¢ is at most twice longer than the minimum one (see
Property 3.6). It is not difficult to check that the point closest to p in cone C, (=6, 0] is
g®. Thus, g = ¢® and pq is parallel to v;v,.

Note that there is a degenerated case in which the projection A; is an end point
of an empty piece. Thus, we do not generate the corresponding apex point g. See
Figure 3.20(a) for an illustration. (&, &) is the pair closest to A;. Note that for k > 3, the
angle /pA,& > n/2 and (£, &) is a leaf. Thus, in this degenerated case, the point closest
to p in cone C,(—6,0] is A;. pA, is also parallel to v;v,. Thus, the lemma is still true.
We can process the degenerated case in the same framework in the following and do not
distinguish the degenerated case particularly.

Consider case (2). See Figure 3.19(b). Suppose 1, is the apex point of the near-empty
piece of ¢ incident on w,. Note that w,n, has the maximum length among its sibling
pairs. If g belongs to 7, and ¢ < ¢ (i.e., ¢ = ¢'" in Figure 3.19(b)), 17, and g are in the
same cone of p and |p| < |gp|. Thus, there is no edge from p to ¢ in the Yao-step.
Then consider that ¢ belongs to 7, and ¢ > ¢ (i.e., ¢ = ¢ in Figure 3.19(b)). According
to Observation 3.14, we assume that ¢ is an internal-pair. If ¢ > ¢, the polar angle of

pq should belong to (—6/2,0]. If not, w; and g are in the same cone. Thus, there is no
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(a) The degenerated case of case 1 in (b) The degenerated case of case 3 in
Lemma 3.15 Lemma 3.16

Figure 3.20 The degenerated cases in which the projection point of p is an isolated partition

point, i.e., 4; in the figure is an isolated partition point which is incident on a short piece.

vy

(a) Case 3: w is the partition point and ¢ is on the left side of v{v;

1

(b) Case 4: w; is the apex point and ¢ is on the right side of v{v;

Figure 3.21 The two cases about £(vivy, wowi) = —6/2. Here ¢ = (wi,wp) and p € 7.

edge from p to ¢ in the Yao-step since |pg| > |pw;|. Then we prove that pq is parallel to
v1v2. The point closest to p in the cone C, (-6, 0] is the projection point of p (p must exist

because of the projection). Thus, pq is parallel to v;v,. O

Lemma 3.16: Given a pair (v, v,) with child-pair set @, consider two sibling pairs ¢ and
@ in @ where ¢ = (wy, w,). Suppose ¢ and ¢ are at level-[ for | < m — 1. Suppose point p
belongs to 7, and g belongs to 7. If Z(viv,, wow;) = —60/2 and there is a directed edge
from p to g in YY1 (P)) , then Z(vivy, pq) € (0,6/2). Moreover, there exists a point r
in 7, such that pr is parallel to v;v, and |pr| < |pq|. Moreover, r is a point in the gadget

Gg,, generated by ¢.

Proof As we have discussed above, case (3) and (4) satisfy the condition Z(v;v,, wow;) =
—60/2. Suppose g belongs to 7,. Consider case (3). See Figure 3.21(a). Suppose

wr& and w,&, are the two empty pieces incident on w,. If g is in 7, and ¢ < ¢ (i.e.,
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g = ¢V in Figure 3.21(a)), &, and g are in the same cone of p. If g is not &, there
is no edge from p to ¢ even in the Yao-step since |pé&| < |pq|. If q is &, p& would
not be accepted by &) in the reverse-Yao step, since there is an edge from &, to & and
|£1&| < |pé&i|. Then consider that ¢ (i.e., ¢ = ¢ in Figure 3.21(a)) is in 7, and
¢ > ¢. According to Observation 3.14, we safely assume that ¢ is an internal-pair. Thus,
L(viva, pq) € [—6/2,0/2). If £(viva, pq) € [—6/2,0], pq is not a directed edge in Yao-step
since w; and ¢ are in the same cone and |w;p| < |pg|. Finally, consider the projection
point A (4 exists because of the projection) of p to pair ¢. r is the apex point related to A
and on the segment pA. It is not difficult to check that |pr| < |pg| since 6/2 < x/2 and the
maximum length among the non-empty pieces of ¢ is at most twice longer the minimum
one (according to refinement). Similar to case 1 in Lemma 3.15, these is a degenerated
case that A is the end point of an empty piece. See Figure 3.20(b). In this case, it is not
difficult to check |pA| < |pq]|.

Consider case (4). See Figure 3.21(b). Suppose 77, and 77, are the apex points of the
near-empty pieces incident on w,. If gisin 7, and ¢ < ¢ (i.e., g = gV in Figure 3.21(b)),
n and ¢ are in the same cone of p. If g is not 7, there is no edge from p to ¢ in the
Yao-step since |pn;| < |pq|. If g is 1, pn; would not be accepted by 7, in the reverse-Yao
step since there is an edge from 1, to i, and |i172| < |pn:|. Then consider g is in 7, and
¢ > ¢ (i.e. ¢ = ¢ in Figure 3.21(b)). Based on Observation 3.14, we assume that ¢ is
an internal-pair. The polar angle of pg should belong to (0, 6/2). If not, w, and g are in
the same cone. Thus, there is no edge from p to ¢ since |pg| > |pw;|. Finally, consider
the projection point r of p (r must exist because of the projection) to pair ¢. |pr| < |pq]|

and pr is parallel to v,v; since /2 < x/2. O

In the next section, we discuss how to cut such long range connections. Roughly
speaking, under the condition of Lemma 3.15, we can cut the long range connection pg
through adding two auxiliary points close to g. Under the condition of Lemma 3.16, we
can cut the long range connection pgq through adding two auxiliary points close to r.

Based on Lemma 3.15 and 3.16, we have the following corollary.

Corollary 3.17: Consider two sibling pairs ¢ and ¢ with subtrees 7, and 7, respectively.
Suppose p belongs to 7, and g belongs to 7. If directed edge Pq is in YYars 1(Pr), then

¢ <.
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Figure 3.22 A simple example to explain how an auxiliary point cuts a long range connection.

3.4 The Positions of Auxiliary Points

We discuss how to use the auxiliary points to cut the long range connections in
the Yao-Yao graph YY..1(P)). According to Claim 3.13, it is sufficient by cutting all
long range connections between siblings. Denote the set of auxiliary points by 3. Let
Pm =P, UPA.

First, we consider a simple example to see how auxiliary points work. Consider three
points u, v and w. Line uv is horizontal, and Zwvu = /wuv = 6/2. The point & and &,
are two points on segment uw and vw respectively. &;&; is horizontal. See Figure 3.22.
Note that the polar angles of a cone in the Yao-Yao graph belong to a half-open interval in
the counterclockwise direction. Thus, uv is in the YY,;, graph, which is the shortest path
between u and v. However, we can add an auxiliary point » close to v and Zrvu < 6/2.
Then according to the definition of Yao-Yao graphs, the point v rejects the edge uv in the
reverse-Yao step since rv exists in the Yao-step, and point r and u are in the same cone of
v and |rv| < |vu|. Then, consider ur and r&;. The directed edge ur is not in Yao graph
since &) and r are in the same cone of u and |&u| < |ur|. The directed edge ru is not in
Yao graph since &, and u are in the same cone of r and |&,7| < |ur|. Besides, directed edge
& r is not in the Yao graph since r and &, are in the same cone of & and |£,&]| < |&7].
Finally, directed edge ré, is not accepted by &; in the reverse-Yao step since there is an
edge & &) in the same cone of r and |£&,| < |ré&;|. Overall, the shortest path between uv

becomes ué& &rv.

The positions of the auxiliary points: Inspired by the example in Figure 3.22, we call
the normal point closest to an auxiliary point the center of the auxiliary point. Then, we

find candidate centers to add auxiliary points.

Lemma 3.18 (Candidate center): Given a pair (v, v,) with its child-pair set @, consider

two sibling pairs ¢, ¢ € ® and ¢ < ¢. Suppose p is a point in 7, and its projected point
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(a) Case 1: the projected point g is w». (b) Case 2: the projected point g is wy.

Figure 3.23 The illustration for candidate center of p.

(denoted by ¢) on the segment of ¢ along direction v;v;. Then, there exists a nonempty
subset S C Gg,, such that for any u € S, pu is parallel to v;v,. See Figure 3.23 for an
illustration.

We call the point u := argmin,cs |pu| a candidate center of ¢. Note that the

candidate center may not be the projected point q.

Proof The correctness directly results from the projection process. In the first case (see
Figure 3.23(a)) where the apex points of Gg,, and p are in the same side of segment of ¢,
we will generate a pair (wy, wy) such that ¢ = w, and pw; and pw, are parallel to vv,.
Thus, S = {w;, w,} and we call the point w; a candidate center of ¢. Note that w, is not
the projected point of p. In the second case (see Figure 3.23(b)) where the apex points of
Gg, and p are on the different sides of segment of ¢, we will generate a pair (w1, w) such
that ¢ = wy and pw; and pw, are parallel to v{v,. Thus, S = {w;, w;} and we call the
point w; a candidate center of ¢. Beside, g may be an isolated partition point or a point

in ¢, then § and the candidate center is point g itself. O

Definition 3.19 (Candidate center set of ¢): Consider a pair ¢ with parent pair (vy, v;).
Let @ be the set of child-pairs of (v{, ;). In the projection process, we project all points
P € Ugp<ppen T, to the segment of ¢ along the direction v;v,. Each such point p whose
projected point falls inside the segment of ¢ corresponds to a candidate center of ¢ defined
in Lemma 3.18. We call the set consisting of all these candidate centers the candidate

center set of ¢. Note that candidate center set is a subset of Gg,.

We add some auxiliary points centered on these candidate centers to break long range
connection. For convenience, we define some parameters first. Let A be the minimum
distance between any two normal points and n be the number of the normal points. Recall

that we partition the root pair uy, u, into dy equidistant pieces. Let y be a very small
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(a) Case la: wy is the partition point and ¢ is on(b) Case 1b: w; is the apex point and ¢ is on the

the left side of viv, right side of viv;

(c) Case 2a: w; is the partition point and ¢ is on

the right side of v, v, (d) Case 2b: w is the apex point and ¢ is on the

left side of vivy

Figure 3.24 The auxiliary points for each point. Here ¢ = (w, w;) and g € Gg,- m and n; are
two auxiliary points centered on ¢. Note that |r7;¢| and |2¢| are very small in fact. This is just a

diagram to explain the relative positions between {rn;, 7.} and g.

angle, such as y = 0d;'. Let o = max{sin(6/2 — y)/sinv, sin"!'(6/2 - y)} + € for some
small € > 0. Let y = dyo"A~!. Roughly speaking, y > d, > o > 1.

We traverse 7 in the DFS preorder. Each time we reach a pair ¢, we find all candidate
centers in Gg, and add auxiliary points centered on them.® Moreover, let the order of
¢ in the DFS preorder w.r.t. 7 be «. The distance between the auxiliary point and its
center g depends on x. We use the polar coordinate to describe the relative location of an
auxiliary point to its center.

Let ¢ = (w,, wy) and (v, ;) be the parent-pair of ¢. There are two cases according
to Z(vivo, wiwy) = 6/2 or —0/2.

e /(vivo, wiwy) = 6/2 (see Figure 3.24(a) and 3.24(b)):

— If ¢ = wy, do not add auxiliary point.
— If g = w,, we add the point 77 such that Z(w,wy, won) = —y and |won| = oy 7\
— Otherwise, we add two points 17; and 77, centered on ¢ such that Z(w,wy, gn1) =

L(wawi,m2q) = —y and |gmi] = gl = o x 7"

@ Note that the candidate centers belong to Gg,,, may not belong to ¢ itself. Besides, here we do not need to
distinguish whether the candidate center related to a long range connection or not. It may reduce the number of
auxiliary points but do not influent the correctness.
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wy

Figure 3.25 The positions of auxiliary points (171, 172, 173) centered on normal point g.

o L(vivy, wyw,) = —0/2 (see Figure 3.24(c) and 3.24(d)):

— If ¢ = wy, do not add auxiliary point.

— If g = w,, we add the point i such that Z(w,w;, won) = y and |won| = oy~ L.

— If p and ¢ are in the same hinge set (i.e., p, g are the points &, &, in Fig-
ure 3.24(c) or 3.24(d)), we add two points 1; and 77, centered on ¢ such that
L(waw1, qi) = £(wawi,m2q) = y and |gm| = |mgl = o*x~" + € where € is
much less than the distance between any two points in #,,.©

— Otherwise, we add two points 17; and 77, centered on ¢ such that Z(w,wy, gn1) =
L(wawi,m2q) =y and |gmi| = |mg| = 0% x 7.

First, we list some useful properties of the auxiliary points below.

Property 3.20: Properties of auxiliary points:

P1 The maximum length between an auxiliary point and its center is at most d'A.

P2 Any point g € P}, can become a center for auxiliary points at most twice. Here, for
each time that we indeed add some auxiliary points for a candidate center p, we say
that p becomes a center once.

P3 There are at most three auxiliary points centered on a normal point.

P4 Suppose ¢ is a candidate center because of the projection of p and we add the
auxiliary point n7 centered on ¢g. If there is an auxiliary point &€ centered on p, then
|£p| < o~ |nq|. Hence, the perpendicular distance from 7 to the line pq is larger
than |£p|.

P5 If auxiliary points 1y,77, and 13 are centered on g and |gn| = |gn.|, then |gn;| <
ognsl, Lmgns = (8/2 - 2y), and Lgnzm, < y.

@ Itis slightly different from the first case. We add two auxiliary points with distance slightly larger than o* y !
to its center when p and ¢ are in the same hinge set. The reason is that the cone is half-open half-close in the
counterclockwise direction. It will help a lot to unify the proof in the same framework. See the details in the proof
of Lemma 3.21.
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Figure 3.26 |£p| < o~!|ng| for the auxiliary point of p. Moreover, the perpendicular distance

from 7 to pq (i.e., || in the figure) is larger than |£p]|.

Proof [P1] Note that the largest « is at most n since there are at most n pairs in the tree.
The maximum length between the auxiliary point and its center is at most o y ™' = dj'A.

[P2] Note that each point g € P, belongs to at most three gadgets, one pair ¢ such
that g € Gg,, and two sibling pairs ¢, and ¢, such that g € ¢; N ¢,. See Figure 3.25 for
an example. We visit ¢ first and then ¢, and ¢, in order. Note that ¢ is the shared point of
¢1 and ¢,. According to the way to add auxiliary point, when we visit ¢,, g corresponds
to the point “w;” (in Figure 3.24) in the rules. Thus, we do not add auxiliary points for g.
Hence, there are only two times that g can become a center for auxiliary points. The first
time happens when we visit ¢ and the second time happens when we visit ¢;.

[P3] Followed by the proof of [P2], in the first time, we add two auxiliary points 7,
and 7, centered on ¢g. In the second time, we add one auxiliary point n; centered on gq.
Thus, there are at most three auxiliary points centered on a normal point.

[P4] Suppose p belongs to subtree 7, and g belongs to subtree 74 and ¢ < ¢. Thus,
the auxiliary points are added for p earlier than ¢. It means that |¢p| < o!|ng|. Note
that the acute angle between ng and pgq is (8/2 — y) and o > sin™'(8/2 — ). Thus, the
perpendicular distance from 7 to the line pgq is larger than |£p|. See Figure 3.26.

[P5] According to the proof of [P3] (see Figure 3.25) we add 1, and n, earlier than ;.
According to the construction, we can add these three auxiliary points for g. Checking the
four cases in construction, we can get Z(pg, qnz) = —y and Z(pq, qn2) = —0/2 + . Thus,
/g3 = 6/2 — 2y. Moreover, note that o > sin(f/2 — y)/siny and |p.q| < o7 |n3q].

According to the law of sines, we get Zgnsn, < y. m|

Extended hinge set: We extend the concept of hinge sets to the extended hinge set to
include auxiliary points. The extended hinge set consists of the normal points in the hinge
set and the auxiliary points centered on these normal points. Besides, if p belongs to 7y,
then the auxiliary points centered on p belong to extended 7,. Then Claim 3.13 is still
true for YY1 (P,,) with the same proof. It means that we only need to consider the long

range connections between the descendants of any two sibling pairs.
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(d) Case 4: w is the apex point and ¢ is on the right side of viv;

Figure 3.27 Here ¢ = (wy, w2) and p belongs to the extended 7 which includes auxiliary points.

Moreover, we can get similar properties as Lemma 3.15 and 3.16 for the auxiliary
points. Suppose ¢ and ¢ are two sibling pairs. If p € 7, and g € 7, and there is a long
range connection p_q> in YY1, then ¢ < ¢. Meanwhile, the points in 7, locate in two
cones of p. But only one of the two cones may contain a long range connection. We

describe the property formally as follows.

Lemma 3.21: Given a pair (v, v,) at level-I for [ < m— 1, with child-pair set @, consider
two sibling pairs ¢ and ¢ in ® where ¢ = (w;, w,). p is a point in extended 74 and ¢ is a
point in extended 7,. Suppose there is a directed edge p_q) in YY1 1(P).

o If Z(viva, wowy) = 6/2 , then Z(viv,, pq) € (—6,0].

o If Z(viva, wowy) = —6/2 , then Z(viv,, pq) € (0, 0].

Proof The proof follows the same procedure as the proof of Lemma 3.15 and 3.16. We

also distinguish into two cases. Given a pair (vy, v;) and its child-pair set @, consider two
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sibling pairs ¢ and ¢ in ® where ¢ = (w;, w;). The first case is that Z(viv,, wow;) = 6/2.
The second case is that Z(v;v,, wow;) = —60/2. Consider a point p in extended 7,. p can
be a normal point or an auxiliary point.

Consider that Z(viv,, wow;) = 6/2. First, suppose w; is the partition point and ¢
is on the right side of v;v;. See Figure 3.27(a). Suppose ¢ belongs to T, and ¢ < ¢
(i.e., ¢ = ¢"V in Figure 3.27(a)). Denote the partition point in A, closest to w, by £.
Because of the projection of points in 7, £ has two auxiliary points, denoted by &; and
&. Thus, pg is not an edge in the Yao-step since &, and ¢ are in the same cone of p. Then
consider that g belongs to 7, and ¢ > ¢ (ie., g = g'» in Figure 3.27(a)). Denote the
point in B, closest to w; by n. According to the fact that w7 is the maximum length pair
among the child-pairs of ¢ (see Corollary 3.9), n and ¢ are in the same cone of p when
£(v1va, pq) > 0. Thus, there is no long range connection for p in cone C,(0, 6].

Second, suppose w; is the apex point and ¢ is on the left side of v;v;. See Fig-
ure 3.27(b). Denote the closest point in B, to w, by . Suppose g belongs to 7, and
¢ < ¢ (i.e., g = gV in Figure 3.27(b)). Because of the projection of points in T4, 1 has
two auxiliary points, denoted by 7, and 7,. There is no edge pg in the Yao-step since 1,
and g are in the same cone p and |n;p| < |gp|. Then consider that g belongs to 7, and
¢ > ¢ (i.e., g = ¢'¥ in Figure 3.27(b)). If g in the cone C,(0, 8], ¢ and w, are in the same
cone of p and |pw;| < |pg|. Thus, in the Yao-step, there is no edge from p to ¢ in the
cone C,(0, 8]. Thus, we prove the first part of the lemma.

Next, we consider the case Z(vivy, wow;) = —6/2. First, we consider the case in
which wy is the partition point and ¢ is on the left side of v;v5. See Figure 3.27(c). Denote
the partition point in A, closest to w, by &. According to the construction for auxiliary
point (case 2a), we add two auxiliary points & and & such that |££| = |&€] = ¥y + &.
Ifgisin 7, and ¢ < ¢ (i.e., g = gV in Figure 3.27(c)), & and ¢ are in the same cone of
p. Because the distance |££| (> o x7!) is slightly longer than the distances from other
auxiliary points of Gg, to their centers. Thus, Pq is not an edge in the Yao-step since
|€p| < |pg| and &, and g are in the same cone of p. Then consider that ¢ (i.e., ¢ = ¢®)
in Figure 3.27(c)) is in 7, and ¢ > ¢. If £(viv,, pq) € [-60/2,0], pq is not a directed edge
in Yao-step since w; and ¢ are in the same cone and |w,p| < |pq|.

Finally, we consider the case that w, is the apex point and ¢ is on the right side of
Vivs. Suppose 7 is the apex point in B, closest to wy. 17; and 7, are auxiliary points of

n. Ifgisin7,and p < ¢ (ie., g = gV in Figure 3.27(d)), 7; and g are in the same cone
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Figure 3.28 The case that ¢ € Ay U By. The figure is an enlarged view of Figure 3.25. g may
have three auxiliary points {11,172, 73}. &1 and &, are two possible positions of the auxiliary point

& centered on p.

of p according to the construction for auxiliary point (case 2b). Thus, pg is not an edge
in the Yao-step since |pn;| < |pg|. Then consider ¢ is in 7, and ¢ > ¢ (i.e. ¢ = ¢? in
Figure 3.27(d)). If the polar angle of pg belongs to (—6, 0], w; and ¢ are in the same cone.
Thus, there is no edge from p to ¢ since |pg| > |pw;|. Thus, we prove the second part of
the lemma.

Overall, we have proved the lemma. O

Then, we prove that after adding the auxiliary points, there is no long range connec-

tion.

Lemma 3.22: There is no long range connection in YY1 (Py,).

Proof Consider a pair (v;,v;) and the set @ of its child-pairs. Suppose ¢, ¢ € ® and
¢ < ¢. pisapointin 7,. Denote an auxiliary point centered on p, if any, by &. Let
u € {p, &}. There exists a point g closest to p such that g € 7, and pgq is parallel to v;v,
based on the projection process. If not, i.e., 7, only locates in one cone of p, according to
Lemma 3.21, there is no long range connection between u and points in extended 7.
According to Lemma 3.21, first, there is no directed edge from a point in (extended)
7, to (extended) 7,. Next, we prove there is no long range connection from 7, to 7.
Since p is an arbitrary point in 7, we prove that there is no long range connection between
u and the points in 7, (recall u € {p,£}). According to whether g is in Ay U B, or ¢,

there are two cases.

q belongs to A, U B,: g has two auxiliary points 1; and 7, because of the projection
p¢ and ¢ is a candidate center. Note that ¢ may have a third auxiliary point 775. But
p and 73 are on the two different sides of 17, and |n3g| > |n1q| = |n2q| because of
Property 3.20[P5]. Therefore, there is no directed edge pn; in the Yao-step because 7,
and 73 are in the same cone of p and |n,p| < |n3p|. According to Property 3.20[P4], |¢p]

is much less than |7,¢| or |n,¢| and the perpendicular distance from 7, and 7, to the line
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AV g(= ws)

(a) Only one auxiliary point centered on q. (b) Three auxiliary points centered on g.

Figure 3.29 ¢ is a point of pair ¢, i.e., g = w> .

pq is longer than |£p|. Suppose u € {p, £}. See Figure 3.28 which is an enlarged view of
Figure 3.25, in which & and &, are two possible positions of ¢£. According to Lemma 3.21,
un, does not exist in the Yao-step since 1, and one point of ¢ (denoted by wy, refer to
Figure 3.25) are in the same cone of u and |wju| < |npu|. If there is an edge un, in the
Yao-step, the edge un, cannot be accepted by 7, in the reverse-Yao step since g, exists,
and point ¢ and u are in the same cone of ¢ and |gn,| < |un,|. If there is an edge ug in the
Yao-step, the edge ug cannot be accepted by ¢ in the reverse-Yao step since 7; and u are
in the same cone and |,¢g| < |ug|. Therefore, there is no long range connection related to

p and its auxiliary points.

q belongs to ¢: See Figure 3.29. Note that in this case, ¢ is point w, of ¢. According
to Property 3.20[P3], any point has at most three auxiliary points. Since ¢ is a projection
point of p, g has at least one auxiliary point. Thus, there are two possible situations.
One is that there is only one auxiliary point centered on ¢ (see Figure 3.29(a)). It means
that in the first time that ¢ was able to be a candidate center, there is no auxiliary point
added centered on it (see the proof of Property 3.20[P2]). Denote the auxiliary point
of g by n. Let u € {p,&} where ¢ is an auxiliary point centered on p. According to
the Property 3.20[P4], n and w, are in the same cone of u and |uw| < |un|. Therefore,
there is no edge un in the Yao-step. Moreover, ug cannot be accepted in the reverse-Yao
step. Because the edge ng exists in the Yao-step. u and 7 are in the same cone of g and
Ing| < |ug|. Combining with Lemma 3.21, there is no long range connection from u
to 75. The second case is that there are three auxiliary points of g (see Figure 3.29(b)).
Denote the auxiliary points of ¢ by {11, 72, 73}. According to Property 3.20[P5], we know
/maqns = (0/2 — 2y). Again, denote u € {p,£}. There is no edge un; in the Yao-step
since w; and 5 are in the same cone of u and |uw,| < |uns|. There is no edge un, in the

reverse-Yao step, since there is an edge gn; in the Yao-step and |gn;| < |un;|. Similarly,
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there is no edge uq since there is an edge 77,¢ in the Yao-step and |n,¢g| < |ug|. Next, note
that |gn,| < o7 !|gns|. According to Property 3.20[P5], we know 173 and u are in the same
cone of 17,. Thus, there is no edge from un,.

Overall, we prove that there is no long range connection in YY,1(P,,). O

3.5 The Length Between u; and wup in YY2,41(Pom)

In this section, we prove that the length of the shortest path between the initial points
uy and wo in YY1 (P,,) diverges as m approaches infinity.

First, recall that we have extended the concept of hinge sets to extended hinge sets
which consist of the normal points in the hinge set and the auxiliary points of these normal
points. Consider two extended hinge sets A and A’. Define the shortest path between A
and A’ to be the shortest path in YY,(#,,) between any two points p and ¢ such that
p € A and g € A’. Consider any pair ¢ = (wy, w,) at level-(m — 1). We give a lower bound
on the shortest path distance between its former extended hinge set and latter extended

hinge set.

Lemma 3.23: Consider any pair (w;, wy) at level-(m — 1). Denote its former extended
hinge set by Afp_), and latter extended hinge set by Af;). The shortest path distance between
Agb_) and Af,;) is at least (1 — 6d;")|wiws.

Proof Let |wyw,| = §. See Figure 3.30. Note that Afﬁ_) and Af;) (the two hinge sets
centered on w; and w,) are not overlapping. Denote the near-empty piece incident on w,
by wyn; and the empty piece incident on w, by wy&,. &,&; is the leaf-pair closest to wy.
&1, is perpendicular to wyw,. The shortest Euclidean distance between the two hinge
sets is no less than [17;77,]. According to Property 3.10, |wim| < 2d;'6, [w2&1| < dy's
and &1, < 0.5d,'6. Thus, |pimp| > (1 - 3.5d;")6.

Then consider the auxiliary points. Note that according to the Property 3.20[P1],
the maximum distance between an auxiliary point and its center is d;'A, where A is the
minimum distance between any two normal points. Since A < ¢, according to triangle
inequality, the auxiliary points can reduce the distance between the two hinge sets by at

most 2d;'6. Overall, the shortest path between Agb_) and Ag) is at least (1 — 6d;")|wyw,|.0

According to Lemma 3.22, there is no long range connection in YY;.(#,,). Thus,
the shortest path between u; and p, should pass through all hinge sets in order. Thus, for

each pair ¢ at level-(m — 1), there is a path between Ai,—) and Af;).
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wy

Figure 3.30 The shortest Euclidean distance between two hinge sets centered on points of a pair

¢ = (w1, wy) at level-(m — 1).

Let the shortest path between Afﬁ_) and Af;) be A,. Then, we prove that the sum of
lengths of A, over all pairs at level-(m — 1) diverges as m approaches infinity. Thus, the

length of the shortest path between p; and p, diverges too.

Lemma 3.24: The length of the shortest path between w; and up in YY1 (P) for
k > 3 is at least p™, for some p = (1 — O(d;")) - cos™'(6/2). Thus, by setting dy >
[6(1 — cos(6/2))7"], the length diverges as m approaches infinity.

Proof We give a lower bound of the sum of lengths |w;w,| over all pairs (w, w,) at
level-(m — 1). Recall that the length of a pair is the length of the segment between the
two points of the pair. Consider any pair ¢ = (v, v,) with length §. According to
Property 3.10, the sum of lengths of half-empty, near-empty and empty pieces is no more
than 6d;; 16. Thus, the pieces which generate internal-pairs in next level have length at least
(1-6d,")s. For each piece, it generates two child-pairs. The sum of lengths of the two pairs
is cos™!(#/2) times larger than the piece itself. Overall, the sum of the lengths of the pairs
in generated next levels is at least (1 — 6d;')é cos™(6/2). Let p = (1 — 6d,') cos™'(6/2).
Thus, after (m — 1) rounds, the length of the pairs at level-(m — 1) is at least p"™! | us|.
According to Lemma 3.23, the shortest path from g to p, is at least (1 —6d;")p™ " | .
When d, > 6(1—cos(#/2))~", the shortest path between u; and p in YY1 (P,,) diverges

as m approaches infinity. O

Finally, combining with the results that YY3*¥! and YY5°!! may not be spanners, we
have proved Theorem A.4.
Theorem A.4 For any k > 1, there exists a class of instances {P,, }mez+ such that

the stretch factor of YYy41(Pn) cannot be bounded by any constant, as m approaches

infinity.
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Chapter 4 Conclusion and Future Work

In this dissertation, we study two important computational geometric problems. First,
we study the weighted unit disk set cover problem (WUDC). We provide the first PTAS.
As applications, we give a polynomial-time (4.475 + €)-approximation for MWCDS for
any fixed constant € > 0. And we provide a PTAS for MLC when all sensors and targets lie
in the Euclidean plane and all sensors have the same covering radius. Second, we study
the Yao-Yao graphs. We prove that for any integer k > 1, there exist odd Yao-Yao graph
YY,41 instances which are not spanners. We believe our result and insight are useful to
tackle other problems. There are serveral topics we will try in the future.

* Obtaining PTAS for the weighted disk cover problem with arbitrary disks is still a
central open problem in this domain. An interesting intermediate step would be to
consider the special case where the ratio between the longest radius and the shortest
radius is bounded.

* We would like to find the PTAS for the minimum weight connected dominating set
in unit disk graphs. It is useful in the computation of routing for mobile ad hoc
networks. For the unweighted version, there exists PTAS®78!. For the weighted
version, current best result is a (4.475 + €)-approximation algorithm.

* Itis possible to generalize our PTAS for WUDC from 2-dimension to higher dimen-
sions.

* Actually, we can define other sparse t-spanner candidates inspired from Yao-Yao
graphs, such as @-0 graph through using ®-step twice. We want to know whether
these graphs are spanners or not.

* We would like to apply our theoretical results in real world applications. Actually,
lots of optimization problems such as facility location, route planning in spatio-

temporal data are related to set cover and z-spanner problems.
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Figure 2.7 The example of label-cut. The left hand side illustrates the whole sub-
structure before cutting. The arcs have two different labels. One is green
and the other is brown. The bold black subarcs are what we select in the
envelope. The right hand side illustrates that each of the two separable

substructures induced by the label-cut operation only contains arcs with

the same 1abel. .. ...

Figure 2.8 The farthest disk pair of square I" is (Dy, D,). Suppose D, and D, intersect
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Figure 2.14 D, and D; intersect at point A and B. Suppose the side length of square
is . If the central angle of arc a[A, B] is more than 2+/2u. Dy, D’ should

overlap, where Dy € Gg(I',), D € Gg(I')).ovvvvvnveeniiii i

90

.32

.38

.40

.45



List of Figures

Figure 2.15 Consider a point P on D. a, by, b, which belong to disks D, Dy, D,
respectively, can cover the point P. D and D, intersect at A; and B,

meanwhile D and D, intersect at A, and B,. Then, D; and D, belong to the
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Figure 3.1 The overview of the counterexample construction. Figure A.4(a)-A.4(f)

illustrate the fractal and its variants. ............oouieeineneee i

Figure 3.2 The overview of the positions of normal points. There exists a point at
each intersection of these segments. i, is horizontal. {a@;, @, ..., @g-1}
partitions the segment u; u, into d, equal parts. For each S;, Za;_1B:a; =

n—6 and |1 6:] = |Bia;|. We call {ay,az,...,a4-1} the partition set

and {81, Bo, . . ., Ba, } the apex set of pair ({41, (2). wevveeiviiieiiiiiann..

Figure 3.3 An example of one gadget. ¢ = (w, w,) is the parent-pair in the gadget.
Ay = {a1, a2, a3, . .., a7} is the partition set and B, = {B1, B2, Bs. B6, B7} is

the apex set. There are eight pieces, in which wyay, @@, @yas, asas, asa;

are non-empty pieces and a, a3, @34, @7W, are empty pieces. ..............

Figure 3.4 Anexample of the gadgets which are generated in a recursive manner. a;
is an isolated partition point. The arrow of a segment indicates the order

of two points in the pair. For example, the arrow from w; to w, indicates

that (Wi, Wo) 1S @ PAIL. .ottt e e e e e

Figure 3.5 The recursion tree of our construction. Each node of the tree represents
a pair (e.g., (81, w;)) or a point (e.g., a3) in Figure 3.4. Pair (wy, wy) is the

root at level-0. Any pair at level-(i + 1) is generated from a pair at level-i.

Figure 3.6 The process of generating a tree according to the DFS preorder. In each
subfigure, o represents a node we are visiting. The nodes generated in the
step are denoted by o. e represents a node which has already been visited.

o represents a node which has been created but not visited yet. The nodes

covered by light brown triangles are related to the projection process. .....

Figure 3.7 The root gadget Gg,(Ay, B,) where ¢ = (uy, 42). pip2 is horizontal.

Ay is the equidistant partition. Each piece is non-empty.....................

91

.54

.55

.55

.57



List of Figures

Figure 3.8 An example of the projection for the first internal-pair ¢ = (1, &). First,
we add a point A such that |1£| = §/dy where ¢ is the length |p&]|. Second,
for each leaf-pair ¢ < ¢, project its apex point p to the segment of ¢ along

the direction ﬁ_c;, i.e., add the point g in the figure. ........................... 59

Figure 3.9 The projection for pair ¢. Here, p is a point in subtree 7,. ¢ is a
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R 2 h 34 k4% % (quasi-uniform sampling method) 222!, B DL i 5 — Mg 1%
S WUDC (L 22— B &) A B Bhig 2. JRTM . H Bl AR T Hofth— 24
AR, BIAnZ e AR 5 N A E DRI A A A TR e 4%
—RAR D AR R . Flt, FET Adamaszek 1 Wiese (173 BHEZL T, Mustafa
S NP BRAG T X R A AR (F5E B, R R I AR AS[E]) QPTAS (1
Z AN AT 52) . RIGHERR T WUDC /2 APX HEFY ] §E”

T DR AR AURALIE T JZ 8 #5, Erlebach #/1 Van Leeuwen!!
PR T PTAS B3k i TAEAHAIMERE S, BT~ il
JUMEE AR (BT ZE AT ig o ), X2t s —> PTAS 8. B
AR RABATRI S R A WUDC |1 PTAS HER#E, Al T8 SOl
MTHSEARA R AN AT A B )8, FF H5E AN R R AT BEZ L T7 T

BT ERETASE R, BRRAIMIGZHIAF WUDC M iZ A 7E—1> PTAS Bk, (H
CABIRE DM AR A, (B 202 — D R B e SCRTR 2,
a0 B0 o ARSI EE T HUR I R A WUDC (9551 PTAS, H E iRk
XA Al

Theorem A.1: WUDC [JBI7AE— 4> 2 W BT T 5 o IS TIH AL nO0/<),
HiF WUDC [ MWDS S35, i TAT ME 2L F i
Corollary A.1:  HFAL (] e/ VU SRR L — A 2 T B U

FATERE], M Marx 1905 E" 4R, BT R nPov Ve JLPRRth, i
TR RIS XS AN RS BC S ), An SR A7 /£ EPTAS (R, &2y PTAS, iz
FTESTRIDN f(1/€)poly(n)) . K- SRS MBS JE o ), FRATEIEN] T 3ATRY
WUDC ] PTAS RJ LA SRARAT OIE R AR 32000 T o2 A Jaliadse W 5 1y 94 1 B 52
[ B [53PS5SO 8t o

I R R BB = PTAS
R AR T

AR FRUERS (LB A, BRI Y A R T — N R/ R IE TR, (3R
IRz A, IR T 1/e) ., HEH WUDC £24it—> PTAS /245 1o iX ML
1£ Huang 55 A A8 SCrpl e s pk o R B0,

© ZEEPECHAE Du A1 Wan S5 R FHH Y, S0 H Willson 55 AL,
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core-center

i
/
! - arca

I centerarea I active region

(@ ®)

Figure A.1 /IM&fFo Dy 1D, 2T/ B T o RO B o Y A 4~ R4, AT
17372 Ds 11 Dy AE AR B PR M D2 HUD XK, € 3K € = D(Dy, 75 )ND(Dy, 751,
Hrbrrg = |DyDy|o FREOIXEURZDXE, E XN € =D, )NDQ, ). FEAHRIEH, 5%
WP 8 XIEE N (Useg, Di = (Ds U D)) N HY Fil (Uieg, Di = (Ds UD,)) N H™.

Lemma A.1 (Huang et al.B%):  BEAERE EM L x L PP fE4E— T WUDC 1
PSS BTN f(n LYo W) WUDC f74E—4" (p + O(1/L)) MERUERY, iZ
T O(L - - f(n, L)) HINERUERE . S50, 1% L = 1/e, ] WUDC 7505
MO (L-n- f(n 1) BHREIE (o + €) LU

FA L, ZHT LA R WUDC i B AR TA #R Sl I X B E R R FRLA~
TR FEHECEAMATTHASH) GX2 2 A F 2D o ©

AR SCHA T B TTRRAE TR BT A AR TR D03 TS B A e (1+
€) MM, A TR RS LR

Lemma A2: fEA/NA Lx L for L = 1/e {2k /N 774E WUDC [ PTAS.
PTAS [Ji5F I [A] 2 nO0/€),

FEARTICH, PEIEEEREE € > 0 B REER L HFATR— T EEE—
B HETREBUR T e AL OPT KRRz iy Uit (R AU(E) « 34T
MKREFEEAB,C,... KR K, NGFErabe,... FoRIe X AR B B4
s A AB SRFORESE A T B BT |AB| KON ERIE . AT H]
D SKEORE L, (6 D RIRERITDe XT /A FMEE r > 0, 1k DA, r) LA
AN HEAERN r RS X RE D, B 0D RIS ERIAH . A
PR OD; _EH—BO— 555

© AT HBPARIBRY S ECER R, A S MR SRR DR IXEIRE A TAT LR 2 D
A T S SR A e ST, XTI L S A Tal WUDC, B[RRI Y e R SR T RE HH ©(n) B4
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5, RN T HLEH G C, OPT REEALT C (AL 1E OPT &
SR C B AT ETPRFTA TREINALS . AAIRERE A5 A S U
ML, TSI R . X 2 BRI TS . aLmE
0 (2L, (1)) = 00 By,

AP RO UL OPT (4 % F € MR, 7ERSFIEBLF . FRATHA (B
GPEFTETTHEN) FUA OPT d ¢ MRERAMEMINES G. X5 EH LT
(M1, 0(i€)) FTREMIAEI. MORFA TR ERIG. S0 . AR 6 rngpr
BIISLIL: G RAERFE . kD, (I w) & G HUER /NG . Hf 1
LATEE] OPT = Cw,e AL, FRATHSATIAZE 2 M0 A T AT we (O (3%
BAVGHIRZERI) o B, Rl IS RIRA N LR SRR, A
BIEREL A we. BOMER D' = D\ G WP’ = P\ P(G) KA T HA A
ERIFAIIEES . Hoh P(G) Fo G Il 3 b — - FA BT A 510 1.

B, RN A4S C HMINES H < D's H I HIGRIEEA
SHERIEE (RERRD NI (FLEH) | SR T4 L s
USSR, © — RN R TR RIS, AU (B, ISETLL
L F— A FLEHI) S FARE— AT ORISR S . I
AR BT A — ST R . T 4 S AR A F R T
BT T4, el TR R -5 R B UL R — 5. 5 b,
B H AR A R I 80 BORIESCR E A

PN T — N E G A TR ER H IR RIS (D \ H, 27\ PCH)) WL
(L TP T SR EIR D . 1k S SRASOI R ol 105
LML SOL=GUHUS. Bk, RMTATLIES

w(S) < w(OPT -G —H) < OPT — w(G),
K4 OPT — G — H JZZ LI — AT (D7 \ H, P\ P(H)). NIk, FATH
SOL = w(G) + w(H) + w(S) < OPT + eCw, < (1 + €)OPT,

HHPpRE H| < eC, M —2lEjs — ARG — DA G T 5550
OPT > w(G) > Cw;»

Mg H: B, JATRZENG— Mid H C D' Eoo, FATREIEGA
KN = 0(e) B 75 Fe . AT HRUOETZ /N7 BReb R [R5 i) AR S 3/ N T B
I BAEE— A/ NP g S ORGSR B = (T h<ijax BN B/NTHE, H

©  ATRAMHE ST B B shaS LRI A e B2 A
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~~~~~~

Overlapping

R-correlated

Figure A2 BRep PR RTEIE o ZLRUR/NTHERY RIS e SR @B R FA TR TH) H
Tt ZEPERA T4,

K =L/po XFT—A/NTIET, ik Dy € T Dy € T Z7m Ht [l O it i — X [
(B Dy, Dy | F2 i KAL) o FRATREXXS 4L Dy M Dy IO H 1, XS TFAE/I
FIH T € B, FRT X PI A EEFHFEES MIZ/NTRE DR IR, IE2 LA
Ale J8F, FNTARFRESCEH AR S A X U(H) TR RS .

AT S A DAL — A /N7 B B R4 o 3K B ) R 4 = X 2 P 1
AHHEC R ke GEZ W ATRIAI, PN BRSE D80 o Bl TR — 4~ XK
FRTEHSREIIFN FA 4 (FESE R P2 H IR U8 S0 o F358 b, (A BhAsH
W, BATAT Mg A 7 S g S A S A R AEDST R sh 2580 -
Haioy Ik, ROTEMZIE O AIE 7o ROV MM, Fra i ee/ Marte&
Aok TR DCERAAR 22 DX, BT 32 AT LAGE FH S AU Bl R RISk AL HH i A X
W2t . (HR, TR TR EE Zs, ROVIICEHT. A2 A20y
—NAKREIZRB . B, HMEARE T RE, WEEALD PR, RS
FEPAIN (B IN) BT H— B shZAMR AUy & T H— 1 B 8 T
PIAAE £ 25 (PR R FE54) M SRl IR g . Hk,
TS B, BATRE ERAT IR B A ST . ORI B A
PN A 1 E5H A HEBHF RIS R
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ARy, B T /NS, BATETRZARINE] H rEE IR R RIMNALRE . 3X2
I — R YIE " BRAESE i o DIRIAT LUATRE— AR, 5 R — 7S5 P
a7 BB TEMZBIIHER AR, BATEL R, PN T4
KA S0 Hrpfg 452 T e BIE RAFSGE L T — 4l i, JUT
FHESRAE A O, EilnFEE, BT LS ORIt i, It
HAB R EIELL O IR, FFH S Fehi. B 1K © WARAEA 2 ILfd. S Ay
IREEH PP BA TN E SO IR HER? . FEin_EH A — 2o fai FRpg Bk, FATTAr LA
[F IR SRR P N — A1 254 B T 45 .

N

HATF /T T RERRY/ Mt Gol Y&t [RIE—T, 15BN TR
Ggl' = Dy cupD,, Hrfr Dy fl D, J2& T o — X4 AT LAER], X4
I tPEER A D: . 0D H— Bl BORZeABE Go(T) A6 AL Mk, ik
DD, J2/K-V-Ho DD, BEENPIE PR, d HY (EPi) 1 H- (FF
i) FoRHI-Fli. 0Dy 10D, P P AT Q ALMHAC. T, FATE L&A H]
HIRE -

L (P EAIRZOX) % Go(T) 1Y & BESONAE T FhA [ £ D(Dsrye
D(Diry) BISCEE Hdtrye = [DyDylo FAME € RFRE - H1T Dy 1D, S
X, FATRT LG 2] T A A H A 5 A 18 D T HPi X € A
HATE L Gg 1Y 4w K () NP BILL PO AHUD R FRALIAE Y s B B
A b ATART RO XA T A% O DR BRSO U P A 5 e
LEFATH € RFRIZIX

2. () B KK (Up, e, Di — (D; UD,)) N H 1
(Up,ec, Di = (Ds U D)) NH™. FATFRALATAF/NITH T RHRRY &3 Ko 3RAT]
H Ar SRR X

T

Al H S/t 1A H RISt S e BUR F N e X T4l
4 S, AV R(S) k5o AE S HIABE AL X, R Up,esDio 25 7E 1 E
Y H ., FATEAERIAARA 535 R B R(D') - R(H). A THETERR, &K
A U(H) RFRARE R KK R(D') - R( calH)o EIA2ZZ— i1 EWHM
Ui, X HODF LA ST AR IR, FRATE LS AR A X e 5

© [FEER-ND =D\g, Hrf G & OPT FER AN C %
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envelope a c

m@

C
QS baseline

Figure A3 745, B2 b 6I& ArALLERIIN. Oy Or REEL b AN AL SREAYINAL TR
L XA

EEYAR

L (G20 BAEM oH KFox H Hhse B &1l a, Himm PPy £ OH
Fo IR P AT OH B Py AT Py Z IR B, BTN a 45 OH Hhl
TR P, MR DB P, FATHAL P € OH T A& £ HAGE OH L
AR s RS o K . FATEE (] b SkeFondELk.

2. (FE5H) 1451 St(b, A) HEEL b ATa] LUELE: b iMERURIV BRI SR & A A
e BN a € A RS REE b B, FFHINAE 2(a) /N 7o 3R
b [~ i A RS . A3ER 7145,

ey [a) &

T AL RO B AR AHER R BHREIOARR . R ATA B
H R HL WAL, B4 S S AR . AT A, )
DEHIRBIS R, I, RAVEAS B H PR am SRR, 7410
HAHIHE R

kB A AR

Py Strpr, (B A AT I a f o, FFiamms A, B F1C, Do AR
A<B<C<D, HHafcZEB P calP PRI, BRATPRFE5H 2
A48 e FATRHHERITA A 1854, AAATTRYH RS, OB
SRR B Y.
3> — Bk

B AL WA RERY T I OIS EF a0 iS5 . a5 [RA PR
RRIHIR AW AT R RER . — N2 EEXA, A TREEXR. HH
T AR BIEEARIRIA AL, MIFRATRRA A~ T4 R A JEEIR AR RE SR

Definition A3 (REEXR): FEWNIEESN 74541 St, F1 S, # b1 &FH—
/IS E TS B DX, R TFRIX A A A AT B oG R o

FATECREE R A T AR AT, BAE SR RATP T4 fih
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HAHIR T 3T BRI R T4 LR ah A, R
FHERIEAT A B

Definition A4 (ZR—E%): WIRAA DRI, EHESNHDT
SR BRI R, BOAEE R R T E I B AT, BATRRET A
HFEEi B A 2Rt

FHRMRKRE S: FATEIE I S RZEFEHIKR, FRZN FTEHXRA,
S PREAN AR TE . MR T AR BRI, WA —SF i il
Wi, BN TR EER, W — SR,

Definition A.5 (Fe3F 2 ILED):  FATE 25190 R I8 S 2R 3A 2 IS, 4Pk S 2
FEFRAYH HAL QAR Ol AR B RC . ) isin, © B e, ZLEilRl
PEREERUES SIS X S T TR e

Il T ITAAEDE S, FATTET R LU B sh A e i — 2 1k

Lemma A3 FHESE 7 H 5, BATTAT AGRIEQT & -
P1. (W BhIXIEME—E) SR a5t i 2 — DT 3l X I
P2, (FEHAR H 20 A AR AN B A
P3. (JC3F 2 ILfD) AR R © 23R 2 IS, B S A &iie. a5
Ae, LD SR O Z AR H
PA. (R — 38U AR i 2 A LR, R e Uy — 2t

WA AESE R R A Rt H B o

NS

R IRAMTE LS A H, 1551 A3 . AR—BrE, AT LM%
T B[R AT AR 55 BT A R A B el CARIU S BR S @ AN ml AT Y B R AT A4 2
BRI o B b, BATBISMRIZE] T RE LR G & L0,

AT EDSHIIE R L EERIE KRS 2 G 6% R
P{PYrermi] = PUPIP 1oy ], W I = 0. A0, WL I = 1o HPRIRATRIA T #ik
PARAEE, X TS {extkem TS C [m], FATIFRIC [ex]lel]s = {ex kemmns U {e bies-
I [PAIP 1y = {Pictkemmpi Y PP T [PAIP v, = {Pitreimnn,o Y {P! bien,0)- F
(RIS Ui e Il

min; e {OPT ([PLI[PPYy) + I - oo} , add no disk

OPT ({Px }kejm)) = min
({Ps}em) { minpeg {OPT ([Pk][Pf]Np(D)) + WD}, add disk D
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WUDC B PTAS B3£I

BAAT B2 R R [ A S R (AT (MWIDS) 78 TC A% B8 i 24 4T ek B 442 1
AR, fEAF T, FRATE 7RI WUDC 1) PTAS 1] LI T BG4 4t
A B [ ) B G AP R

EA {37 [ [ PP D B NS O T8 S PR 5K [ R

R A AR %8 X B4 M)A (MWCDS) 11 B iR 2 Hc8]— & n St H A
A/ MAE . Clark % A" IER T MWCDS 7R A7 EH2 NP-XEfY) . Ambiihl £
APVERIS T MWCDS 148 — M B0L IR CRECH 94) o X E B Jatlk— 271
AR N BT a2 7.10551,

T MWCDS 1 AU Y 7 12— T o 1 FH Y I 2 S e/ NN o 88
(MWDS) , SRJEMH ¥ s A drimsh b (NWST)PO72 R il 6E . Fefit MWDS {H
AN IS EAIEH) MWCDS o AEVAZ BT A i AR Z IS, SefUH) NWST . (X T4%:
A —Hui ) AR R E MWCDS {H. [Alit, 215 MWDS (5 %4/ 1) WUDC)
AL a-1EAke FINWST (1 g-ifel, ABastA—1HT MWCDS [ « + B A1zl
B

Zou & N GEBQIRAFAE—A p LRI R AT 32 gy 4xf 58, NWST A5
— 250 LR o 24 BT SR/ INYTHE R I R T (LR I (DA L a2 1.3917),
I, NWST f24E 3.475 B EE . 456 R A145 AT WUDC [H]fTH) PTAS, KA T4
T MWCDS 3R15 DA~ gk 4

Theorem A.2:  St+FATEH % e > 0, MWCDS i f7A/E— L2 WU [y (4.475 +
e)- 1T U B

BB {37 B3] ] R O B I A A 7 2 ) R

RRK A E £ A (MLC) 2 To el jdtn M Z8 ST — D & B8 [A] . 25 7€ n > H
Br bty FLm DRGS0 s, B ARIRRGS AT LA 55 H— L8 HARH BT8R
AT s AT UM R s AR R AN Lo TRIAEHY B AR A2 (i FH I Ee 18 ks 4 55— ik H
FRHIEEG Si ... Sy, BORE SRR B 71 L1 € [0 1], S n+. .+ 1,
e KA MLC B2 12 NP-XERG 74, Berman 5 A i it Garg-Konemann 76! 7 A% MLC
HAF| 7R EHEEEE (MSC) A, MATIERT 7404 MSC 4 —1> p W fik
$IL. A MLC X TAEN € A1 1 + ep SR, Ding S5 AP, ik
B WA e A B AR AL T RO LR S B, I H r A sas i se A8 A, A

2 WUDC [T BL45 S AT LA MLC ORI A A . R, MLC 7
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BRIFESHRIE B+ €) ITMEDY . (EHFRATH PTAS, FATHIE T4 — T MLC 1
PTAS.

Theorem A.3: S AL G H ARG TWOLELEP 1 _E ., FF H A & idar A1
ARG B EE A2 AFAEH T MLC f] PTAS.

LEFATHSE A MLC B3 — AR, FROyE R A A el A o5 (Al Du 55 N f
SEWHIT %A B E S MLC A, BRitb 2 SMs ML RGBSR S %2 —
MERR T HlEE R AV T HRER 12 Ry B, TR (7.105 + €)
MLAUUR o AT 18IS WUDC [T — 4~ o AR 5% LA K NWST (1 B A UAEIE R 1
ERY MLC [RI, fFAE o + B IR (EHEATH PTAS, FRATAT LORR LR &
Z (4.475 + €).

PTAS E A R4

KABI HIBANE S PR T 7 4 AR B oG RA H5E, B R 2 R — a9 Iy
Ao BB RIREARRIIE , ARFAE— /N B A LB RS (B
SRR, A AR SR X AR BT 5 T . BT 7 =L
T, BN/ N SR R IR S A PR E R E AR [ . (B2, XL
AR E A, AR

FRATTREEFRATT A 235 SRATT LA ) b he L At 57 A BRLASr 8] 2 5 B [ 1) ) AR A T
Iy, AT TR S AT B B B AR JE s, I LA RESE T R R
AARFPEERAER R o (EAERRERAS AR 5% 41 35 [ PTAS 5952
XA G RZ O R — AR R 22 PO 5 R PR R IE DL, F
AR AR R R 2T Y o

+-BEEE

st P R LS R? ihE— . E TR ES P _ERSE2iILE
BRI, Hrp A B & R A RO A, BRI AR P
S RO AR . A7 A SRR e 2 WO LS R R S AR, X
AAIARAK . R, 7 AL AR 1 ERIE AL e B A o R T AL — T
ZMMRAB SRR (SIS o FEAGRTCb o, JRATWESE T ILAT -5 1A
(geometric t-spanner) . 1EAELUTT (ZHHIAED)

114



Appendix A 1T

Definition A.6:  (JU t-§5 &) 18] G 2523 RO LR R LT -5 E1E (1) G
e LREE R K (2) XNF P R —X 5 p Fl g, £ G HE p Fl ¢
2 BRSNS p O g Z [BIARR LR B ¢ f% .

FESCHRHE, A7 ¢ RN S IR 4db B Fa KB F. Q2R G iEc KA
L= 8k AL, IR AT G 2 —1 % 808 Ro %5 A8 . JU s R &
) LP.Chew ™ #7210 7] L2 [ Eppstein (L2 S, T fifA ¢ LTS &
WEETELME R UM S I OB A Ok I N X 45 FA% Jkds W 28 AP A 4 22 1 o
AR 2 5 Lit™), Narasimhan 1 Smid 0 (280, T2 405

Yao B2 5¢ AW LS R —FLl, i Flinchbaugh 1 Jones*"! 1 Yao*!l Ji
SEAREH
Definition A.7 (Yao Bl Yi): il k @—EEEEEL 7ERU LR R rhgh H—
HELP, Yao B Yi(P) & LUWTF: ARBE Cu(yi v2l 2L u 5E RIS, & i e
TR A (yrs vl WL u R R ST R e TR u € P, Yi(P) &4 u i
BRI A TIHEIR Cu(j6, (G + 1DO) S4Bl v 1938, Hrh 6 = 2n/k, j € [0,k - 1],
HATEH s Yao BEAVETCIE . XTFH & Yao B, FRATHRIA L v AETCIN

uvo

Molla™1 IEB T Y, F1 Y3 ANE s EE . F—JTH, CEUERETAR Y, fork > 4
WA . Hrp Bose 28 ATEH] Yy 12 663-5 5 K. Damian f{] Nelavalli % £ 3/7 %
HEUSHE A 54.6., Barba 25 A BV LER] Y5 i2 3.74-5 4] . Damian f/] Raudonis?! jiF
W1 Yo B 17.64- 518 o Li S NESGUEN] T T Y, k > 6 #E R R 40
20 1/(1 = 2sin(n/k)) (5 E )52k Bose S5 AW 15 21 7 M [F] 19l 7. 25
filt, Barba S AR HY T /N AR A B T35, K Ye BRI RE 17.6 [£3] 5.8,
I k=7 H k a8 b A1 250# 0 1/(1 - 2sin(3n/4k)) .

{H/Z, Yao EIFTREVZA A FIE  IXAE—LETCIR W24 B H AT RE 2 — ™ E YRR
H R R M2 B SR AR RE R MM ERE ST, AT LU S /804K =
TS e N T RRRIXAN R, Li S A5IN T Yao-Yao [& (EEFRVEMEL Yao &) .
I Y (P) HRMIBR—2E50, 152]— Yao-Yao [ YY(P), 4l F K

Definition A.8 (Yao-Yao B YY,): (1) H#EENAT, ¥iEAT Yao. (2) WfTH4
TRl w AN DA u AT A E, A S WA E 2 A S, IR s A
R ) A G0 ATLLEH YY (P) i Ec RERJE FFR N 2k,

5 Yao B A Z, Yao-Yao &2 5 Nl L M AIG 2R B B . Li 56 A$2

7 — LB IR, BN TR R kY, B ATRER IS IA . (B2,
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ATFBCA 2 LR EIEIEN . HAETA L, B8R — IR A =41, 72
Demaine 55 \ZEAF IJTAIALGTH ©rh e Wps] o Al 70.

Conjecture A.1 (W3CER™): FFAE—DHEL koo ([FHISXS TAEATEEE k > ko, [T
Yao-Yao & YY, #8@&— U5 A

AR, FRATEE BT Yao-Yao FIHIZEH . YY, H1 YY; AT REANEEEE
B, RA Yo B Ys AJREA 5 L& 48], Damian 1] Molla*®551 §IEHT 1YYy, YYs RS
REN 25 4 5] . Bauer 5 A\ PYIERA YYs AIREASEES LI o FERURAY T TH . Bauer 7]
Damian {IEBH, X} TR #EAL k > 6, 1] Yao-Yao [ YVYe s — M5 KRR
BE o 11.67, 1 k > 8 RN 4.75. Hift, Li F1 Zhan! {IF B3 T4 5445
k > 42, {T{T Yao-Yao [ YYq s&—PHifH A1 6.03 + Ok™") KB

XL ARG, HEFHE A LSS G S8, FRAOTEX RIS
e, A ABIFHR, FEAE ALLGHT 2 50E Yao-Yao 245 1RAY

Theorem A.4: X TAEA] k > 1, HAFAE—L LY { P tmezr o 2 m FETLTCHF K
B, B YYorat (o) BB R TR RERAT A B B o @

FIRTAE £k G0 R, 7T LAIERA Yao-Yao [ /2 5 FE 1] B0 s Il L 72
civilized [EH (HH A TS B0 K S 2 B9 Eu ] i — A gy e b))
YY EZEE R BRT Yao Ef Yao-Yao K2 A, O-F 25— WYL -5
Ko ©-EH Yao E 2 [ X AIAET ©-[-H, [BIHER C Hu EIEBEUEM T C H
(= v #u, FHHu5vE CIFES& ENIESBS 2 RN R/ B
ZAER, @) Rl O3 BRAL, X T k =410, 5100 6l62l - > 7163641 @, [EIHE ) LA
PSR SRS, M Yao B—FE, © KKl REA A FRAY

Bt UM e-E5 R — LAk, g ¢ B5 7K (weak r-spanner) FI%F r-#5 %
% (power t-spanner) HAZRNRAIE. 7655 ¢ BRI, Wz B ETRER
EER, (BRAEESTER EW  BO LRI R ¢ A5 EEN . X T k> 6,
FITA 1) Yao-Yao [&] YY, #2585 r-E5 R L7 0 ¢ s FE IR, W LR RS | - |
WM | - 1<, Hirp k > 2. Schindelhauer ZE A\ %671 JIEBA T %HF k& > 6, AR
Yao-Yao [&] YY X THLEH A ¢, St TR WA, AT -5, [ —
A5G 0 BEFEERIR 6 B5REE . Hor g, o AT to SR, SO SRASTERA 7,

@®  http://cs.smith.edu/~orourke/TOPP/P70.html
@ XH, m E@BIAMETRN N2 AT BT TEARARRE . ML, m R, P PR
HUBE m 351
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HAMIRI ST T BRI JE Ao AERIE B-HEDRIA] (skeleton) JRHTRCAF
PR R 7 S R s A 2053 TR o X B B-HE 2R AL 5 BT A ab 155X
FEBLA — il e I — A cach KT sin”' 1/ 24 B> 1 Hin—sin™' g 244 B < 1,
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