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摘 要

摘 要

在本论⽂中，我们研究了⼏何集合覆盖和 t-跨度图问题。在平⾯中给定⼀个

带权的单位圆集合和⼀个点集。带权最⼩单位圆集覆盖问题要求得到可以覆盖给

定点集中所有点的最⼩的带权单位圆集合。带权最⼩单位圆集覆盖问题是⼏何覆

盖问题中的⼀个，这类问题已经被研究了⼆⼗余年。对于⼀般图的覆盖问题，想

得到⼀个 (1 − ϵ) ln(n)的解是 NP-hard 问题。但在⼏何背景下往往能得到更好的近

似结果。根据⼏何图形的不同（如三⾓形，正⽅形，圆，半平⾯等）和⼏何图形带

不带权重，⼏何覆盖问题可以衍⽣出很多变种。⽽其中绝⼤部分变种均为 NP-hard

的，不同的问题往往需要引⼊不同的策略来解决。⼈们已经证明了不带权（即权

均为 1）的最⼩圆集覆盖问题是 NP-hard 的，并且给出了⼀个多项式时间的近似⽅

案（PTAS）[1]。然⽽对于带权最⼩圆集覆盖问题，⽬前还只有⼀些常数近似，还不

知道它是不是存在⼀个 PTAS。我们的⼯作给出了第⼀个 PTAS 算法。再结合⼀些

已有的结果，我们的⼯作还对最长连续时间覆盖问题（maximum lifetime coverage）

给出了第⼀个 PTAS 算法，并且提⾼了带权最⼩圆⽀配集问题的近似⽐。

我们还研究了⼏何 t-跨度图问题。t-跨度图是定义在⼀个空间点集上的图。该

图保持了任意两点间在图上的最短距离是这两点间欧⼏⾥德距离的⾄多 t 倍的性

质。⼏何 t-跨度图在通讯⽹络中有重要的应⽤。研究什么样的图具有 t-跨度属性是

计算⼏何中的⼀个经典问题。Yao-Yao 图因其构造简单，并且每个点的度数有限，⽽

成为⼀个很好的⼏何 t-跨度图候选体。关于 Yao-Yao 图（YYk 图）是否具有 t-跨度属

性，是⼀个长期困扰⼈们的开放问题。Bauer 和 Damian [2] 证明了所有 YY6k(k >= 6)
都是 t-跨度图。Li 和 Zhan [3] 推⼴了他们的结论，证明了所有的 YY2k(k >= 42)都
是 t-跨度图。但是这些已知的技术都不能拓展到奇数 Yao-Yao 图上。我们的⼯作第

⼀次给出了结论——对于任意 k >= 1, 存在点集 P，使得定点集上的奇数 Yao-Yao

图（YY2k+1）不是 t-跨度图。

关键词：集合覆盖；t-跨度图；单位圆图；Yao-Yao 图
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Abstract

Abstract

In this dissertation, we study the geometric set cover and t-spanner problems. First,

we give the first polynomial-time approximation scheme (PTAS) for the weighted unit

disk set cover problem. We are given a set of weighted unit disks and a set of points

in the Euclidean plane. The minimum weight unit disk cover (WUDC) problem asks

for a subset of disks of minimum total weight that covers all given points. It is known

that the unweighted unit disk cover problem is NP-hard and admits a polynomial-time

approximation scheme (PTAS). For the weighted unit disk cover problem, several constant

factor approximation algorithms have been developed. However, whether the problem

admits a PTAS has been an open question. In this dissertation, we answer this question

affirmatively by presenting the first PTAS for WUDC. Our result implies the first PTAS

for the minimum weight dominating set problem in unit disk graphs. Combining with

existing ideas, our result can also be used to obtain the first PTAS for the maximum lifetime

coverage problem and an improved 4.475-approximation for the connected dominating

set problem in unit disk graphs.

Second, we study the Yao-Yao graphs (also known as sparse-Yao graphs) and prove

that odd Yao-Yao graphs are not spanners. It is a long standing open problem whether

Yao-Yao graphs YYk are all spanners [4]. Bauer and Damian [2] showed that all YY6k for

k ≥ 6 are spanners. Li and Zhan [3] generalized their result and proved that all even

Yao-Yao graphs YY2k are spanners (for k ≥ 42). However, their technique cannot be

extended to odd Yao-Yao graphs, and whether they are spanners are still elusive. In this

dissertation, we show that, surprisingly, for any integer k ≥ 1, there exist odd Yao-Yao

graph YY2k+1 instances, which are not spanners.

Key Words: Set Cover; t-Spanner; Unit Disk Graph; Yao-Yao Graph; PTAS
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Chapter 1 Introduction

Chapter 1 Introduction

In this dissertation, we study two important computational geometric problems. First,

we study the weighted unit disk set cover problem (WUDC). Whether there exists a PTAS

for WUDC or not is an open question mentioned in a number of previous papers [5-10].

We settle this question affirmatively by presenting the first PTAS. Second, we study the

Yao-Yao graphs. We prove that for any integer k ≥ 1, there exist odd Yao-Yao graph

YY2k+1 instances which are not spanners, which is also a long standing open problem [4].

1.1 Weighted Unit Disk Set Cover

The set cover problem is a central problem in theoretical computer science and

combinatorial optimization. The input of the set cover problem consists of a ground

set U and collection S of subsets of U. Each set S ∈ S has a non-negative weight

wS. The goal is to find a subcollection C ⊆ S of minimum total weight such that∪C covers all elements of U. The approximability of the general SC problem is rather

well understood: it is well known that the greedy algorithm gives an Hn-approximation

(Hn =
∑n

i=1 1/i) and obtaining a (1 − ϵ) ln n-approximation for any constant ϵ > 0 is

NP-hard [11-12]. In the geometric set cover problem, U is a set of points in some Euclidean

space Rd, and S consists of geometric objects (e.g., disks, squares, triangles). In the

geometric setting, we can hope for better-than-logarithmic approximations due to the

special structure of S. Most geometric set cover problems are still NP-hard, even for

the very simple classes of objects such as unit disks [13-14] (see [15-16] for more examples

and exceptions). Approximation algorithms for geometric set cover have been studied

extensively for the past two decades, not only because of the importance of the problem

per se, but also its rich connections to other important notions and problems, such as

VC-dimension [17-19], ϵ-net, union complexity [20-22], planar separators [23-24], even machine

scheduling problems [25].

In this work, we study the geometric set cover problem with one of the simplest class

of objects − unit disks. The formal definition of our problem is as follows:

Definition 1.1 (Weighted Unit Disk Cover (WUDC))： Given a set D = {D1, . . . ,Dn} of

n unit disks and a set P = {P1, . . . , Pm} of m points in Euclidean plane R2, each disk Di

1



Chapter 1 Introduction

has a weight w(Di). The goal of WUDC is to choose a subset of disks covering all points

in P with the minimum total weight.

WUDC generalizes the following minimum weight dominating set problem in unit

disk graphs (UDG).

Definition 1.2 (Minimum Weight Dominating Set (MWDS) in UDG)： Given a unit disk

graph G(V, E), where V is a set of weighted points in R2 and (u, v) ∈ E iff ∥u − v∥ ≤ 1

for any u, v ∈ V , a dominating set S is a subset of V such that for any node v < S, there is

some u ∈ S with (u, v) ∈ E . The goal in the minimum weight dominating set problem is

to find a dominating set with the minimum total weight.

To see that WUDC is a generalization of MWDS, consider the following reduction.

Given a dominating set instance with point set V , we create a WUDC instance by placing,

for each point in v ∈ V , a point (to be covered) co-located with v and a unit disk centered

at v, with weight equal to the weight of v. In this dissertation, we only state our algorithms

and results in the context of WUDC.

1.1.1 Previous Results and Our Contribution

We first recall that a polynomial time approximation scheme (PTAS) for a minimiza-

tion problem is an algorithm A that takes an input instance, a constant ϵ > 0, returns a

solution of value SOL such that SOL ≤ (1 + ϵ)OPT, where OPT is the optimal value, and

the running time of A is polynomial in the size of the input for any fixed constant ϵ .

WUDC is NP-hard, even when the weights are equivalent (i.e., w(Di) = 1) [14]. For

unweighted dominating set in unit disk graphs, Hunt et al. [1] obtained the first PTAS in

unit disk graphs. For the more general disk graphs, based on the connection between

geometric set cover problem and ϵ-nets, developed in [17-19], and the existence of ϵ-net of

size O(1/ϵ) for halfspaces in R3 [26] (see also [27]), it is possible to achieve a constant factor

approximation. As estimated in [23], these constants are at best 20 (A recent result [28]

shows that the constant is at most 13). Moreover, there exists a PTAS for unweighted disk

cover and minimum dominating set via the local search technique [23-24].

For the general weighted WUDC problem, the story is longer. Ambühl et al. [5]

obtained the first approximation for WUDC with a concrete constant 72. Applying the

shifting technique of [29], Huang et al. [30] obtained a (6 + ϵ)-approximation algorithm for

WUDC. The approximation factor was later improved to (5 + ϵ) [31], and to (4 + ϵ) by
2



Chapter 1 Introduction

several groups [6,32-33]. Willson et al improve the ratio to 3.63. 1O Very recently, Zhang et

al. [34] give a (3 + ϵ)-approximation algorithm. The quasi-uniform sampling method [21-22]

provides another approach to achieve a constant factor approximation for WUDC (even in

disk graphs). However, the constant depends on several other constants from rounding

LPs and the size of the union complexity. Very recently, based on the separator framework

of Adamaszek and Wiese [35], Mustafa et al. [36] obtained a QPTAS (Quasi-polynomial time

approximation scheme) for weighted disks in R2 (in fact, weighted halfspaces in R3), thus

ruling out the APX-hardness of WUDC.

Another closely related work is by Erlebach and van Leeuwen [7], who obtained

a PTAS for set cover on weighted unit squares, which is the first PTAS for weighted

geometric set cover on any planar objects (except those poly-time solvable cases [15-16]).

Although it may seem that their result is quite close to a PTAS for weighted WUDC,

as admitted in their paper, their technique is insufficient for handling unit disks and “a

completely different insight is required”.

In light of all the aforementioned results, it seems that we should expect a PTAS for

WUDC, but it remains to be an open question (explicitly mentioned as an open problem

in a number of previous papers, e.g., [5-10] ). Our main contribution in this dissertation is

to settle this question affirmatively by presenting the first PTAS for WUDC.

Theorem 1.1： There is a polynomial time approximation scheme for the WUDC problem.

The running time is nO(1/ϵ9).

Because WUDC is more general than MWDS, we immediately have the following

corollary.

Corollary 1.1： There is a polynomial time approximation scheme for the minimum

weight dominating set problem in unit disk graphs.

We note that the running time npoly(1/ϵ ) is nearly optimal in light of the negative

result by Marx [37], who showed that an EPTAS (i.e., Efficient PTAS, with running time

f (1/ϵ)poly(n) ) even for the unweighted dominating set in UDG would contradict the

exponential time hypothesis.

Finally, in Section 2.8, we show that our PTAS for WUDC can be used to obtain im-

proved approximation algorithms for two important problems in wireless sensor networks,

the connected dominating set problem and the maximum lifetime coverage problem in

UDG.
1O The algorithm can be found in Du and Wan [9], who attributed the result to a manuscript by Willson et al.

3



Chapter 1 Introduction

1.2 Odd Yao-Yao Graphs are Not Spanners

Let P be a set of points in the Euclidean plane R2. The complete Euclidean graph

defined on set P is the edge-weighted graph with vertex set P and edges connecting all

pairs of points inP, where the weight of each edge is the Euclidean distance between its two

end points. Storing the complete graph requires quadratic space, which is very expensive.

Hence, it is desirable to use a sparse subgraph to approximate the complete graph. This

is a classical and well-studied topic in computational geometry (see e.g., [4,38-41]). In this

dissertation, we study the so called geometric t-spanner, formally defined as follows (see

e.g., [42]).

Definition 1.1： (Geometric t-Spanner) A graph G is a geometric t-spanner of the com-

plete Euclidean graph if (1) G is a subgraph of the complete Euclidean graph; and (2) for

any pair of points p and q in P, the shortest path between p and q in G is no longer than t

times the Euclidean distance between p and q.

The factor t is called the stretch factor or dilation factor of the spanner in the

literature. If the maximum degree of G is bounded by a constant k, we say that G is a

bounded-degree spanner. The concept of geometric spanners was first proposed by L.P.

Chew [43]. See the comprehensive survey by Eppstein [44] for related topics about geometric

spanners. Geometric spanners have found numerous applications in wireless ad hoc and

sensor networks. We refer the readers to the books by Li [45] and Narasimhan and Smid [46]

for more details.

Yao graphs are one of the first approximations of complete Euclidean graphs, intro-

duced independently by Flinchbaugh and Jones [47] and Yao [41].

Definition 1.2 (Yao Graph Yk)： Let k be a fixed integer. Given a set of points P in the

Euclidean plane R2, the Yao graph Yk(P) is defined as follows. Let Cu(γ1, γ2] be the cone

with apex u, which consists of the rays with polar angles in the half-open interval (γ1, γ2].
For each point u ∈ P, Yk(P) contains an edge connecting u to a nearest neighbor v in

each cone Cu( jθ, ( j + 1)θ], for θ = 2π/k and j ∈ [0, k − 1]. We generally consider Yao

graphs as undirected graphs. For a directed Yao graph, we add directed edge −→uv to the

graph instead.

Molla [48] showed that Y2 and Y3 may not be spanners. On the other hand, it has

been proven that all Yk for k ≥ 4 are spanners. Bose et al. [49] proved that Y4 is a 663-

spanner. Damian and Nelavalli [50] improved this to 54.6 recently. Barba et al. [51] showed
4
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that Y5 is a 3.74-spanner. Damian and Raudonis [52] proved that the Y6 graph is a 17.64

spanner. Li et al. [4,53] first proved that all Yk, k > 6 are spanners with stretch factor at most

1/(1 − 2 sin(π/k)). Later Bose et al. [49,54] also obtained the same result independently.

Recently, Barba et al. [51] reduced the stretch factor of Y6 from 17.6 to 5.8 and improved

the stretch factors to 1/(1 − 2 sin(3π/4k)) for odd k ≥ 7.

However, a Yao graph may not have bounded degree. This can be a serious limitation

in certain wireless network applications since each node has very limited energy and

communication capacity, and can only communicate with a small number of neighbors.

To address the issue, Li et al. [4] introduced Yao-Yao graphs (or Sparse-Yao graphs in the

literature). A Yao-Yao graph YYk(P) is obtained by removing some edges from Yk(P) as

follows:

Definition 1.3 (Yao-Yao Graph YYk)： (1) Construct the directed Yao graph, as in Defini-

tion A.7. (2) For each node u and each cone rooted at u containing two or more incoming

edges, retain a shortest incoming edge and discard the other incoming edges in the cone.

We can see that the maximum degree in YYk(P) is upper-bounded by 2k.

As opposed to Yao graphs, the spanning property of Yao-Yao graphs is not well

understood yet. Li et al. [4] provided some empirical evidence, suggesting that YYk graphs

are t-spanners for some sufficiently large constant k. However, there is no theoretical

proof yet, and it is still an open problem [2-4,45]. It is also listed as Problem 70 in the Open

Problems Project. 1O

Conjecture 1.1 (see [2])： There exists a constant k0 such that for any integer k > k0, any

Yao-Yao graph YYk is a geometric spanner.

Now, we briefly review the previous results about Yao-Yao graphs. It is known that

YY2 and YY3 may not be spanners since Y2 and Y3 may not be spanners [48]. Damian and

Molla [48,55] proved that YY4,YY6 may not be spanners. Bauer et al. [51] proved that YY5

may not be spanners. On the positive side, Bauer and Damian [2] showed that for any

integer k ≥ 6, any Yao-Yao graph YY6k is a spanner with the stretch factor at most 11.67

and the factor becomes 4.75 for k ≥ 8. Recently, Li and Zhan [3] proved that for any integer

k ≥ 42, any even Yao-Yao graph YY2k is a spanner with the stretch factor 6.03 +O(k−1).
From these positive results, it is quite tempting to believe Conjecture A.1. However,

we show in this dissertation that, surprisingly, Conjecture A.1 is false for odd Yao-Yao

graphs.
1O http://cs.smith.edu/~orourke/TOPP/P70.html
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Theorem 1.4： For any k ≥ 1, there exists a class of point set instances {Pm}m∈Z+ such

that the stretch factor of YY2k+1(Pm) cannot be bounded by any constant, as m approaches

infinity. 1O

Related Work It has been proven that in some special cases, Yao-Yao graphs are

spanners [56-59]. Specifically, it was shown that YYk graphs are spanners in civilized graphs,

where the ratio of the maximum edge length to the minimum edge length is bounded by

a constant [56-57].

Besides the Yao and Yao-Yao graph, the Θ-graph is another common geometric t-

spanner. The difference betweenΘ-graphs and Yao graphs is that in aΘ-graph, the nearest

neighbor to u in a cone C is a point v , u lying in C and minimizing the Euclidean distance

between u and the orthogonal projection of v onto the bisector of C. It is known that

except for Θ2 and Θ3
[48], for k = 4 [60], 5 [61], 6 [62], ≥ 7 [63-64], Θk-graphs are all geometric

spanners. We note that, unfortunately, the degrees of Θ-graphs may not be bounded.

Recently, some variants of geometric t-spanners such as weak t-spanners and power

t-spanners have been studied. In weak t-spanners, the path between two points may be

arbitrarily long, but must remain within a disk of radius t-times the Euclidean distance

between the points. It is known that all Yao-Yao graphs YYk for k > 6 are weak t-

spanners [65-67]. In power t-spanners, the Euclidean distance | · | is replaced by | · |κ with a

constant κ ≥ 2. Schindelhauer et al. [66-67] proved that for k > 6, all Yao-Yao graphs YYk

are power t-spanners for some constant t. Moreover, it is known that any t-spanner is also

a weak t1-spanner and a power t2-spanner for some t1, t2 depending only on t. However,

the converse is not true [67].

Our counterexample is inspired by the concept of fractals. Fractals have been used

to construct examples for β-skeleton graphs with unbounded stretch factors [68]. Here a

β-skeleton graph is defined to contain exactly those edges ab such that no point c forms an

angle ∠acb greater than sin−1 1/β if β > 1 or π − sin−1 β if β < 1. Schindelhauer et al. [67]

used the same example to prove that there exist graphs which are weak spanners but not

t-spanners. However, their examples cannot serve as counterexamples to the conjecture

that odd Yao-Yao graphs are spanners.

Remark 1.1： The work “A PTAS for Weighted Unit Disk Cover" has been published in

ICALP 2015 and “Odd Yao-Yao graphs are Not Spanners" has been published in SoCG

1O Here, m is a parameter in our recursive construction. We will explain it in detail in Section A. Roughly speaking,
m is the level of recursion and the number of points in Pm increases with m.
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Chapter 2 A PTAS for Weighted Unit Disk Cover

2.1 Our Approach - A High Level Overview

By the standard shifting technique [69], it suffices to provide a PTAS for WUDC when

all disks lies in a square of constant size (we call it a block, and the constant depends on

1/ϵ). This idea is formalized in Huang et al. [30], as follows.

Lemma 2.1 (Huang et al. [30])： Suppose there exists a ρ-approximation for WUDC in

a fixed L × L block, with running time f (n, L). Then there exists a (ρ + O(1/L))-
approximation with running time O(L ·n· f (n, L)) for WUDC. In particular, setting L = 1/ϵ ,
there exists a (ρ + ϵ)-approximation for WUDC, with running time O

( 1
ϵ
· n · f (n, 1

ϵ
)
)
.

In fact, almost all previous constant factor approximation algorithms for WUDC were

obtained by developing constant approximations for a single block of a constant size

(which is the main difficulty 1O). The main contribution of the paper is to improve on the

previous work [5-6,30-31] for a single block, as in the following lemma.

Lemma 2.2： There exists a PTAS for WUDC in a fixed block of size L × L for L = 1/ϵ .
The running time of the PTAS is nO(1/ϵ9)

From now on, the approximation error guarantee ϵ > 0 is a fixed constant. Whenever

we say a quantity is a constant, the constant may depend on ϵ . We use OPT to represent the

optimal solution (and the optimal value) in this block. We use capital letters A, B,C, . . .

to denote points, and small letters a, b, c, . . . to denote arcs. For two points A and B, we

use AB to denote the line segment connecting A and B and use |AB | to denote its length.

We use Di to denote a disk and Di to denote its center. For a point A and a real r > 0, let

D(A, r) be the disk centered at A with radius r . For a disk Di, we use ∂Di to denote its

boundary. We call a segment of ∂Di an arc.

First, we guess whether OPT contains more than C disks or not for some constant

C. If OPT contains no more than C disks, we enumerate all possible combinations

and choose the one which covers all points and has the minimum weight. This takes

O
(∑C

i=1
(n
i

) )
= O(nC) time, which is polynomial.

1O For the unweighted dominating set problem in a single block, it is easy to see that the optimal number of disks is
bounded by a constant, which implies that we can compute the optimum in poly-time. However, for the weighted
dominating set problem or WUDC the optimal solution in a single block may consist of Θ(n) disks.

8
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The more challenging case is when OPT contains more than C disks. In this case, we

guess (i.e., enumerate all possibilities) the set G of the C most expensive disks in OPT.

There are at most a polynomial number (i.e., O(nC)) possible guesses. Suppose our guess

is correct. Then, we delete all disks in G and all points that are covered by G. Let Dt

(with weight wt) be the cheapest disk in G. We can see that OPT ≥ Cwt . Moreover,

we can also safely ignore all disks with weight larger than wt (assuming that our guess is

correct). Now, our task is to cover the remaining points with the remaining disks, each

having weight at most wt . We use D ′ = D \ G and P ′ = P \ P(G) to denote the set of

the remaining disks and the set of remaining points respectively, where P(G) denote the

set of points covered by at least one disk in G.

Next, we carefully choose to include in our solution a set H ⊆ D ′ of at most ϵC

disks. The purpose ofH is to break the whole instance into many (still a constant) small

pieces (substructures), such that each substructure can be solved optimally, via dynamic

programming. 1O One difficulty is that the substructures are not independent and may

interact with each other (i.e., a disk may appear in more than one substructure). Each

substructure has a direction (in the clockwise or counterclockwise) and all disks in the

substructure have a partial order based on the direction. In order to apply the dynamic

programming technique to all substructures simultaneously, we have to ensure the orders

of the disks in different substructures are consistent with each other. Choosing H to

ensure a globally consistent order of disks is in fact the main technical challenge of the

paper.

Suppose we have a set H which suits our need (i.e., the remaining instance (D ′ \
H,P ′\P(H)) can be solved optimally in polynomial time by dynamic programming). Let

S be the optimal solution of the remaining instance. Our final solution is SOL = G∪H∪S.

First, we can see that

w(S) ≤ w(OPT − G −H) ≤ OPT − w(G),

since OPT − G − H is a feasible solution for the instance (D ′ \ H,P ′ \ P(H)). Hence,

we have that

SOL = w(G) + w(H) + w(S) ≤ OPT + ϵCwt ≤ (1 + ϵ)OPT,

where the 2nd to last inequality holds because |H | ≤ ϵC, and the last inequality uses the

1O An individual substructure can be solved using a dynamic program similar to [5,16].

9
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fact that OPT ≥ w(G) ≥ Cwt .

Constructing H : Now, we provide a high level sketch for how to construct H ⊆ D ′.
First, we partition the block into small squares with side length µ = O(ϵ) such that any

disk centered in a square can cover the whole square and the disks in the same square

are close enough. Let the set of small squares be Ξ = {Γi j}1≤i, j≤K where K = L/µ. For

a small square Γ, let DsΓ ∈ Γ and DtΓ ∈ Γ be the furthest pair of disks (i.e., |DsΓDtΓ | is
maximized). We include the pair DsΓ and DtΓ inH , for every small square Γ ∈ Ξ, and call

the union of the two disks the square gadget for Γ. See Figure A.1 for an example. We

only need to focus on covering the remaining points in the uncovered region U(H).
We consider all disks with centers in a small square Γ. The portion of those disks

in the uncovered region defines two disjoint connected regions (See right hand side of

Figure A.1, the two shaded regions). We call such a region, together with all relevant arcs,

a substructure (formal definition in Section A). In fact, we can solve the disk covering

problem for a single substructure optimally using dynamic programming (which is similar

to the dynamic program in [5,16]). It appears that we are almost done, since (“intuitively”)

all square gadgets have already covered much area of the entire block, and we should be

able to use similar dynamic program to handle all such substructures as well. However, the

situation is more complicated (than we initially expected) since the arcs are dependent. See

Figure A.2 for a “not-so-complicated” example. Firstly, there may exist two arcs (called

sibling arcs) which belong to the same disk when the disk is centered in the core-central

area, as shown in Figure A.1). The dynamic program has to make decisions for two

sibling arcs, which belong to two different substructures (called R(emotely)-correlated

substructures), together. Second, in order to carry out a dynamic program, we need a

suitable order of all arcs. To ensure such an order exists, we need all substructures to

interact with each other “nicely".

In particular, besides all square gadgets, we need to add intoH a constant number of

extra disks. This is done by a series of “cut" operations. A cut can either break a cycle, or

break one substructure into two substructures. To capture how substructures interact, we

define an auxiliary graph, called substructure relation graphS, in which each substructure

is a node. The aforementioned R-correlations define a set of blue edges, and geometrically

overlapping relations define a set of red edges. Through the cut operations, we can make

blue edges form a matching, and red edges also form a matching, andS acyclic (we call

S an acyclic 2-matching). The special structure ofS allows us to define an ordering of all

10
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Figure 2.1 A square gadget. Ds and Dt are the furthest pair of disks in square Γ whose centers
are Ds and Dt . On the left hand side, the blue region is the central area C = D(Ds, rst )∩D(Dt, rst ),
where rst = |DsDt |. The brown region is the core-central area Co = D(P, 1) ∩ D(Q, 1). On the
right hand side, the green area is the active regions, defined as

(∪
i∈Co Di − (Ds ∪ Dt )

)
∩ H+ and(∪

i∈Co Di − (Ds ∪ Dt )
)
∩ H−.

arcs easily. Together with some other simple properties, we can generalize the dynamic

program from one substructure to all substructures simultaneously.

2.2 Square Gadgets

We discuss the structure of a square gadget Gg(Γ) associated with the small square

Γ. Recall that the square gadget Gg(Γ) = Ds ∪ Dt , where Ds and Dt are the furthest pair

of disks in Γ. We can see that for any disk Di with center in Γ, there are either one or

two arcs of ∂Di which are not covered by Gg(Γ). Without loss of generality, assume that

DsDt is horizontal. The line DsDt divides the whole plane into two half-planes which

are denoted by H+ (the upper half-plane) and H− (the lower half-plane). ∂Ds and ∂Dt

intersect at two points P and Q. We need a few definitions which are useful throughout

the paper. Figure A.1 shows an example of a square gadget.

1. (Central Area and Core-Central Area) Define the central area of Gg(Γ) as the

intersection of the two disks D(Ds, rst) and D(Dt, rst) in the square Γ, where rst =

|DsDt |. We use C(Γ) to denote it. Since Ds and Dt are the furthest pair, we can see

that every other disk with center in Γ is centered in the central area C(Γ).
We define the core-central area of Gg(Γ) as the intersection of two unit disks

centered at P,Q respectively. Essentially, any unit disk centered in the core-central

area has four intersections with the boundary of the square gadget. Let us denote

the area by Co(Γ).

11
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Figure 2.2 The general picture of the substructures in a block. The red points are the grid points
of small squares. Dash green disks are what we have selected inH . There are five substructures
in the block.

2. (Active Region) Consider the regions( ∪
Di ∈Co

Di − (Ds ∪ Dt)
)
∩ H+ and

( ∪
Di ∈Co

Di − (Ds ∪ Dt)
)
∩ H−.

We call each of them an active region associated with square Γ. We use Ar(Γ) to

denote an active region. Note that an active region is covered by the union of disks

centered in the core-central area.

2.3 Substructures

Initially, H consists of the disks belonging to the square gadgets. In Section 2.6,

we will include in H a constant number of extra disks. For a set S of disks, we use

R(S) to denote the region covered by disks in S (i.e., ∪Di ∈SDi). Assuming a fixed H , we

now describe the basic structure of the uncovered region R(D ′) − R(H). 1O For ease of

notation, we use U(H) to denote the uncovered region R(D ′) − R(H). Figure A.2 shows

an example. Intuitively, the region consists of several “strips” along the boundary of H .

Now, we define some notions to describe the structure of those strips.

1. (Arcs) Consider a disk D ∈ D ′ and suppose the center of D is in the square Γ. Let

DsDt be the square gadget Gg(Γ), and without loss of generality assume the line

DsDt is horizontal and divides the plane into two halfplanes H+ and H−. D may

contribute at most two uncovered arcs, one in H+ and one in H−. Let us first focus

1O Recall that D′ = D \ G where G is the set of C most expensive disks in OPT.

12
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on H+. In general, ∂D intersects ∂H at several points 1O in H+. The intersections

are located on ∂D in order in the clockwise (or counterclockwise) direction. 2O

The uncovered arc is the segment of ∂D starting from the first intersection point

and ending at the last intersection point. 3O We define the uncovered arc for H−

analogously (if |∂D∩ ∂H| , 0). Figure 2.3 illustrates why we need so many words

to define an arc. Essentially, some portions of an arc may be covered by some other

disks inH , and the arc is broken into several pieces. Our definition says that those

pieces should be treated as a whole. In this dissertation, when we mention an arc,

we mean an entire uncovered arc (w.r.t. the current H ). Note that both endpoints

of an arc lie on the boundary of R(H).
2. (Subarcs) For an arc a, we use a[A, B] to denote the closed subarc of arc a from

point A to point B. Similarly, we only write a(A, B) to denote the corresponding

open subarc (with endpoints A and B excluded).

3. (Central Angle) Suppose arc a is part of ∂D for some disk D with center D. The

central angle of a, denoted as ∠(a) is the angle whose apex (vertex) is D and both

legs (sides) are the radii connecting D and the endpoints of a. We can show that

∠(a) < π for any arc a (See Lemma 2.19 in Appendix 2.9.1)

4. (Baseline) We use ∂H to denote boundary of R(H). Consider an arc a whose

endpoints P1, P2 are on ∂H . We say that the arc a covers a point P ∈ ∂H , if P lies

in the boundary between P1 and P2 of H . We say a point P ∈ ∂H can be covered

if some arc covers P. A baseline is a consecutive maximal segment of ∂H that can

be covered. We usually use b to denote a baseline.

5. (Substructure) A substructure St(b,A) consists of a baseline b and the collection

A of arcs which can cover some point in b. The two endpoints of each arc a ∈ A
are on b and ∠(a) is less than π. Note that every point of b is covered by some arc

in A. Figure A.3 illustrates the components of a substructure.

Occasionally, we need a slightly generalized notion of substructure. For a set A of

uncovered arcs, if they cover a consecutive segment of the boundary ofH , A also

induces a substructure denoted as St[A].

Arc Order: Now we switch our attention to the order of the arcs in a substructure St(b,A).

1O The number must be even.
2O Whether the direction is clockwise or counterclockwise does not affect the definition of arc.
3O Note that an uncovered arc may not entirely lie in the uncovered region U(H) (some portion may be covered by

some disks inH ).

13
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Figure 2.3 The figure gives an example of an arc. The blue curves are part of the boundary of
H . The red curve is an uncovered arc.

Figure 2.4 A substructure. The baseline b consists of the red arcs which are the part of
consecutive boundary of ∂H . Qs,Qt are the endpoints of b. The black curves are uncovered arcs.
The bold black arcs form the envelope. The arc a ≺ c because A ≺ C and B ≺ D.

Suppose the baseline b starts at point Qs and ends up at point Qt . Consider any two points

P1 and P2 on the baseline b. If P1 is closer to Qs than P2 along the baseline b, we say

that P1 appears earlier than P2 (denoted as P1 ≺ P2). Consider any two arcs a and c in

A. The endpoints of arc a are A and B, and the endpoints of arc c are C and D. All of

points A, B,C,D are on the baseline b. Without loss of generality, we assume that A ≺ B,

C ≺ D and A ≺ C. If B ≺ D, we say arc a appears earlier than arc c (denoted as a ≺ c).

Otherwise, we say a and c are incomparable. See Figure A.3 for an example. It is easy to

see that ≺ defines a partial order.

Adjacency: Consider two arcs a (with endpoints A ≺ B) and c (with endpoints C ≺ D).

If a ≺ c and C ≺ B, we say that a and c are adjacent (we can see that they must intersect

exactly once), and c is the adjacent successor of a. Similarly, we can define the adjacent

successor of subarc a[P1, P2]. If c is the adjacent successor of a, meanwhile c intersects

with subarc a[P1, P2], we say that c is the adjacent successor of subarc a[P1, P2]. Among

all adjacent successors of a[P1, P2], we call the one whose intersection with a[P1, P2] is

closest to P1 the first adjacent successor of a[P1, P2].
In order to carry out the dynamic program in Section A, we need to properly orient

each substructure so that the (partial) order of the arcs is consistent. Our final solution in

each substructure can be represented as a path (which is a segment of the boundary of the

union of chosen disks). Our dynamic program essentially needs to determine such a path.

14
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To be precise, we provide a formal definition of a valid path, as follows.

Definition 2.1 (A Valid Path)： Consider a substructure St(b,A). Suppose the baseline

b is oriented from Qs to Qt . A valid path is a path from Qs to Qt which consists of a

sequence of subarcs {a1[Qs,Q1], a2[Q1,Q2], . . ., ak[Qk−1,Qt]} (baseline segments are

considered as subarcs as well). For any ai, ai+1 is its adjacent successor (so ai ≺ ai+1). Qi

is the intersection point of the arcs ai and ai+1.

Note that the baseline from Qs to Qt is a trivial valid path (we do not consider any

coverage requirement yet). Among all the valid paths in a substructure, there is one that is

maximal in terms of the coverage ability, which we call the envelope of the substructure.

Definition 2.2 (Envelope of a Substructure)： Consider a substructure St(b,A). Suppose

the baseline b is oriented from Qs to Qt . The envelope of St is the valid path {a1[Qs,Q1],
a2[Q1,Q2], . . ., ak[Qk−1,Qt]} where ai+1 is the first adjacent successor of ai for all i ∈ [k].

Coverage: Consider a substructure St(b,A). Consider an arc a with endpoints A and B

on baseline b. We use b[A, B] to denote the segment of b that is covered by a. We say

that the region surrounded by the arc a and b[A, B] is covered by arc a and use R(a) to

denote the region. We note that the covered region R(a) is with respect to the current

H . Similarly, consider a valid path Path. The region covered by Path is ∪a∈PathR(a) (the

union is over all arcs in Path) and is denoted by R(Path). Finally, we define the region

covered by the substructure St, denoted by R(St), to be the region covered by the envelope

of St.

2.4 Simplifying the Problem

The substructures may overlap in a variety of ways. As we mentioned in Section 2.1,

we need to include in H more disks in order to make the substructures amenable to the

dynamic programming technique. However, this step is somewhat involved and we decide

to postpone it to the end of the paper (Section 2.6). Instead, we present in this section

what the organization of the substructures and what properties we need after including

more disks inH for the final dynamic program.

Self-Intersections: In a substructure St, suppose there are two arcs a and c in A with

endpoints A, B and C,D respectively. If A ≺ B ≺ C ≺ D and a and c cover at least one and

the same point inP, we say the substructure is self-intersecting. In other words, there exists
15
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at least one point covered by two non-adjacent arcs in a self-intersecting substructure. See

Figure 2.9 for an example. Self-intersections are troublesome obstacles for the dynamic

programming approach. So we will eliminate all self-intersections in Section 2.6. In the

rest of the section, we assume all substructures are non-self-intersecting and discuss their

properties.

Lemma 2.3 (Single Intersection Property)： For any two arcs in a non-self-intersecting

substructure St, they have at most one intersection in R(St).

Proof We prove by contradiction. Suppose ai and aj belong to the same substructure. ai

and aj intersect at point A and B. Since the substructure is non-self-intersecting, ai and

aj lie on the same halfplane divided by line AB. Since the two radii of ai and aj are equal,

the sum of central angles of ai and aj equals 2π. Thus, at least one central angle of ai and

aj is no less than π, rendering a contradiction to the fact that the central angle (defined in

Section A) of any arc is less than π. □

Based on the single intersection property, we can easily get the following property.

Lemma 2.4： Consider two arcs a and b in a non-self-intersecting substructure. If a and

b intersect in the substructure and there is a point in the substructure being covered by

two arcs a and b, then a is adjacent to b.

Order Consistency: There are two types of relations between substructures which affect

how the orientations should be done. One is the overlapping relation and the other is

remote correlation. See Figure A.2 for some examples.

First, we discuss the case when two substructures overlap. For an arc a, we use D(a)
to denote the disk associated with a. For a substructure St(b,A), we let D(b) be the set of

disks that contributes an arc to the baseline b.

Definition 2.3 (Overlapping Relation)： Consider two substructures St1(b1,A1) and

St2(b2,A2) and the point set P. We say that St1 and St2 overlap when there is a point in

P that is in R(St1) ∩ R(St2).

Our dynamic program requires the overlapping substructures satisfying the overlap-

ping order consistency defined as follows.

Definition 2.4 (Overlapping Order Consistency)： We say the overlapping order consis-

tency holds for two overlapping substructures if their orientations are different (i.e., if one

is clockwise, the other should be counterclockwise).
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The other type of relation is remote correlation. As we alluded in Section 2.1, the two

substructures which contain different related active regions of the same gadget interact

with each other.

Definition 2.5 (Remote correlation)： Consider two substructures Stu and Stl which are

not overlapping. Suppose they contain two different active regions of the same gadget

respectively (recalling that one gadget may have two different active regions, one in H+,

one in H−). We say that the two substructures are remotely correlated or R-correlated.

See Figure A.2.

There are two possible baseline orientations for each substructure (clockwise or

anticlockwise around the center of the arc), which gives rise to four possible ways to

orient both Stu and Stl. However, there are only two (out of four) of them that are

consistent (thus we can do dynamic programming on them). More formally, we need the

following definition:

Definition 2.6 (Remote Order Consistency)： We say that remote order consistency holds

for two substructures Stu(bu,Au) and Stl(bl,Al) if there is an orientation for each sub-

structure, such that it can not happen that ai ≺ bi in substructure Stu but aj ≻ bj in Stl,

where ai, aj ∈ ∂D1, bi, bj ∈ ∂D2 and ai, bi ∈ Au, aj, bj ∈ Al.

We show in the following simple lemma that the local order consistency can be easily

achieved for the two substructures containing different active regions of the same square.

Lemma 2.5 (Remote Order Consistency)： Consider two substructures Stu and Stl which

are R-correlated. Each of them contains only one active region. Then the remote order

consistency holds for the two substructures Stu and Stl.

Proof We consider two substructures Stu and Stl. The arcs not in the active regions have

no influence on the order consistency since each of them only appears in one substructure.

So, we only need to consider the order of the arcs in two active regions. We use the same

notations as those on the RHS of Figure A.1. We orient the upper baseline from Qs to

Qt , and the lower baseline from Ps to Pt . Suppose two arcs c1, c3 belong to disk Du, and

two arcs c2, c4 belong to the disk Dv. Assume c4 ≺ c3 in substructure Stu and c1 ≺ c2

in substructure Stl. There must exist another intersection point on each side of the line

connecting the two intersections of (c1, c2), (c3, c4). This contradicts the fact that two unit

disks have at most two intersections. □
17
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As different substructures may interact with each other, we need a dynamic program

which can run over all substructures simultaneously. Hence, we need to define a globally

consistent ordering of all arcs.

Definition 2.7 (Global Order Consistency)： We have global order consistency if there is

a way to orient each substructure, such that (1) for any pair of overlapping substructures,

the local order consistency holds, and (2) for any pair of remote-correlated substructures,

the remote order consistency holds.

Substructure Relation Graph S: we construct an auxiliary graph S, called the sub-

structure relation graph, to capture all R-correlations and overlapping relations. Each

node inS represents a substructure. If two substructures are R-correlated, we add a blue

edge between the two substructures. If two substructures overlap, we add a red edge.

Consider a red edge between St1(b1,A1) and St2(b2,A2). If baseline b1 is oriented

clockwise (around the center of any of its arc), then b2 should be oriented counterclock-

wise, and vise versa. The blue edge represents the same orientation relation, i.e., if

St1(b1,A1) and St2(b2,A2) are R-correlated, b1 and b2 should be oriented differently.

It is unclear how to orient all baselines if S is an arbitrary graph. So we need to

ensure thatS has a nice structure.

Definition 2.8 (Acyclic 2-Matching)： We say the substructure relation graph S is an

acyclic 2-matching, ifS is acyclic and is composed by a blue matching and a red matching.

In other words,S only contains paths, and the red edges and blue edges appear alternately

in each path.

If S is a acyclic 2-matching, we can easily assign each substructure an orientation

that achieve global order consistency .

Point-Order Consistency: Similarly to the arc order consistency, we also need to define

the point-order consistency, which is also crucial for our dynamic program.

Definition 2.9 (Point Order Consistency)： Suppose a setPco of points is covered by both

of two overlapping substructures St1(b1,A1) and St2(b2,A2). Consider any two points

P1, P2 ∈ Pco and four arcs a1, a2 ∈ A1, b1, b2 ∈ A2. Suppose P1 ∈ R(a1) ∩ R(b1) and

P2 ∈ R(a2) ∩ R(b2). But P1 < R(a2) ∪ R(b2) and P2 < R(a1) ∪ R(b1). We say P1 and P2

are point-order consistent if a1 ≺ a2 in St1 and b1 ≺ b2 in St2 (or if a1 ≻ a2 in St1 and

b1 ≻ b2 in St2). We say the points in Pco satisfy point order consistency if all pairs of

points in Pco are point-order consistent.
18
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After introducing all relevant concepts, we can finally state the set of properties we

need for the dynamic program.

Lemma 2.6： After choosingH , we can ensure the following properties holds:

P1. (Active Region Uniqueness) Each substructure contains at most one active region.

P2. (Non-self-intersection) Every substructure is non-self-intersecting.

P3. (Acyclic 2-Matching) The substructure relation graph S is an acyclic 2-matching,

i.e., S consists of only paths. In each path, red edges and blue edges appear

alternately.

P4. (Point Order Consistency) Any point is covered by at most two substructures. The

points satisfy the point order consistency.

How to ensure all these properties will be discussed in detail in Section 2.6. Now,

everything is in place to describe the dynamic program.

2.5 Dynamic Programming

Suppose we have already constructed the set H such that Lemma A.3 holds (along

with an orientation for each substructure). Without loss of generality, we can assume

that the remaining disks can cover all remaining points (otherwise, either the original

instance is infeasible or our guess is false). In fact, our dynamic program is inspired by,

and somewhat similar to those in [5-6,16].

DP for Two Overlapping Substructures: For ease of description, we first handle the

case where there are only two overlapping substructures. We will extend the DP to the

general case shortly. Suppose the two substructures are St1(b1,A1) and St2(b2,A2), b1 is

oriented from Ps to Pt and b2 is oriented from Qs to Qt . See Figure 2.5 for an example.

A state of the dynamic program is a pair Φ = (P,Q) where P is an intersection point

of two arcs in substructure St1 and Q is an intersection point of two arcs in substructure

St2. Fix the state Φ = (P,Q) and consider St1. Let bP and tP be the two arcs intersecting

at P. Suppose bP ≺ tP with endpoints (A, B), (C,D) respectively. We call arc bP the

base-arc and tP the top-arc for point P. 1O Our DP maintains that the base-arc is already

paid in the subproblem.

1O If P is the tail endpoint of an arc (so P is on the baseline), P only has a base-arc (no top-arc), which is the baseline
arc it lies on.
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Figure 2.5 The figure explains the dynamic program of two overlapping substructures. The left
figure shows the subproblem OPT(P,Q). The goal of OPT(P,Q) is to find minimum valid paths
for PPt and QQt respectively in setA1[P]∪A2[Q] such that the paths cover all points of P[P,Q].
The right figure illustrates one of its four smaller subproblems OPT(Pt,Q).

Given state Φ = (P,Q), now we describe the subproblem associated with the state. 1O

Intuitively, a feasible solution to the subproblem restricted to St1 (resp. St2) is a valid path

starting from point P (resp. Q) and terminating at Pt (resp. Qt). More specifically, we

construct a substructure St[P]1 (b1[P],A1[P]) :
• b1[P] is the concatenation of subarc bP[P, B] and the original baseline segment

b1[B, Pt]. All arcs in b1[P] have cost zero.

• A1[P] consists of all arcs a′ ∈ A1 such that bP ≺ a′ (of course, with the portion

covered by b1[P] subtracted). The cost of each such arc is the same as its original

cost.

Similarly, we consider St2 and the intersection point Q, and construct St2[Q]with baseline

b2[Q] and arc set A2[Q]. We use P(a) (or P(A)) to denote the points covered by a (or

A) (w.r.t. the original baseline). Let the point set PP,Q that we need to cover in the

subproblem Φ(P,Q) be

PP,Q = P(A1[P]) ∪ P(A2[Q]) − P(bP) − P(bQ). (2-1)

We note that the minus term −P(bP) − P(bQ) is not vacuous as bP (resp. bQ) may cover

some points in A2[Q] (resp. A1[P]), and it is important that we do not have to cover

those point (this subtlety is crucial in the correctness proof of the DP). The goal for the

subproblem Φ(P,Q) is to find two valid paths with minimum total weight, one from P to

Pt and one from Q to Qt , such that they together cover all points in PP,Q. Note that the

weights of both base-arcs bP and bQ should be included in any feasible solution as well.

1O Note that each state corresponds to exactly one subproblem. Hence, we do not distinguish “state" and “subproblem"
in the following and use Φ = (P,Q) to represent the subproblem too.
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Suppose bP(P, B] intersects its first successor at Pb (called base-adjacent point) and

tP(P,D] intersects its first successor at Pt (called top-adjacent point). Similarly, we define

Qb, Qt in St2 in exactly the same way.

Now, computing the optimum for subproblem Φ(P,Q) reduces to computing the op-

tima for four smaller subproblems OPT(Pb,Q), OPT(Pt,Q), OPT(P,Qb) and OPT(P,Qt).
We define two Boolean variables IP (reps. IQ) indicating whether we can move from

PPb,Q to PP,Q without choosing a new arc. Formally, if PP,Q = PPb,Q, IP = 0. Oth-

erwise, IP = 1. Similarly, if PP,Q = PP,Qb , IQ = 0. If not, IQ = 1. The dynamic

programming recursion is:

OPT(P,Q) = min


OPT(P,Qb) + IQ · ∞, add no new arc ;

OPT(P,Qt) + w[bQ], add base-arc bQ;

OPT(Pb,Q) + IP · ∞, add no new arc ;

OPT(Pt,Q) + w[bP], add base-arc bP .

(2-2)

The optimal value we return is OPT(Ps,Qs). Now, we prove the correctness of the DP

in the following theorem. We note that both the point-order consistency and the subtlety

mentioned above play important roles in the proof.

Theorem 2.1： Suppose that we have two overlapping substructures St1(b1,A1) and

St2(b2,A2). Further suppose that b1 and b2 are oriented in a way such that the point-

order consistency holds. Then, the cost of the optimal solution is equal to OPT(Ps,Qs)
(which is computed by (2-2)).

Proof Consider subproblem OPT(P,Q). As we know the optimal solution of OPT(P,Q)
should be two valid paths. One is from P to Pt and the other is from Q to Qt . Suppose

they are Path1 = {a1[P, P1], a2[P1, P2], . . ., ai[Pi−1, Pi], . . ., ak[Pk−1, Pt]} and Path2 =

{b1[Q,Q1], b2[Q1,Q2], . . ., bi[Qi−1,Qi], . . ., bl[Ql−1,Qt]}. We can see that it suffices to

prove that at least one of the two statements is true.

• The pair of paths (Path1 − {a1[P, P1)},Path2) is an optimal solution to subproblem

OPT(P1,Q).
• The pair of paths (Path1,Path2 − {b1[Q,Q1)}) is an optimal solution to subproblem

OPT(P,Q1). □

We prove by contradiction. Assume that both of the above statements are false. Suppose

bP and bQ are the base-arcs for state Φ(P,Q), i.e., bP intersects with a1 at point P and

bQ intersects with b1 at point Q. We use P(Path) to denote the point set which is covered
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by path Path. Recall that P[P,Q] = P(A1[P]) ∪ P(A2[Q]) − P(bP) − P(bQ). Since

Path1∪Path2 is the optimal solution for OPT(P,Q) (hence feasible), we have thatP[P,Q] =
P(Path1)∪P(Path2)−P(bP)−P(bQ). Then, the pair of paths (Path1−{a1[P, P1)},Path2)
is the optimal solution for the subproblem in which we need to pick one path from P1 to

Pt and one from Q to Qt to cover the points in

P(Path1) ∪ P(Path2) − P(bP) − P(bQ) − P(a1) = P[P,Q] − P(a1).

If not, we can get a contradiction by replacing Path1−a1[P, P1] and Path2 with the optimal

solution of the above subproblem, resulting in a solution with less weight than OPT(P,Q)
for Φ(P,Q). Since the first statement is false, we must have that

P[P,Q] − P(a1) , P[P1,Q]

(otherwise (Path1 − {a1[P, P1)},Path2) is optimal for Φ(P1,Q)). We note that the LHS ⊆
RHS. Plugging the definition (2-1), we have that

P(A1[P])∪P(A2[Q])−P(bP)−P(bQ)−P(a1) , P(A1[P1])∪P(A2[Q])−P(a1)−P(bQ).

A careful (elementwise) examination of the above inequality shows that it is only possible

if

P(bP) ∩
(
P(A2[Q]) − P(bQ)

)
, ∅.

Repeating same argument, we can see that if the second statement is false, we have that

P(bQ) ∩ (P(A1[P]) − P(bP)) , ∅.

Hence, there exist bi ∈ A2[Q] and aj ∈ A1[P] such that P(bP)∩P(bi) , ∅, and P(bQ)∩
P(aj) , ∅. However, this contradicts the point-order consistency because of bP ≺ aj and

bQ ≺ bi.

Thus, one of the two statements is true. W.l.o.g, suppose (Path1 − {a1[P, P1]},Path2)

is the optimal solution to subproblem OPT(P1,Q). Suppose Pt,Qt is the top-adjacent

point of P,Q. If P1 is the top-adjacent point of P (i.e., P1 = Pt), through OPT(P,Q) =
OPT(P1,Q)+w[bP] in DP(2-2), we can get the optimal solution of subproblem OPT(P,Q).
If not, i.e. P1 , Pt , P1 and Pt are on the same arc bP. According to (2-2), we have

OPT(Pt,Qb) = OPT(P1,Qb). Then, OPT(P,Q) = OPT(Pt,Q) + w[bP] = OPT(P1,Q) +
w[bP]. Thus, we can prove that (Path1,Path2) is the optimal solution to at least one of
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the subproblems OPT(P,Qt) or OPT(Pt,Q). Thus, we can get the optimal solution for

OPT(P,Q) by our DP.

DP for the general problem: Now, we handle all substructures together. Our goal is

find a valid path for each substructure such that we minimize the total weight of all the

paths. We can see that we only need to handle each path in the substructure relation graph

S separately (since different paths have no interaction at all). Hence, from now on, we

simply assume thatS is a path.

Suppose the substructures are {Stk(bk,Ak)}k∈[m]. We use Ak and Bk to denote

two endpoints of bk . Generalizing the previous section, a state for the general DP is

Φ = {Pk}k∈[m], where Pk is an intersection point in substructure Stk . We use bPk
, tPk

,

Pb
k
, Pt

k
to denote the base-arc, top-arc, base-adjacent point, top-adjacent point (w.r.t. Pk)

respectively. For each k ∈ [m], we also define St[Pk ]
k
(bk[Pk],Ak[Pk]) in exactly the same

way as in the previous section. The point set we need to cover in the subproblem is:

P
[
{Pk}k∈[m]

]
=

∪
k∈[m]
P(Ak[Pk]) −

∪
k∈[m]
P(bPk).

The subproblem OPT({Pk}k∈[m]) is to find, for each substructure Stk , a valid path from Pk

to Bk , such that all points in P[{Pk}k∈[m]] can be covered and the total cost is minimized.

The additional challenge for the general case is caused by R-correlations. If two arcs

(in two different substructures) belong to the same disk, we say that they are siblings of

each other. If we processed each substructure independently, some disks would be counted

twice. In order to avoid double-counting, we should consider both siblings together, i.e.,

select them together and pay for the disk only once in the DP.

In order to implement the above idea, we need a few more notations. We construct

an auxiliary bipartite graph B. The nodes on one side are all disks in D ′ \ H , and the

nodes on the other side are substructures. If disk Di has an arc in the substructure St j , we

add an edge between Di and St j . Besides, for each arc of the baselines, we add a node

to represent it and add an edge between the node and the substructure which contains the

arc. Because the weight of any arc of any of the baselines is zero, it shall not induce any

contradiction to regard them as independent arcs. In fact, there is a 1-1 mapping between

the edges in B and all arcs. See Figure 2.6 for an example.

Fix a state Φ = {Pk}k∈[m]. For any arc a in Stk (with intersection point Pk and

base-arc bPk), a has three possible positions:

1. a ≺ bPk : we label its corresponding edge with “unprocessed”;
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Figure 2.6 The bipartite graph which is used for marking the ready disks. The nodes on upper
side represent the disks. The nodes on the lower side represent the substructures. If Di has an arc
in St j , we add an arc between them.

2. a = bPk : we label its corresponding edge with “processing”;

3. Others: we label its corresponding edge with “done”.

As mentioned before, we need to avoid the situation where one arc becomes the base-arc

first (i.e., being added in solution and paid once), and its sibling becomes the base-arc

in a later step (hence being paid twice). With the above labeling, we can see that all

we need to do is to avoid the states in which one arc is “processing” and its sibling is

“unprocessed”. If disk D is incident on at least one “processing” edge and not incident

on any “unprocessed” edge, we say the D is ready. Let R be the set of ready disks. For

each ready disk D, we use Np(D) to denote the set of neighbors (i.e., substructures) of D

connected by “processing” edges. We should consider all substructures in Np(D) together.

Again, we need in our DP indicator variables to tell us whether a certain transition

is feasible: Formally, if P[{Pk}k∈[m]] = P[[Pk][Pb
i ]{i }], let Ii = 0. Otherwise, let

Ii = 1. Here, for ease of notation, for a set {ek}k∈[m] and S ⊆ [m], we write [ek][e′i]S =
{ek}k∈[m]\S ∪ {e′i}i∈S . Hence,

[Pk][Pb
i ]{i } = {Pk}k∈[m]\i ∪ Pb

i and

[Pk][Pt
i ]Np(D) = {Pk}k∈[m]\Np(D) ∪ {Pt

i }i∈Np(D)

Then we have the dynamic program as follows:

OPT
(
{Pk}k∈[m]

)
= min

{
mini∈[m]

{
OPT

(
[Pk][Pb

i ]{i }
)
+ Ii · ∞

}
, add no disk

minD∈R
{
OPT

(
[Pk][Pt

i ]Np(D)
)
+ wD

}
, add disk D

(2-3)
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Note that in the second line, the arc(s) in Np(D) are base-arcs (w.r.t. state Φ({Pk}k∈[m]).
In the rest of the section, we prove the correctness of the dynamic program. If we

use the solution of a smaller subproblem OPT(Φ′) to compute subproblem OPT(Φ), we

sayΦ can be reached from Φ′ (denoted as Φ′→ Φ). If Φ can be reached from initial state

Φ0({Pk | Pk = Bk}k∈[m]), we say the state is reachable, which is denoted by Φ0 → Φ.

We start with a simple consequence of our DP: there is no double-counting.

Lemma 2.7： If two arcs in the solution belong to the same disk, their weights are counted

only once in the DP (A-1).

Proof From the DP, we can see that the weight of an arc is counted only when it becomes

a base-arc (its label changes from “unprocessed” to “processing”). If the two sibling arcs

a, b (belonging to disk D) in the solution are counted twice, there exist two states Φ1 and

Φ2 such that (1)Φ1 → Φ2, (2)a is a base-arc in Φ1, but b is not a base-arc in Φ1, (3) b is a

base-arc in Φ2. So, in Φ1 or any state before that, arc b is “unprocessed”. However, a can

become a base-arc only when D is ready, rendering a contradiction. □

Now, we prove the correctness of the dynamic program. The proof is a generalization

of Theorem 2.1.

Theorem 2.2： Suppose S is a path. All baselines are oriented such that all properties

in Lemma A.3 hold. Then, the optimal cost for the problem equals to OPT({Ak}k∈[m])
(computed by our DP (A-1)).

Proof Suppose the set {Pathk}k∈[m] of paths is the optimal solution. We need to prove

(1) the final state Φ({Ak}k∈[m]) is reachable, (2) for any reachable state Φ = {Pk}k∈[m],
OPT({Pk}k∈[m]) is the optimal solution for the corresponding subproblem (that is to find

one valid path from Pk to Bk for each substructure St[Pk ]
k

to cover all point in P[{Pk}k∈[m]],
such that the total cost is minimized).

We first prove the first statement. Suppose the state Φ is reachable, we prove it can

reach another state if Φ is not the final state (i.e., we do not get stuck at Φ). Let us prove it

by contradiction. Assume we get stuck at state Φ. That means there is no ready disk in Φ.

Note that each substructure, say St, is incident on exactly one “processing” arc, say arc a

(which is the base-arc in St). a’s sibling, say b (in St′), must be labeled “unprocessed”

(otherwise the disk would be ready). Consider the base-arc (or “processing” arc), say a′,
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in St′. So we have a′ ≺ b in St′. Again the sibling b′ of a′ must be an “unprocessed” arc

in St. 1O So we have b′ ≺ a in St, which contradicts the global arc-order consistency.

Now, we prove the second statement. We consider state Φ = {Pk}k∈[m]. Suppose the

optimal solution for subproblem Φ{Pk}k∈[m] is the set of paths PS = {Pathk}k∈[m] where

Pathk = (ak1, ak2 . . . , akn ). Consider the states ΦNp(D) := [Pk][Pt
i ]Np(D) for all D ∈ R.

Obviously, we can see from our DP that ΦNp(D) → Φ. Define for each D ∈ R, a set of

paths

PSNp(D) = {Pathk}k∈[m]−Np(D) ∪ {Pathi − {ai1}}i∈Np(D).

It suffices to prove that there exists at least one D ∈ R such that PSNp(D) is the optimal

solution for OPT(ΦNp(D)).
Consider a substructure Sti. Suppose the intersection point in Sti of Φ is Pi and the

base-arc at point Pi is bPi. For each i ∈ [m], let Stπ(i) be the only substructure (if any)

overlapping with Sti. So bPπ(i) is the base-arc of Stπ(i). Using exactly the same exchange

argument in Theorem 2.1, we can show that if PSNp(D) is not the optimal solution for

OPT(ΦNp(D)), there exists some i ∈ Np(D) such that Ei happens, where Ei is the following

event: there exists an arc βπ(i) in Stπ(i) with βπ(i) ≻ bPπ(i) such that

P(bPi) ∩ P(βπ(i)) , ∅.

We use Ei to denote the above event. Thus if there is no D ∈ R such that PSNp(D) is the

optimal solution for OPT(ΦNp(D)), we have

∧
D∈R

©­«
∨

i∈Np(D)
Ei

ª®¬ = True. (2-4)

Converting the conjunctive normal form (CNF) to the disjunctive normal form (DNF), we

get ∨
(k1,...,k|R |)∈ΠD∈RNp(D)

(∧
i∈R
Eki

)
= True, □

where ΠD∈RNp(D)means the Cartesian product of all Np(D) in R. We call each
∧

i∈ |R | Eki
a clause (note that ki indexes a substructure). If we can prove that every clause is false,

then obviously, (2-4) is false, resulting in a contradiction.

1O To see that b′ is in St, note thatS is a path and St is only R-correlated with St′ (and vice versa).
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Now, we show that every clause is false. First, we consider the case that both end

nodes ofS are incident to red edges. W.l.o.g., suppose the two nodes ofS are St1 and St2.

Thus, they are not R-correlated with other substructures. We know if one substructure

Sti is not R-correlated with others, every clause must contain the corresponding event Ei
(since the disk corresponding to its base-arc must be ready and in R). Hence, every clause

contains E1 and E2. Moreover, for each pair (Sti,St j) of R-correlated substructures, each

clause should contain either Ei or E j . Suppose the length of the pathS is ℓ. Because red

and blue edges alternates, there are ℓ−1
2 R-correlated substructure pairs and ℓ+1

2 overlapping

substructure pairs. We should select ℓ−1
2 + 2 terms in each clause. Because ℓ−1

2 + 2 > ℓ+1
2 ,

there exists a pair of overlapping substructures (Sti,Stπ(i)) such that both Ei and Eπ(i)
appear in the clause. To make the clause true, we must have

Ei = (P(bPi) ∩ βπ(i) , ∅) = True and Eπ(i) = (P(bPπ(i)) ∩ βi , ∅) = True,

where βπ(i) ≻ bPπ(i) and βi ≻ bPi. It yields a contradiction to the point-order consistency.

Next, we consider the remaining case where at least one end of the pathS is a blue

edge, meaning the substructure on the end does not overlap with any other substructure.

W.l.o.g., suppose the end node is St1 and it is R-correlated with St2. The event E1 =

P(bP1) ∩ P(βπ(1)) , ∅) is always false since βπ(1) does not exist. So all clause containing

E1 is false. To make each of the remaining clauses true, E2 must be true, and the case

reduces to the previous case (by simply omitting node St1). So the same argument again

renders a contradiction. This completes the proof of the theorem.

2.6 ConstructingH

In this section, we describe how to construct the set H in details. We first include

in H all square gadgets. Hence, the boundary of H consists of several closed curves, as

shown in Figure A.2. H and all uncovered arcs define a set of substructures.

First, we note that there may exist a closed curve that all points on the curve are

covered by some arcs (or informally, we have a cyclic substructure, with the baseline

being a cycle). We need to break all such baseline cycles by including a constant number

of extra arcs intoH . This is easy after we introduce the label-cut operation in Section 2.6.1,

and we will spell out all details then. Note that we cannot choose some arbitrary arcs on

the envelope of the cycle since it may ruin some good properties we want to maintain.
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From now on, we assume that all baselines are simple paths. Now, each closed curve

on ∂R(H) contains one or more baselines. So, we have an initial set of well defined

substructures. The main purpose of this section is to cut these initial substructures such

that Lemma A.3 holds.

We will execute a series of operations for constructingH . We first provide below a

high level sketch of our algorithm, and outline how the substructures and the substructure

relation graphS evolve along with the operations.

• (Section 2.6.1) First, we deal with active regions. Sometimes, two active region

may overlap significantly and become inseparable (formally defined later), they

essentially need to be dealt as a single active region. In this case, we merge the two

active regions together (we do not need to do anything, but just to pretend that there

is only one active region). We can also show that one active region can be merged

with at most one other active region. For the rest of cases, two overlapping active

region are separable, and we can cut them into at most two non-overlapping active

regions, by adding a small number of extra disks in H . After the merging and

cutting operations, each substructure contains at most one active region. Hence,

the substructures satisfy the property (P1) in Lemma A.3. Moreover, we show that

if any substructure contains an active region, the substructure is limited in a small

region.

• (Section 2.6.2) We ensure that each substructure is non-self-intersecting by a simple

greedy algorithm. After this step, (P2) is satisfied.

• (Section 2.6.3) In this step, we ensure that substructure relation graphS is a acyclic

2-matching (P3). The step has three stages. First, we prove that the set of blue

edges forms a matching. Second, we give an algorithm for cutting the substructures

which overlap with two or more other substructures. After the cut, each substructure

overlaps with no more than one other substructure. So after the first two stages, we

can see thatS is composed of a blue matching and a red matching. At last, we prove

that the blue edges and red edges cannot form a cycle, establishingS is acyclic.

• (Section 2.6.4) The goal of this step is to ensure the point-order consistency (P4).

We first show there does not exist a point covered by more than two substructures,

when S is an acyclic 2-matching. Hence, we only need to handle the case of two

overlapping substructures. We show it is enough to break all cycles in a certain

planar directed graph. Again, we can add a few more disks to cut all such cycles.
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• (Section 2.6.5) Lastly, we show that the number of disks added in H in the above

four steps is O(K2), where K = L
µ

and L and µ are side lengths of block and small

square respectively.

2.6.1 Merging and Cutting Active Regions

If two active regions overlap in the same substructure, we need to either merge them

into a new one or cut them into two non-overlapping new ones. As we know, each gadget

may have two active regions. Suppose active regions Ar1 and Ar2 belong to the same

gadget Gg, while Ar′1 and Ar′2 belong to a different gadget Gg′. Due to R-correlations, we

need consider the four active regions together.

First, we consider the case where Ar1 overlaps with Ar′1, and Ar2 overlaps with Ar′2.

We need the following important concept order-separability, which characterizes how the

two sets of arcs overlap.

Definition 2.10 (Order-separability)： Consider a substructure St(b,A). A1,A2 are two

disjoint subsets of A. If A1,A2 satisfy that

a ≺ b, for any a ∈ A1 and b ∈ A2, (2-5)

or

a ≻ b, for any a ∈ A1 and b ∈ A2, (2-6)

we say that A1,A2 are order-separable.

We useA1 ,A ′1,A2,A ′2 to denote the set of arcs associated with active regions Ar1,

Ar′1, Ar2, Ar′2, respectively. IfA1 andA ′1 are not order-separable, we say the pair (Ar1,Ar′1)
is a mixture. If both of (Ar1,Ar′1) and (Ar2,Ar′2) are mixtures, we say the two pairs form a

double-mixture. When they are double-mixture, we merge them simultaneously. It only

means that we regard the two active regions (Ar1,Ar′1) as a new single active region, and

(Ar2,Ar′2) as another single active region.

To show an active region cannot grow unbounded, we prove that the merge operations

do not generate chain reactions. The rough idea is that if two active regions form a

mixture, their corresponding small squares must be adjacent and their core-central areas

must overlap. Due to the special shape of core-central areas (a narrow spindle shape), the

overlapping can only happen between two of them, not more.
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Lemma 2.8： Consider two non-empty small squares Γ, Γ′. Suppose the square gadgets

in the two squares are Gg(Γ) = (Ds,Dt) and Gg(Γ′) = (D′s,D′t). The active region

pairs (Ar1,Ar2) and (Ar′1,Ar′2) are associated with gadget Gg(Γ) and Gg(Γ′) respectively.

(Ar1,Ar2) and (Ar′1,Ar′2) form a double-mixture. Then, the following statements hold:

1. Their corresponding squares Γ, Γ′ are adjacent;

2. The core-central areas of Gg(Γ) and Gg′(Γ′) overlap;

3. The angle between DsDt and D′sD′t is O(ϵ)
4. Neither of the two core-central areas can overlap with any small squares other than

Γ and Γ′.

Next, we consider the case where only one of (Ar1,Ar′1) and (Ar2,Ar′2) is a mixture.

However, we show that it is impossible as follows. We use notation Ar(A) to denote an

active region with arc set A.

Lemma 2.9： Suppose active region pairs (Ar1(A1), Ar2(A2)) and (Ar′1(A ′1), Ar′2(A ′2)) are

associated with gadget Gg and Gg′ respectively. If A1 and A ′1 are order-separable, then

A2 and A ′2 are also order-separable.

The proofs of Lemma 2.8 and Lemma 2.9 are elementary planar geometry and we

defer them to Appendix 2.9.2.

Cutting Overlapping Active Regions: After the merging stage, even if any two active

regions overlap in the same substructure, their arcs are order-separable. We define label-

cut operation as below to further separate them such that the baselines of all the active

regions are non-overlapping.

We consider two overlapping active regions Ar1(A1) and Ar2(A2) in a substructure

St(A). Suppose A1,A2 ⊂ A and A1,A2 are order-separable. We can add two consec-

utive arcs in the envelope of A into H . Then, St is cut into two substructures St1 and

St2 with disjoint baselines, such that R(Ar1) ⊂ R(St1) and R(Ar2) ⊂ R(St2). We call the

process label-cut. In other words, if we assign arcs inA1 one kind of label and arcs inA2

a different kind of label, after the label-cut operation, the arcs with different labels belong

to different new substructures.

Lemma 2.10： Consider a substructure St(b,A) and two subsets A ′1,A ′2 of A. There

exists a label-cut when A ′1 and A ′2 are order-separable.

Figure 2.7 illustrates the process of construction. Note thatA ′1 andA ′2 are order-separable.

We travel along the envepole of A. We defer its proof in Appendix 2.9.2.
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Figure 2.7 The example of label-cut. The left hand side illustrates the whole substructure before
cutting. The arcs have two different labels. One is green and the other is brown. The bold black
subarcs are what we select in the envelope. The right hand side illustrates that each of the two
separable substructures induced by the label-cut operation only contains arcs with the same label.

After the label-cut operation, in each substructure, the baselines for all active regions

are not overlapping. Thus, if any substructure contains more than one active region,

consider any two of them, say A1 and A2. Note that A1 and A2 are not overlapping.

Thus, we can add intoH one arc a along the envelope which satisfies a1 ≺ a ≺ a2, ∀a1 ∈
A1, a2 ∈ A2. After the addition of arc a,A1 andA2 are separated into two different new

substructures. Repeat the above step whenever one substructure contains more than one

active region. This establishes the active region uniqueness property (P1).

Limiting the size of substructure which contains an active region: Now, we discuss

how to make substructure which contains an active region bounded inside a small region.

This property is particular useful later when we show the substructure relation graphS is

acyclic.

Suppose the gadget of square Γ is (Ds,Dt). The line DsDt divides the plane into two

halfplanes H+ and H−. Ds and Dt intersect at points P and Q. The boundary of disk

D(P, 2) is tangent to Ds and Dt at point Qs and Qt respectively. D(Qs, 1) and D(Qt, 1)
intersect at point D. See Figure 2.8. We call D the dome-point of gadget Gg(Γ) and use

Dom(Γ+) to denote the region (D(D, 1)) − Ds − Dt) ∩ H+. Similarly, we use Dom(Γ−) to

denote the region (D(D, 1)) − Ds − Dt) ∩ H−. Dom(Γ+) and Dom(Γ−) covers the active

region associated with Γ. Formally speaking, we give the following lemma.

Lemma 2.11： Consider the substructure St which contains an active region of square Γ.

The substructure can be cut into at most three smaller substructures, by doing label-cut

at most twice. At most one of them contains the active region. Moreover, this new

substructure (if any) is covered by the region Dom(Γ+) (or Dom(Γ−)) associated with Γ.

We defer the proof to Appendix 2.9.2.

There may exist a substructure which contains a merged active region (i.e. an active

region which is the union of two initial active regions). Based on Lemma 2.8, the arcs
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Figure 2.8 The farthest disk pair of square Γ is (Ds,Dt ). Suppose Ds and Dt intersect at point
P,Q. The disk D(P, 2) is tangent to Ds and Dt at point Qs and Qt respectively. D(Qs, 1) and
D(Qt, 1) intersect at D. The active region of Γ in H+ is totally covered by Dom(Γ+).

of the two initial active regions belong to two adjacent small squares. Suppose the two

squares are Γ, Γ′, with square gadgets (Ds,Dt) and (D′s,D′t) respectively. The dome-points

of Γ and Γ′ in H+ are respectively D and D′. We apply the operations in Lemma 2.11

for each initial active region. Since the angle between DsDt and D′sD′t is O(ϵ), obviously,

the substructure containing the merged active region is small as well, i.e. bounded in

Dom(Γ+) ∪ Dom(Γ′+).
Since each substructure which contains an active region is small enough, we can show

the following lemma, which will be useful for proving the acyclicity of the substructure

relation graphS.

Lemma 2.12 (Highly parallel arcs)： Suppose substructure St(b,A) contains an active

region. The central angle of any arc in St is no more than O(ϵ). Meanwhile, there exists

a line l such that the angle between l and the tangent line at any point of any arc a ∈ A is

at most O(ϵ).

The correctness is directly followed by Lemma 2.8. Actually, for the initial active region,

the line DsDt satisfy the property. For the merged active region, we know the angle

between DsDt and D′sD′t is O(ϵ) based on Lemma 2.8. Hence, we can still see that the

line DsDt satisfies the property.

To summarize, after all operations in this subsection, we can ensure that each sub-

structure contains at most one active region (i.e., (P1) in Lemma A.3). Moreover, we

have that each substructure which contains an active region is small enough (so that

Lemma 2.12 holds).

Handling cyclic substructures: At the end of this subsection, we deal with the problem

we left in the very beginning of Section 2.6, to break all cyclic baselines. Note that this

step should be done in the beginning. First, we consider that case that there exists a point
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Figure 2.9 The process to avoid self-intersection. The left hand side is a self-intersection
substructure. We search from point Qs along the envelope. Let arc set Ai be {a1, a2, . . . , ai}.
Then we have a set {Sti[Ai]}i∈[k] of substructures. If Sti is non-self-intersecting but Sti+1 is
self-intersecting, we add arc ai+1 inH . The right hand side illustrates the two new substructures
after the cut.

on the baseline which cannot be covered by any arc of any active region. We can include

any envelope arc that covers the point into H , which is enough to break the cycle. This

is essentially a label-cut and does not separate any single connected active region into

disconnected pieces. Then we consider the case where every point on the baseline is

covered by some arc of active regions. Note that the merge operation only depends on the

local property of two active regions, thus, we can merge active regions even in a “cyclic

substructure”. Assume that we have done all merge operations. Based on Lemma 2.12,

we know one active region is very small and thus cannot cover all points on a closed curve.

We pick one active region. Using the same operation as Lemma 2.11 (do two label-cuts),

we can essentially isolate the active region and cut the original cyclic baseline to two new

baselines.

2.6.2 Eliminating Self-intersections

The goal of this part is to add a few more disks into H so that any substructure

is non-self-intersecting (Recall the definition in Lemma 2.3). Note that after merging

and cutting process in Section 2.6.1, substructures which contain active region are non-

self-intersecting. We just need to process the substructures without active regions in this

part.

We use a simple greedy approach. We consider one substructure St(b,A). Suppose

the endpoints of b are Qs and Qt , and the envelope is {a1[Qs,Q1],. . ., ak[Qk−1,Qt]}, where

Qi is the intersection point of ai−1 and ai. We denote the endpoints of ai on the baseline

b by Pi and P′i (Note that P1 = Qs). Let arc setAi be {a1, a2, . . . , ai}. Then we have a set

{Sti[Ai]}i∈[k] of substructures, where Sti[Ai] is the substructure induced by arc set Ai.

We consider the arcs lying on the envelope one by one and check whether we should add

it intoH or not. Concretely, we add D(ai+1) inH if the following condition holds:
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• Sti is non-self-intersecting, but Sti+1 is self-intersecting,

The addition of D(ai+1) cuts the substructure into two smaller substructures. One of which

is certainly non-self-intersecting. The other is induced by arc set A = {ai+2, . . . , ak}.
See Figure 2.9. We repeat the above process until there is no self-intersection in all

substructures. Furthermore, we can easily prove the following nice property. The proof

can be found in Appendix 2.9.3.

Lemma 2.13： In each of the above iterations, one substructure St(b,A) is cut into at

most two new substructures. Any original arc inA cannot be cut into two pieces, each of

which belongs to a different new substructure.

To summarize, we have obtained the non-self-intersection property ((P2) in

Lemma A.3).

2.6.3 Ensuring thatS is an Acyclic 2-Matching

We discuss how to add some extra disks inH to makeS an acyclic 2-matching ((P3)

in Lemma A.3).

Blue edges: First we show that the set of blue edges form a matching.

Lemma 2.14： Two blue edges cannot be incident to the same node.

Proof Before the merge operation, the set of active region pairs forms a matching. To see

this, note that our merge operations always apply to a double-mixture (which corresponds

to merging two blue edges into one). Moreover, any cut operation cannot break one active

region into two, thus has no effect on any blue edge. Hence, after all merge and cut

operations, the set of active region pairs is still a matching. □

Red edges: Then, we prove that any node which has more than one incident red edges

can be cut such that each new node(i.e., substructure) only has at most one incident red

edge.

First, we prove a simple yet useful geometric lemma stating that a point cannot be

covered by three or more substructures. Note that from now on, all substructures have no

self-intersections.

Lemma 2.15： We are given a substructure St(b,A) and an arc a ∈ A. Consider two

arcs b1, b2 < A. If b1, b2 cover the same point on a, b1, b2 should belong to the same

substructure.
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Intuitively, if the two disks corresponding to b1 and b2 cover the same point, they

should be close enough such that their corresponding square gadgets overlap (which

implies b1 and b2 share the same baseline). First we prove that the minimum distance

between any two disks in two different substructure should not be too small, i.e., their

overlapping region cannot be too large. The proof can be found in Appendix 2.9.4.

In fact, essentially the same proof can be used to prove that any two different

substructures cannot both intersect with subarc whose central angle is O(ϵ), as in the

following corollary.

Corollary 2.1： Suppose St(b,A) is a substructure without any self-intersection. Con-

sider an arc a ∈ A and two arcs b1, b2 < A. Suppose a′ is a subarc of a whose central

angle is O(ϵ). If both b1, b2 cover some part of a′, b1, b2 should belong to the same

substructure.

Combining with Lemma 2.12, we can easily see the following lemma.

Lemma 2.16： Any substructure which contains an active region cannot overlap with two

or more different substructures.

Then we show how to cut the substructure St(b,A) which overlaps with more than

one other substructures. Note that such substructure does not contain an active region

based on Lemma 2.16. Suppose the envelope of St is {a1[Qs,Q1], . . . , ak[Qk−1,Qt]}. St

overlaps with k substructures Sti(bi,Ai), i = 1, 2, . . . , k.

If Sti overlaps with St, there exists an arc a ∈ Sti intersecting some envelope arc of

St. Thus, the envelope St is subdivided into several segments by those intersection points.

We can label those segments as follows:

• If the segment is covered by some arc in Sti, we label it as ‘i’.

• If there is no arc in any Sti covering the segment, we label it as ‘0’.

See Figure 2.10 for an example. According to the Lemma 2.15, we know there is no point

on the envelope covered by two substructures. Thus the above labeling scheme is well

defined.

Traversing those segments along the envelope, we obtain a label sequence. First, for

each label i, we identify those maximal consecutive subsequence, which consists of only

letter 0 and i, and starts with and end with i, and replace the subsequence by a single

letter i. We obtain a compressed sequence. In fact, each letter, say i (i , 0), in the

compressed sequence corresponds to one or more segments labeled with either i or 0, and
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Figure 2.10 The arcs in substructures St1 and St2 cut the envelope of St into 7 segments. The
sequence of the labels for those segments is 0101020. The compressed label sequence is 01020.
So we have 5 l-segments.

the first and last one must be labeled with i. We call the concatenation of those segments

an l(ong)-segment. Of course, a letter 0 in the compressed sequence corresponding to a

segment with label 0. Actually, the sequence is Davenport-Schinzel sequence of order

2 [70], because two segments with different labels cannot intersect (because the baselines of

two substructures cannot intersect). For example, the pattern “1212” should never appear.

Thus, the length of the compressed sequence, i.e., the number of l-segments, is at most

O(k).
Now, we discuss how to cut St into several new ones based on l-segments. Keep in

mind that our goal is to make sure each new substructure only overlap with one substructure

of {Sti}i∈[k]. The cut operation is again a simple greedy procedure. Consider two

consecutive l-segments. Suppose they are {ai[Qi−1,Qi], ai+1[Qi,Qi+1], . . . , aj[Q j−1,Q j]}
and {aj+1[Q j,Q j+1], . . ., ak[Qk−1,Qk]}. We add intoH the last arc aj of former l-segment

and the first arc aj+1 of the later l-segment. St is thus cut into two new ones. Repeat the

above step for all two consecutive l-segments in order.

We still need to show that after the cut, every new substructure overlap at most

one of {Sti}i∈[k]. Consider one new substructure. Notice such an original arc in A can

only belong to one new substructure. By our cut operation, all envelope arcs of the new

substructure can intersect at most one of {Sti}i∈[k]. Hence, the new substructure can

overlap at most one Sti.

Blue edges and red edges: After the above operations, the set of all blue edges forms a

matching, while the set of all red edges also forms a matching. To show S is an acyclic

2-matching, it suffices to proveS contains no cycle. So, the rest of the section is devoted

to prove the following lemma.

Lemma 2.17： Suppose the side length of square is µ, where µ = O(ϵ) and the block

contains K × K small squares, where K = C0/ϵ2 and C0 is an appropriate constant. Then,

after all operations stated in this section, there is no cycle inS.
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If there is a cycle Cyc in S, the red edges and blue edges alternate in Cyc, which

correspond to a sequence of substructures, each containing an active region (since it is

R-correlated with another active region). Now, we provide a high level explanation why

Lemma 2.17 should hold. Each active region is associated with a small square. A small

square is very small (comparing to a unit disk or the whole block), and an active region

is also very small. We pick a point in each small square and each substructure. If two

substructures in Cyc overlap, the two points in them are also very close (i.e., O(ϵ)). So

we can pretend the two points as one point (or we just pick a point in their overlapping

region). For each active region Ar, we connect the point in Ar and the point in the small

square associated with Ar. Since Both the small square and the active region are very

small, the distance between two point is about 1 −O(ϵ). Thus, a cycle Cyc would present

itself geometrically as a polygon. We can show the angle between two adjacent edges of

the polygon is close to π. So the size of the polygon cannot be not small (it takes a lot of

edges to wrap a loop). However, the polygon cannot be much larger than the block. By

contradiction, we prove that there is no cycle inS.

Now, we formally prove Lemma 2.17. We first prove a geometric lemma which will

be useful for bounding the angle between the two adjacent edges of the aforementioned

polygon.

Lemma 2.18： Consider two substructures St1(b1,A1) and St2(b1,A2) in Cyc. Suppose

St1 and St2 overlap (there is a red edge between them). For any two arcs a ∈ A1 and

b ∈ A2, suppose that D(a) and D(b) overlap and their intersection points are A and B. The

central angles of a, b are θa, θb respectively. The centers of D(a),D(b) are Da,Db. Then

∠ADaB (or ∠ADbB) is at most (θa + θb).

Proof We distinguish a few cases depending on whether the intersection points A and B

lie on a or b or none of them. All cases are depicted in Figure 2.11.

• Both A and B lie on one arc (see Figure (a)(b)). W.l.o.g., suppose they lie on arc a.

Obviously, ∠ADaB is no more than θa (or θb) .

• If one intersection is on neither a nor b (see Figure (c)), we prove that the case

cannot happen. Suppose A is on neither of a and b. The endpoint A1 of a is covered

by disk D(b) and the endpoint A2 of a is covered by disk D(a). Thus the baseline b1

must intersect with b2 which contradicts the fact that St1 and St2 are two different

substructures.
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Figure 2.11 The four kinds of cases for two overlapping arcs.

• If one intersection point is on a but not on b and the other intersection point is on

b but not on a (see Figure (d)), it is easy to see that B1 is covered by arc b, and A2

is covered by a since their baselines do not intersect. Thus, the length of arc AB

(w.r.t. D(a)) is no more than the sum of lengths of a and b. So ∠ADaB is at most

θa + θb.

The above cases are exhaustive, thus our proof is completed. □

Based on Lemma 2.12, Lemma 2.18, we can prove Lemma 2.17 below:

Proof of Lemma 2.17: Consider two substructures St1 and St2. Suppose St1 contains the

active region Ar1 , and St2 contains the active region Ar2. The centers of arcs of Ar1 and

Ar2 locate in small squares Γ1 and Γ2 respectively. The square gadgets of the two squares

are Gg(Ds1,Dt1) and Gg(Ds2,Dt2) respectively. If St1 and St2 overlap, there must exist an

arc a in St1 and an arc b in St2 such that a and b intersect. Suppose D(a) and D(b) intersect

at points A and B. The center of D(a) and D(b) are Da and Db.

Based on Lemma 2.12, we know both central angle of a and b are no more than

O(ϵ). According to Lemma 2.18, the central angle of the arc AB is at most O(ϵ). It means

angle between the tangent lines of D(a) and D(b) at point A is no more than O(ϵ). Thus,

∠DaADb is at least π −O(ϵ).
We know that all disks in the same active region are centered in one small square or

two adjacent small squares. Moreover Lemma 2.12 implies all disk centers should lie in

one or two squares. Hence, the distance between (any point in) the square and (any point

in) its active region is at least 1 −O(ϵ). Construct the aforementioned polygon. Consider

two adjacent edges XY and Y Z in the polygon. We consider two cases:

1. Y is in the intersection of two substructures St1 and St2. We can easily see that (1)
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|Y A| = O(ϵ); (2) |XDa | = O(ϵ); (3) |ZDb | = O(ϵ). Hence, we can see ∠XY Z is at

least π −O(ϵ).
2. Y is in a small square Γ and X and Z are in the two substructures associated with

Γ. Since both substructures are bound in an O(ϵ) size region (by Lemma 2.12), we

can see that ∠XY Z is at least π −O(ϵ) as well.

Hence, we can see the polygon contains at least Ω(2π/ϵ) nodes and the diameter of the

polygon is at leastΩ(1/ϵ). But this cannot be larger than the diameter of a block, rendering

a contradiction.

□

To summarize, we have ensured thatS is an acyclic 2-matching ((P3) in Lemma A.3).

2.6.4 Ensuring Point Order Consistency

We have ensured that the set of red edges is a matching inS. Hence, one substructure

can overlap with at most one other substructure. Therefore, if we can guarantee that the

points which are covered by any pair of overlapping substructures satisfy order consistence,

then all points in P satisfy order consistency (after all, point-order consistency is defined

over a pair of substructures).

Consider two overlapping substructures St1(b1,A1) and St2(b2,A2) and a set Pco of

points covered by A1 ∪ A2. Suppose P1, P2 ∈ Pco and a1, a2 ∈ A1, b1, b2 ∈ A2. Recall

point-order consistency requires that when

• P1 ∈ R(a1) ∩ R(b1) and P2 ∈ R(a2) ∩ R(b2)
• P1 < R(a2) ∪ R(b2) and P2 < R(a1) ∪ R(b1).

then

• (a1 ≺ a2) ⇔ (b1 ≺ b2).
It is helpful to consider the following directed planar graph D induced by all arcs in

A1∪A2 in the uncovered regionU(H). Regard each intersection point of arcs inA1∪A2

as a node. Each subarc is an directed edge with a direction consistent with its baseline.

We use A → B to denote that there is a directed edge between nodes A and B in D. If

there is no directed cycle inD, we can verify that all conditions listed above hold. Indeed,

suppose the condition is not satisfied, which means a1 ≺ a2, b1 ≻ b2, a1, a2 ∈ A1 and

b1, b2 ∈ A2. Suppose a1, b1 intersect at (A1, B1) and A1 → B1, meanwhile a2, b2 intersect

at (A2, B2) and A2 → B2. Since a1 ≺ a2, there exists a path in St1 which goes from B1 to

A2. Similarly, there exists a path in St2 from B2 to A1. Thus, the two paths and a1, a2 form
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Figure 2.12 Substructure St1(b1,A1) and St2(b2,A2) are overlapping. b1 starts from Qs and
ends up with Qt and b2 starts from Ps and ends up with Pt . There are two paths forming a cycle.

a directed cycle.

So all we have to do is to break all cycles inD. WhenD contains a cycle, we can cut

the cycle through adding an arc on the envelope intoH . See Figure 2.12 for an example.

Only arcs A1 (or in A2) cannot form a cycle. So if there is a cycle, the cycle must pass

through the envelope ofA1 andA2. Moreover, based on Lemma 2.12, if St1 and St2 form

a cycle, either St1 or St2 does not contains any active region. W.l.o.g., suppose it is St2.

Based on these observations, we have our algorithms as follows:

Suppose the envelope of St1 is Path1 = {a1, a2, . . . , ak}. ai and aj are the first and

last arcs respectively which intersect St2. Suppose the arc bi′ ∈ A2 overlaps with ai, (if

there is more than one such arc, we select a minimal one, w.r.t. the arc ordering) and the

arc bj′ ∈ A2 overlaps with aj (if there is more than one such arc, we select a maximal

one). Since ai ≺ aj and they do not satisfy point-order consistency, we have bi′ ≻ bj′. We

can see that all arcs between bi′ and bj′ cannot intersect with Path1. So we can select one

arc between bi′ and bj′ to add inH for cutting St2 into two. After the cut, any cycle in D

can be broken.

After cutting St2, St1 overlaps with both of the new substructures obtained from St2.

Then, we encounter the same situation as in Section 2.6.3 (a node in S has two incident

red edges). We can apply the operation in Section 2.6.3 to cut St1 such that the set of red

edges inS is still a matching.

2.6.5 The number of disks inH

Finally, we count collectively the total number of disks that we have added in H .

First, we add the square gadget for each nonempty small square inH . The number of the

disks is O(K2), where K = L/µ = O(1/ϵ2). In order to cut overlapping active regions, the
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number of disks we add inH is bounded by the number of active regions. Since there are

O(K2) gadgets, we add O(K2) disks in Section 2.6.1. In Section 2.6.2, to ensure that each

substructure is non-self-intersecting and contains at most one active region, we design a

greedy algorithm. We can see that each arc we added inH covers at least one intersection

point of two disks inH ′, whereH ′ is the setH before this step. The algorithm guarantees

that each arc which we add inH do not cover the same intersection point on the boundary

of H ′. Since the union complexity of unit disks is linear [71] and H ′ contains at most

O(K2) disks, there are at most O(K2) intersection points on ∂H ′. So, we add at most

O(K2) in this step. In Section 2.6.3, we break the cycles in S. The number of disks we

add H is proportional to the number of substructures. So, again, we add at most O(K2)
disks. Similarly, in Section 2.6.4, we also add at most O(K2) disks. To summarize, we

have added at most O(K2) disks inH .

2.7 Time Complexity

The time complexity contains three parts. The first part is to enumerate all com-

bination of G. We set C = O(K2

ϵ
) (since we need C > |H |/ϵ). Since K = O( 1

ϵ2 ), the

number of combinations is bounded by nC = nO(1/ϵ5). The second part is the construction

of setH . It is easy to see that the time cost for each operation (i.e., label-cut) is no more

than O(n2). Thus, the time cost is O(K2n2) = O(n2/ϵ4). The last part is the dynamic

program. There are at most O(K2) substructures and at most O(n2) intersection points

in each substructure. Thus, the number of total states is at most O((n2)K2). For each

recursion, the time cost is at most O(n). Thus, the overall time complexity of the dynamic

program is O(n2K2+1) = nO(1/ϵ4).

Overall, the total time cost is nO(1/ϵ5) ·max{n2/ϵ4, nO(1/ϵ4)}) = nO(1/ϵ9). This finishes

the proof of Lemma A.2.

2.8 Applications

The weighted dominating set problem (MWDS) in unit disk graphs has numerous

applications in the areas of wireless sensor networks [9]. In this section, we show that our

PTAS for WUDC can be used to obtain better approximation algorithms for two important

problems in this domain.
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2.8.1 Connected Dominating Set in UDG

The goal for the minimum-weighted connected dominating set problem (MWCDS) is

to find a dominating set which induces a connected subgraph and has the minimum total

weight. Clark et al. [14] proved that MWCDS in unit disk graphs is NP-hard. Ambühl et

al. [5] obtained the first constant factor approximation algorithm for MWCDS(the constant

is 94). The ratio was subsequently improved in a series of papers [6,30-31]. The best ratio

known is 7.105 [9] pp.78.

One way to compute an approximation solution for MWCDS is to first compute

minimum weighted dominating set (MWDS) and then connect the dominating set using a

node-weighted steiner tree (NWST) [30,72]. The optimal MWDS value is no more than the

optimal MWCDS value. After zeroing out the weight of all terminals, the optimal NWST

value (for any set of terminals) is also no more than the optimal MWCDS value. Hence,

if there is an α-approximation for MWDS(or equivalently WUDC) and a β-approximation

for NWST, then there is an α + β factor approximation algorithm for MWCDS.

Zou et al. [72] show that there exists a 2.5ρ-approximation for NWST if there exists a ρ-

approximation for the classical edge-weighted minimum steiner tree problem. The current

best ratio for minimum steiner tree is 1.39 [73]. Thus, there exists a 3.475-approximation

for NWST. Combining with our PTAS for WUDC, we obtain the following improved result

for MWCDS.

Theorem 2.3： There exists a polynomial-time (4.475 + ϵ)-approximation for MWCDS

for any fixed constant ϵ > 0.

2.8.2 Maximum Lifetime Coverage in UDG

The maximum lifetime coverage problem (MLC) is a classical problem in wireless

sensor networks: Given n targets t1, . . . , tn and m sensors s1, ...sm, each covering a subset

of targets, find a family of sensor cover S1, . . . , Sp with time lengths τ1, . . . , τp in [0, 1],
respectively, to maximize τ1+ . . .+τp subject to that the total active time of every sensor is

at most 1. MLC is known to be NP-hard [74]. Berman et al. [75] reduced MLC to the minimum

weight sensor cover (MSC) problem through Garg-Könemann technique [76]. In particular,

they proved that if MSC has a ρ-approximation, then MLC has a (1 + ϵ)ρ-approximation

for any ϵ > 0. Ding et al. [33] noted that, if all sensors and targets lie in the Euclidean plane

and all sensors have the same covering radius, any approximation result for WUDC can

be converted to almost the same approximation for MLC. Hence, the current best known
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result for MLC is a (3+ ϵ)-approximation [34]. Using our PTAS, we obtained the first PTAS

for MLC.

Theorem 2.4： There exists a PTAS for MLC when all sensors and targets lie in the

Euclidean plane and all sensors have the same covering radius.

Let us mention one more variant of MLC, called maximum lifetime connected cover-

age problem, studied by Du et al. [77]. The problem setting is the same as MLC, except that

each sensor cover Si should induce a connected subgraph. They obtained a (7.105 + ϵ)-
approximation when the communication radius Rc is no less two times the sensing radius

Rs. Essentially, they showed that an α-approximation for WUDC and a β-approximation

for NWST imply an α+β-approximation algorithm for the connected MLC problem. Using

our PTAS, we can improve the approximation ratio to (4.475 + ϵ).

2.9 Delayed Proofs of PTAS for WUDC

2.9.1 Delayed Proofs in Section A

Lemma 2.19： The central angle of any uncovered arc is less than π.

Proof We only need prove the arc of a gadget is less than π. As we union all gadgets and

add more and more disks in H , the central angle of an arc only becomes smaller. So,

now we fix a square gadget Gg(Γ). Consider the substructure above line DsDt . See the

right hand side of Figure A.1 for an example. Suppose an arc a with endpoints M and M ′

on the boundary of Gg. The center of the arc is in the central area of Gg. If the central

angle ∠(a) ≥ π, its center should lie in the cap region bounded by a and the chord MM ′.

Without loss of generality, we suppose M is closer to the line DsDt than M ′. Draw a

auxiliary line at M which is parallel to DsDt . If the line does not intersect the central

area, the center a locates below the line M M ′ (Hence, outside the cap region), thus the

central angle is less than π. If the auxiliary line intersects the boundary of central area at

point N . Then, we can see that

|MN | =
√
|MDs |2 − x2 + |DsDt | −

√
|NDt |2 − x2,

where x is the vertical distance between point M and line DsDt . It is not difficult to see

that |MN | > 1. It means that the center of the arc locates below the line MN (Otherwise,

the distance from the center to M is larger than |N M |, which is larger than 1, rendering a

contradiction). So, the central angle of any arc is less than π. □
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2.9.2 Delayed Proofs in Section 2.6.1

Lemma 2.8 Consider two non-empty small squares Γ, Γ′. Suppose the square

gadgets in the two squares are Gg(Γ) = (Ds,Dt) and Gg(Γ′) = (D′s,D′t). The active region

pairs (Ar1,Ar2) and (Ar′1,Ar′2) are associated with gadget Gg(Γ) and Gg(Γ′) respectively.

(Ar1,Ar2) and (Ar′1,Ar′2) form a double-mixture. Then, the following statements hold:

1. Their corresponding squares Γ, Γ′ are adjacent;

2. The core-central areas of Gg(Γ) and Gg′(Γ′) overlap;

3. The angle between DsDt and D′sD′t is O(ϵ)
4. Neither of the two core-central areas can overlap with any small squares other than

Γ and Γ′.

Proof Suppose the core-central areas of Gg and Gg′ are Co and C′o respectively. Since

(Ar1,Ar2) and (Ar′1,Ar′2) form a double-mixture, there exists at least one disk centered in Γ′

which appears in Ar1. Thus, the disk is centered in Co. It means that Co and C′o overlap.

Hence, Γ and Γ′ are adjacent. See Figure 2.13.

It is easy to see that any core-central area can overlap with at most two squares.

Since Co and C′o overlap, at least one of them overlaps with both Γ and Γ′. Without loss

of generality, suppose Co overlap with both Γ and Γ′. We only need to prove C′o cannot

overlap with other squares other than Γ and Γ′.

Our proof needs a useful notion, called apex angle. Consider a square gadget. See

the left one of Figure A.1 (and we use the notations there). The line DsE and DsF are the

tangent lines to the boundary of core-central area at point Ds. We define apex angle θCo
to be ∠EDsF. We notice that θCo only depends on the distance |DsDt |. When the side

length of a small square is ϵ , θCo is O(ϵ). In fact, even the core-central area is completely

determined by Ds and Dt . Thus, we can generalize the concept core-central area by using

any two overlapping disks inH .

Now go back to our proof. See Figure 2.13. The segments DsDt and D′sD′t cannot

intersect because they belong to different small squares. Suppose the squares Γ and Γ′ are

A1 A2 A5 A6 and A2 A3 A4 A5, respectively. A2 A5 is the common side. W.l.o.g, suppose D′s is

closer to line A2 A5 than D′t . If any disk centered in C′o can appear in Ar1 but outside the

disk D′s (i.e., outside the disks Ds ∪Dt ∪D′s), the core-central areas defined by D′sDt
1O and

C′o should overlap nontrivial (not only touch at point D′s). Thus, the angle ∠DtD′sD′t should

be less than O(ϵ). It means angle between DsDt and D′sD′t is at most O(ϵ). Moreover,

1O D′s and Dt do not locate in the same square. This is core-central area in the generalized sense..
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Figure 2.13 The case that arcs in two different active regions are not order-separable. The two
adjacent squares are Γ = A1 A2 A5 A6 and Γ′ = A2 A3 A4 A5. (Ds,Dt ) is the square gadget in Γ and
(D′s,D′t ) is the square gadget in Γ′. The active regions Ar1 and Ar2 belong to the Gg(Γ), while the
Ar′1 and Ar′2 belong to the Gg′(Γ′).

angle between line D′sD′t and A5 A4 is no less than π
2 − O(ϵ) > O(ϵ). Thus, C′o cannot

intersect A5 A4. Hence, C′o cannot overlap other squares. □

Lemma 2.9 Suppose active region pairs (Ar1(A1), Ar2(A2)) and (Ar′1(A ′1), Ar′2(A ′2)) are

associated with gadget Gg and Gg′ respectively. If A1 and A ′1 are order-separable, then

A2 and A ′2 are also order-separable.

Proof We prove the lemma by contradiction. We only consider the arcs which have

siblings. SupposeA1 andA ′1 are order-separable butA2 andA ′2 are not order separable.

W.l.o.g., assume a ≺ a′, ∀a ∈ A1, ∀a′ ∈ A ′1. Since A2 and A ′2 are not order-separable,

there exist arcs b1, b2 ∈ A2 and b′ ∈ A ′2 such that b1 ≺ b′ ≺ b2. (If not, there exist

arcs b ∈ A2 and b′1, b
′
2 ∈ A ′2 such that b′1 ≺ b ≺ b′2.) Suppose a2 is the sibling of b2, a′

is the sibling of b′. Thus, a′ ≺ a2 based on the same proof to Lemma 2.5. It yields a

contradiction to the assumption that a ≺ a′, ∀a ∈ A1, ∀a′ ∈ A ′1. □

Lemma 2.10 Consider a substructure St(b,A) and two subsetsA ′1,A ′2 ofA. There exists

a label-cut when A ′1 and A ′2 are order-separable.

Proof We only discuss the case that some arcs ofA ′1 are adjacent to some arcs ofA ′2. (If

not, we can trivially select one arc a along the envelope which satisfy a′1 ≺ a ≺ a′2, ∀a′1 ∈
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A ′1, a′2 ∈ A ′2 to separate them. ) Along the envelope of substructure St, there exist two

consecutive arcs such that one is in A ′1 but the other is in A ′2. we use a, b to denote the

two arcs and add them in H . Suppose the endpoints of a and b on b are (A, B), (C,D)
respectively. a and b intersect at P′. Let region Rco to be R(a)∪R(b). It is easy to see that

Rco separate the St into two new ones. Suppose the endpoints of baseline b are (Qs,Qt).
Regard b[Qs, A]∪ a[A, P′] as the baseline b1 of St1 and b[P′,D]∪b[D,Qt] as the baseline

b2 of St2. The subarcs ofA in region R(St) −Rco are separated two different group based

on the two different baselines. We denote them by A1 and A2. Since a′ ≺ b, ∀a′ ∈ A ′1
and b′ ≻ a, ∀b′ ∈ A ′2, a′ cannot intersect with b[P′,D] and b′ cannot intersect with

a[A, P′]. Thus, no subarc in A ′1 belongs to A2 and no subarc in A ′2 belongs to A1. So,

we construct two suitable substructures St1(b1,A1) and St2(b2,A2). Figure 2.7 illustrates

the process of construction. □

Lemma 2.11 Consider the substructure St which contains an active region of square Γ.

The substructure can be cut into at most three smaller substructures, by doing label-cut

twice. At most one of them contains the active region. Moreover, this new substructure

(if any) is bounded by the region Dom(Γ+) associated with Γ.

Proof See Figure 2.8. We use the same notations defined in Section 2.6.1. The entire

active region [∪i:Di ∈Co Di − (Ds ∪ Dt)] ∩ H+ is a sub-region of (D(P, 2) − Ds − Dt) ∩ H+.

Thus, any disk centered in D(Qs, 1) ∩ D(Qt, 1) ∩ H+ can cover the active region. So, if

there is a disk centered in D(Qs, 1) ∩ D(Qt, 1) ∩ H+, we add it intoH such that the entire

active region is covered. If not, we prove we can cut St such that the new substructure

containing the active region is bounded by the region (D(D, 1) −Ds −Dt) ∩H+. The disks

centered in R(Γ) ∩ D(Qs, 1) − D(Qs, 1) ∩ D(Qt, 1)) cover point Qs. Thus, the arcs of these

disks are order-separable to the arcs in active region. Similarly, the arcs of disks centered

inR(Γ)∩D(Qt, 1)−D(Qt, 1)∩D(Qs, 1) are also order-separable to the arcs in active region.

Thus, we can add two disks in H to label-cut St into at most three new substructures.

Obviously, there is only one of them containing arcs centered in Γ − D(Qs, 1) ∪ D(Qt, 1).
Hence, this new substructure is bounded in the region (D(D, 1) − Ds − Dt) ∩ H+. □

2.9.3 Delayed proofs in Section 2.6.2

Lemma 2.13 In each of the above iterations, one substructure St(b,A) is cut into at

most two new substructures. Any original arc inA cannot be cut into two pieces, each of

which belongs to a different new substructure.
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Figure 2.14 Du and Dl intersect at point A and B. Suppose the side length of square is µ. If the
central angle of arc a[A, B] is more than 2

√
2µ. Ds,D′s should overlap, where Ds ∈ Gg(Γu),D′s ∈

Gg(Γl).

Proof Figure 2.9 gives an explanation about the change of substructures before and after

the process. Suppose the envelope is {a1[Qs,Q1], . . . , ak[Qk−1,Qt]}. After we add the disk

D(ai) inH , the baselines of the two new substructures are b1 = b[Qs, Pi+1]∪ai+1[Pi+1,Qi]
and b2 = ai+1[Qi+1, P′i+1] ∪ b[P′i+1,Qt]. Since ai+1 is an arc lying on the envelope, there

does not exist an arc b with endpoints (A, B) such that A ≺ Pi+1 ≺ P′i+1 ≺ B. So the

endpoints of any arc in St1 cannot be in R(St2). Thus, any arc cannot be separated into

two substructures. □

2.9.4 Delayed proofs in Section 2.6.3

Lemma 2.20： Consider two disks Du and Dl in squares Γu, Γl respectively. Suppose

Du < Gg(Γu),Dl < Gg(Γl) and Du and Dl intersect at points A and B. Suppose the side

length of square is µ. If ∠ADuB (or ∠ADlB) is more than 2
√

2µ, Gg(Γu) and Gg(Γl)
should overlap. Moreover, if A (resp. B) is in U(H), the two arcs which intersect at point

A (resp. B) are in the same substructure.

Proof Suppose Du and Dl intersect at point A and B. Ds ∈ Gg(Γu), D′s ∈ Gg(Γl). Thus,

Du,Ds locate in the same square Γu and Dl,D′s locate in the same square. The line DuDl

intersect disk Ds at point E and intersect disk D′s at point F. |DuE | and |DlF | are no less

than 1 − µ according to the triangle inequality. Suppose ∠ADuB is θ. Then the length

|DuDl | equals 2 cos(θ/2). Since θ > 2
√

2µ, we have |DuE | + |DlF | > |DuDl |, i.e. Ds and

D′s overlap. Figure 2.14 illustrates the situation. If A (or B) is in U(H), it is obvious that

the two arcs which intersect at A (or B) can cover the same point on the baseline (i.e., the

intersection point of Ds and D′s). Hence, they are in the same substructure. □

Based on the Lemma 2.20, we prove Lemma 2.15 as follows.

Lemma 2.15 We are given a substructure St(b,A) and an arc a ∈ A. Suppose two
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Figure 2.15 Consider a point P on D. a, b1, b2 which belong to disks D,D1,D2 respectively, can
cover the point P. D and D1 intersect at A1 and B1, meanwhile D and D2 intersect at A2 and B2.
Then, D1 and D2 belong to the same substructure.

arcs b1, b2 < A. If b1, b2 cover the same point on a, b1, b2 should belong to the same

substructure.

Proof We prove the lemma by contradiction. Suppose the arcs a, b1, b2 are parts of

D,D1,D2 respectively. Consider a point P on D that can be covered by all of a, b1, b2. D

and D1 intersect at A1 and B1, meanwhile D and D2 intersect at A2 and B2. See Figure 2.15.

Since D and D1 belong to different substructures, we know ∠A1DB1 is less than 2
√

2µ

based on Lemma 2.20. Similarly, ∠A2DB2 is less than 2
√

2µ. It is easy to see that ∠D1DD2

is less than 2
√

2µ. ∠D1DD2 is O(
√
ϵ) when µ = O(ϵ). |D1D2 | is less than 1 as |DD1 | and

|DD2 | are more than 1 and less than 2. Suppose A3 and B3 are the two intersection points

of D1 and D2. Thus, we have ∠A3D1B3 > π/3 > 2
√

2µ. Moreover, P is in U(H). By

Lemma 2.20, we can see that it contradicts the fact that D1 and D2 belong to two different

substructures. □

2.10 Final Remarks

Much of the technicality comes from the fact that the substructures interact with

each other in a complicated way and it is not easy to ensure a globally consistent order.

The reader may wonder what if we choose more than two disks (but still a constant) in a

small square, hoping that the uncovered regions become separated and more manageable.

We have tried several other ways, like choosing a constant number of disks in the convex

hull of the centers in a small square. However, these seemed to only complicate, not to

simplify, the matter.

48



Chapter 2 A PTAS for Weighted Unit Disk Cover

We believe our result and insight are useful to tackle other problems involving unit

disks or unit disk graphs. On the other hand, our approach strongly relies on the special

properties of unit disks and does not seem to generalize to arbitrary disks with disparate

radius. Obtaining a PTAS for the weighted disk cover problem with arbitrary disks is

still a central open problem in this domain. An interesting intermediate step would be

to consider the special case where the ratio between the longest radius and the shortest

radius is bounded.
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Chapter 3 Odd Yao-Yao Graphs are Not Spanners

3.1 Overview of our Counterexample Construction

We first note that both the counterexamples for YY3 and YY5 are not weak t-

spanners [48,51]. However, Yao-Yao graphs YYk for k ≥ 7 are all weak t-spanners [65-67].

Hence, to construct the counterexamples for YYk for k ≥ 7, the previous ideas for YY3 and

YY5 cannot be used. We will construct a class of instances {Pm}m∈Z+ such that all points

in Pm are placed in a bounded area. Meanwhile, there exist shortest paths in YY2k+1(Pm)
whose lengths approach infinity as m approaches infinity.

Our example contains two types of points, called normal points and auxiliary points.

Denote them by Pn
m and Pa

m respectively and Pm = Pn
m∪Pa

m. The normal points form the

basic skeleton, and the auxiliary points are used to break the edges connecting any two

normal points that are far apart.

We are inspired by the concept of fractals to construct the normal points. A fractal

can be contained in a bounded area, but its length may diverge. In our counterexample,

the shortest path between two specific normal points is a fractal-like polygonal path. Here

a polygonal path refers to a curve specified by a sequence of points and consists of the line

segments connecting the consecutive points. Suppose the two specific points are A and B,

AB is horizontal, and |AB | = 1. When m = 0, the polygonal path is just the line segment

AB. When m increases by one, we replace each line segment in the current polygonal

path by a sawteeth-like path (see Figure A.4(a)). If the angle between each segment of

the sawteeth-like path and the base segment (i.e., the one which is replaced) is γ, the total

length of the path increases by a factor of cos−1 γ. An important observation here is that

the factor is independent of the number of sawteeth (see Figure A.4(b)). If we repeat this

process directly, the length of the resulting path would increase to infinity as m approaches

infinity since cos−1 γ > 1 (see Figure A.4(c)). However, we need to make sure that such

a path is indeed in a Yao-Yao graph and it is indeed the shortest path from A to B. There

are two technical difficulties we need to overcome.

1. As m increases, the polygonal path may intersect itself. See Figure A.4(d). The

polygonal path intersects itself around the point O. This is relatively easy to

handle: we do not recurse for those segments that may cause self-intersection. See

Figure A.4(e). We do not replace the bold segment further. We need to make sure
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(a) Replace a horizontal segment by a
sawteeth-like path.

(b) The lengths of the sawteeth-like
paths are independent of the number

of sawteeth.
OA B

(c) Replace the segments by sawteeth-like path
recursively.

O

(d) An enlarged view of Figure A.4(c)
around point O.

OA B

(e) Do not replace the bold segments further.
OA B

(f) The paths have different numbers of sawteeth and
the sizes of sawteeth may not be the same.

Figure 3.1 The overview of the counterexample construction. Figure A.4(a)-A.4(f) illustrate the
fractal and its variants.

that the total length of such segments is proportionally small (so that the total length

can keep increasing as m increases).

2. In the Yao-Yao graph defined over the normal points constructed in the recursion,

there may be some edges connecting points that are far apart. Actually, how to break

such edges is the main difficulty of the problem. We outline the main techniques

below.

First, we do not replace all current segments using the same sawteeth, like in the

usual fractal construction. Actually, for each segment, we will choose a polygonal path

such that the paths have different numbers of sawteeth and the sizes of the sawteeth in the

path may not be the same. See Figure A.4(f). Finally, we construct them in a specific
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sequential order. Actually, we organize the normal points in an m-level recursion tree

T and generate them in a DFS preorder traversal of the tree. We describe the details in

Section A.

Second, we group the normal points into a collection of sets such that each normal

point belongs to exactly one set. We call such a set a hinge set. Refer to Figure A.5 for an

overview. Then, we specify a total order of the hinge sets. Call the edges in the Yao-Yao

graph YY2k+1(Pn
m) connecting any two normal points in the same hinge set or two adjacent

hinge sets (w.r.t. the total order) hinge connections and call the other edges long range

connections. We describe the details in Section 3.3.

As we will see, all possible long range connections have a relatively simple form.

Then, we show that we can break all long range connections by adding a set Pa
m of

auxiliary points. Each auxiliary point has a unique center which is the normal point

closest to it. Let the minimum distance between any two normal points in Pn
m be ∆. The

distance between an auxiliary point and its center is much less than ∆. Naturally, we can

extend the concepts of hinge set and long range connection to include the auxiliary points.

An extended hinge set consists of the normal points in a hinge set and the auxiliary points

centered on these normal points. We will see that the auxiliary points break all long

range connections and introduce no new long range connection. We describe the details

in Section 3.4.

Finally, according to the process above, we can see that the shortest path between

the normal points A and B in YY2k+1(Pm) for m ∈ Z+ should pass through all extended

hinge sets in order. Thereby, the length of the shortest path between A and B diverges as

m approaches infinity. We describe the details in Section 3.5.

3.2 The Positions of Normal Points

In this section, we describe the positions of normal points. Note that, in the section,

we only care about the positions of the points. The segments in any figure of this section

are used to illustrate the relative positions of the points. Those segments may not represent

the edges in Yao or Yao-Yao graphs. See Figure 3.2 for an overview of the positions of

the normal points.
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Figure 3.2 The overview of the positions of normal points. There exists a point at each intersec-
tion of these segments. µ1µ2 is horizontal. {α1, α2, . . . , αd0−1} partitions the segment µ1µ2 into
d0 equal parts. For each βi, ∠αi−1βiαi = π − θ and |αi−1βi | = |βiαi |. We call {α1, α2, . . . , αd0−1}
the partition set and {β1, β2, . . . , βd0} the apex set of pair (µ1, µ2).

3.2.1 Some Basic Concepts

Let k ≥ 3 be a fixed positive integer. 1O We consider YY2k+1 and let θ = 2π/(2k + 1).

Definition 3.1 (Cone Boundary)： Consider any two points u and v. If the polar angle of
−→uv is jθ = j · 2π/(2k + 1) for some integer j ∈ [0, 2k], we call the ray −→uv a cone boundary

for point u.

Note that in an odd Yao-Yao graph, if −→uv is a cone boundary, its reverse −→vu is not

a cone boundary. In retrospect, this property is a key difference between odd Yao-Yao

graphs and even Yao-Yao graphs, and our counterexample for odd Yao-Yao graphs will

make crucial use of the property. We make it explicit as follows.

Property 3.2： Consider two points u and v in P. If −→uv is a cone boundary in YY2k+1(P),
its reverse −→vu is not a cone boundary.

Definition 3.3 (Boundary Pair)： A boundary pair consists of two ordered points, denoted

by (w1,w2), such that −−−→w1w2 is a cone boundary of point w1.

For convenience, we refer to the word pair in the dissertation as the boundary pair

defined in Definition A.10. According to Property A.4, if (w1,w2) is a pair, its reverse

(w2,w1) is not a pair. For a pair ϕ = (w1,w2), we call w1 the first point in ϕ and w2 the

second point in ϕ. Moreover, if a pair ϕ is (u, ·) or (·, u), we say that the point u belongs

to ϕ (i.e., u ∈ ϕ).

Gadget: Now, we introduce the concept of a gadget generated by a pair ϕ = (w1,w2).
Such a gadget is a collection of points which is a superset of ϕ (see Figure A.6). If the

recursive level m increases by 1, we use a gadget generated by pair ϕ to replace ϕ.

1O Note that the cases k = 1, 2 have been proved in [48].
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Figure 3.3 An example of one gadget. ϕ = (w1,w2) is the parent-pair in the gadget. Aϕ = {α1, α2,

α3, . . . , α7} is the partition set and Bϕ = {β1, β2, β5, β6, β7} is the apex set. There are eight pieces,
in which w1α1, α1α2, α4α5, α5α6, α6α7 are non-empty pieces and α2α3, α3α4, α7w2 are empty
pieces.

One gadget Ggϕ consists of three groups of points. We explain them one by one. See

Figure A.6 for an example.

1. The first group is the pair ϕ = (w1,w2). We call the pair the parent-pair of the

gadget Ggϕ.

2. The second group is a set Aϕ of points on the segment of (w1,w2). We call the set

Aϕ a partition set and call the points ofAϕ the partition points of ϕ. For example,

in Figure A.6, {α1, α2, . . . , α7} (here, |w1αi | < |w1αj | if i < j) is a partition set of

(w1,w2). The set Aϕ divides the segment into |Aϕ | + 1 parts, each we call a piece

of the segment. There are two types of pieces. One is called an empty piece and

the other a non-empty piece. Whether a piece is empty or not is determined in the

process of the construction, which we will explain in Section A.0.0.2.

3. For each non-empty piece, αi−1αi, we add a point βi such that ∠αi−1βiαi = π − θ
and |αi−1βi | = |βiαi |. 1O All βis are on the same side of w1w2. We call such a point

βi an apex point of (w1,w2). Let Bϕ be the set of apex points generated by ϕ, which

is called the apex set of pair ϕ. Bϕ is the third group of points. For any empty piece,

we do not add the corresponding apex point. In Figure A.6, {β1, β2, β5, β6, β7} is an

apex set of (w1,w2).
We summarize the above construction in the following definition.

Definition 3.4 (Gadget)： A gadget Ggϕ generated by a pair ϕ is a set of points which

consists of the pair ϕ, a partition set Aϕ and an apex set Bϕ of ϕ. We denote the gadget

by Ggϕ[Aϕ,Bϕ].

1O Note that the subscript i of βi is consistent with the subscript of the piece αi−1αi . Hence, the subscripts may not
be consecutive among all βis.
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Figure 3.4 An example of the gadgets which are generated in a recursive manner. α3 is an
isolated partition point. The arrow of a segment indicates the order of two points in the pair. For
example, the arrow from w1 to w2 indicates that (w1,w2) is a pair.

Figure 3.5 The recursion tree of our construction. Each node of the tree represents a pair (e.g.,
(β1, ω1)) or a point (e.g., α3) in Figure 3.4. Pair (w1,w2) is the root at level-0. Any pair at
level-(i + 1) is generated from a pair at level-i.

Consider a gadget Ggϕ[Aϕ,Bϕ], where ϕ = (w1,w2). For any non-empty piece

αi−1αi and the corresponding apex point βi, the rays −−−−→βiαi−1 and −−→αiβi (note the order of the

points) are cone boundaries. 1O Thus, each point βi ∈ Bϕ induces two pairs (βi, αi−1) and

(αi, βi). We call all pairs (βi, αi−1) and (αi, βi) induced by points in Bϕ the child-pairs of

(w1,w2), and we say that they are siblings of each other. Now, we define the order of the

child-pairs of pair (w1,w2), based on their distances to w1. Here, the distance from a point

w to a pair ϕ is the shortest distance from w to any point of ϕ.

Definition 3.5 (The Order of the Child-pairs)： Consider a gadget Gg(w1,w2). Suppose Φ

is the set of the child-pairs of (w1,w2). Consider two pairs ϕ, φ in Φ. Define the order

ϕ ≺ φ, if ϕ is closer to w1 than φ.

For example, in Figure A.6, (β2, α1) ≺ (α5, β5). We emphasize that the order of the

child-pairs depends on the direction of their parent-pair.

3.2.2 The Recursion Tree

In this subsection, we construct an m-level tree. When the recursion level increases

by 1, we need to replace each current pair by a gadget generated by the pair. The recursion

1O Suppose the polar angle of w1w2 is −tθ. Note that (2k + 1)θ = 2π. Then, we can obtain that the polar angle of
−−−→
αi βi is (k − t + 1)θ and the polar angle of −−−−−→βiαi−1 is (k − t)θ. Hence, −−−→αi βi and −−−−−→βiαi−1 are cone boundaries.
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can be naturally represented as a tree T . Each node of the tree represents either a pair or

a point. To avoid confusion, we use point to express a point in R2 and node to express

a vertex in the tree. The pair (µ1, µ2) is the root of the tree (level-0). The child-pairs of

(µ1, µ2) are the child-nodes of the root (they are at level-1). Recursively, each child-pair

of a pair ϕ is a child-node of the node ϕ in T . Besides, there are some partition points of

the empty pieces (e.g., the point α3 in Figure 3.4) which may not belong to any pair. We

call it an isolated point. Let an isolated point be a leaf in T and the parent of such a point

be its parent pair. For example, the parent of α3 is the pair (ω1, ω2) in Figure 3.4. We

provide the recursion tree in Figure 3.5, which corresponds to the points in Figure 3.4.

The nodes with the same parent are siblings. According to Definition A.11, we define

a total order “≺”of them. In tree T , if “φ ≺ ϕ”, we place φ to the left of ϕ, (e.g., (ξ5, η5)
is at the left of (η6, ξ5) in Figure 3.5). However, “φ ≺ ϕ” does not mean that φ is on the

left hand side of ϕ geometrically. For example, in Figure 3.4, pair (ξ5, η5) ≺ (η6, ξ5) in the

tree T , but in the Euclidean plane, point η5 is on the right side of η6.

For a pair ϕ (corresponding to a node in T ), we use Tϕ to denote the subtree rooted

at ϕ (including ϕ), or all the points involved in the subtree.

Our counterexample Pm corresponds to a recursion tree with m levels. We have not

yet specified how to choose the partition set for each gadget and decide which pieces are

empty for each pair. We will do it in the next subsection. We note that we do not construct

the tree level by level, but rather according to the DFS preorder.

3.2.3 The Construction

Now, we describe the process of generating the m-level recursion tree T . See

Figure A.7 for an example. We call a pair a leaf-pair if it is a leaf node in the tree and

an internal-pair otherwise. W.l.o.g, we assume that the root of T is (µ1, µ2) and µ1µ2

is horizontal. The tree is generated according to the DFS preorder, starting from the

root. When we are visiting an internal-pair, we generate its gadget. Note that generating

its gadget is equivalent to generating its children in T . We, however, do not visit those

children immediately after their generation. They will be visited later according to the

DFS preorder. Whether a pair is a leaf or not is determined as the gadget being created.

Note that not all leaf-pairs are at level-m.

The process generating the gadget for an internal-pair includes two steps, which

are called projection and refinement. We will explain the detail soon. We denote the
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Figure 3.6 The process of generating a tree according to the DFS preorder. In each subfigure,
represents a node we are visiting. The nodes generated in the step are denoted by . represents
a node which has already been visited. represents a node which has been created but not visited
yet. The nodes covered by light brown triangles are related to the projection process.

Algorithm 1: GenGadget(ϕ): Generate the Normal Points in Tϕ
1 if ϕ is a leaf-pair then
2 Return ;

3 else
4 Ggϕ ← Proj-Refn(ϕ);

5 foreach child-pair φ of ϕ do
6 GenGadget(φ) ;

procedure to construct the recursion tree T by GenGadget(ϕ) and the pseudocode can be

found in Algorithm 1. We call the points generated by Algorithm 1 normal points and

denote them by Pn
m where m is the level of the tree and n represents the word “normal”.

Root gadget: Let d0 be a large positive constant integer. 1O Consider a pair ϕ = (µ1, µ2).
Let Aϕ be its partition set which contains points

αi = µ1 ·
d0 − i

d0
+ µ2 ·

i
d0
, i ∈ [1, d0 − 1].

For convenience, let α0 = µ1, αd0 = µ2. The points inAϕ partition the segment µ1µ2 into

d0 pieces with equal length |µ1µ2 |/d0. All pieces in the root gadget are non-empty. For

each piece αi−1αi, we add an apex point βi below µ1µ2. Let Bϕ = {βi}i∈[1,d0] be the apex

set. See Figure 3.7 for an example.

Projection and Refinement: Let Tϕ be the set of points in the subtree rooted at ϕ. The

1O d0 depends on k, but on the number of points. We will determine the exact value of d0 in Section 3.5.
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Figure 3.7 The root gadget Ggϕ(Aϕ,Bϕ) where ϕ = (µ1, µ2). µ1µ2 is horizontal. Aϕ is the
equidistant partition. Each piece is non-empty.

projection and refinement process for ϕ is slightly more complicated, as it depends on the

subtrees Tφ rooted at the siblings φ of ϕ such that φ ≺ ϕ. Recall that when we visit a pair

ϕ (and generate Ggϕ) in the tree T according to the DFS preorder, we have already visited

all pairs φ ≺ ϕ.

The projection and refinement generate the partition points of pair ϕ. The purpose of

the projection is to restrict all possible long range connections to a relatively simple form.

See Section 3.3 for the details. The purpose of the refinement is to make the sibling pairs

have relatively the same length, hence, make it possible to repeat the projection process

recursively. Formally speaking, the refinement maintains the following property over the

construction.

Property 3.6： We call the segment connecting the two points of the pair the segment of

the pair and call the length of that segment the length of the pair. Consider an internal-pair

ϕ. Suppose φ is a sibling of ϕ. The length of pair φ is at least half of the length of pair ϕ.

– Projection: Consider a pair (β, α)with the setΦ being its child-pairs. We decide whether

a pair in Φ is a leaf-pair or an internal-pair after introducing the process projection and

refinement. We provide the property of the order here and prove it in the end of the

section.

Property 3.7： Consider a pair (β, α) with the set Φ of its child-pairs. For ϕ1, ϕ2, ϕ3 ∈ Φ,

if ϕ1 ≺ ϕ2 ≺ϕ3 and ϕ1 and ϕ3 are two internal-pairs, then ϕ2 is an internal-pair.

Next, we describe the projection operation for a pair ϕ ∈ Φ. W.l.o.g., suppose ϕ

is an internal-pair since only internal-pairs have children. We define the first internal-

pair in direction −→βα as the first internal-pair of Φ. Depending on whether ϕ is the first

internal-pair of Φ, there are two cases.

• Pair ϕ is the first internal-pair ofΦ: In Figure 3.8, suppose pair ϕ = (η, ξ) is the first

internal child-pair of (β, α) and the length of ϕ is δ. Point ξ is the partition point
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Figure 3.8 An example of the projection for the first internal-pair ϕ = (η, ξ). First, we add a
point λ such that |λξ | = δ/d0 where δ is the length |ηξ |. Second, for each leaf-pair φ ≺ ϕ, project
its apex point p to the segment of ϕ along the direction −→βα, i.e., add the point q in the figure.

Figure 3.9 The projection for pair ϕ. Here, p is a point in subtree Tφ . q is a projection point of
p, i.e., the point on segment of pair ϕ such that pq is parallel to βα. The set Proj[∪φ≺ϕ,φ∈Φ Tφ]
consists of all projection points of

∪
φ≺ϕ,φ∈Φ Tφ on segment of ϕ.

in ϕ. First, we add a point λ on the segment of ϕ such that |ξλ | = δ/d0. Second,

for each leaf-pair φ ≺ ϕ, project the apex point in φ to the segment of ϕ along the

direction −→βα, 1O e.g., project p to q in Figure 3.8. Note that the length of leaf-pair φ

is at least δ/2 according to Property 3.6. Thus, there is no point between λ and ξ

as long as d0 > 2. Formally, we denote the operation by

Âϕ ← Proj
[∪

φ≺ϕ,φ∈Φ
Tφ

]
∪ λ. (3-1)

• Pair ϕ is not the first internal-pair: According to the DFS preorder, we have already

constructed the subtrees rooted at φ ≺ ϕ. We project all points p ∈ ∪
φ≺ϕ,φ∈Φ Tφ, to

the segment of ϕ along the direction −→βα. Let the partition set Âϕ of ϕ be the set of

the projected points falling inside the segment of ϕ. If several points overlap, we

keep only one of them. See Figure 3.9 for an example. Formally, we denote the

operation by

Âϕ ← Proj
[∪

φ≺ϕ,φ∈Φ
Tφ

]
. (3-2)

1O If the projected point falls outside the segment of ϕ, we do not need to add a normal point.
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– Refinement: After the projection, we obtain a candidate partition set Âϕ of ϕ (defined

in (3-1) and (3-2)). However, note that the length between the pieces may differ a lot.

In order to maintain Property 3.6, we add some other points to ensure that all non-empty

pieces of ϕ have approximately the same length. We call this process the refinement

operation.

W.l.o.g., suppose pair ϕ has unit length and |Âϕ | = n and n > d0. 1O

Suppose ϕ = (u1, u2). We distinguish into two cases based on whether the first point

u1 is a partition point or an apex point.

• If u1 is an apex point, we mark the piece incident on u2. See Figure 3.10(a) for an

illustration, in which (u1, u2) = (β, α1) and piece α1η1 is the marked piece.

• If u1 is a partition point, we mark the pieces incident on u1 and u2. See Figure 3.10(b)

for an illustration, in which (u1, u2) = (α2, β) and piece α2η2 and ξ2β are the marked

pieces.

We do not add any point in the marked pieces under refinement. Consider two sibling

pairs (β, α1) and (α2, β) where β is an apex point. Suppose α1η1, α2η2, ξ2β are the marked

pieces of the two pairs and ξ1 is the point on the segment βα1 which is projected to

ξ2. 2O Then |βξ1 | = |βξ2 | and |α1η1 | = |α2η2 | after the refinement. See Figure 3.10 for an

example.

Denote the length of the ith piece (defined by Âϕ) by δi. Let δo = 1/n2. Except

for the marked pieces 3O, for each other piece which is at least twice longer than δo, we

place ⌊δi/δo⌋ − 1 equidistant points on the piece, which divide the piece into ⌊δi/δo⌋
equal-length parts.

We call this process the refinement and denote the resulting point set by

Aϕ ← Refine[Âϕ]. (3-3)

The number of points added in the refinement process is at most O(n2) since the

segment of pair ϕ has unit length and δo ≥ 1/n2. We call each piece whose length is less

than δo a short piece. The short pieces remain unchanged before and after the refinement.

Moreover, the refinement does not introduce any new short piece for the pair.

Deciding Emptiness, Leaf-Pairs and Internal-Pairs: Next, we discuss the principle

1O If n ≤ d0, we repeatedly split the inner pieces (i.e., all pieces except for the two pieces incident on the points of ϕ
) into two equal-length pieces until the number of the points in Âϕ is larger than d0.

2O Point ξ1 must exist since ξ2 is a projected point and there is no point in the marked piece ξ2β.
3O Keeping the marked pieces unchanged maintains Property 3.8 and helps a lot to decompose the normal points into

hinge sets. See Section 3.3 for details.
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(a) (u1, u2) = (β, α1)

(b) (u1, u2) = (α2, β)

Figure 3.10 The two cases for refinement. The first case is ϕ = (β, α1) in which the first point
is an apex point. We mark the piece incident on α1, i.e., the piece α1η1. The second case is
ϕ = (α2, β), in which the first point is a partition point. We mark the two pieces incident on α2

and β respectively, i.e., the pieces α2η2 and ξ2β. Note that after refinement, |βξ1 | = |βξ2 | and
|α1η1 | = |α2η2 | since there is no point added on the marked pieces after refinement.

to decide whether a piece is empty or non-empty. See Figure 3.11 for an illustration.

Consider a pair ϕ whose apex point is β and partition point is α. 1O We let the piece

incident on the apex point β and the short pieces be empty and the other pieces be

non-empty.

For each non-empty piece, we generate one apex point. The apex set Bϕ induces the

set Φ of child-pairs of ϕ. The types of these pairs are determined as follows. Let the three

pairs closest to α and two pairs closest to β be leaf-pairs. We do not further expand the

tree from the leaf-pairs. Let the other pairs be the internal-pairs. Naturally, there is no

leaf-pair between any two internal-pairs among pairs inΦ. Hence, Property 3.7 maintains

in the construction. Further, we can see that each other normal point belongs to at most

two pairs, except for the two points in the root pair.

For convenience, we call the piece generating two leaf-pairs a near-empty piece and

generating one leaf-pair and one internal-pair a half-empty piece. Note that the near-

empty and half-empty pieces are special non-empty pieces. We can see that, except for

the near-empty piece incident on the partition point in ϕ (e.g., µ1ξd0 in Figure 3.11), the

maximum length among the non-empty pieces is at most twice longer than the minimum

one according to refinement.

1O Note that the first point of a pair can be either apex point or partition point. Here, ϕ = (α, β) or ϕ = (β, α)
depending on whether first point of ϕ is apex point or not.
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Figure 3.11 The figure illustrates the emptiness of each piece. Consider the pair (β1, µ1) with
partition points after refinement. Segment µ1ξd0 and ξ1ξ2 are two near-empty pieces and β1ξ1 is
an empty piece. Pair (µ1, ηd0−1) and (ηd0−1, ξd0), (ξd0, ηd0−2), (ξ2, η1), (η1, ξ1) are the five leaf-pairs.
ξd0−1ξd0 is the half-empty piece. Pair (η2, ξ2) is the first internal-pair.

αφ

vφ
αϕ

vϕ

βφ  βϕ

Figure 3.12 The figure illustrates Property 3.8. After projection and refinement, |αϕvϕ | =
|αφvφ |.

Overall, after the projection and refinement process, we can generate the gadget for

any pair in the tree. We denote this process by

Ggϕ ← Proj-Refn(ϕ). (3-4)

Property 3.8： Consider two sibling pairs ϕ and φ. Suppose both of them are internal-

pairs and have partition point sets Aϕ and Aφ respectively. Suppose αϕ ∈ ϕ and αφ ∈ φ,

and both αϕ and αφ are partition points. The point inAϕ closest to αϕ is vϕ. Meanwhile,

the point inAφ closest to αφ is vφ. Then |αϕvϕ | = |αφvφ |. See Figure 3.12 for an example.

Proof W.l.o.g., we prove that any two adjacent siblings satisfy the property. Suppose

ϕ and φ are adjacent siblings. W.l.o.g., assume φ ≺ ϕ. ϕ has the candidate partition

set Âϕ after projection. Suppose the point in Âϕ closest to αϕ is v̂ϕ. According to the

projection, we know |αϕ v̂ϕ | = |αφvφ |. Since we do not add any new point between αϕ v̂ϕ

after refinement, v̂ϕ and vϕ are the same point. Hence, any two adjacent siblings have the

property. □
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Corollary 3.9： Consider a pair ϕ with partition point set Aϕ. Suppose α ∈ ϕ and α is

a partition point. Among all pieces determined by Aϕ, the piece incident on α has the

maximum length.

Proof It is not difficult to check the root pair holds the property. Then, consider a pair ϕ̂

with its child pair set Φ̂. We prove that any pair in Φ̂ holds the property when ϕ̂ holds

the property. Suppose ϕ is the first internal-pair in Φ̂, the corollary is trivially true for

ϕ according to the projection process (the first projection case). Otherwise, according to

Property 3.8 and the projection process, we know that for any ϕ in Φ̂, the piece incident

on the partition point in ϕ has the same length. Thus, any pair in Φ̂ holds the property. □

Now, we prove Property 3.6 that we claimed at the beginning of the construction.

Proof of Property 3.6: Consider an arbitrary pair with partition point α and the set Φ of

its child-pairs. Consider an internal-pair ϕ ∈ Φ. Note that the length of a child-pair is

determined by its corresponding partition piece. According to the construction, except

for the near-empty piece incident on α, the length of any non-empty piece is at most twice

and at least half the length of another one. Thus, except for the sibling pairs generated by

the piece incident on α, the length of any pair φ ≺ ϕ is at least half of the length of ϕ.

Finally, the piece incident on α only induces two leaf-pairs and has the maximum length

among other empty pieces of ϕ according to Corollary 3.9. Hence, we have proven the

property. ◀

Finally, we summarize the properties of half-empty, near-empty, and empty pieces

below.

Property 3.10： Consider an internal-pair ϕ with partition point set Aϕ. Suppose the

length of ϕ is δ. The pieces determined by Aϕ have the following properties.

• The sum of lengths of empty pieces is less than 2δ/d0.

• There are two near-empty pieces with sum of lengths less than 3δ/d0.

• There is one half-empty piece with length less than δ/d0.

• The sum of lengths of empty, near-empty and half-empty pieces is less than 6δ/d0.

Proof Consider the first property. Suppose β ∈ ϕ and β is an apex point. There are two

kinds of empty pieces. One is the short pieces and the other is a piece incident on β

(denoted by ξβ). First, the sum of lengths of the short pieces is less than δ/d0. Because

the length of each short piece is less than δ/n2 and there are less than n short pieces where

n > d0 is the number of partition points in Â after projection and before refinement. On
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the other hand, we prove that the length of ξβ is less than δ/d0. If β is the first point in ϕ

(refer to ϕ = (β, α1) in Figure 3.10), according to refinement (the first refinement case),

the length of ξβ is less than δ/d0. Next consider the case that β is the second point in

ϕ = (α1, β) in Figure 3.10). Suppose ϕ shares the point β with its sibling φ. Hence, ϕ and

φ share the point β and β is the first point in φ. Denote the piece of φ incident on β by

ηβ. In this case, we have that ϕ and φ have the same length and |ξβ | = |ηβ |. Since β is

the first point in φ, we have proven that |ηβ| ≤ δ/d0. Thus, |ξβ| ≤ δ/d0.

Consider the second property. Suppose α is a partition point and β is an apex point,

and α, β ∈ ϕ. First, consider the near-empty piece incident on α. If ϕ is the first internal-

pair of its parent, according to projection, we add a point λ on the segment of ϕ such that

|λα | = δ/d0. Otherwise, according to Property 3.6 and 3.8, we know the piece incident

on α is at most 2δ/d0. Second, we consider the other near-empty piece closer to β. Its

length is no more than δ/d0 based on refinement. Thus, the sum of lengths of near-empty

pieces is less than 3δ/d0.

For the third property, through refinement, the length of half-empty piece is less than

δ/d0. Above all, we get the fourth property. □

3.3 Hinge Set Decomposition of the Normal Points

All points introduced so far are referred to as normal points and their positions have

been defined exactly. Recall that we denote the set of normal points by Pn
m. In this

section, decompose Pn
m into a collection of sets of points such that each normal point

exactly belongs to one set. We call these sets hinge sets. See Figure A.5 for an overview

of the hinge set decomposition.

Based on the hinge sets, the edges among normal points in YY2k+1(Pn
m) can be

organized in the clear way. For convenience, we regard the Yao-Yao graph as a directed

graph. Recall the construction of the directed Yao-Yao graph in Algorithm 2. Note that

Cu(γ1, γ2] represents the cone with apex u and consisting of the rays with polar angles in

the half-open interval (γ1, γ2] in counterclockwise. We call the first iteration (line 2 to 5)

the Yao-step and call the second iteration (line 6 to 9) the Reverse-Yao step.

Then, we define a total order among hinge sets. We call an edge in the Yao-Yao graph

a hinge connection which connects any two points in the same hinge set or in two adjacent

hinge sets w.r.t. the total order. Call other edges long range connections. In Section 3.4,

we prove that we can break all long range connections without introducing new ones by
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Algorithm 2: Construct the Yao-Yao graph
Data: A point set P and an integer k ≥ 2

Result: YY2k+1(P)
1 Initialize: θ = 2π/(2k + 1) and two empty graphs Y2k+1 and YY2k+1 ;

2 foreach point u in P do
3 foreach j in [0, 2k] do
4 Select v in Cu( jθ, ( j + 1)θ] such that |uv | is the shortest ;

5 Add edge −→uv into Y2k+1 ;

6 foreach point u in P do
7 foreach j in [0, 2k] do
8 Select v in Cu( jθ, ( j + 1)θ], −→vu ∈ Y2k+1 such that |uv | is the shortest ;

9 Add edge −→vu into YY2k+1 ;

10 return YY2k+1 ;

Figure 3.13 The overview of hinge set decomposition. Roughly speaking, each set of points
covered by a green rectangle is a hinge set. Recursively, we can further decompose the points
covered by shadowed rectangle into hinge sets. The hinge connections are the edges between
any two points in a hinge set or between two adjacent hinge sets. The other edges in the Yao-Yao
graph are long range connections.

.

adding some auxiliary points. In Section 3.5, we show that, in the graph with only hinge

connections, the shortest path between the two points of the root pair approaches infinity.

3.3.1 Hinge Set Decomposition

We discuss the process to decompose the set Pn
m into hinge sets such that each point

in Pn
m belongs to exactly one hinge set. Briefly speaking, each hinge set is a set of points

which are close geometrically.

Consider a pair ϕ̂ at level-l (l < m− 1) with partition point setAϕ̂ and apex point set

Bϕ̂. Denote the set of the child-pairs of ϕ̂ by Φ̂. Recall that we say a point u belongs to ϕ
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(a) The hinge set centered on an apex point (b) The hinge set centered on a partition point

(c) Merge two hinge sets to a new one
(d) The hinge set consisting of the leaf-pairs at

level-m. (w1,w2) is a pair at level-(m − 1)

Figure 3.14 The hinge sets centered on a point in an internal-pair.

(i.e., u ∈ ϕ), if the ϕ is (u, ·) or (·, u). Just for convenient to describe, we call some point

center of a hinge set and other points affiliated point. Formally, the hinge sets are defined

as follows.

• The hinge set centered on a point β ∈ Bϕ̂ such that β belongs to one or two internal-

pairs in Φ̂: 1O We denote the two internal-pairs by φ and ϕ. 2O See Figure 3.14(a) for

an illustration. The hinge set centered at β includes: β itself, the child-pair of φ

closest to β (denote the pair by (ξ1, ξ2)) and the child-pair of ϕ closest to β (denoted

the pair by (η1, η2)). ξ1, ξ2, η1, η2 are affiliated points. According to the way to

determine the leaf-pairs (see Section A), they only belong to leaf-pairs.

• The hinge set centered on a point α ∈ Aϕ̂ such that α belongs to one or two

internal-pairs in Φ̂, or α is an isolated partition point:

– First, suppose α belongs to one or two internal-pairs in Φ̂, which we denote

as φ and ϕ. 3O See Figure 3.14(b). The hinge set centered on α includes: α

itself, the two child-pairs closest to α of φ and ϕ (denote the pairs by (ξ2, ξ1)

1O β must belong to two child-pairs of ϕ̂ since each β induces two pairs. However, β may belong to two leaf-pairs
(i.e., do not belong to any internal-pair). In this case, β is affiliated to a hinge set centered on other point.

2O If one of the two child-pairs is a leaf-pair, let φ = ∅.
3O If α belongs to only one internal-pair of Φ̂, let φ = ∅.
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and (η1, η2)) respectively. ξ1, ξ2, η1, η2 are affiliated points which only belong

to leaf-pairs.

– Second, α is an isolated point in AT , i.e., α is an end point of a short piece

and does not belong to any internal-pair in Φ̂. See Figure 3.14(c). Then, for

each direction of segment of ϕ̂, we find the closest non-isolated point in Aϕ̂.

Denote them by αl and αr . Merge the two hinge sets centered on αl and αr as

a new one and add α to the new hinge set.

W.l.o.g., we process the points µ1 and µ2 in the root pair in the same way as the

partition points in A(µ1,µ2). So far, some points at level-m still do not belong to any hinge

set.

• The hinge set consisting of the leaf-pairs at level-m: Consider any pair ϕ = (w1,w2)
at level-(m − 1). Define the set difference of Aϕ ∪ Bϕ and the hinge sets centered

on w1 and w2 as a hinge set. 1O See Figure 3.14(d).

Overall, we decompose the points Pn
m into a collection of hinge sets.

Lemma 3.11： Each point p in Pn
m belongs to exactly one hinge set.

Proof First, we prove that any two hinge sets are not overlapping. It means that any point

in a hinge set does not belong to any other hinge set. First, consider a point λ which

only belongs to a leaf-pairs i.e., an affiliated point in the first two type hinge sets (see

ξ1, ξ2, η1, η2 in Figure 3.14(a) 3.14(b) 3.14(c)) or a point in a third type hinge set. It has

unique parent-pair ϕ such that λ ∈ Ggϕ. Let ϕ = (α, β). If φ is the closest child-pair to α,

λ belongs to the hinge set centered on α. Or if φ is the closest child-pair to β, λ belongs

to the hinge set centered on β. Otherwise, λ belongs to a third type hinge set. It is not

difficult to check that the three cases do non overlap. Thus, point λ belongs to at most one

hinge set. Next, consider a point λ which belongs to some internal-pair or is an isolated

partition point. Then, λ can only belong to the first two type hinge sets. λ cannot be a an

affiliated point for any hinge set since affiliated point only belongs to leaf-pairs. Besides,

according to the definition, the hinge set centered on λ is unique. Therefore, λ belongs to

at most one hinge set.

On the other hand, we prove that each point in Pn
m belongs to at least one hinge set.

First, any point of level-m belongs to a hinge set according to the third case. Second,

consider a point λ on level-l, l < m. If λ belong to any internal-pair, it should be a center

1O Although these points form the leaf-pairs at level-m, these leaf-pairs are the “candidate internal-pairs” to generate
the points at level-(m + 1).
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Figure 3.15 The illustration for order ≺h. In the example, notice that the order of the level-2 in
T R is different with the order in T (see Figure 3.5). 1O

of a hinge set. If λ is an isolated partition point, it merges two hinge sets and belongs to

the new hinge set. If λ only belongs to a leaf-pair φ and φ is a child-pair of ϕ = (α, β),
then, based on the way to determine the leaf-pairs, λ belongs to hinge set centered on α

or β.

Overall, each point in Pn
m belongs to exactly one hinge set. □

Order of the hinge sets: We define the total order of all hinge sets. We denote the order

by “≺h”, which is different from the previous order “≺”. The ≺h is in fact consistent with

the order of traversing the fractal path from µ1 to µ2. Rigorously, we define ≺h below. For

comparison, in Figure 3.15, we reorganize the tree in Figure 3.5 according to the order

≺h.

First, consider the root pair (µ1, µ2). We denote the hinge set centered on µ1 by Λµ1

and denote the hinge set centered on µ2 by Λµ2 . Define Λµ1 as the first hinge set and Λµ2

as the last hinge set w.r.t. ≺h. Then, Λµ1 ≺h Λµ2 .

Second, we define the orders of other hinge sets. Consider an internal-pair ϕ with

parent pair (w1,w2) (or (w2,w1)) and Λw1 ≺h Λw2 . Note that there are two hinge sets

centered on the points in ϕ respectively. We call the one closer to (in Euclidean distance)

Λw1 the former hinge set of ϕ, denoted by Λ(−)ϕ . Call the other the latter hinge set of ϕ,

denoted by Λ(+)ϕ . Let Λw1 ≺h Λ
(−)
ϕ ≺h Λ

(+)
ϕ ≺h Λw2 . Besides, recall that for any internal-

pair ϕ at level-(m − 1), the points inAϕ ∪ Bϕ but not in Λ(−)ϕ ∪Λ
(+)
ϕ also form a hinge set.

We denote it by Λϕ and define Λ(−)ϕ ≺h Λϕ ≺h Λ
(+)
ϕ .

Note that we have organized all pairs in the recursion tree T . We can transform the

tree consisting of all internal nodes of T to a topological equivalent tree T R which has a

different ordering of the nodes. The order of the sibling pairs in T R is determined by their

1O Note that T R only contains the internal nodes of T . Consider that level-2 nodes still have their child nodes. Thus,
we do not remove the pairs on level-2 in the example.
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Algorithm 3: TravelHinge(ϕ): Travel the hinge sets in the tree T R
ϕ

1 Visit(Λ(−)ϕ ) ;
2 if ϕ is at level-l (l < m − 1) then
3 foreach child-pair φ of ϕ in T R

ϕ do
4 TravelHinge(φ) ;

5 else
6 Visit(Λϕ)

7 Visit(Λ(+)ϕ ) ;

Euclidean distances to the former hinge set of their parent. Overall, the ordering ≺h of the

hinge sets can be defined by a DFS traversing of T R. When we reach a pair ϕ at level-l

(l < m − 1) for the first time 1O, we visit its former hinge set Λ(−)ϕ . Next, we recursively

traverse its child-pairs in the order we just defined. Then we return to the pair and visit

its latter hinge set Λ(+)ϕ . When we reach a pair ϕ at level-(m − 1), we visit Λ(−)ϕ ,Λϕ,Λ
(+)
ϕ in

order and return. 2O We denote the procedure by TravelHinge(ϕ) and the pseudocode can

be found in Algorithm 3.

3.3.2 Long Range Connection

We call the edges connecting two non-adjacent hinge sets long range connections.

Definition 3.12 (Long range connection)： A long range connection is an edge connect-

ing two points in two non-adjacent hinge sets.

If there is no long range connection, the total order of the hinge sets corresponds to

the ordering of the shortest path from µ1 to µ2 in the final construction. It means that

each hinge set has at least one point on the shortest path between µ1 and µ2 and the order

of these points is consistent with ≺h. However, there indeed exist long range connections

among normal points. In order to achieve the above purpose, we should break the edges

connecting two non-adjacent hinge sets. Fortunately, the long range connections in Pn
m

have relatively simple form. We claim that after introducing some auxiliary points (in

Section 3.4), we can cut the long range connections without introducing any new long

1O level-(m − 1) is the second to last level of T and the last level of T R .
2O Note that two adjacent sibling pairs share the same hinge set. So the same hinge set may be visited twice, and the

two visits are adjacent in the total order. So it does not affect the order between two distinct hinge sets.
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(a) ψ = (v1, v2), ϕ = (w1,w2), φ = (u1, u2),
φ̂1 = (η1, q), φ̂2 = (q, η2), ϕ̂1 = (ξ1, p),
ϕ̂2 = (p, ξ2), w1 may equal to u2

(b) ψ = φ = (v1, v2), ϕ = (w1,w2), φ̂1 = (q, η1),
φ̂2 = (η2, q), ϕ̂1 = (ξ1, p), ϕ̂2 = (p, ξ2), w1 may

equal to η1

(c)
ψ = ϕ = φ = (v1, v2), φ̂1 = (q, η1), φ̂2 = (η2, q),
ϕ̂1 = (p, ξ1), ϕ̂2 = (ξ2, p) , ξ2 may equal to η1

(d) φ = (v1, v2), φ̂1 = (q, η1), φ̂2 = (η2, q),
ϕ̂1 = (ξ1, p), ϕ̂2 = (p, ξ2)

Figure 3.16 The possible relative positions of p and q. Although, in the figure, p and q are
partition points, it does not induce any new case when p or q is an apex point according to our
divided condition in the proof.

range connections. Hence, only adjacent hinge sets in the above order ≺h have edges in

the Yao-Yao graph.

Now, we examine the long range connections in YY2k+1(Pn
m). First, we show that we

only need to consider the long range connections between the points in Tϕ and Tφ for any

two sibling pairs ϕ and φ. Recall that Tϕ denotes the subtree rooted at ϕ (including ϕ). If

there exist two points p ∈ Tϕ − Tϕ ∩ Tφ and q ∈ Tφ − Tϕ ∩ Tφ such that pq is a long range

connection, we say there is a long range connection between Tϕ and Tφ.

Claim 3.13： Suppose that for any two sibling pairs ϕ and φ in T at level-l for l ≤ m− 1,

there is no long range connection between the points in Tϕ and Tφ. Then, there is no long

range connection.

Proof Consider two non-adjacent hinge sets Λp and Λq (if two hinge sets are adjacent,

the edges between them are hinge connections) and λ1 ∈ Λp and λ2 ∈ Λq. We prove that

we can find two sibling pairs ϕ and φ such that Tϕ and Tφ contains λ1 and λ2 respectively.

Then, we consider the possible cases about the two non-adjacent hinge sets.

First, we consider the case that each of the two hinge sets is centered on a point of

some internal-pair. Denote the two center points by p and q and the two hinge sets by Λp
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and Λq. p belongs to one or two adjacent internal-pairs. W.l.o.g., suppose they are ϕ̂1 and

ϕ̂2 (ϕ̂2 = ∅ if p only belongs to one internal-pair). Meanwhile, q belongs to one or two

adjacent internal-pairs. Suppose they are φ̂1 and φ̂2. W.l.o.g., suppose the level of φ̂1 and

φ̂2 is no more than the level of ϕ̂1 and ϕ̂2. Then, we distinguish two cases. In the first one,

none of φ̂1 and φ̂2 is an ancestor of ϕ̂1 and ϕ̂2. Otherwise, it is the second case.

Consider the first case. Suppose the closest common ancestor of φ̂1, φ̂2, ϕ̂1 and ϕ̂2 is

pair ψ in T . If p and q do not belong to Aψ ∪ Bψ, there are two different child-pairs ϕ

and φ of ψ (see Figure 3.16(a)), such that Λp belongs to Tϕ and Λq belongs to Tφ. Since

points between Tϕ and Tφ have no long range connection according to the assumption,

points between Λp and Λq have no long range connection. Then consider the case that q

belongs to Aψ ∪ Bψ (see Figure 3.16(b)). Note that Λq is a subset of Tφ̂1 ∪ Tφ̂2 . Because

there is no long range connections for the points between Tφ̂1,Tφ̂2 and Tϕ, Λp and Λq have

no long range connection. Finally, if both p and q belong toAψ∪Bψ (see Figure 3.16(c)),

since there is no long range connection for points between Tϕ̂1,Tϕ̂2 and Tφ̂1,Tφ̂2 , Λp and Λq

have no long range connection.

Consider the second case. See Figure 3.16(d). W.l.o.g., suppose ϕ̂1 and ϕ̂2 are in

the subtree of Tφ̂1 . Λq is a subset of Tφ̂1 ∪ Tφ̂2 . Moreover, according to the assumption,

the points between Tφ̂1 and Tφ̂2 have no long rang connections. Since ϕ̂1 and ϕ̂2 are in the

subtree of Tφ̂1 , we know that the points in Λq ∩ Tφ̂2 have no long range connections to

Λp. Then we consider the long range connection between Λq ∩ Tφ̂1 and Λp. Actually, it

is reduced to the first case, thus they have no long range connection.

Above all, we have discussed the case that each of the two hinge sets is centered on

a point of some internal-pair. Next, suppose that at least one of the hinge sets is a third

type hinge set which contains only leaf-pairs at level-m. If both of them are the third type

hinge sets, denoted by Λϕ and Λφ, there must exist two sibling pairs ϕ̂ and φ̂ such that

Λϕ ∈ Tϕ̂ and Λφ ∈ Tφ̂. According to the hypothesis that there is no long range connection

between the points in Tϕ̂ and Tφ̂, there is no long range connection between Λϕ and Λφ.

Finally, consider the case that there is only one third type hinge set, denoted by Λϕ and

the other is centered on q, denoted by Λq. Suppose q is the shared point of φ̂2 and φ̂1. We

distinguish two cases according to whether ϕ ∈ Tφ̂1 ∪ Tφ̂2 or not. As we have discussed

above, we can prove that there is no long range connection between Λq and Λϕ. □

According to Claim 3.13, next, we discuss the possible long range connections

between Tϕ and Tφ for two sibling pairs ϕ and φ. Suppose p belongs to Tϕ and q belongs
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Figure 3.17 The points of Tφ locate in at most two cones of p.

to Tφ. In the following, we prove that if the directed edge −→pq is an edge in YY2k+1(Pn
m),

then ϕ ≺ φ. Moreover, note that the points of Tφ locate in at most two cones of p. See

Figure 3.17 for an illustration. p ∈ Tϕ and Tφ locates in two cones of p according to the

angular relation. We prove that for each point p, only one of the two cones may contain

a long range connection. Intuitively, these properties (Observation 3.14, Lemma 3.15

and 3.16) result from Property A.4 which does not hold for even Yao-Yao graphs.

We prove the properties formally below. Consider two sibling pairs ϕ ≺ φ. First,

suppose φ is a leaf-pair (see Observation 3.14). Second, we consider that φ is an internal-

pair (see Lemma 3.15 and 3.16).

Observation 3.14： Consider two sibling pairs ϕ and φ such that ϕ ≺ φ. If φ is a leaf-pair,

there is no long range connection between Tϕ and Tφ (i.e., φ itself).

Proof See Figure 3.18 for an illustration. Suppose φ = (w3,w1). First, we consider the

case that ϕ and φ share one point. Let ϕ = (w1,w2). Then, Tϕ ∩Tφ = w1. We should prove

that for any p ∈ Tϕ − w1 (i.e., p = p(1) in Figure 3.18), there is no edge pw3 in Yao-Yao

graph. Let (η1, η2) be the pair in Ggϕ closest to w1. There is no edge −−→w3p in the Yao-step

since η2 and p are in the same cone of w3 and |ηw3 | < |pw3 |. Note that η2w3 is a hinge

connection. If directed edge −−→pw3 is accepted in the Yao-step, −−→pw3 cannot be accepted in

the reverse-Yao step since −−−→η2w3 exists in the Yao-step, and η2 and p are in the same cone

of w3 and |η2w3 | < |pw3 |. Thus, there is no long range connection between Tϕ and φ.

Second, we consider the that ϕ and φ do not overlap, i.e., Then, Tϕ∩Tφ = ∅. W.l.o.g.,

let ϕ = (w2,w4) and p ∈ ϕ (i.e., p = p(2)). Similar to the first case, we can prove that there

is no long range connection pw3. Then we consider the point w1. There is edge from

w1 to p in the Yao-step since η1 and p are in the same cone of w1 and |w1η1 | < |w1p|.
Besides, if directed edge −−→pw1 is accepted in the Yao-step, −−→pw1 cannot be accepted in the

reverse-Yao step since −−−→η1w1 exists in the Yao-step and |η1w1 | < |pw1 |. □
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Figure 3.18 ϕ and φ are sibling pairs such that ϕ ≺ φ. φ is a leaf-pair. There is no long range
connection between Tϕ and the points of Tφ (i.e., φ itself).

Given a pair (v1, v2) with child-pair set Φ, consider two sibling pairs ϕ and φ in Φ

where ϕ = (w1,w2). For convenience, let ∠u1u2 be the polar angle of vector u1u2. Let

∠(u1u2, v1v2) be ∠v1v2 − ∠u1u2, i.e., the angle from u1u2 to v1v2 in the counterclockwise

direction.

Recall that there are two kinds of normal points according to the definition of gadget:

partition points and apex points. According to the type of pointw1 and the relative position

between ϕ = (w1,w2) and (v1, v2), there are four cases: (1) w1 is a partition point and ϕ is

on the right side of v1v2, (2) w1 is an apex point and ϕ is on the left side of v1v2, (3) w1 is

a partition point and ϕ is on the left side of v1v2, (4) w1 is an apex point and ϕ is on the

right side of v1v2. See Figure 3.19 and 3.21 for illustrations.

We prove the possible long rang connections between the points of Tϕ and Tφ case by

case. Lemma 3.15 covers case (1) and case (2) which satisfy the condition ∠(v1v2,w2w1) =
θ/2. Lemma 3.16 covers case (3) and case (4) which satisfy the condition ∠(v1v2,w2w1) =
−θ/2.

Lemma 3.15： Given a pair (v1, v2)with child-pair setΦ, consider two sibling pairs ϕ and

φ in Φ where ϕ = (w1,w2). ϕ and φ are at level-l for l ≤ m − 1. Suppose point p belongs

to Tϕ and q belongs to Tφ. If ∠(v1v2,w2w1) = θ/2 and there is a directed edge from p to

q in YY2k+1(Pn
m), then ∠(v1v2, pq) = 0 (i.e., pq is parallel to v1v2), and q is a point in the

gadget Ggφ generated by φ.

Proof As we have discussed above, there are two cases under the conditions. Consider

case (1). See Figure 3.19(a). First, we prove that ∠(v1v2, pq) should belong to (−θ/2, 0].
If q belongs to Tφ and φ ≺ ϕ (i.e., q = q(1) in Figure 3.19(a)), w2 and q are in the

same cone of p. There is no edge from p to q since |pw2 | < |pq | and the edge pq is

rejected in the Yao-step. Then consider that q belongs to Tφ and φ ≻ ϕ (i.e., q = q(2) in

Figure 3.19(a)). According to Observation 3.14, we safely assume that φ is an internal-

pair. Denote the point in Ggϕ closest to w1 by η. If ∠(v1v2, pq) > 0, η and q are in the
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(a) Case 1: w1 is the partition point and ϕ is on the right side of v1v2

(b) Case 2: w1 is the apex point and ϕ is on the left side of v1v2

Figure 3.19 The two cases about ∠(v1v2,w2w1) = θ/2. Here ϕ = (w1,w2) and p ∈ Tϕ.

same cone of p since w1η has the maximum length among its sibling pairs according to

Corollary 3.9. Thus, there is no edge from p to q in the Yao-step since |pη | < |pq |. Thus,

∠(v1v2, pq) ∈ (−θ/2, 0]. Then, we prove that ∠(v1v2, pq) = 0. Suppose the projection

point of p to pair φ is λ1 (the λ1 must exist according to the projection process) and q(2)

is an apex point of the piece λ1λ2. Note that θ < π/3 for k ≥ 3 and the maximum

length among child internal-pairs of φ is at most twice longer than the minimum one (see

Property 3.6). It is not difficult to check that the point closest to p in cone Cp(−θ, 0] is

q(2). Thus, q = q(2) and pq is parallel to v1v2.

Note that there is a degenerated case in which the projection λ1 is an end point

of an empty piece. Thus, we do not generate the corresponding apex point q. See

Figure 3.20(a) for an illustration. (ξ2, ξ1) is the pair closest to λ1. Note that for k ≥ 3, the

angle ∠pλ1ξ2 > π/2 and (ξ1, ξ2) is a leaf. Thus, in this degenerated case, the point closest

to p in cone Cp(−θ, 0] is λ1. pλ1 is also parallel to v1v2. Thus, the lemma is still true.

We can process the degenerated case in the same framework in the following and do not

distinguish the degenerated case particularly.

Consider case (2). See Figure 3.19(b). Suppose η2 is the apex point of the near-empty

piece of ϕ incident on w2. Note that w2η2 has the maximum length among its sibling

pairs. If q belongs to Tφ and φ ≺ ϕ (i.e., q = q(1) in Figure 3.19(b)), η2 and q are in the

same cone of p and |η2p| < |qp|. Thus, there is no edge from p to q in the Yao-step.

Then consider that q belongs to Tφ and φ ≻ ϕ (i.e., q = q(2) in Figure 3.19(b)). According

to Observation 3.14, we assume that φ is an internal-pair. If φ ≻ ϕ, the polar angle of

pq should belong to (−θ/2, 0]. If not, w1 and q are in the same cone. Thus, there is no
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(a) The degenerated case of case 1 in
Lemma 3.15

(b) The degenerated case of case 3 in
Lemma 3.16

Figure 3.20 The degenerated cases in which the projection point of p is an isolated partition
point, i.e., λ1 in the figure is an isolated partition point which is incident on a short piece.

(a) Case 3: w1 is the partition point and ϕ is on the left side of v1v2

(b) Case 4: w1 is the apex point and ϕ is on the right side of v1v2

Figure 3.21 The two cases about ∠(v1v2,w2w1) = −θ/2. Here ϕ = (w1,w2) and p ∈ Tϕ.

edge from p to q in the Yao-step since |pq | > |pw1 |. Then we prove that pq is parallel to

v1v2. The point closest to p in the cone Cp(−θ, 0] is the projection point of p (p must exist

because of the projection). Thus, pq is parallel to v1v2. □

Lemma 3.16： Given a pair (v1, v2)with child-pair setΦ, consider two sibling pairs ϕ and

φ in Φ where ϕ = (w1,w2). Suppose ϕ and φ are at level-l for l ≤ m − 1. Suppose point p

belongs to Tϕ, and q belongs to Tφ. If ∠(v1v2,w2w1) = −θ/2 and there is a directed edge

from p to q in YY2k+1(Pn
m) , then ∠(v1v2, pq) ∈ (0, θ/2). Moreover, there exists a point r

in Tφ such that pr is parallel to v1v2 and |pr | < |pq |. Moreover, r is a point in the gadget

Ggφ generated by φ.

Proof As we have discussed above, case (3) and (4) satisfy the condition ∠(v1v2, w2w1) =
−θ/2. Suppose q belongs to Tφ. Consider case (3). See Figure 3.21(a). Suppose

w2ξ1 and w2ξ2 are the two empty pieces incident on w2. If q is in Tφ and φ ≺ ϕ (i.e.,
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q = q(1) in Figure 3.21(a)), ξ1 and q are in the same cone of p. If q is not ξ1, there

is no edge from p to q even in the Yao-step since |pξ1 | < |pq |. If q is ξ1, pξ1 would

not be accepted by ξ1 in the reverse-Yao step, since there is an edge from ξ2 to ξ1 and

|ξ1ξ2 | < |pξ1 |. Then consider that q (i.e., q = q(2) in Figure 3.21(a)) is in Tφ and

φ ≻ ϕ. According to Observation 3.14, we safely assume that φ is an internal-pair. Thus,

∠(v1v2, pq) ∈ [−θ/2, θ/2). If ∠(v1v2, pq) ∈ [−θ/2, 0], pq is not a directed edge in Yao-step

since w1 and q are in the same cone and |w1p| < |pq |. Finally, consider the projection

point λ (λ exists because of the projection) of p to pair φ. r is the apex point related to λ

and on the segment pλ. It is not difficult to check that |pr | < |pq | since θ/2 ≤ π/2 and the

maximum length among the non-empty pieces of φ is at most twice longer the minimum

one (according to refinement). Similar to case 1 in Lemma 3.15, these is a degenerated

case that λ is the end point of an empty piece. See Figure 3.20(b). In this case, it is not

difficult to check |pλ | < |pq |.
Consider case (4). See Figure 3.21(b). Suppose η1 and η2 are the apex points of the

near-empty pieces incident on w2. If q is in Tφ and φ ≺ ϕ (i.e., q = q(1) in Figure 3.21(b)),

η1 and q are in the same cone of p. If q is not η1, there is no edge from p to q in the

Yao-step since |pη1 | < |pq |. If q is η1, pη1 would not be accepted by η1 in the reverse-Yao

step since there is an edge from η2 to η1 and |η1η2 | < |pη1 |. Then consider q is in Tφ and

φ ≻ ϕ (i.e. q = q(2) in Figure 3.21(b)). Based on Observation 3.14, we assume that φ is

an internal-pair. The polar angle of pq should belong to (0, θ/2). If not, w1 and q are in

the same cone. Thus, there is no edge from p to q since |pq | > |pw1 |. Finally, consider

the projection point r of p (r must exist because of the projection) to pair φ. |pr | < |pq |
and pr is parallel to v1v2 since θ/2 ≤ π/2. □

In the next section, we discuss how to cut such long range connections. Roughly

speaking, under the condition of Lemma 3.15, we can cut the long range connection pq

through adding two auxiliary points close to q. Under the condition of Lemma 3.16, we

can cut the long range connection pq through adding two auxiliary points close to r .

Based on Lemma 3.15 and 3.16, we have the following corollary.

Corollary 3.17： Consider two sibling pairs ϕ and φwith subtrees Tϕ and Tφ respectively.

Suppose p belongs to Tϕ and q belongs to Tφ. If directed edge −→pq is in YY2k+1(Pn
m), then

ϕ ≺ φ.
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Figure 3.22 A simple example to explain how an auxiliary point cuts a long range connection.

3.4 The Positions of Auxiliary Points

We discuss how to use the auxiliary points to cut the long range connections in

the Yao-Yao graph YY2k+1(Pn
m). According to Claim 3.13, it is sufficient by cutting all

long range connections between siblings. Denote the set of auxiliary points by Pa
m. Let

Pm = Pn
m ∪ Pa

m.

First, we consider a simple example to see how auxiliary points work. Consider three

points u, v and w. Line uv is horizontal, and ∠wvu = ∠wuv = θ/2. The point ξ1 and ξ2

are two points on segment uw and vw respectively. ξ1ξ2 is horizontal. See Figure 3.22.

Note that the polar angles of a cone in the Yao-Yao graph belong to a half-open interval in

the counterclockwise direction. Thus, uv is in the YY2k+1 graph, which is the shortest path

between u and v. However, we can add an auxiliary point r close to v and ∠rvu < θ/2.

Then according to the definition of Yao-Yao graphs, the point v rejects the edge uv in the

reverse-Yao step since rv exists in the Yao-step, and point r and u are in the same cone of

v and |rv | < |vu|. Then, consider ur and rξ1. The directed edge ur is not in Yao graph

since ξ1 and r are in the same cone of u and |ξ1u| < |ur |. The directed edge ru is not in

Yao graph since ξ1 and u are in the same cone of r and |ξ1r | < |ur |. Besides, directed edge

ξ1r is not in the Yao graph since r and ξ2 are in the same cone of ξ1 and |ξ1ξ2 | < |ξ1r |.
Finally, directed edge rξ1 is not accepted by ξ1 in the reverse-Yao step since there is an

edge ξ2ξ1 in the same cone of r and |ξ2ξ1 | < |rξ1 |. Overall, the shortest path between uv

becomes uξ1ξ2rv.

The positions of the auxiliary points: Inspired by the example in Figure 3.22, we call

the normal point closest to an auxiliary point the center of the auxiliary point. Then, we

find candidate centers to add auxiliary points.

Lemma 3.18 (Candidate center)： Given a pair (v1, v2) with its child-pair set Φ, consider

two sibling pairs φ, ϕ ∈ Φ and φ ≺ ϕ. Suppose p is a point in Tφ and its projected point
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(a) Case 1: the projected point q is w2. (b) Case 2: the projected point q is w1.

Figure 3.23 The illustration for candidate center of p.

(denoted by q) on the segment of ϕ along direction −−→v1v2. Then, there exists a nonempty

subset S ⊆ Ggϕ such that for any u ∈ S, pu is parallel to v1v2. See Figure 3.23 for an

illustration.

We call the point u := arg minu∈S |pu| a candidate center of ϕ. Note that the

candidate center may not be the projected point q.

Proof The correctness directly results from the projection process. In the first case (see

Figure 3.23(a)) where the apex points of Ggϕ and p are in the same side of segment of ϕ,

we will generate a pair (w1,w2) such that q = w2 and pw1 and pw2 are parallel to v1v2.

Thus, S = {w1,w2} and we call the point w1 a candidate center of ϕ. Note that w1 is not

the projected point of p. In the second case (see Figure 3.23(b)) where the apex points of

Ggϕ and p are on the different sides of segment of ϕ, we will generate a pair (w1,w2) such

that q = w1 and pw1 and pw2 are parallel to v1v2. Thus, S = {w1,w2} and we call the

point w1 a candidate center of ϕ. Beside, q may be an isolated partition point or a point

in ϕ, then S and the candidate center is point q itself. □

Definition 3.19 (Candidate center set of ϕ)： Consider a pair ϕ with parent pair (v1, v2).
Let Φ be the set of child-pairs of (v1, v2). In the projection process, we project all points

p ∈ ∪
φ≺ϕ,φ∈Φ Tφ to the segment of ϕ along the direction v1v2. Each such point p whose

projected point falls inside the segment of ϕ corresponds to a candidate center of ϕ defined

in Lemma 3.18. We call the set consisting of all these candidate centers the candidate

center set of ϕ. Note that candidate center set is a subset of Ggϕ.

We add some auxiliary points centered on these candidate centers to break long range

connection. For convenience, we define some parameters first. Let ∆ be the minimum

distance between any two normal points and n be the number of the normal points. Recall

that we partition the root pair µ1, µ2 into d0 equidistant pieces. Let γ be a very small
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(a) Case 1a: w1 is the partition point and ϕ is on
the left side of v1v2

(b) Case 1b: w1 is the apex point and ϕ is on the
right side of v1v2

(c) Case 2a: w1 is the partition point and ϕ is on
the right side of v1v2

(d) Case 2b: w1 is the apex point and ϕ is on the
left side of v1v2

Figure 3.24 The auxiliary points for each point. Here ϕ = (w2,w1) and q ∈ Ggϕ. η1 and η2 are
two auxiliary points centered on q. Note that |η1q | and |η2q | are very small in fact. This is just a
diagram to explain the relative positions between {η1, η2} and q.

angle, such as γ = θd−1
0 . Let σ = max{sin(θ/2 − γ)/sin γ, sin−1(θ/2 − γ)} + ϵ for some

small ϵ > 0. Let χ = d0σ
n∆−1. Roughly speaking, χ ≫ d0 > σ > 1.

We traverse T in the DFS preorder. Each time we reach a pair ϕ, we find all candidate

centers in Ggϕ and add auxiliary points centered on them. 1O Moreover, let the order of

ϕ in the DFS preorder w.r.t. T be κ. The distance between the auxiliary point and its

center q depends on κ. We use the polar coordinate to describe the relative location of an

auxiliary point to its center.

Let ϕ = (w2,w1) and (v1, v2) be the parent-pair of ϕ. There are two cases according

to ∠(v1v2,w1w2) = θ/2 or −θ/2.

• ∠(v1v2,w1w2) = θ/2 (see Figure 3.24(a) and 3.24(b)):

– If q = w1, do not add auxiliary point.

– If q = w2, we add the point η such that ∠(w2w1,w2η) = −γ and |w2η | = σκ χ−1.

– Otherwise, we add two points η1 and η2 centered on q such that ∠(w2w1, qη1) =
∠(w2w1, η2q) = −γ and |qη1 | = |η2q | = σκ χ−1.

1O Note that the candidate centers belong to Ggϕ , may not belong to ϕ itself. Besides, here we do not need to
distinguish whether the candidate center related to a long range connection or not. It may reduce the number of
auxiliary points but do not influent the correctness.
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Figure 3.25 The positions of auxiliary points (η1, η2, η3) centered on normal point q.

• ∠(v1v2,w1w2) = −θ/2 (see Figure 3.24(c) and 3.24(d)):

– If q = w1, do not add auxiliary point.

– If q = w2, we add the point η such that ∠(w2w1,w2η) = γ and |w2η | = σκ χ−1.

– If p and q are in the same hinge set (i.e., p, q are the points ξ1, ξ2 in Fig-

ure 3.24(c) or 3.24(d)), we add two points η1 and η2 centered on q such that

∠(w2w1, qη1) = ∠(w2w1, η2q) = γ and |qη1 | = |η2q | = σκ χ−1 + ϵ0 where ϵ0 is

much less than the distance between any two points in Pm. 1O

– Otherwise, we add two points η1 and η2 centered on q such that ∠(w2w1, qη1) =
∠(w2w1, η2q) = γ and |qη1 | = |η2q | = σκ χ−1.

First, we list some useful properties of the auxiliary points below.

Property 3.20： Properties of auxiliary points:

P1 The maximum length between an auxiliary point and its center is at most d−1
0 ∆.

P2 Any point q ∈ Pn
m can become a center for auxiliary points at most twice. Here, for

each time that we indeed add some auxiliary points for a candidate center p, we say

that p becomes a center once.

P3 There are at most three auxiliary points centered on a normal point.

P4 Suppose q is a candidate center because of the projection of p and we add the

auxiliary point η centered on q. If there is an auxiliary point ξ centered on p, then

|ξp| ≤ σ−1 |ηq |. Hence, the perpendicular distance from η to the line pq is larger

than |ξp|.
P5 If auxiliary points η1, η2 and η3 are centered on q and |qη1 | = |qη2 |, then |qη1 | ≤

σ−1 |qη3 |, ∠η2qη3 = (θ/2 − 2γ), and ∠qη3η2 < γ.

1O It is slightly different from the first case. We add two auxiliary points with distance slightly larger than σκ χ−1

to its center when p and q are in the same hinge set. The reason is that the cone is half-open half-close in the
counterclockwise direction. It will help a lot to unify the proof in the same framework. See the details in the proof
of Lemma 3.21.
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Figure 3.26 |ξp| ≤ σ−1 |ηq | for the auxiliary point of p. Moreover, the perpendicular distance
from η to pq (i.e., |ηλ | in the figure) is larger than |ξp|.

Proof [P1] Note that the largest κ is at most n since there are at most n pairs in the tree.

The maximum length between the auxiliary point and its center is at most σn χ−1 = d−1
0 ∆.

[P2] Note that each point q ∈ Pn
m belongs to at most three gadgets, one pair ϕ such

that q ∈ Ggϕ and two sibling pairs φ1 and φ2 such that q ∈ φ1 ∩ φ2. See Figure 3.25 for

an example. We visit ϕ first and then φ1 and φ2 in order. Note that q is the shared point of

φ1 and φ2. According to the way to add auxiliary point, when we visit φ2, q corresponds

to the point “w1” (in Figure 3.24) in the rules. Thus, we do not add auxiliary points for q.

Hence, there are only two times that q can become a center for auxiliary points. The first

time happens when we visit ϕ and the second time happens when we visit φ1.

[P3] Followed by the proof of [P2], in the first time, we add two auxiliary points η1

and η2 centered on q. In the second time, we add one auxiliary point η3 centered on q.

Thus, there are at most three auxiliary points centered on a normal point.

[P4] Suppose p belongs to subtree Tφ and q belongs to subtree Tϕ and φ ≺ ϕ. Thus,

the auxiliary points are added for p earlier than q. It means that |ξp| ≤ σ−1 |ηq |. Note

that the acute angle between ηq and pq is (θ/2 − γ) and σ > sin−1(θ/2 − γ). Thus, the

perpendicular distance from η to the line pq is larger than |ξp|. See Figure 3.26.

[P5] According to the proof of [P3] (see Figure 3.25) we add η1 and η2 earlier than η3.

According to the construction, we can add these three auxiliary points for q. Checking the

four cases in construction, we can get ∠(pq, qη3) = −γ and ∠(pq, qη2) = −θ/2 + γ. Thus,

∠η2qη3 = θ/2 − 2γ. Moreover, note that σ > sin(θ/2 − γ)/sin γ and |η2q | < σ−1 |η3q |.
According to the law of sines, we get ∠qη3η2 < γ. □

Extended hinge set: We extend the concept of hinge sets to the extended hinge set to

include auxiliary points. The extended hinge set consists of the normal points in the hinge

set and the auxiliary points centered on these normal points. Besides, if p belongs to Tϕ,

then the auxiliary points centered on p belong to extended Tϕ. Then Claim 3.13 is still

true for YY2k+1(Pm) with the same proof. It means that we only need to consider the long

range connections between the descendants of any two sibling pairs.
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(a) Case 1: w1 is the partition point and ϕ is on the right side of v1v2

(b) Case 2: w1 is the apex point and ϕ is on the left side of v1v2

(c) Case 3: w1 is the partition point and ϕ is on the left side of v1v2

(d) Case 4: w1 is the apex point and ϕ is on the right side of v1v2

Figure 3.27 Here ϕ = (w1,w2) and p belongs to the extended Tϕ which includes auxiliary points.

Moreover, we can get similar properties as Lemma 3.15 and 3.16 for the auxiliary

points. Suppose ϕ and φ are two sibling pairs. If p ∈ Tϕ and q ∈ Tφ and there is a long

range connection −→pq in YY2k+1, then ϕ ≺ φ. Meanwhile, the points in Tφ locate in two

cones of p. But only one of the two cones may contain a long range connection. We

describe the property formally as follows.

Lemma 3.21： Given a pair (v1, v2) at level-l for l < m−1, with child-pair setΦ, consider

two sibling pairs ϕ and φ in Φ where ϕ = (w1,w2). p is a point in extended Tϕ and q is a

point in extended Tϕ. Suppose there is a directed edge −→pq in YY2k+1(Pm).
• If ∠(v1v2,w2w1) = θ/2 , then ∠(v1v2, pq) ∈ (−θ, 0].
• If ∠(v1v2,w2w1) = −θ/2 , then ∠(v1v2, pq) ∈ (0, θ].

Proof The proof follows the same procedure as the proof of Lemma 3.15 and 3.16. We

also distinguish into two cases. Given a pair (v1, v2) and its child-pair set Φ, consider two
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sibling pairs ϕ and φ in Φ where ϕ = (w1,w2). The first case is that ∠(v1v2,w2w1) = θ/2.

The second case is that ∠(v1v2,w2w1) = −θ/2. Consider a point p in extended Tϕ. p can

be a normal point or an auxiliary point.

Consider that ∠(v1v2,w2w1) = θ/2. First, suppose w1 is the partition point and ϕ

is on the right side of −−→v1v2. See Figure 3.27(a). Suppose q belongs to Tφ and φ ≺ ϕ

(i.e., q = q(1) in Figure 3.27(a)). Denote the partition point in Aϕ closest to w2 by ξ.

Because of the projection of points in Tφ, ξ has two auxiliary points, denoted by ξ1 and

ξ2. Thus, −→pq is not an edge in the Yao-step since ξ1 and q are in the same cone of p. Then

consider that q belongs to Tφ and φ ≻ ϕ (i.e., q = q(2) in Figure 3.27(a)). Denote the

point in Bϕ closest to w1 by η. According to the fact that w1η is the maximum length pair

among the child-pairs of ϕ (see Corollary 3.9), η and q are in the same cone of p when

∠(v1v2, pq) > 0. Thus, there is no long range connection for p in cone Cp(0, θ].
Second, suppose w1 is the apex point and ϕ is on the left side of −−→v1v2. See Fig-

ure 3.27(b). Denote the closest point in Bϕ to w2 by η. Suppose q belongs to Tφ and

φ ≺ ϕ (i.e., q = q(1) in Figure 3.27(b)). Because of the projection of points in Tφ, η has

two auxiliary points, denoted by η1 and η2. There is no edge −→pq in the Yao-step since η1

and q are in the same cone p and |η1p| < |qp|. Then consider that q belongs to Tφ and

φ ≻ ϕ (i.e., q = q(2) in Figure 3.27(b)). If q in the cone Cp(0, θ], q and w1 are in the same

cone of p and |pw1 | < |pq |. Thus, in the Yao-step, there is no edge from p to q in the

cone Cp(0, θ]. Thus, we prove the first part of the lemma.

Next, we consider the case ∠(v1v2,w2w1) = −θ/2. First, we consider the case in

which w1 is the partition point and ϕ is on the left side of −−→v1v2. See Figure 3.27(c). Denote

the partition point in Aϕ closest to w2 by ξ. According to the construction for auxiliary

point (case 2a), we add two auxiliary points ξ1 and ξ2 such that |ξξ1 | = |ξ2ξ | = σκ χ−1+ ϵ0.

If q is in Tφ and φ ≺ ϕ (i.e., q = q(1) in Figure 3.27(c)), ξ1 and q are in the same cone of

p. Because the distance |ξξ1 | (> σκ χ−1) is slightly longer than the distances from other

auxiliary points of Ggϕ to their centers. Thus, −→pq is not an edge in the Yao-step since

|ξ1p| < |pq | and ξ1 and q are in the same cone of p. Then consider that q (i.e., q = q(2))

in Figure 3.27(c)) is in Tφ and φ ≻ ϕ. If ∠(v1v2, pq) ∈ [−θ/2, 0], −→pq is not a directed edge

in Yao-step since w1 and q are in the same cone and |w1p| < |pq |.
Finally, we consider the case that w1 is the apex point and ϕ is on the right side of

−−→v1v2. Suppose η is the apex point in Bϕ closest to w2. η1 and η2 are auxiliary points of

η. If q is in Tφ and φ ≺ ϕ (i.e., q = q(1) in Figure 3.27(d)), η1 and q are in the same cone
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Figure 3.28 The case that q ∈ Aϕ ∪ Bϕ. The figure is an enlarged view of Figure 3.25. q may
have three auxiliary points {η1, η2, η3}. ξ1 and ξ2 are two possible positions of the auxiliary point
ξ centered on p.

of p according to the construction for auxiliary point (case 2b). Thus, −→pq is not an edge

in the Yao-step since |pη1 | < |pq |. Then consider q is in Tφ and φ ≻ ϕ (i.e. q = q(2) in

Figure 3.27(d)). If the polar angle of pq belongs to (−θ, 0], w1 and q are in the same cone.

Thus, there is no edge from p to q since |pq | > |pw1 |. Thus, we prove the second part of

the lemma.

Overall, we have proved the lemma. □

Then, we prove that after adding the auxiliary points, there is no long range connec-

tion.

Lemma 3.22： There is no long range connection in YY2k+1(Pm).

Proof Consider a pair (v1, v2) and the set Φ of its child-pairs. Suppose ϕ, φ ∈ Φ and

φ ≺ ϕ. p is a point in Tφ. Denote an auxiliary point centered on p, if any, by ξ. Let

u ∈ {p, ξ}. There exists a point q closest to p such that q ∈ Tϕ and pq is parallel to v1v2

based on the projection process. If not, i.e., Tϕ only locates in one cone of p, according to

Lemma 3.21, there is no long range connection between u and points in extended Tϕ.

According to Lemma 3.21, first, there is no directed edge from a point in (extended)

Tϕ to (extended) Tφ. Next, we prove there is no long range connection from Tφ to Tϕ.

Since p is an arbitrary point in Tφ, we prove that there is no long range connection between

u and the points in Tϕ, (recall u ∈ {p, ξ}). According to whether q is in Aϕ ∪ Bϕ or ϕ,

there are two cases.

q belongs to Aϕ ∪ Bϕ: q has two auxiliary points η1 and η2 because of the projection
−→pq and q is a candidate center. Note that q may have a third auxiliary point η3. But

p and η3 are on the two different sides of η1η2 and |η3q | > |η1q | = |η2q | because of

Property 3.20[P5]. Therefore, there is no directed edge pη3 in the Yao-step because η2

and η3 are in the same cone of p and |η2p| < |η3p|. According to Property 3.20[P4], |ξp|
is much less than |η1q | or |η2q | and the perpendicular distance from η1 and η2 to the line
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(a) Only one auxiliary point centered on q. (b) Three auxiliary points centered on q.

Figure 3.29 q is a point of pair ϕ, i.e., q = w2 .

pq is longer than |ξp|. Suppose u ∈ {p, ξ}. See Figure 3.28 which is an enlarged view of

Figure 3.25, in which ξ1 and ξ2 are two possible positions of ξ. According to Lemma 3.21,

uη1 does not exist in the Yao-step since η1 and one point of ϕ (denoted by w1, refer to

Figure 3.25) are in the same cone of u and |w1u| < |η1u|. If there is an edge uη2 in the

Yao-step, the edge uη2 cannot be accepted by η2 in the reverse-Yao step since qη2 exists,

and point q and u are in the same cone of q and |qη2 | < |uη2 |. If there is an edge uq in the

Yao-step, the edge uq cannot be accepted by q in the reverse-Yao step since η1 and u are

in the same cone and |η1q | < |uq |. Therefore, there is no long range connection related to

p and its auxiliary points.

q belongs to ϕ: See Figure 3.29. Note that in this case, q is point w2 of ϕ. According

to Property 3.20[P3], any point has at most three auxiliary points. Since q is a projection

point of p, q has at least one auxiliary point. Thus, there are two possible situations.

One is that there is only one auxiliary point centered on q (see Figure 3.29(a)). It means

that in the first time that q was able to be a candidate center, there is no auxiliary point

added centered on it (see the proof of Property 3.20[P2]). Denote the auxiliary point

of q by η. Let u ∈ {p, ξ} where ξ is an auxiliary point centered on p. According to

the Property 3.20[P4], η and w1 are in the same cone of u and |uw1 | < |uη |. Therefore,

there is no edge uη in the Yao-step. Moreover, uq cannot be accepted in the reverse-Yao

step. Because the edge ηq exists in the Yao-step. u and η are in the same cone of q and

|ηq | < |uq |. Combining with Lemma 3.21, there is no long range connection from u

to Tϕ. The second case is that there are three auxiliary points of q (see Figure 3.29(b)).

Denote the auxiliary points of q by {η1, η2, η3}. According to Property 3.20[P5], we know

∠η2qη3 = (θ/2 − 2γ). Again, denote u ∈ {p, ξ}. There is no edge uη3 in the Yao-step

since w1 and η3 are in the same cone of u and |uw1 | < |uη3 |. There is no edge uη1 in the

reverse-Yao step, since there is an edge qη1 in the Yao-step and |qη1 | < |uη1 |. Similarly,
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there is no edge uq since there is an edge η2q in the Yao-step and |η2q | < |uq |. Next, note

that |qη2 | ≤ σ−1 |qη3 |. According to Property 3.20[P5], we know η3 and u are in the same

cone of η2. Thus, there is no edge from uη2.

Overall, we prove that there is no long range connection in YY2k+1(Pm). □

3.5 The Length Between µ1 and µ2 in YY2k+1(Pm)

In this section, we prove that the length of the shortest path between the initial points

µ1 and µ2 in YY2k+1(Pm) diverges as m approaches infinity.

First, recall that we have extended the concept of hinge sets to extended hinge sets

which consist of the normal points in the hinge set and the auxiliary points of these normal

points. Consider two extended hinge sets Λ and Λ′. Define the shortest path between Λ

and Λ′ to be the shortest path in YY2k+1(Pm) between any two points p and q such that

p ∈ Λ and q ∈ Λ′. Consider any pair ϕ = (w1,w2) at level-(m − 1). We give a lower bound

on the shortest path distance between its former extended hinge set and latter extended

hinge set.

Lemma 3.23： Consider any pair (w1,w2) at level-(m − 1). Denote its former extended

hinge set byΛ(−)ϕ , and latter extended hinge set byΛ(+)ϕ . The shortest path distance between

Λ
(−)
ϕ and Λ(+)ϕ is at least (1 − 6d−1

0 )|w1w2 |.

Proof Let |w1w2 | = δ. See Figure 3.30. Note that Λ(−)ϕ and Λ(+)ϕ (the two hinge sets

centered on w1 and w2) are not overlapping. Denote the near-empty piece incident on w1

by w1η1 and the empty piece incident on w2 by w2ξ1. ξ1ξ2 is the leaf-pair closest to w2.

ξ2η2 is perpendicular to w1w2. The shortest Euclidean distance between the two hinge

sets is no less than |η1η2 |. According to Property 3.10, |w1η1 | ≤ 2d−1
0 δ, |w2ξ1 | ≤ d−1

0 δ

and ξ1η2 ≤ 0.5d−1
0 δ. Thus, |η1η2 | > (1 − 3.5d−1

0 )δ.
Then consider the auxiliary points. Note that according to the Property 3.20[P1],

the maximum distance between an auxiliary point and its center is d−1
0 ∆, where ∆ is the

minimum distance between any two normal points. Since ∆ ≤ δ, according to triangle

inequality, the auxiliary points can reduce the distance between the two hinge sets by at

most 2d−1
0 δ. Overall, the shortest path betweenΛ(−)ϕ andΛ(+)ϕ is at least (1−6d−1

0 )|w1w2 |.□

According to Lemma 3.22, there is no long range connection in YY2k+1(Pm). Thus,

the shortest path between µ1 and µ2 should pass through all hinge sets in order. Thus, for

each pair ϕ at level-(m − 1), there is a path between Λ(−)ϕ and Λ(+)ϕ .
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Figure 3.30 The shortest Euclidean distance between two hinge sets centered on points of a pair
ϕ = (w1,w2) at level-(m − 1).

Let the shortest path between Λ(−)ϕ and Λ(+)ϕ be ∆ϕ. Then, we prove that the sum of

lengths of ∆ϕ over all pairs at level-(m − 1) diverges as m approaches infinity. Thus, the

length of the shortest path between µ1 and µ2 diverges too.

Lemma 3.24： The length of the shortest path between µ1 and µ2 in YY2k+1(Pm) for

k ≥ 3 is at least ρm, for some ρ = (1 − O(d−1
0 )) · cos−1(θ/2). Thus, by setting d0 >

⌈6(1 − cos(θ/2))−1⌉, the length diverges as m approaches infinity.

Proof We give a lower bound of the sum of lengths |w1w2 | over all pairs (w1,w2) at

level-(m − 1). Recall that the length of a pair is the length of the segment between the

two points of the pair. Consider any pair ϕ = (v1, v2) with length δ. According to

Property 3.10, the sum of lengths of half-empty, near-empty and empty pieces is no more

than 6d−1
0 δ. Thus, the pieces which generate internal-pairs in next level have length at least

(1−6d−1
0 )δ. For each piece, it generates two child-pairs. The sum of lengths of the two pairs

is cos−1(θ/2) times larger than the piece itself. Overall, the sum of the lengths of the pairs

in generated next levels is at least (1 − 6d−1
0 )δ cos−1(θ/2). Let ρ = (1 − 6d−1

0 ) cos−1(θ/2).
Thus, after (m − 1) rounds, the length of the pairs at level-(m − 1) is at least ρm−1 |µ1µ2 |.
According to Lemma 3.23, the shortest path from µ1 to µ2 is at least (1−6d−1

0 )ρm−1 |µ1µ2 |.
When d0 > 6(1−cos(θ/2))−1, the shortest path between µ1 and µ2 in YY2k+1(Pm) diverges

as m approaches infinity. □

Finally, combining with the results that YY3
[48] and YY5

[51] may not be spanners, we

have proved Theorem A.4.

Theorem A.4 For any k ≥ 1, there exists a class of instances {Pm}m∈Z+ such that

the stretch factor of YY2k+1(Pm) cannot be bounded by any constant, as m approaches

infinity.
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Chapter 4 Conclusion and Future Work

In this dissertation, we study two important computational geometric problems. First,

we study the weighted unit disk set cover problem (WUDC). We provide the first PTAS.

As applications, we give a polynomial-time (4.475 + ϵ)-approximation for MWCDS for

any fixed constant ϵ > 0. And we provide a PTAS for MLC when all sensors and targets lie

in the Euclidean plane and all sensors have the same covering radius. Second, we study

the Yao-Yao graphs. We prove that for any integer k ≥ 1, there exist odd Yao-Yao graph

YY2k+1 instances which are not spanners. We believe our result and insight are useful to

tackle other problems. There are serveral topics we will try in the future.

• Obtaining PTAS for the weighted disk cover problem with arbitrary disks is still a

central open problem in this domain. An interesting intermediate step would be to

consider the special case where the ratio between the longest radius and the shortest

radius is bounded.

• We would like to find the PTAS for the minimum weight connected dominating set

in unit disk graphs. It is useful in the computation of routing for mobile ad hoc

networks. For the unweighted version, there exists PTAS [9,78]. For the weighted

version, current best result is a (4.475 + ϵ)-approximation algorithm.

• It is possible to generalize our PTAS for WUDC from 2-dimension to higher dimen-

sions.

• Actually, we can define other sparse t-spanner candidates inspired from Yao-Yao

graphs, such as Θ-Θ graph through using Θ-step twice. We want to know whether

these graphs are spanners or not.

• We would like to apply our theoretical results in real world applications. Actually,

lots of optimization problems such as facility location, route planning in spatio-

temporal data are related to set cover and t-spanner problems.
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式，感谢李⽼师的精⼼指导，让许多的不可能变成了可能。⼀路⾛来，从理论基

础的培养、专业知识的学习，到博⼠选题、科研问题的攻克，再到论⽂写作、最终

的科学汇报，李⽼师总是能给出有效的意见和建议。李⽼师在各个环节悉⼼指导，

亲⾝⿎励让我受益良多。五年的博⼠学习，让我看问题更加本质，能在更短的时

间⾥找到问题的症结，进⽽提出有效的办法。此外，李⽼师不仅博闻强识，⽽且勤

奋刻苦。作为⼈⽣榜样，他的⾔⾏时常感召着我，要从各个领域⾥汲取营养，并且
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开始两⼿⼀摊思考问题。往往要时刻保持兴奋状态，在⽆数次碰撞中才能最终爆

发灵感。感谢我的合作者占玮，我们虽然接触不多，但你对问题的细致剖析，对后

续⼯作起到⾄关重要的作⽤。感谢同窗曹玮和傅昊，我们共同经历了太多，记不

清多少次⼀起学习，⼀起讨论问题。祝两位毕业顺利，前程似锦。感谢我的两位⼩

伙伴巩慧超和淦创。虽然我们学术交流不多，但是有你们的⽇⼦，让我在学术以

外的⽣活更加丰富多彩。⽽这也使得我总是有饱满的热情，去⾯对每⼀天的⽣活。
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还要感谢我博⼠⽣活的两位室友吕⽈洲和戴元熙。两位都极其聪明刻苦，在

⾃⼰的专业⽅向也极为优秀。是你们让我了解了很多其他领域的⼯作和思维模式，

让每个夜晚都富有诗意。感谢你们包容我不那么规律的作息时间，希望两位都早

⽇找到⼈⽣归宿。
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在本论⽂中，我们研究了两个重要的计算⼏何问题。⾸先，我们研究了最⼩

带权单位圆覆盖问题。最⼩带权单位圆覆盖问题是否存在多项式时间近似⽅案

（PTAS）是学术界⼀个长期以来的开放问题。在之前的很多研究中 [5-10] 都有提及

该开放问题，并强调了该问题在理论和实践中的重要意义。在本论⽂中，我们通

过给出该问题的第⼀个 PTAS 算法正⾯解决了该问题。其次我们研究了⼏何 t-跨

度图问题。该图保持了任意两点间在图上的最短距离是这两点间欧⼏⾥德距离的

⾄多 t 倍的性质。⼏何 t-跨度图在通讯⽹络中有重要的应⽤。Yao-Yao 图因其构

造简单，并且每个点的度数有限，⽽成为⼀个很好的⼏何 t-跨度图候选体。关于

Yao-Yao 图（YYk 图）是否具有 t-跨度属性，是⼀个长期困扰⼈们的开放问题。Bauer

和 Damian [2] 证明了所有 YY6k(k >= 6)都是 t-跨度图。Li 和 Zhan [3] 推⼴了他们的

结论，证明了所有的 YY2k(k >= 42)都是 t-跨度图。但是这些已知的技术都不能拓

展到奇数 Yao-Yao 图上。我们的⼯作第⼀次给出了结论——对于任意 k >= 1, 存在

点集 P，使得定点集上的奇数 Yao-Yao 图（YY2k+1）不是 t-跨度图。

最⼩带权单位圆覆盖
集合覆盖问题是理论计算机科学和组合优化中的核⼼问题之⼀。集合覆盖问

题的输⼊包括两个集合 U 和 S。其中集合 S的元素是集合 U 的⼦集。S中的每个

元素都有⼀个⾮负的权重 wS。集合覆盖的⽬标是找到最⼩总重量的⼦集合 C ⊆ S
使得

∪C涵盖 U 的所有元素。⼈们对⼀般性的集合覆盖问题的可近似性认识已经

较为彻底了：通过贪⼼算法，可以给出该问题的 Hn-近似（Hn =
∑n

i=1 1/i）。另⼀⽅

⾯，给定任何常数 ϵ > 0，获得⼀个 (1 + ϵ) ln n-近似的解是 NP-hard 的 [11-12]。在⼏

何集合覆盖问题中，U 是欧⼏⾥德空间 Rd 中的⼀组点，S由⼏何对象（例如，圆

盘，正⽅形，三⾓形等）组成。在⼏何环境下，由于 S的特殊结构，我们可以期待

能够获得好于对数近似⽐的近似算法。然⽽对于⼤多数⼏何对象，即使对于⾮常

简单的对象类，例如单位圆，⼏何集合覆盖问题仍然是 NP 难的。[13-14]（更多⽰例

参见 [15-16]。因为问题本⾝的重要性，⽽且还与其他重要的概念和问题有着密切的

联系，例如 VC-维 [17-19]，ϵ-⽹（ϵ-net），并集复杂度（union 复杂度）[20-22]，平⾯图

分割（planar separators）[23-24]，甚⾄机器调度问题 [25]。⼏何集覆盖的近似算法，过

去⼆⼗年来⼀直在被⼴泛关注，深⼊研究。

在本⼯作中，我们研究了⼀类最简单的⼏何对象——单位圆的⼏何集合覆盖
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问题。该问题的严格定义如下：

Definition A.1 (最⼩带权单位圆覆盖 (WUDC))： 给定⼀个包含 n 个单位圆的集合

D = {D1, . . . ,Dn} 和欧⼏⾥得平⾯ R2 上的 m 个点的点集 P = {P1, . . . , Pm} 。其中

每个单位圆 Di 带权重 w(Di)。问题的⽬标是选择⼀个单位圆的⼦集使的这些⼦集

的并集能覆盖 P 中的所有点并且这些圆的的总权重和最⼩。

WUDC 推⼴了下⾯单位圆图上的最⼩带权⽀配集问题。

Definition A.2 (单位圆图上的最⼩带权⽀配集问题 (MWDS))： 给 定 单 位 圆 图

G(V, E)。其中 V 是欧⼏⾥得平⾯ R2 上的带权点集。对任意的点 u, v ∈ V , 边 (u, v)
属于 E 当且仅当 ∥u − v∥ ≤ 1。S 是 V 的⼀个⼦集，并且满⾜对于任意节点 v < S，

存在⼀个节点 u ∈ S 满⾜ (u, v) ∈ E，我们称 S 为⼀个⽀配集。单位圆图上的最⼩

带权⽀配集问题的⽬标是求出图 G 上最⼩带权⽀配集。

通过如下归约，我们可以证明 WUDC 是 MWDS 问题的推⼴。给定图 G(V, E)
的⼀个⽀配集实例，通过在每个属于 V 的点 v 上放置⼀个与 v 点权重相同的，圆

⼼位于 v 的单位圆，我们可以构造⼀个 WUDC 问题的实例。因此，在本论⽂中，我

们重点在 WUDC 问题上描述我们的算法和结果。

相关⼯作及我们的贡献

对于⼀个求最⼩值的最优化问题，⼀个多项式时间的近似⽅案 (PTAS) 指的是

⼀个算法 A, 输⼊⼀个实例和⼀个⼤于零的常数 ϵ，返回⼀个解 SOL 使得 SOL ≤
(1 + ϵ)OPT，其中 OPT 代表问题的最优值。⽽算法 A 的运⾏时间对于 n 是多项式

⼤⼩的。

WUDC 是 NP 难的问题，即使当单位圆的权重都相等的情况下（即, w(Di) =
1 [14]），仍然是 NP 难的。对于等权的单位圆图⽀配集问题，Hunt 等⼈ [1] 获得了

第⼀个 PTAS 解法。对于更⼀般的圆图（半径不固定的圆图），注意到三维空间的

半空间存在 O(1/ϵ) ⼤⼩的 ϵ-net [26] (又见 [27]), 通过集合覆盖问题和 ϵ-⽹之间的关

系 [17-19], 可以得到⼀个常数近似的算法。在⽂献 [23] 中，作者分析了该常数最好可

以达到 20。⼀项最近的成果表明 [28]，该常数可以提⾼到 13。此外，通过局部搜索，

可以找到等权单位圆⽀配集的 PTAS 解法 [23-24]。

对于⼀般带权 WUDC 问题，研究历史则更久远。Ambühl 等⼈ [5] 得到了第⼀个

常数近似算法，其算法的常数为 72。应⽤⽂献 [29] 中的平移技术（shifting technique），

Huang 等⼈得到了⼀个常数为 (6+ ϵ)的近似算法。近年来，常数算法的近似度不断

被提⾼，其中⼀些研究者获得了 (5+ ϵ)近似 [31] 和 (4+ ϵ)近似的算法 [6,32-33]. 在本论
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⽂之前最好的结果为 3.63 近似。1O 最近，张等⼈还给出了⼀种 (3+ ϵ)近似解法 [34]。

利⽤近似平均采样法（quasi-uniform sampling method) [21-22], 可以通过另⼀个途径

实现 WUDC (甚⾄⼀般圆图) 的常数近似解法。然⽽，其近似度依赖于其他⼀些技

术的近似度，例如线性规划舍⼊中的近似度和并集复杂度中的常数。⽽这些常数

⼀般很少有精确的结果。最近，基于 Adamaszek 和 Wiese 的分离框架 [35]，Mustafa

等⼈ [36]，获得了对于 R2 中的带权圆（事实上，是 R3 中的加权半空间）QPTAS（准

多项式时间近似⽅案），因此排除了 WUDC 的是 APX 难的可能性。

另⼀个与之密切相关的⼯作带权单位正⽅形覆盖，Erlebach 和 Van Leeuwen [7]

提出了第⼀个 PTAS 算法。该⼯作有开创性意义，即使对于任何平⾯物体上的加权

⼏何图形覆盖（除了多时间可解的情况 [15-16]），这是也是第⼀个 PTAS 算法。虽然

看起来他们的结果与带权 WUDC 的 PTAS ⾮常接近，如他们的论⽂所承认的，他

们的技术不⾜以应付单位圆问题，并且“完全不同的技术可能是必需的”。

鉴于上述所有结果，看来我们应该期待 WUDC 应该存在⼀个 PTAS 算法，但

它仍然是⼀个悬⽽未决的问题。（明确提到这是⼀个开放性问题的论⽂有很多，例

如：[5-10]）。本论⽂的⼀个主要贡献是通过提供 WUDC 的第⼀个 PTAS，肯定地解决

这个问题。

Theorem A.1： WUDC 问题存在⼀个多项式时间逼近⽅案。运⾏时间是 nO(1/ϵ9)。

由于 WUDC ⽐ MWDS 更普遍，我们可以得到以下推论。

Corollary A.1： 带权单位圆图中最⼩权重⽀配集问题有⼀个多项式时间逼近格式。

我们注意到，根据 Marx 的“否定”结果，运⾏时间 npoly(1/ϵ ) ⼏乎是最优的，他

证明即使对未加权单位圆⽀配集问题，如果存在 EPTAS （即，⾼效的 PTAS，运

⾏时间为 f (1/ϵ)poly(n)），将与指数时间假设相⽭盾。最后，我们还证明了我们的

WUDC 的 PTAS 可以⽤来获得改进的近似算法对于⽆线传感器⽹络中的两个重要

问题: 单位圆图中的连通⽀配集问题和最⼤⽣命周期覆盖问题。

带权单位圆图覆盖 PTAS

技术概览

通过标准移位技术 [69]，只要证明当所有圆位于⼀个⼤⼩不变的正⽅形时，（我

们称之为块，常数取决于 1/ϵ），能为 WUDC 提供⼀个 PTAS 就⾜够了。这个想法

在 Huang 等⼈的论⽂中被形式化如下 [30]。

1O 该算法被记载在 Du 和 Wan 撰写的图书中 [9]，算法由 Willson 等⼈提供。
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Figure A.1 ⼩构件。Ds 和 Dt 是圆⼼位于⼩⽅块 Γ中圆⼼距离最远的两个圆盘，它们的中

⼼分别是 Ds 和 Dt . 在左边的图中，蓝⾊区域是中⼼区域，定义为 C = D(Ds, rst )∩D(Dt, rst ),
其中 rst = |DsDt |。棕⾊区域是核⼼区域，定义为 Co = D(P, 1) ∩D(Q, 1). 在右边的图中，绿

⾊区域是活动区域定义为
(∪

i∈Co Di − (Ds ∪ Dt )
)
∩ H+ 和

(∪
i∈Co Di − (Ds ∪ Dt )

)
∩ H−.

Lemma A.1 (Huang et al. [30])： 假设在固定的 L × L 块中存在⼀个⽤于 WUDC 的

ρ-近似算法，运⾏时间为 f (n, L)。则 WUDC 存在⼀个 (ρ + O(1/L))近似度的，运

⾏时间为 O(L · n · f (n, L))的近似算法。特别是，设置 L = 1/ϵ，则 WUDC 存在⼀

个 O
( 1
ϵ
· n · f (n, 1

ϵ
)
)
时间的 (ρ + ϵ)近似算法。

事实上，之前⼏乎所有的 WUDC 常数近似算法都是通过对恒定尺⼨的单个块

开发常数近似值⽽获得的（这是也是该问题的主要难点）。 1O

本⽂的主要贡献在于对前⾯的⼯作进⾏改进 [5-6,30-31]，从⽽得到单个块中的 (1+
ϵ)近似解法，如下⾯的引理所⽰。

Lemma A.2： 在⼤⼩为 L × L for L = 1/ϵ 的固定⼤⼩的块中存在 WUDC 的 PTAS。

PTAS 的运⾏时间是 nO(1/ϵ9)。

在本⽂中，保证近似误差 ϵ > 0 是⼀个固定常数。当我们说⼀个数量是⼀个常

数，常数可能取决于 ϵ。我们使⽤ OPT 来表⽰该块中的最优解（和最优值）。我们

⽤⼤写字母 A, B,C, . . . 来表⽰分数，⼩写字母 a, b, c, . . . 表⽰弧。对于 A 和 B 两个

点，我们使⽤ AB 来表⽰连接 A 和 B 的线段并⽤ |AB |来表⽰它的长度。我们使⽤

Di 来表⽰圆盘，使⽤ Di 来表⽰它的中⼼。对于点 A 和实数 r > 0，让 D(A, r)为以

A 为中⼼且半径为 r 的圆盘。对于圆盘 Di，我们使⽤ ∂Di 来表⽰它的边界。我们

称 ∂Di 上的⼀段为⼀条弧。

1O 对于单块中未加权的⽀配集问题，很容易看出圆的最佳数量是⼀个常数，这意味着我们可以在多项式时

间⾥计算出最优值。然⽽，对于加权⽀配集问题或 WUDC，单个问题中的最优解块可能由 Θ(n)个圆组成。
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⾸先，我们猜测对于某些常量 C，OPT 是否包含多于 C 的圆盘。如果 OPT 包

含不超过 C 圆盘，我们可以列举所有可能的组合，然后选择覆盖所有点并具有最

⼩权重的组合，从⽽得到问题的最优解。这是多项式时间内可完成的，总共需要

O
(∑C

i=1
(n
i

) )
= O(nC)的时间，

更具挑战性的情况是 OPT 包含多于 C 个圆盘。在这种情况下，我们猜测（即

列举所有可能性）具有 OPT 中 C 个权重最⼤的圆盘的集合 G。这最多有多项式种

（即，O(nC)）可能的猜测。假设我们的猜测是正确的。然后，我们删除 G 中的所

有圆盘以及 G覆盖的所有点。让 Dt（带重量 wt）是 G中权重最⼩的圆盘。我们可

以看到 OPT ≥ Cwt。此外，我们也可以安全地忽略所有重量⼤于 wt 的圆盘（假设

我们的猜测是正确的）。现在，我们的任务是⽤剩余的圆盘覆盖剩余的点，每个圆

盘的重量⾄多为 wt。我们使⽤ D ′ = D \ G和 P ′ = P \ P(G)来表⽰剩余圆盘的集

合和剩余点的集合，其中 P(G)表⽰ G中的⾄少⼀个圆盘所覆盖的点集。

接下来，我们仔细选择包含最多 ϵC 圆盘的集合H ⊆ D ′。H 的⽬的是将整个

实例分解为许多（仍然是常量）⼩块（⼦结构）, 这样每个⼦结构都可以通过动态

规划得到最佳解。1O ⼀个困难是⼦结构不是独⽴的，可以彼此关联（即，圆盘可以

出现在多于⼀个⼦结构中）。每个⼦结构都有⼀个⽅向（顺时针或逆时针），并且

⼦结构中的所有圆盘都有⼀个基于⽅向的偏序。为了将动态编程技术同时应⽤于

所有⼦结构，我们必须确保不同⼦结构中圆盘的顺序彼此是⼀致的。事实上，选

择H 以确保全局圆盘顺序⼀致，这篇论⽂的主要技术挑战。

假设我们有⼀个适合我们需要的 H（即剩下的实例 (D ′ \ H,P ′ \ P(H))可以

在多项式时间内通过动态规划得到最优解）。让 S为剩余实例的最优解。我们的最

终解是 SOL = G ∪H ∪ S。⾸先，我们可以看到

w(S) ≤ w(OPT − G −H) ≤ OPT − w(G),

因为 OPT − G −H 是该实例的⼀个可⾏解 (D ′ \ H,P ′ \ P(H))。因此，我们有

SOL = w(G) + w(H) + w(S) ≤ OPT + ϵCwt ≤ (1 + ϵ)OPT,

其中因为 |H | ≤ ϵC，从⽽第⼆到最后⼀个不等式成⽴最后⼀个不等式基于事实

OPT ≥ w(G) ≥ Cwt。

构造 H : 现在，我们简要介绍⼀下如何构建 H ⊆ D ′。⾸先，我们将块分割成边

长为 µ = O(ϵ)的小⽅块，这样任何中⼼在该⼩⽅块中的圆盘可以覆盖整个⼩⽅块，

并且在同⼀个⼩⽅块中的圆盘圆⼼⾜够靠近。Ξ = {Γi j}1≤i, j≤K 构成⼀套⼩⽅块，其

1O 可以使⽤类似于 [5,16] 的动态规划来解决单个⼦结构。
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Figure A.2 块中⼦结构的⽰意图。红点是⼩⽅格的⽹格点。绿⾊圆盘是我们选择了的H
集合。该图中有五个⼦结构。

中 K = L/µ。对于⼀个⼩⽅形 Γ，让 DsΓ ∈ Γ和 DtΓ ∈ Γ表⽰其中圆⼼最远的⼀对圆

盘（即 |Ds□DtΓ |是最⼤化的）。我们将这对圆盘 DsΓ 和 DtΓ 加⼊H 中，对于每个⼩

⽅格 Γ ∈ Ξ，称 Γ中这两个圆盘并集合为该⼩⽅块的小构件。有关⽰例，请参见图

A.1。然后，我们只需要关注其余未被覆盖的区域 U(H)中的点集合。

我们考虑所有圆⼼都在⼀个⼩⽅块中的圆盘。这些圆盘的未覆盖区域是两个

不相交的连通区域。（请参见图 A.1的右侧，两个阴影区域）。我们把这样⼀个区域

和所有相关的弧称为⼦构件（在完整版中会给出正式定义）。事实上，使⽤动态规

划，我们可以解决单个⼦结构中的圆盘覆盖问题（类似于在 [5,16] 中的动态规划）。

⽬前为⽌，我们离解决该问题已经不远了。因为“直观地”，所有⽅形的⼩构件已经

覆盖了整个区块的很多区域，我们应该可以使⽤类似的动态规划来处理所有这样

的⼦结构。但是，情况⽐我们最初预计的更复杂，因为弧是依赖的。看到图 A.2为

⼀个“不太复杂”的例⼦。⾸先，当圆盘居于核⼼区时，如同图A.1）所⽰，可能存

在两个弧（称为兄弟弧）属于同⼀个圆盘。动态规划必须为属于同⼀个圆却属于

两个不同的⼦结构（称为 R-相关⼦结构）的两个兄弟弧同时作出决定。其次，为

了实施⼀个动态规划，我们需要所有弧的具有合适顺序。为确保这种顺序的存在，

我们需要所有⼦结构有⽐较好的关联关系。

109



Appendix A 中⽂摘要

特别的，除了⼩构件外，我们还需要添加到H 中恒定数量的额外圆盘。这是

通过⼀系列“切割”操作完成的。切割可以打破⼀个循环，或者划分⼀个⼦结构为两

个⼦结构。为了掌控⼦结构之间的相互关系，我们定义⼀个辅助图，称为⼦结构

关系图 S。其中每个⼦结构都是⼀个节点。上述 R-相关定义了⼀组蓝⾊边，⼏何

上的重叠关系定义⼀组红⾊边。通过分割操作，我们可以使蓝⾊边形成匹配，并

且也可以让红⾊边形成匹配，并且S⽆环的。我们称S为⾮循环 2 匹配。S的特

殊结构允许我们轻松定义所有弧的排序，再加上其他⼀些简单的属性，我们可以

同时将动态程序从⼀个⼦结构推⼴到所有⼦结构。

⼩构件

我们讨论与⼩⽅块 Γ 关联的⼩构件 GgΓ 的结构。回想⼀下，正⽅形⼩⼯具

GgΓ = Ds cupDt，其中 Ds 和 Dt 是 Γ 中最远的⼀对圆盘。我们可以看到，对于在

Γ 中的任意圆盘 Di ，∂Di 有⼀段或两段弧线不被 Gg(Γ)覆盖。不失⼀般性，假设

DsDt 是⽔平的。DsDt 将整个平⾯分成两部分，由 H+（上半平⾯）和 H−（下半平

⾯）表⽰的半平⾯。∂Ds 和 ∂Dt 在两点 P 和 Q 处相交。下⾯，我们定义⼀些有⽤

的概念。

1. (中⼼区和核⼼区) 将 Gg(Γ) 的中⼼区定义为在 Γ 中两个圆盘 D(Dsrst 和

D(Dtrst)的交集，其中 rst = |DsDt |。我们使⽤ C来表⽰它。由于 Ds 和 Dt 是最

远的⼀对，我们可以得到 Γ中的每个其他圆盘的圆⼼都位于中⼼区域 C中。

我们定义 Gg 的核⼼区 (Γ)为两个分别以 PQ 为中⼼的单位圆盘的交集。基

本上，任何中⼼区域位于核⼼区域的单位盘都与⼩构件的边界有四个交点。

让我们⽤ Co 来表⽰该区域。

2. (活动区) 考虑如下区域
(∪

Di ∈Co Di − (Ds ∪ Dt)
)
∩ H+ 及(∪

Di ∈Co Di − (Ds ∪ Dt)
)
∩ H−. 我们称他们为和⼩⽅块 Γ 关联的活动区。我们

⽤ Ar 来表⽰活动区。

⼦结构

最初，H 包含所有⼩构件。此外H 中还包含固定数量的额外圆盘。对于⼀组

圆盘 S，我们使⽤ R(S)来表⽰在 S 中圆盘的覆盖区域, 即 ∪Di ∈SDi。给定⼀个固定

的 H，我们现在描述未覆盖区域的基本结构 R(D ′) − R(H)。 1O 为了便于表⽰，我

们使⽤ U(H) 来表⽰未覆盖的区域 R(D ′) − R( calH)。图A.2是⼀个例⼦。直观地

说，区域由 H 边界上的⼏个“条带”组成。现在，我们定义⼀些概念来描述这些条

1O 回想⼀下 D′ = D \ G，其中 G是 OPT 中权重最⼤的 C 个圆盘。
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Figure A.3 ⼦结构。基线 b 包含所有红⾊的弧。Qs,Qt 是基线 b 的端点。⿊⾊的弧位于未

覆盖区域。

的结构。

1. (基线) 我们使⽤ ∂H 来表⽰ H 的边界。考虑⼀个弧 a，其端点 P1P2 在 ∂H
上。如果 P 位于沿 ∂H 的 P1 和 P2 之间的段中, 我们说圆弧 a 在 ∂H 中覆盖

了⼀个点 P，如果D ′覆盖 P，我们说在 P ∈ ∂H 可以被覆盖。基线是 ∂H 上

可以被覆盖的连续的最⼤部分。我们通常使⽤ b 来表⽰基线。

2. (⼦结构) ⼦结构 St(b,A)由基线 b 和可以覆盖 b 中任意点的圆弧的集合A组

成。每个弧 a ∈ A的两个端点都在 b 上，并且弧的⾓度 ∠(a)⼩于 π。请注意，

b 的每个点都被 A 中的某个弧所覆盖。图A.3演⽰了⼀个⼦结构。

简化问题

⼦结构可以以各种⽅式重叠。正如我们在概览中所提到的那样，我们需要在

H 中包含更多的圆盘，以便使⼦结构适合动态规划技术。这⼀步有些复杂，我们

决定推迟到结尾描述。相反，我们在本节中介绍在H 中包含更多圆盘后，⼦结构

具有的性质。

⾮⾃相交性:
在⼦结构 St 中，假设A中有两个弧段 a 和 c，并带有端点 A, B 和 C,D。如果

A ≺ B ≺ C ≺ D，并且 a 和 c ⾄少覆盖 calP 中有⼀个相同的点，我们称⼦结构是

自相交。我们将消除所有⾃相交的⼦结构，在本节的其余部分，我们假设全部⼦

结构是非自交的。

顺序⼀致性:
每个⼦结构的基线有两种可能的⽅向（顺时针或逆时针），⼦结构之间有两种

类型的关系影响⼦结构⽅向的选择。⼀个是重叠关系，另⼀个是远距关系。若两

个⼦结构覆盖相同的点，则我们称两个⼦结构是重叠的。远距关系的定义如下：

Definition A.3 (远距关系)： 考虑两个⾮重叠的⼦结构 Stu 和 Stl，若他们包含同⼀

个⼩构件的不同的活动区域，则我们称这两个⼦结构存在远距关系。

我们要求重叠的两个⼦结构具有想反的⽅向，具有远距关系的两个⼦结构也
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具有相反⽅向。为了设计⼀个能同时应⽤在所有⼦结构上的动态规划，我们需要

⼦结构具有全局⼀致性。

Definition A.4 (全局⼀致性)： 如果存在⼀个⽅向的分配⽅案，使得重叠的两个⼦

结构具有想反的⽅向，具有远距关系的两个⼦结构也具有相反⽅向，我们称所有

的⼦结构具有全局⼀致性。

⼦结构关系图S: 我们构造⼀个图S来刻画⼦结构的关系，称之为⼦结构关系图。

S 中的每个点代表⼀个⼦结构。如果两个⼦结构是远距相关的，则⽤⼀条蓝⾊边

连接，若两个⼦结构是重叠的，则⽤⼀条红边相连。

Definition A.5 (⽆环 2匹配)： 我们说⼦结构关系图S是⾮循环 2 匹配，如果S是

⾮环的并且红⾊边和蓝⾊边分别构成匹配。换句话说，S 只包含路径，红⾊边和

蓝⾊边缘交替出现在每个路径中。

介绍了所有相关概念，我们终于可以声明动态规划所需的⼀组属性。

Lemma A.3： 再选择了H 后，我们可以保证如下属性：

P1. (活动区域唯⼀性) 每个⼦结构包含最多⼀个的活动区域。

P2. (⼦结构⾮⾃交) 每个⼦结构都是不⾃交的。

P3. (⽆环 2 匹配) ⼦结构关系图S是⼀个⽆环 2 匹配，即S只包含路径。在每条

路径中，红⾊边缘和蓝⾊边缘交替出现。

P4. (点序⼀致性) 任何点最多由两个⼦结构覆盖，点满⾜点顺序⼀致性。

我们会在完整版中介绍如何构造H 集合。

动态规划

假设我们已经构造了集合H，使得引理A.3成⽴。不失⼀般性，我们可以假设

剩下的圆盘可以涵盖所有剩余的点（否则，原始实例是不可⾏的或我们的猜测是

错误的）。事实上，我们的动态规划受到了前任⼯作的启发。[5-6,16]。

我 们 需 要 动 态 规 划 指 ⽰ 变 量 来 标 记 ⼀ 次 状 态 跳 转 是 否 合 法。 如 果

P[{Pk}k∈[m]] = P[[Pk][Pb
i ]{i }], 则 Ii = 0. 否则, 否则让 Ii = 1。其中我们利⽤了简化

的公式缩写, 对于集合 {ek}k∈[m]和 S ⊆ [m], 我们标记 [ek][e′i]S = {ek}k∈[m]\S∪{e′i}i∈S .
因此 [Pk][Pb

i ]{i } = {Pk}k∈[m]\i ∪ Pb
i 和 [Pk][Pt

i ]Np(D) = {Pk}k∈[m]\Np(D) ∪ {Pt
i }i∈Np(D). 我

们的动态规划形式如下：

OPT
(
{Pk}k∈[m]

)
= min

{
mini∈[m]

{
OPT

(
[Pk][Pb

i ]{i }
)
+ Ii · ∞

}
, add no disk

minD∈R
{
OPT

(
[Pk][Pt

i ]Np(D)
)
+ wD

}
, add disk D
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WUDC的 PTAS算法的应⽤

单位圆盘图中的加权⽀配集问题（MWDS）在⽆线传感器⽹络领域具有许多应

⽤领域 [9]。在本节中，我们显⽰我们的 WUDC 的 PTAS 可以⽤于获取这个领域中

两个重要问题的更好的近似算法。

单位圆图中的最⼩带权连通⽀配集问题

最小带权连通支配集问题 (MWCDS) 的⽬标是找到⼀个连通的⽀配集并且具

有最⼩的权重。Clark 等⼈ [14] 证明了 MWCDS 在单位图中是 NP-难的。Ambühl 等

⼈ [5] 获得了 MWCDS 的第⼀个常数近似算法（常数为 94）。这个常数之后被⼀系列

⼯作提⾼ [6,30-31]。⽬前最好的近似⽐是 7.105 [9].

计算 MWCDS 的近似解的⽅法⼀种较为通⽤的办法是先计算最⼩加权⽀配集

（MWDS），然后使⽤节点加权斯坦纳树（NWST）[30,72] 连接⽀配集。最优 MWDS 值

不超过最优的 MWCDS 值。在归零所有端点的权量之后，最优的 NWST 值（对于任

何⼀组端点）也不超过最佳的 MWCDS 值。因此，如果 MWDS（或等价的 WUDC）

存在 α-近似。和 NWST 的 β-近似，那么就有⼀个⽤于 MWCDS 的 α + β 因⼦近似

算法。

Zou 等⼈ [72] 证明如果存在⼀个 ρ 近似的边加权最小斯坦纳树问题，NWST 有

⼀个 2.5ρ近似算法。当前最⼩斯坦纳树的最好近似算法的近似⽐是是 1.39 [73]。因

此，NWST 存在 3.475 的近似算法。结合我们给出的 WUDC 问题的 PTAS，我们对

于 MWCDS 获得以下改进结果。

Theorem A.2： 对于任意常数 ϵ > 0，MWCDS 问题存在⼀个多项式时间的 (4.475+

ϵ)-近似的算法。

单位圆图中的最⻓⽣命覆盖问题

最长⽣命覆盖问题 (MLC) 是⽆线传感器⽹络领域的⼀个经典问题。给定 n 个⽬

标 t1 . . . tn 和 m 个传感器 s1 . . . , sm，每个传感器可以覆盖由⼀些⽬标构成⼦集。每

个传感器可以使⽤的最长⽣命周期为 1。问题的⽬标是使⽤这些传感器覆盖⼀族⽬

标的集合 S1 . . . Sp，假设覆盖的时间分别为 τ1 . . . τp 其中 τi ∈ [0, 1]，使得 τ1+ . . .+τp

最⼤化。MLC 已知是 NP-难的 [74]。Berman 等⼈通过 Garg-Könemann [76] 技术将 MLC

归约到 最小权量传感器覆盖（MSC）问题。他们证明了如果 MSC 有⼀个 ρ 近似

算法，那么 MLC 对于任何 ϵ 都有⼀个 1 + ϵ ρ 近似算法。Ding 等⼈指出 [33]，如果

所有的传感器和⽬标位于欧⼏⾥德平⾯上，并且所有传感器的覆盖半径相同，那

么 WUDC 的任何近似结果都可以转换成 MLC 的相同的近似解。因此，MLC 当前
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最好结果是 (3 + ϵ)近似值 [34]。使⽤我们的 PTAS，我们获得了第⼀个⽤于 MLC 的

PTAS。

Theorem A.3： 当所有传感器和⽬标位于欧⼏⾥德平⾯上，并且所有传感器具有相

同的覆盖半径时，存在⽤于 MLC 的 PTAS。

让我们再提⼀个 MLC 的另⼀个变种，称为最⼤⽣命连通覆盖问题。Du 等⼈最

先研究了该问题 [77]。问题设置与 MLC 相同，除此之外每个传感器覆盖 Si 应该是⼀

个连接的⼦图。当通信半径 Rc 不少于两倍的感测半径 Rs 时，他们获得 (7.105+ ϵ)
近似解。他们通过 WUDC 问题的⼀个 α 近似的算法以及 NWST 的 β 近似解证明了

连通的 MLC 问题，存在 α + β 近似解。使⽤我们的 PTAS，我们可以将近似⽐提⾼

到 (4.475 + ϵ)。

PTAS算法总结

⼤部分的技术性技巧源于⼦结构相互关联的事实，要确保全局⼀致的顺序并

不容易。读者可能想知道，如果我们在⼀个⼩⽅块中选择两个以上的圆盘（但仍

然是⼀个常量），希望未被覆盖的地区变得分离和更易于管理。我们尝试了其他⼏

种⽅法，例如在⼩⽅块中的圆盘的凸包中选择恒定数量的圆盘。但是，这些似乎

只会使事情复杂化，⽽不是简化。

我们相信我们的结果和见解对解决其他涉及单位圆盘或单位圆图问题很有⽤。

另⼀⽅⾯，我们的⽅法强烈依赖于的单位圆的特殊属性，并且似乎不能推⼴到具

有不同半径的任意圆盘上。使⽤任意圆盘获得加权圆盘覆盖问题的 PTAS 仍然是

这个领域的核⼼问题。⼀个有趣的中间步骤是考虑其中的特殊情况，⽐如最长半

径和最短半径之间的⽐率是有界的。

t-跨度图
假设 P 是欧⼏⾥德平⾯ R2 中的⼀组点。定义在顶点集合 P 上的完全欧⼏⾥

德图是个带权图，其中边集合包含连接所有点对的边，每个边的权重是其两个端

点之间的欧⼏⾥德距离。存储完整的完全欧⼏⾥德图需要⼆次的空间复杂度，这

个代价很⼤。因此，希望使⽤稀疏⼦图来逼近完整的图。这是计算机领域的⼀门

经典⽽深⼊研究的课题（参见 [4,38-41]）。在本论⽂ b 中，我们研究了⼏何 t-跨度图

（geometric t-spanner），正式定义如下（参见例如 [42]）。
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Definition A.6： (⼏何 t-跨度图) 图 G 是完整的欧⼏⾥德图的⼏何 t-跨度图（1）G

是完全欧⼏⾥德图的⼦图; （2）对于 P 中的任何⼀对点 p 和 q，在 G 中的 p 和 q

之间的最短路径不会超过 p 和 q 之间的欧⼏⾥德距离的 t 倍。

在⽂献中，因⼦ t 被称为跨度图的拉伸因⼦或膨胀因⼦。如果 G 的最⼤度数

以⼀个常数 k 为界，那么我们说 G 是⼀个常数有界的跨度图。⼏何跨度图的概念

最初由 L.P.Chew [43] 提出。可以参阅 Eppstein 的综述⽂献 [44]，了解有关⼏何跨度图

的更详细信息。⼏何跨度图已经在⽆线⾃适应⽹络和传感器⽹络中存在许多应⽤。

我们推荐读者参阅 Li [45], Narasimhan 和 Smid [46] 的著作，了解更多细节。

Yao图是完全欧⼏⾥德图的⼀种近似，由 Flinchbaugh 和 Jones [47] 和 Yao [41] 独

⽴提出。

Definition A.7 (Yao图 Yk)： 让 k 是⼀个固定的整数, 在欧⼏⾥德平⾯ R2 中给出⼀

组点 P，Yao 图 Yk(P)定义如下: 假设 Cu(γ1, γ2]是以 u 为定点的圆锥体, 它由在半

开放区间 (γ1, γ2]中以 u 为定点的射线组成。对于每个点 u ∈ P，Yk(P)包含将 u 连

接到的每个圆锥体 Cu( jθ, ( j + 1)θ)最邻近点 v 的边, 其中 θ = 2π/k， j ∈ [0, k − 1]。
我们通常将 Yao 图看作⽆向图。对于有向 Yao图，我们添加有向边 −→uv 代替⽆向边

uv。

Molla [48] 证明了 Y2 和 Y3 不是跨度图。另⼀⽅⾯，已经证明所有的 Yk for k ≥ 4

均是跨度图。其中 Bose 等⼈证明 Y4 是 663-跨度图。Damian 和 Nelavalli [50] 最近将

常数改进为 54.6。Barba 等⼈ [51] 证明 Y5 是 3.74-跨度图。Damian 和 Raudonis [52] 证

明了 Y6 图是⼀个 17.64-跨度图。Li 等⼈⾸先证明了所有 Yk, k > 6 都是拉伸系数最

多为 1/(1 − 2 sin(π/k))的跨度图。后来 Bose 等⼈ [49,54] 也得到了相同的独⽴结果。

最近，Barba 等⼈提出了减⼩拉伸因⼦的⽅法, 将 Y6 的拉伸系数从 17.6 降到 5.8，

并将 k ≥ 7 且 k 为奇数的拉伸因⼦改进为 1/(1 − 2 sin(3π/4k))。
但是，Yao 图可能没有有界度。这在⼀些⽆限⽹络应⽤中可能是⼀个严重的限

制因为每个节点的⽹络具有⾮常有限的能量和通信能⼒，从⽽可以只与少数邻居

进⾏交流。为了解决这个问题，Li 等⼈引⼊了 Yao-Yao 图（或者称作稀疏 Yao 图）。

通过从 Yk(P)中删除⼀些边，得到⼀个 Yao-Yao 图 YYk(P), 如下所⽰：

Definition A.8 (Yao-Yao图 YYk)：（1）根据定义A.7，构造有向 Yao。（2）对于每个

节点 u 以及以 u 为顶点的每个锥，若包含两个或更多⼊射边，则保留最短⼊射边

并放弃锥中的其他⼊射边。可以看出 YYk(P)中的最⼤程度上限为 2k。

与 Yao 图不同的是，Yao-Yao 图是否为跨度图尚未得到很好的理解。Li 等⼈提

供了⼀些经验证据，暗⽰对于⼀些⾜够⼤的常量 k，YYk 图可能是 t-跨度图。但是，
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他们并没有给出严格的理论证明。⽬前为⽌，它仍然是⼀个开放的问题 [2-4,45]。在

Demaine 等⼈维护的开放问题项⽬ 1O中它也被列为问题 70。

Conjecture A.1 (⻅⽂献 [2])： 存在⼀个常数 k0，使得对于任何整数 k > k0，任何

Yao-Yao 图 YYk 都是⼀个⼏何跨度图。

现在，我们简要回顾⼀下关于 Yao-Yao 图的结果。YY2 和 YY3 可能不是跨度

图，因为 Y2 和 Y3 可能不是跨度图 [48]。Damian 和 Molla [48,55] 证明了 YY4, YY6 可

能不是跨度图。Bauer 等⼈ [51] 证明 YY5 可能不是跨度图。在积极的⽅⾯，Bauer 和

Damian [2] 证明, 对于任何整数 k ≥ 6，任何 Yao-Yao 图 YY6k 是⼀个跨度图拉伸系

数最⾼为 11.67，⽽ k ≥ 8 则系数为 4.75。最近，Li 和 Zhan [3] 证明对于任何整数

k ≥ 42，任何 Yao-Yao 图 YY2k 是⼀个拉伸因⼦ 6.03 +O(k−1)的跨度图。

从这些积极的结果来看，相信猜想 A.1是相当合理的。然⽽，我们在这篇论⽂

中表明，令⼈惊讶的是，猜想 A.1对于奇数度 Yao-Yao 图是错误的。

Theorem A.4： 对于任何 k ≥ 1，都存在⼀类点集实例 {Pm}m∈Z+。当 m 接近⽆穷⼤

时，图 YY2k+1(Pm)的拉伸因⼦不能被任何常量限制。 2O

相关⼯作 在⼀些特殊情况下，可以证明Yao-Yao图是跨度图 [56-59]。特别的，在

civilized 图中（其中最长边的长度与最短边长度之间的⽐例由⼀个常数约束 [56-57]），

YYk 图是跨度图。除了 Yao 图和 Yao-Yao 图之外，Θ-图是另⼀个常见的⼏何 t-跨度

图。Θ-图和 Yao 图之间的区别在于 Θ-图中，圆锥体 C 中 u 的最近邻点是位于 C 中

的⼀个点 v , u，并且 u 与 v 到 C 的平分线上的正交投影之间的距离时最⼩的。已

经证明，Θ2 和 Θ3
[48] 除外，对于 k = 4 [60]，5 [61]，6 [62]，≥ 7 [63-64]，Θk 图都是⼏何

跨度图。然⽽我们也需要注意，和 Yao 图⼀样，Θ图的度可能不是有限的。

最近，⼏何 t-跨度图的⼀些变体，如弱 t 跨度图（weak t-spanner）和幂 t-跨度

图（power t-spanner）也受到很⼤关注。在弱 t 跨度图中，两点之间的路径可能是

任意长，但必须包含在半径长度为两点欧⼏⾥德距离 t 倍的圆盘内。对于 k > 6，

所有的 Yao-Yao 图 YYk 都是弱 t-跨度图。[65-67]。在幂 t 跨度图中，欧⼏⾥德距离 | · |
被替换为 | · |κ，其中 κ ≥ 2。Schindelhauer 等⼈ [66-67] 证明了对于 k > 6，所有的

Yao-Yao 图 YYk 对于某些常数 t，是幂 t 跨度图。此外，任何 t-跨度图，同时也是⼀

个弱 t1 跨度图和幂 t2 跨度图，其中 t1, t2 的值仅取决于 t。然⽽，反过来不正确 [67]。

1O http://cs.smith.edu/~orourke/TOPP/P70.html
2O 这⾥，m 是递归构造中的⼀个参数。我们将在完整版中详细解释。粗略地说，m 是递归级别，Pm 中的点

数随 m 增加。
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我们的反例得益于分形概念的启发。在构造 β-框架图（skeleton）⾮常数有界

拉伸因⼦的反例中也有⽤到分形的概念 [68]。这⾥ β-框架图包含所有边 ab 使得这

样没有⼀个点 c 形成⼀个⾓ ∠acb ⼤于 sin−1 1/β 当 β > 1 或 π − sin−1 β 当 β < 1。

Schindelhauer 等⼈ [67] 使⽤相同的例⼦来证明存在图是弱 t 跨度图，但不是 t 跨度

图。然⽽，他们的例⼦不能作为奇数度 Yao-Yao 图猜想的反例。

奇数度 Yao-Yao图不是 t-跨度图
我们⾸先注意到 YY3 和 YY5 的反例都不是弱 t-跨度图 [48,51]。然⽽，Yao-Yao 图

YYk 对于 k ≥ 7 都是弱 t-跨度图 [65-67]。因此，为了构造 YYk，k ≥ 7 的反例，以前

⽤在 YY3 和 YY5 上的想法就不能使⽤了。我们将构造⼀类实例 {Pm}m∈Z+，Pm 中

的所有点都放置在⼀个有界区域中。同时，YY2k+1(Pm)中存在两点的最短路径，当

m 接近⽆穷⼤时，其长度接近⽆穷⼤。

我们的例⼦包含两种类型的点，称为标准点和辅助点, 分别⽤ Pn
m 和 Pa

m 来表

⽰它们。⽤ Pm = Pn
m ∪ Pa

m 表⽰所有点的集合。标准点形成基本的⾻架，辅助点⽤

于打破连接任何两个相距较远的标准点的边。

我们受分形概念的启发来构建标准点。分形可以包含在有界区域内，但其长

度可能不收敛。在我们的反例中，两个特定标准点的最短路径是分形的多边形路

径。这⾥，多边形路径是指由指定的点的序列并由连接连续点的线段组成。假设

两个特定点是 A 和 B，AB 是⽔平的，并且 |AB | = 1。当 m = 0 时，多边形路径就

是线段 AB。当 m 增加 1 时，我们将当前多边形路径中的每个线段替换为类似锯

齿状的路径（见图 A.4(a)）。如果锯齿状路径的每个部分与基部段之间的⾓度（即

被替换线段）是 γ，路径的总长度增加了 cos−1 γ 倍。这⾥⼀个重要的观察结果是

该因素与锯齿的数量⽆关（见图 A.4(b)）。如果我们直接重复这个过程，由此产⽣

的路径的长度将增加到⽆穷⼤ m 当 cos−1 γ > 1（见图 A.4(c)）接近⽆穷⼤。但是，

我们需要确保在 Yao-Yao 图中，它确实是从 A 到 B 的最短路径，我们需要克服两

个技术难题。

1. 当 m 增加时，多边形路径可能相交。见图 A.4(d)。多边形路径在点 O 附

近相交。这相对容易处理: 我们不递归划分那些可能导致⾃相交的线段。见

图A.4(e)。我们不会进⼀步代替粗线段。我们需要确保这些不再细分的线段

的总长度相对较⼩（以便剩余细分部分的总长度可以随 m 的增⼤保持⽽不断

增加）。

2. 在递归构造的标准点上定义的 Yao-Yao 图中，可能会存在⼀些边连接相距很

远的点。如何破坏这些相距较远的边是这个问题的主要难点。下⾯，我们概
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(a) 由锯齿状路径代替⽔平线段
(b) 锯齿状路径的长度与锯齿个数⽆关

OA B

(c) 递归的⽤锯齿路径代替线段

O

(d) 图 A.4(c)在 O 点附近的局部放⼤。
OA B

(e) 对于加粗线段，不继续递归替代
OA B

(f) 替代的锯齿路径锯齿个数和⼤⼩都不⼀定相同

Figure A.4 反例构造概览。图A.4(a)-A.4(f) 说明了分形及其变种。

述我们克服这个难点的主要技术。

⾸先，我们不会像通常的分形结构那样，使⽤相同的锯齿来替换所有的当前

分段。对于每个细分线段，我们将选择⼀个多边形路径，该路径的锯齿数量可能

不同，锯齿在路径上的⼤⼩也可能不⼀样。图A.4(f)给出了说明。最后，我们以特

定的顺序来构建它们。实际上，我们⽤⼀棵 m 层的递归树 T 中组织这些标准点，

并⽤树的前序深度优先遍历顺序来⽣成它们。我们在完整版中会描述这些细节。

其次，我们将标准点分成⼀组集合，使得每个正常点属于且恰好属于⼀组。我

们称这样⼀个集合为铰链集合。参考图A.5。然后，我们指定铰链集合的全序。称

Yao-Yao 图 YY2k+1(Pn
m) 中连接同⼀个铰链集合中的任意两个标准点或两个相邻的

铰链集合（对于全序关系）中任意两个标准点为铰链连接。称其他边为长距离连

接。我们将在完整版中描述这些细节。

我们会在完整版中看到的，所有可能的长距离连接都有⼀个相对简单的形式。

然后，我们证明我们可以通过添加⼀个辅助点集 Pa
m 来打破所有长距离连接。每个
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Figure A.5 铰链集合划分。粗略的讲，每个由绿⾊矩形覆盖的点集合是⼀个铰链集合。递

归的，我们可以进⼀步解构被阴影矩形的点集合，并把它们划分为铰链集合。铰链连接指

的是连接同⼀个铰链集合中的任意两个标准点或两个相邻的铰链集合（对于全序关系）中

任意两个标准点的边。其他的边被称为长距离连接。

辅助点都有⼀个特定的中⼼，即它最接近的标准点。我们将 Pn
m 中的任何两个标准

点之间的最⼩距离记为 ∆。辅助点与其中⼼之间的距离远⼩于 ∆。我们可以扩展铰

链集合的概念为扩展铰链集合使其包含铰链集合中的标准点和以这些标准点为中

⼼的辅助点。我们将会看到辅助点打破了所有的长距离连接并且没有引⼊新的长

连接。我们将在完整版中描述这些细节。

最后，根据上⾯的过程，我们可以看到在 YY2k+1(Pm), m ∈ Z+ 中标准点 A 和 B

之间的最短路径通过依次所有扩展铰链集合。因此，A 和 B 之间的最短路径的长

度 b 随着 m 接近⽆穷⼤⽽发散。我们将在完整版中描述这些细节。

标准点的位置

A.0.0.1 ⼀些基本概念

设 k ≥ 3 为⼀固定正整数。 1O。我们考虑 YY2k+1 并让 θ = 2π/(2k + 1)。

Definition A.9 (锥边界)： 考虑两个点 u 和 v。如果 −→uv 的极⾓是 jθ = j · 2π/(2k +1)，
对任意整数 j ∈ [0, 2k]，我们称射线 −→uv a cone boundary for point u.

Property A.4： 考虑 P中两点 u 和 v。如果 −→uv 是 YY2k+1(P)⼀条锥边界，则它的反

向射线 −→vu 不是⼀条锥边界。

回顾我们的构造过程，这个属性是奇数和偶数 Yao-Yao 图之间的⼀个关键区

别，⽽我们对奇 Yao-Yao 图的反例将充分利⽤该属性。

Definition A.10 (边界对)： ⼀个边界对包含有序的两个点, 记做 (w1,w2), 使得 t−−−→w1w2

是以 w1 为起点的⼀个锥边界。

根据属性A.4，如果 (w1,w2)是⼀个边界对, 它的逆 (w2,w1)则不是。进⼀步的,

如果⼀个对 ϕ 是 (u, ·)或 (·, u)，我们称 u 属于对 ϕ (即，u ∈ ϕ)。

1O 注意到 k = 1, 2 已经得到证明 [48]
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Figure A.6 ⼀个构件的实例。ϕ = (w1,w2) 是⼩构件中的⼀个⽗亲对。Aϕ = {α1, α2,

α3, . . . , α7} 是集合 partition ，Bϕ = {β1, β2, β5, β6, β7} 是集合 apex 。存在 8 个⼩段，其

中 w1α1, α1α2, α4α5, α5α6, α6α7 是⾮空⼩段，α2α3, α3α4, α7w2 是空段。

Gadget ⼀个⼩构件 Ggϕ 包含三组点。我们⼀⼀解释如下。图A.6给出了⼀个

实例。

1. 第⼀组点事对 ϕ = (w1,w2). 我们称对 ϕ 为构件 Ggϕ 的⽗对。

2. 第⼆组是线段 (w1,w2)上的点集合Aϕ。我们称集合Aϕ 为划分集合，并称点

集Aϕ 中的点为对 ϕ的划分点。集合Aϕ 将线段划分为 |Aϕ | + 1 段，我们称

每⼀段为线段的⼀个小段。有两类⼩段。其⼀被称为空段，其⼆被称作非

空段。⼀个段是否为空，我们将在构造过程中决定，我们将在完整版中描述。

3. 对于每个⾮空⼩段 αi−1αi, 我们增加⼀个点 βi 使得 ∠αi−1βiαi = π − θ 和

|αi−1βi | = |βiαi |。所有的 βi 在 w1w2 的同测。我们称这个点 βi 为 (w1,w2)的
顶点。让 Bϕ 为 ϕ 的顶点的集合, 称作顶点集合。Bϕ 即为第三组点。对于空

的⼩段，我们不增加对应的顶点。

考虑 Ggϕ[Aϕ,Bϕ], 其中 ϕ = (w1,w2)。对于任何⾮空段 αi−1αi 及对应的顶点 βi,

射线
−−−−→
βiαi−1 和

−−→
αiβi （注意点的顺序）是锥边界。因此每个点 βi ∈ Bϕ 都规约出两

个对 (βi, αi−1)和 (αi, βi)。我们称所有由 Bϕ 中的点⽣成的对 (βi, αi−1)和 (αi, βi)为
(w1,w2)的⼦对, 并且我们称他们互为兄弟对。注意到有些划分点没有关联任何对

(例如图A.6中的点 α3)。我们称其为孤⽴点。

Definition A.11 (⼦对的顺序)： 考虑构件 Gg(w1,w2)，假设 Φ是 (w1,w2)衍⽣的对集

合。考虑 Φ中的两个对 ϕ, φ，定义对的顺序为 ϕ ≺ φ, 如果 ϕ⽐ φ更接近 w1。这⾥

从对 ϕ 到点 w 的距离指的是从 w 到对 ϕ 中两点的最短距离。

A.0.0.2 标准点构造

在这个⼩节中，我们构造⼀个 m 层的树。当递归级别增加 1 时，我们需要将每

个当前对替换为该对产⽣的⼩构件。见图 A.7为例。递归过程可以是⾃然的表⽰为

树 T。树根据深度优先先序遍历⽣成，从根开始。我们假设 T 的根节点是 (µ1, µ2)，
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Figure A.7 根据深度优先前序遍历⽣成树。在每幅⼦图中 表⽰⼀个我们正在遍历的点。

⽤ 表⽰这⼀步⽣成的点。 表⽰已经遍历过的点。 表⽰已经⽣成但是还没有遍历的点。

由浅棕⾊三⾓形覆盖的点是关联投影过程的点。

并且 µ1µ2 是⽔平的。我们称⼀个节点为叶⼦对如果它是树中的⼀个叶节点。同时

称⼀个节点为内部对当它不是叶⼦节点。每当我们访问⼀个内部对，我们通过两

个步骤⽣成其⼩构件，称为投影和细分。⽣成其⼩构件等同于在 T 中⽣成其⼦对。

创建⼩构件时确定⼦对是否为叶⼦。因此，请注意，并⾮所有的叶⼦对都在 m 层。

我们这个步骤⽣成的点为标准点，⽤ normp 表⽰这些点的集合，其中 m 是树的层

级，n 代表“标准”。

根构件 让 d0 代表⼀个正的⼤的常数。考虑对 ϕ = (µ1, µ2)。让 Aϕ 为他的划

分集，

αi = µ1 ·
d0 − i

d0
+ µ2 ·

i
d0
, i ∈ [1, d0 − 1].

为⽅便起见，令 α0 = µ1, αd0 = µ2。Aϕ 将线段 µ1µ2 划分为 d0 段，每⼀段有相

同侧长度 |µ1µ2 |/d0。所有的段均为⾮空段。对段 αi−1αi，我们在 µ1µ2 下增加顶点

βi。让 Bϕ = {βi}i∈[1,d0] 为顶点集合。

投影和细分 投影和细化会⽣成 ϕ 对的分区点。投影的⽬的是将所有可能的

长距连接限制为⼀个相对简单的形式。细化的⽬的是使兄弟对具有近似相同的长

度，

决定点对是否为空 考虑对 ϕ，其顶点为 β，划分点为 α。 1O我们让这个块⼊

射到顶点 β 为空，其他⽚段为⾮空。

1O 注意对中的第⼀个点可以是顶点或分割点。在这⾥，ϕ = (αβ)。或 ϕ = (β, α)，取决于 ϕ 的第⼀个点是否

为顶点。
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对于每个⾮空⽚段，我们⽣成⼀个顶点。正如我们之前讨论的那样，顶点集

B pair 产⽣ ϕ⼦对的集合Φ。让最接近 α的三对和最接近 β的两个对是叶⼦对。我

们不从叶对进⼀步扩展树。让其他对成为内部对。

总体⽽⾔，在投影和细化过程之后，我们可以为树中的任何对⽣成⼩构件。我

们⽤这个来表⽰这个过程

Ggϕ ← Proj-Refn(ϕ). (A-1)

最后通过增加辅助点，我们能证明奇数度 Yao-Yao 图⾮ t 跨度图。

Lemma A.5： 对于 k ≥ 3 的 Yao-Yao 图 YY2k+1(Pm)，µ1 和 µ2 之间的最短距离⾄少

为 ρm, 对于⼀些 ρ = (1 −O(d−1
0 )) · cos−1(θ/2)。当 d0 > ⌈6(1 − cos(θ/2))−1⌉, 这个长度

随 m 的增⼤⽽趋于⽆穷。
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