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摘 要

摘 要

随机动态规划（SDP）是一种对不确定条件下的决策问题进行建模的技术。

Richard Bellman 提出了“最优化原则”。这个原则能推导出动态规划算法，它可

以用来解决一系列随机优化问题。然而，由于"维数灾难"和很大的状态空间，对

于许多现实的随机组合问题，Bellman的原则并不能立即推导出一个有效的算法。

为了应对这些挑战，这篇毕业论文开发了一个基于 SDP的框架。在这个框架

下，我们设计了一个多项式时间的近似方案（PTAS）。当使用我们的框架，就可

以为一类随机组合优化问题设计 PTAS。本文研究的问题如下：（a）随机探测问

题，（b）随机背包问题，（c）随机二十一点背包问题和（d）随机目标问题。我们

为所有上述问题设计多项式时间的近似算法。我们开发的这项技术很基本，相信

会有更广泛的应用。

我们着重介绍一下随机探测问题的一个特例：探测最大值问题。在这个问题

中，输入是一组已知分布的独立随机变量。我们可以依次从中挑选几个随机变量。

每当我们挑选一个，就可以观察它的真实值。这个值是遵循其分配。挑选的变量

中最大的那个值就是我们最后的受益。由于挑选的个数有限，那么怎样设计一个

自适应策略，使得期望受益最大。据我们所知，现在最好的近似算法是 Asadpour

设计 1 − 1/e。我们可以设计一个 PTAS。

关键词：随机优化，动态规划，近似算法，马尔科夫过程，模块策略
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Abstract

Abstract

Stochastic Dynamic Programming (SDP) is a technique for modeling and solving

problems of decision making under uncertainty. Richard Bellman introduced the “princi-

ple of optimality” which leads to dynamic programming algorithms for solving sequential

stochastic optimization problems. However, Bellman’s principle does not immediately

lead to efficient algorithms for many realistic stochastic combinatorial problems, due to

the “curse of dimensionality” and the large state space.

To address these challenges, we develop a framework based on SDP in this disser-

tation. For this framework, we obtain a polynomial time approximation scheme (PTAS).

Using our framework, we obtain the first PTAS for a class of stochastic combinatorial op-

timization problems. The problems we study in this thesis are the following: (a) stochastic

probing problem, (b) stochastic knapsack problem, (c) stochastic blackjack knapsack and

(d) stochastic target problem. We present polynomial-time algorithms for all the above

problems with near-optimal approximation guarantees. We believe that the techniques are

fairly general and have wider applications.

We highlight the application on Probemax problem which is a special case of stochas-

tic probing problem. We are given a set of n items. Each item i ∈ [n] has a value Xi

which is an independent random variable with a known (discrete) distribution πi. We

can probe a subset P ⊆ [n] of items sequentially. Each time after probing an item i, we

observe its value realization, which follows the distribution πi. We can adaptively probe

at most m items and each item can be probed at most once. The reward is the maximum

among the m realized values. Our goal is to design an adaptive probing policy such that

the expected value of the reward is maximized. To the best of our knowledge, the best

known approximation ratio is 1− 1/e. We also obtain PTAS for some generalizations and

variants of the problem.

Key words: stochastic optimization; dynamic program; markov decision process; block

policy; approximation algorithm
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第 1章 Introduction

第 1章 Introduction

In recent years, uncertain data has been generated in many application scenarios, oc-

curring in almost all fields of science and engineering from telecommunications, medicine,

to finance. In these scenarios, uncertainty is inevitable. How to analyze and solve these

problems in a rigorous manner has become a hot topic in recent years. This area originated

from Dantzig’s work [1], and has been studied extensively and found numerous applications

in many areas. Richard Bellman [2] proposed the stochastic dynamic programming which

is a technique for modeling and solving problems of decision making under uncertainty.

It plays a very important role in the stochastic optimization model because it is a very

general model that can be used to design optimization algorithms. For some specific

problems, it is possible to obtain a closed form or exact solution in polynomial-time by

solving the Bellman equation directly. On the other hand, due to "curse of dimensions"

and the large state space, this method has several limitations. We refer to the books [3,4].

Stochastic optimization has established itself as a major method to handle uncertainty

in various optimization problems, by modeling the uncertainty by a probability distribution

over possible realizations. For some specific scenarios, researchers have proposed a set

of models and given corresponding polynomial-time approximation algorithms, such as

stochastic knapsack [5,6], stochastic matching [7,8], stochastic set cover [9,10], stochastic bin

packing [11] and so on. We refer interested readers to the survey [12].

In this dissertation, we focus on a class of stochastic dynamic programs. For these

problems, we propose a model based on the stochastic dynamic program and design

an effective polynomial-time approximation algorithm. By our model, we can design

polynomial algorithms for a bunch of stochastic combinatorial optimization problems

which fit in the model.

Now, we introduce two classes of problems in this dissertation: the stochastic probing

problem and stochastic knapsack. We also briefly state our contributions one by one as

follows.

1.1 Stochastic Probing Problem

Suppose a company is going to hire a secretary. After putting out recruitment

advertisements, a total of n resumes were received. Through a resume, the company can
1
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assess whether the candidate matches the company’s position. However the matching

score is uncertain and follows a distribution. To know the true score, the company needs

to arrange an interview. Due to limited time and energy, the company can only select

m(≤ n) candidates for interview. What strategy should be designed to allow companies

to choose a secretary with the highest possible matching score? This problem can be

expressed by the following model.

Problem 1.1 (ProbeMax)： We are given a set of n items. Each item i ∈ [n] has a value

Xi which is an independent random variable following a known (discrete) distribution πi.

We can probe a subset P ⊆ [n] of items sequentially. Each time after probing an item i,

we observe its value realization, which is an independent sample from the distribution πi.

We can adaptively probe at most m items and each item can be probed at most once. The

reward is the maximum among the m realized values. Our goal is to design an adaptive

probing policy such that the expected value of the reward is maximized.

Figure 1.1 Instance of the ProbeMax.
Notes: An optimal adaptive policy for ProbeMax shown as a decision tree achieves an expected
reward of 71.67. For a non-adaptive policy, the optimal is to select items 1 and 3 for which the
expected reward is equal to Emax{X1, X3} = 70.

The problem and its variants have been studied in a number of papers (see e.g., [13–18]).

Despite being a very basic stochastic optimization problem, we still do not have a complete

understanding of the approximability of the ProbeMax problem. It is not even known

whether it is intractable to obtain the optimal policy.

A non-adaptive policy is simply a priori fixed set P of items to probe. It is easy to

obtain a 1 − 1/e approximation by noticing that f (P) = E[maxi∈P Xi] is a submodular
2
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function (see e.g., Chen et al. [13]). Chen et al. [13] obtained the first PTAS, among all

non-adaptive policies. The benefit of an adaptive solution can be shown by a simple

example, see Figure 1.1. For the ProbeMax problem, the best-known approximation ratio

is 1 − 1
e

[17,19]. Indeed, this can be obtained using the algorithm for stochastic monotone

submodular maximization in Asadpour et al. [17]. This is also a non-adaptive policy, which

implies the adaptivity gap — the ratio between the values of optimal adaptive and optimal

non-adaptive policies — is at most e
e−1 . Golovin [19] introduced the notion of adaptive

submodularity which is a generalization of Asadpour’s setting. In this dissertation, we

provide the first PTAS, among all adaptive policies. Note that our policy is indeed

adaptive. We will discuss this problem and its generalizations in more details in Chapter

4.

Theorem 1.1： There exists a PTAS for the ProbeMax problem among all adaptive poli-

cies. In other words, for any fixed constant ε > 0, there is a polynomial-time approximation

algorithm for the ProbeMax problem that finds a policy with the expected value at least

(1 − ε)OPT, where OPT is the expected value of the optimal adaptive policy.

The ProbeMax problem is a special case of the following general stochastic probing

framework which was formulated by Gupta et al. [18].

Problem 1.2 (Stochastic Probing)： An instance J of the stochastic probing problem is

defined with tuple J = (U, π,I), where U is a set of n items, each having a value Xi

following a known (discrete) distribution πi, and π = {πi}[i∈U]. The constraint I consists

of two independent set systems Iout and Iin, which capture the outer (packing) constraint

and the inner (packing) constraint respectively. We can adaptively probe a subset P ⊆ U

of items sequentially and choose another subset C ⊆ P as the final set. When we probe

the ith item, its value is realized, which is sampled from the distribution πi. (The item

values are independent of each other.) We require that the sequence P of items that we

have probed must be in Iout and the set C of items that we output must be in Iin. Our goal

is to design a policy such that the expected value E[
∑

i∈C Xi] is maximized.

There are two kinds of constraint:

• Outer constraint Iout 1O: this is the constraint on the sequence of items that we can

probe. It requires that the sequence P of items that we have probed must be in Iout
and each item can be probed at most once.

1O Iout should be better understood as a collection of sequences. If Iout is a collection of subsets, then any sequence
of a subset in Iout can be probed.

3
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• Inner constraint Iin: this is the constraint on the set of items that we can finally

output. It requires that the set C of items that we output must be in Iin.
Depending on how we choose the final set C, we distinguish two natural models: the

committed and non-committed models 1O.

• Committed: once we probe an item to observe its value realization, we are com-

mitted to making an irrevocable decision whether to choose it or not, i.e., we must

either add it to the final chosen set C immediately or discard it forever.

• Non-committed: we can choose the set C after observing the values of all probed

items in P. In other words, the choice of C can be made after all value realizations

of the items in P, i.e., the probing stage.

In fact, every committed policy is a special case of non-committed policies. The stochas-

tic probing problem naturally generalizes the ProbeMax problem which is on the non-

committed model. Here, the outer constraint Iout is the simple m-uniform matroid,

i.e., Iout = {P | |P | ≤ m}. The inner constraint Iin is the 1-uniform matroid, i.e., we can

output one item. We can replace the outer constraint with some more general constraint,

e.g., a matroid. If we replace the inner constraint in ProbeMax with a k-uniform matroid

(i.e., Iin = {C | |C | ≤ k}), we obtain the ProbeTop-k problem. In this thesis, we assume

k is a constant. Now, we list our main results in Table 1.1. All approximation ratios in

Table 1.1 are compared to the best adaptive strategies.

Table 1.1 A summary of approximation ratios for the stochastic probing problem

Inner constraint Outer constraint Committed Non-committed

1-Uniform

Uniform, Partition
PTAS 1 − 1/e [17], 1/8 [14], PTAS

[Thm 1.5 in [11]] [Thm 1.1 in S4.4]

General matroid
PTAS

1 − 1/e [17]
[Thm 4.2 in S4.5.2]

Two matroids
PTAS 1/3 [Thm 4.6], 1/2 + ε

[Thm 4.2 in S4.5.2] [Thm 1.2 in S4.5.3 ]

k-Uniform Uniform, Partition
PTAS 1 − 1/e [17], PTAS

[Thm 4.3 in S4.5.1] [Corollary 4.1 in S4.4.2]

General matroid General matroid
1/2

1 − 1/e [17]
[Thm 4.6 in S4.6]

k in matroids kout matroids 1
k in+kout [Thm 4.6 in S4.6]

1O In [18], they are called online and offline decision-making models.
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For the stochastic probing problem, we denote commitment gap the upper bound on

the ratio of the value of the optimal non-committed policy to the value of the optimal

committed policy.

Theorem 1.2： The commitment gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

For the non-committed model, we denote adaptivity gap the upper bound on the ratio of the

value of the optimal adaptive policy to the value of the optimal non-adaptive policy. Our

techniques also allow us to derive the following useful result from the proof of Theorem

1.2, which improves the result of 3.51 in [18].

Corollary 1.1： The adaptivity gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

1.2 Stochastic Knapsack and Variants

Problem 1.3 (Stochastic Knapsack Problem (SKP))： We are given a knapsack of capac-

ity C and a set of n items, each item i ∈ [n] having a random size Xi with a known

distribution πi and a profit pi. Once we decide to insert an item i into a knapsack, we

observe its real size si which follows the distribution πi. We can adaptively insert the items

to the knapsack, as long as the capacity constraint is not violated. Once one item violates

the constraint, the selection process stops. The goal is to design a policy that maximizes

the expected total profit of all items that are successfully inserted into the knapsack.

This problem is a classical problem in stochastic combinatorial optimization. One

natural motivation is the stochastic scheduling problem as follows. Suppose we want to

schedule a subset of n jobs on a single machine. Each job has a processing time and a

profit. We have a fixed deadline and we want to gain as much profit as possible before the

deadline. However, the processing time of each job is a random variable and follows an

individual distribution.

We also consider adaptive policies which is very different from fixed set policies (see

Figure 1.2). The problem is likely to be PSPACE-hard (a variant of the problem and its

generalizations has been shown to be PASACE-hard [5]). Designing good approximation

algorithms for this problem has received considerable attention in recent years [5,6,11,20–22],

which we discuss in more detail in Chapter 5. Levin et al. [23] introduced another variant

of stochastic knapsack where all the profits are lost if we violate the constraint.
5
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Figure 1.2 Instance of the stochastic knapsack problem.
Notes: An optimal adaptive policy for the stochastic knapsack problem showed as a decision tree
achieves an expected profit of 1.75. An optimal nonadaptive policy inserts items in order 1, 2, 3, and
achieves expected an profit of 1.5.

Problem 1.4 (Stochastic Blackjack Knapsack (SBK))： In this problem, we are given an

instance J = (π,C). Our goal is to design an adaptive policy such that the expected total

profits of all items inserted is maximized. The difference from SKP is that we gain zero

profit if the total size of all items inserted is larger than the capacity C.

Theorem 1.3： There exists a PTAS for stochastic blackjack knapsack if we relax the

capacity to (1 + ε)C. In other words, for any given constant ε > 0, there is a polynomial-

time approximation algorithm that finds a policy with the expected profit at least (1−ε)OPT

if we relax the capacity to (1+ε)C, where OPT is the expected profit of an optimal adaptive

policy for the stochastic blackjack knapsack without relaxing the capacity.

As a variant of stochastic knapsack, another problem is motivated by fishing ground

selection. Assume that Jack has a fishing ship and is ready to go fishing. There are several

fishing grounds to choose from. The yields of fishing grounds can be estimated by almost

real time oceanographic analysis and historical figures in advance. But, the yield of a

fishing ground is a random variable which will not be realized until the end of harvesting

at that location. Due to the limited number of fishing trips, how to pick the right fishing

ground to fill up the storage with the highest probability. This problem can be expressed

by the following model.

Problem 1.5 (Stochastic Target Problem)： We are given a predetermined target T and

a set of n items. Each item i ∈ [n] has a profit Xi which is an independent random

6
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variable with a known (discrete) distribution πi. Once we decide to insert an item i into

a knapsack, we observe a profit realization Xi which follows the distribution πi. We can

insert at most m items into the knapsack and our goal is to design an adaptive policy such

that Pr[
∑

i∈P Xi ≥ T] is maximized, where P ⊆ [n] is the set of inserted items.

Theorem 1.4： There exists an additive PTAS for stochastic target problem if we relax the

target to (1−ε)T. In other words, for any given constant ε > 0, there is a polynomial-time

approximation algorithm that finds a policy such that the probability of the total rewards

exceeding (1 − ε)T is at least OPT − ε 1O, where OPT is the resulting probability of an

optimal adaptive policy.

Figure 1.3 Instance of the stochastic target problem.
Notes: An optimal adaptive policy for stochastic target problem shown as a decision tree reaches the
target with probability 0.75. The optimal non-adaptive policy is to select items 1 and 3 for which the
probability of reaching the target level is Pr[X1 + X3 ≥ 30] = 0.5.

The benefit of an adaptive solution can be shown by a simple example. See Figure

1.3. As this example shows, it may significantly increase the optimal value of the objective

function if one uses an adaptive policy. Now, we list our main results in Table 1.2.

If the sizes of items are bounded, we have following theorem, which can be found in

Section 5.4.3.

Theorem 1.5： For any ε ∈ (0, 1), there is a polynomial algorithm that finds a (1 − 4ε)-

approximate adaptive policy for stochastic knapsack problem when the sizes are bounded

by ε, i.e., for any i ∈ [n], Pr[si ≤ ε] = 1.

1O Since the upper bound of the probability for the stochastic target problem is 1, we get the an additive PTAS, not a
multiplicative.

7
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Table 1.2 A summary of approximation ratios for the stochastic knapsack and variants

Problem single-criterion approx
bi-criterion approx (C relaxed to

(1 + ε)C or T relaxed to (1 − ε)T)

SKP 1
3 − ε [5], 3

8 − ε [6], 1
2 − ε [22] 1 − ε [6,11]

[Theorem 5.1 in S5.4]

SBK
(
√

2 − 1)2/2 ≈ 1/11.66 [23] 1 − ε
1/8 − ε [Theorem 5.4 in S5.5.3] [Theorem 1.3 in S5.5]

STP -
OPT − ε

[Theorem 1.4 in S5.6]

1.3 Stochastic Dynamic Programs

The above problems are all important stochastic optimization problems. From three

examples (Figure 1.1,1.2,1.3), we can see the advantages of adaptive strategies. But it

is quite difficult to design an adaptive strategy. This is because the decision tree corre-

sponding to the optimal strategy may be exponentially large and arbitrarily complicated.

Therefore, it would seem impossible to represent an optimal decision tree in a polynomial

space. This is why researcher is keen to design non-adaptive strategies. In this disserta-

tion, we provide a solution. To solve these problems, we develop a generic model that is

based on the stochastic dynamic program. We also design an effective polynomial-time

approximation algorithm for it to find adaptive strategies. There are a number of other

stochastic optimization problems fit in this model, including those mentioned earlier.

Consider an online stochastic optimization problem with a finite number of rounds.

There are a set of tasks (or items, boxes, jobs or actions). In each round, we can choose

a task and each task can be chosen at most once. We have an initial “state” of the system

(called the value of the system). At each time period, we can select a task. Finishing

the task generates some (possibly stochastic) feedback, including changing the value of

the system and providing some profit for the round. Our goal is to design a strategy to

maximize our total (expected) profit.

Problem 1.6 (Stochastic Dynamic Programs)： Given a 6-tuple (V,A, f , g, h,T ). Here,

V is the set of all possible values of the system. A is a finite set of items or tasks which

can be selected and each item can be chosen at most once. This model proceeds for at

most T rounds. At each round t ∈ [T], we use It ∈ V to denote the current value of the

system and At ⊆ A the set of remaining available items. If we select an item at ∈ At ,

the value of the system changes to f (It, at ). Here f may be stochastic and is assumed

to be independent for each item at ∈ A. Meanwhile the system yields a random profit
8
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g(It, at ). The function h(IT+1) is the terminal profit function at the end of the process. We

begin with the initial value I1 ∈ V . The goal is to find an adaptive policy that maximizes

the expectation of the total profits E
[∑T

t=1 g(It, at ) + h(IT+1)
]
.

In order to obtain a polynomial time approximation scheme (PTAS) for the stochastic

dynamic program, we need the following assumptions.

Assumption 1.1： In this thesis, we make the following assumptions.

1. The value spaceV is discrete and ordered, and size |V | is a constant. W.l.o.g, we

assumeV = {0, 1, . . . , |V | − 1}.
2. The function f satisfies that f (It, at ) ≥ It , which means the value is nondecreasing.

3. The function h : V → R≥0 is a nonnegative function. The expected profit

E[g(It, at )] is nonnegative (although the function g(It, at ) may be negative with

nonzero probability).

Assumption (1) seems to be quite restrictive. However, for several concrete problems

where the value space is not of constant size (e.g., ProbeMax, see Section 4.4), we can

discretize the value space and reduce its size to a constant, without losing much profit.

Assumption (2) and (3) are quite natural for many problems. Now, we state our main

result.

Theorem 1.6： For any fixed ε > 0, if Assumption 1.1 holds, we can find an adaptive

policy in polynomial time n2O(ε−3 ) with expected profit at least OPT − O(ε) · MAX. Here

MAX = maxI ∈V DP(I,A) is an upper bound for all initial value I ∈ V where DP(I,A) is

the expected profit of the optimal adaptive policy for initial value I and OPT = DP(I1,A)

is the expected profit for the given initial value I1.

By Theorem 1.6 and different discretization techniques, we obtain the first PTAS

for ProbeMax (Theorem 1.1), SBK (Theorem 1.3) and STP (Theorem 1.4). Theorem 1.6

also can be used to design PTASs for committed ProbeTop-k problem (see Section 4.5.1),

committed Pandora’s Box problem (see Section 4.5.4) and SKP (see Section 5.4). This

work is published in the 45th International Colloquium on Automata, Languages, and

Programming (ICALP2018) [24].

1.4 Outline

In Chapter 2, we list some of the basics of mathematics and computer science and

the terms that will be used in the dissertation. In Chapter 3, we discuss the stochastic
9
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dynamic program (Problem 1.6) and prove Theorem 1.6. In the next chapters, we discuss

a few problems and techniques in details. In particular, we discuss the stochastic probing

problem (Problem 1.2) and the ProbeMax (Problem 1.1) in Chapter 4, the stochastic knap-

sack (Problem 1.3), the stochastic target problem (Problem 1.5) and stochastic blackjack

knapsack (Problem 1.4) in Chapter 5. Finally, we summarize the dissertation in Chapter 6.
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第 2章 Preliminaries and Notations

For a maximization problem, we say an algorithm achieves approximation ratio of

α ≤ 1 if

E[SOL] ≥ αOPT,

here SOL denotes the value of the solution found by the algorithm, OPT denotes the

optimal value and the expectation is over the randomness of the problem instance and

the algorithm (if it is randomized). Similarly, for a minimization problem, we say an

algorithm achieves approximation ratio of α ≥ 1 if E[SOL] ≤ αOPT.

A polynomial time approximation scheme (PTAS) is an algorithm which takes an

instance of a maximization problem and a parameter ε and produces a solution whose

value is at least (1 − ε)OPT, and the running time is polynomial in the size of input, for

fixed ε. If ε appears as an additive factor in the above definition, namely the value of the

solution is at least OPT − ε, we say the algorithm is an additive PTAS. We say a PTAS is

a fully polynomial time approximation scheme (FPTAS) is the running time is polynomial

in the size of the input and 1
ε
.

2.1 Adaptive vs Non-adaptive

According to the permissions of the policy, we distinguish two classes of policies:

adaptive and non-adaptive.

• Adaptive: At each step, we can adaptively make decision based on the observations

so far. All the information regarding the previous actions of the policy is known.

In other words, the policy has access to the actual realized value of all the elements

it has picked so far.

• Non-adaptive: It does not have access to such information and should make their

decisions before observing the outcome of any of them.

We denote the adaptivity gap by the ratio between the values of optimal adaptive and

optimal non-adaptive policies. In this dissertation, if not specified, we are considering

adaptive policies.

11
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2.2 Prefix-close and Downward-closed

A pair (E,I) where I is a collection of sequences of distinct items from E is prefix-

closed if for every sequence I ∈ I, any prefix of I is also in I. This captures most

reasonable outer constraints, e.g., a tour of total length at most B in the metric space

(see [18] for more examples). A pair (E,I) where I is a collection of distinct (unordered)

items from E is downward-closed if for every set I ∈ I, any subset of I is also in I. In

the case when I is a collection of subsets of (unordered) items, I is prefix-closed iff I is

downward-closed.

2.3 Matroid

Definition 2.1： A pair (E,I) is called a matroid if E is a finite set and I is a nonempty

collection of subsets of E satisfying:

(i) if I ∈ I and J ⊆ I, then J ∈ I,

(ii) if I, J ∈ I and |I | < |J |, then I + z ∈ I for some z ∈ J \ I.

The rank of a matroid M = (E,I) is defined by rM := max{|Z | | Z ∈ I}. A uniform

matroid is determined by a set E and a number k where the independent sets are the

subsets I of E with |I | ≤ k. Partition matroids. Let Bi be a collection of disjoint sets, and

let di be integers with 0 ≤ di ≤ |Bi |. The independent sets are the subsets I of E such

that for every index i, |I ∩ Bi | ≤ di.

2.4 Submodular functions

Definition 2.2： A function f : 2[n] → R is called submodular, if and only if ∀S,T ⊆ [n],

f (S) + f (T ) ≥ f (S ∩ T ) + f (S ∪ T ).

It is called monotone if for any two subsets T ⊆ S ⊆ [n] : f (T ) ≤ f (S).

Linear function f (S) =
∑

i∈S wi for some weights {wi} is a special monotone sub-

modular function.
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第 3章 Stochastic Dynamic Programs

Stochastic dynamic program has been widely studied in computer science and op-

eration research (see, for example, [3,4]) and has many applications in different fields. It

is a natural model for decision making under uncertainty. In 1950s, Richard Bellman [2]

introduced the “principle of optimality” which leads to dynamic programming algorithms

for solving sequential stochastic optimization problems. However, Bellman’s principle

does not immediate lead to efficient algorithms for many problems due to “curse of

dimensionality” and the large state space.

Consider an online stochastic optimization problem with a finite number of rounds.

There are a set of tasks (or items, boxes, jobs or actions). In each round, we can choose

a task and each task can be chosen at most once. We have an initial “state” of the system

(called the value of the system). At each time period, we can select a task. Finishing

the task generates some (possibly stochastic) feedback, including changing the value of

the system and providing some profit for the round. Our goal is to design a strategy to

maximize our total (expected) profit.

3.1 Model

The above problem can be modeled as a class of stochastic dynamic programs

which was introduced by Bellman [2]. There are many problems in stochastic combina-

torial optimization which fit in this model, e.g., the stochastic knapsack problem [5], the

ProbeMax problem [14]. Formally, the problem is specified by a 6-tuple (V,A, f , g, h,T ).

Here, V is the set of all possible values of the system. A is a finite set of items or tasks

which can be selected and each item can be chosen at most once. This model proceeds for

at most T rounds. At each round t ∈ [T], we use It ∈ V to denote the current value of the

system and At ⊆ A the set of remaining available items. If we select an item at ∈ At ,

the value of the system changes to f (It, at ). Here f may be stochastic and is assumed

to be independent for each item at ∈ A. Using the terminology from Markov decision

processes, the state at time t is st = (It,At ) ∈ V × 2A . 1O Hence, if we select an item

1O This is why we do not call It the state of the system.
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at ∈ At , the evolution of the state is determined by the state transition function f :

st+1 = (It+1,At+1) = ( f (It, at ),At \ at ) t = 1, . . . ,T . (3-1)

Meanwhile the system yields a random profit g(It, at ). The function h(IT+1) is the terminal

profit function at the end of the process.

We begin with the initial state s1 = (I1,A). We choose an item a1 ∈ A. Then the

system yields a profit g(I1, a1), and moves to the next state s2 = (I2,A2) where I2 follows

the distribution f (I1, a1) and A2 = A \ a1. This process is iterated yielding a random

sequence

s1, a1, s2, a2, s3, . . . , aT, sT+1.

The profits are accumulated over T steps. 1O The goal is to find a policy that maximizes

the expectation of the total profits E
[∑T

t=1 g(It, at ) + h(IT+1)
]
. Formally, we want to

determine:

DP∗(s1) = max
{a1,...,aT }⊆A

E
[ T∑

t=1

g(It, at ) + h(IT+1)
]

(DP)

subject to: It+1 = f (It, at ), t = 1, . . . ,T .

By Bellman’s equation [2], for every initial state s1 = (I1,A), the optimal value DP∗(s1) is

given by DP1(I1,A). Here DP1 is the function defined by DPT+1(IT+1) = h(IT+1) together

with the recursion:

DPt (It,At ) = max
at ∈At

E
[
DPt+1( f (It, at ),At \ at ) + g(It, at )

]
, t = 1, . . . ,T . (3-2)

When the value and the item spaces are finite, and the expectations can be computed,

this recursion yields an algorithm to compute the optimal value. However, since the

state space S = V × 2A is exponentially large, this exact algorithm requires exponential

time. Since this model can capture several stochastic optimization problems which are

known (or believed) to be #P-hard or even PSPACE-hard, we are interested in obtaining

polynomial-time approximation algorithms with provable performance guarantees.

1O If less than T steps, we can use some special items to fill which satisfy that f (I, a) = I and g(I, a) = 0 for any
value I ∈ V .
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3.2 Our Results

In order to obtain a polynomial time approximation scheme (PTAS) for the stochastic

dynamic program, we need the following assumptions.

Assumption 3.1： In this thesis, we make the following assumptions.

1. The value spaceV is discrete and ordered, and size |V | is a constant. W.l.o.g, we

assumeV = {0, 1, . . . , |V | − 1}.
2. The function f satisfies that f (It, at ) ≥ It , which means the value is nondecreasing.

3. The function h : V → R≥0 is a nonnegative function. The expected profit

E[g(It, at )] is nonnegative (although the function g(It, at ) may be negative with

nonzero probability).

Assumption (1) seems to be quite restrictive. However, for several concrete problems

where the value space is not of constant size (e.g., ProbeMax in Section 4.4), we can

discretize the value space and reduce its size to constant, without losing much profit.

Assumption (2) and (3) are quite natural for many problems. Now, we state our main

result.

Theorem 3.1： For any fixed ε > 0, if Assumption 3.1 holds, we can find an adaptive

policy in polynomial time n2O (ε−3 ) with expected profit at least OPT − O(ε) · MAX where

MAX = maxI ∈V DP1(I,A) and OPT denotes the expected profit of the optimal adaptive

policy.

3.3 Main Technique

For the stochastic dynamic program, an optimal adaptive policy σ can be represented

as a decision tree T (see Section 3.5 for more details). The decision tree corresponding

to the optimal policy may be exponentially large and arbitrarily complicated. Hence, it

is unlikely that one can even represent an optimal decision for the stochastic dynamic

program in polynomial space. In order to reduce the space, we focus on a special class of

policies, called block adaptive policies. The idea of block policy was first introduced by

Bhalgat et al. [6] and further generalized in [11] to the context of the stochastic knapsack.

To the best of our knowledge, the idea has not been extended to other applications. In this

thesis, we make use of the notion of block policy as well, but we target at the development

of a general framework. For this sake we provide a general model of block policy (see
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Section 3.6). Since we need to work with the more abstract dynamic program, our

construction of block adaptive policy is somewhat different from that in [6,11].

Roughly speaking, in a block adaptive policy, we take a batch of items simultaneously

instead of a single one each time. This can significantly reduce the size of the decision

tree. Moreover, we show that there exists a block-adaptive policy that approximates the

optimal adaptive policy and has only a constant number of blocks on the decision tree

(the constant depends on ε). Since the decision tree corresponding to a block adaptive

policy has a constant number of nodes, the number of all topologies of the block decision

tree is a constant. Fixing the topology of the decision tree corresponding to the block

adaptive policy, we still need to decide the subset of items to place in each block. Again,

there are an exponential number of possible choices. For each block, we can define a

signature for it, which allows us to represent a block using polynomially many possible

signatures. The signatures are so defined such that two subsets with the same signature

have approximately the same reward distribution. Finally, we show that we can enumerate

the signatures of all blocks in polynomial time using dynamic programming and find a

nearly optimal block-adaptive policy. The high level idea is somewhat similar to that

in [11], but the details are again quite different.

3.4 Related Work

There are some constructive frameworks that provide approximation schemes for

certain classes of stochastic dynamic programs. Shmoys et al. [25] dealt with stochastic

linear programs. Halman et al. [26–28] studies stochastic discrete DPs with scalar state and

action spaces and designed an FPTAS for their framework. As one of the applications,

they used it to solve the stochastic ordered adaptive knapsack problem. In contrast, in our

model, the state space S = V × 2A is exponentially large and hence cannot be solved by

previous framework.

3.5 Policies and Decision Trees

An instance of stochastic dynamic program is given by J = (V,A, f , g, h,T ).

For each item a ∈ A and values I, J ∈ V , we denote Φa(I, J) := Pr[ f (I, a) = J]

and Ga(I) := E[g(I, a)]. The process of applying a feasible adaptive policy σ can be

represented as a decision tree Tσ. Each node v on Tσ is labeled by a unique item av ∈ A.

Before selecting the item av, we denote the corresponding time index, the current value
16
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and the set of the remaining available items by tv, Iv and A(v) respectively. Each node

has several children, each corresponding to a different value realization (one possible

f (Iv, av)). Let e = (v, u) be the s-th edge emanating from s ∈ V where s is the realized

value. We call u the s-child of v. Thus e has probability πe := πv,s = Φav
(Iv, s) and

weight we := s.

We use P(σ) to denote the expected profit that the policy σ can obtain. For each

node v on Tσ, we define Gv := Gav
(Iv). In order to clearly illustrate the tree structure, we

add a dummy node at the end of each root-to-leaf path and set Gv = h(Iv) if v is a dummy

node. Then, we recursively define the expected profit of the subtree Tv rooted at v to be

P(v) = Gv +
∑

e=(v,u)

πe · P(u), (3-3)

if v is an internal node and P(v) = Gv = h(Iv) if v is a leaf (i.e., the dummy node).

The expected profit P(σ) of the policy σ is simply P(the root of Tσ). Then, according to

Equation (3-2), we have

P(v) ≤ DPtv (Iv,A(v)) ≤ DP1(Iv,A) ≤ max
I ∈V

DP1(I,A) = MAX

for each node v. For a node v, we say the path from the root to it on Tσ as the realization

path of v, and denote it by R (v). We denote the probability of reaching v as Φ(v) =

Φ(R (v)) =
∏

e∈R (v) πe. Then, we have

P(σ) =
∑
v∈Tσ

Φ(v) · Gv . (3-4)

We use OPT to denote the expected profit of the optimal adaptive policy. For each node v

on the tree Tσ, by Assumption 1.1 (2) that f (Iv, av) ≥ Iv, we define µv := Pr[ f (Iv, av) >

Iv] = 1 − Φav
(Iv, Iv). For a set of nodes P, we define µ(P) :=

∑
v∈P µv.

Lemma 3.1： Given a policy σ, there is a policy σ′ with profit at least OPT − O(ε) ·
MAX which satisfies that for any realization path R, µ(R) ≤ O(1/ε), where MAX =

maxI ∈V DP1(I,A).

Proof. Consider a random realization path R = (v1, v2, . . . , vT+1) generated by σ. Recall

in Assumption 1.1 (1), the value space isV = {0, 1, · · · , |V | − 1}. For each node v on the

17



第 3章 Stochastic Dynamic Programs

tree, we define yv := E[ f (Iv, av)] − Iv, which is larger than

Iv · Pr[ f (Ia, av) = Iv] + (Iv + 1) · Pr[ f (Iv, av) > Iv] − Iv = Pr[ f (Iv, av) > Iv] = µv .

We now define a sequence of random variables {Yt }t∈[T+1]:

Yt = It −
t−1∑
i=1

yvi .

This sequence {Yi} is a martingale: conditioning on current value Yt , we have

E[Yt+1 | Yt] = E
It+1 −

t∑
i=1

yvi
��� Yt


= E

*,It −
t−1∑
v=1

yvi
+- + It+1 − It − yvt

��� Yt


= Yt + E[It+1 | Yt] − It − yvt = Yt .

The last equation is due to the definition of yvt . By the martingale property, we have

E[YT+1] = E[Yt] = Y1 = 0 for any t ∈ [T]. Thus, we have

|V | ≥ E[IT+1] = E


T∑
i=1

yvi

 = E

∑
v∈R

yv

 ≥ E [
µ(R)

]
.

Let E be the set of realization paths r on the tree for which µ(r) ≥ 1/ε. Then, we have

E[µ(R)] ≥ ∑
r ∈E

[
Φ(r) · 1

ε

]
which implies that

∑
r ∈E Φ(r) ≤ ε · E[µ(R)] ≤ O(ε), where

Φ(r) is the probability of passing the path r . For each path r ∈ E, let vr be the first node

on the path such that µ(R (vr )) ≥ 1/ε, where R (vr ) is the path from the root to the node

vr . Let F be the set of such nodes. For the policy σ, we have a truncation on the node vr

when we reach the node vr , i.e., we do not select items (include vr ) any more in the new

policy σ′. The total profit loss is at most

∑
v∈F

[Φ(v) · P(v)] ≤ MAX ·
∑
r ∈E
Φ(r) ≤ O(ε) · MAX,

where MAX = maxI ∈V DP1(I,A). □

18
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W.l.o.g, we assume that all (optimal or near optimal) policies σ considered in this paper

satisfy that for any realization R, µ(R) ≤ O(1/ε).

3.6 Block Adaptive Policies

The decision tree corresponding to the optimal policy may be exponentially large and

arbitrarily complicated. Now we consider a restrict class of policies, called block-adaptive

policy. The concept was first introduced by Bhalgat et al. [6] in the context of stochastic

knapsack. Our construction is somewhat different from that in [6,11]. Here, we need to

define an order for each block and introduce the notion of approximate block policy.

Formally, a block-adaptive policy σ̂ can be thought of as a decision tree Tσ̂. Each

node on the tree is labeled by a block which is a set of items. For a block M , we choose an

arbitrary order φ for the items in the block. According to the order φ, we take the items

one by one, until we get a bigger value or all items in the block are taken but the value does

not change (recall from Assumption 1.1 that the value is nondecreasing). Then we visit

the child block which corresponds to the realized value. We use IM to denote the current

value right before taking the items in the block M . Then for each edge e = (M, N ), it has

probability

πφe =
∑
a∈M


*.,

∏
φb<φa

Φb (IM, IM )+/- · Φa(IM, IN )


if IN > IM and πφe =
∏

a∈M Φa(IM, IM ) if IN = IM .

Similar to Equation (3-3), for each block M and an arbitrary order φ for M , we

recursively define the expected profit of the subtree TM rooted at M to be

P(M) = Gφ
M +

∑
e=(M,N )

πφe · P(N ) (3-5)

if M is an internal block and P(M) = h(IM ) if M is a leaf (i.e., the dummy node). Here

Gφ
M is the expected profit we can get from the block which is equal to

Gφ
M =

∑
a∈M


*.,

∏
φb<φa

Φb (IM, IM )+/- · Ga(IM )
 .

Since the profit Gφ
M and the probability πφe are dependent on the order φ and thus difficult
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to deal with, we define the approximate block profit and the approximate probability which

do not depend on the choice of the specific order φ:

G̃M =
∑
a∈M
Ga(IM ) and π̃e =

∑
a∈M


*.,

∏
b∈M\a

Φb (IM, IM )+/- · Φa(IM, IN )
 (3-6)

if IN > IM and π̃e =
∏

a∈M Φa(IM, IM ) if IN = IM . Then we recursively define the

approximate profit

P̃(M) = G̃M +
∑

e=(M,N )

π̃e · P̃(N ), (3-7)

if M is an internal block and P̃(M) = P(M) = h(IM ) if M is a leaf. For each block M , we

define µ(M) :=
∑

a∈M [1 − Φa(IM, IM )]. Lemma 3.2 below can be used to bound the gap

between the approximate profit and the original profit if the policy satisfies the following

property. Then it suffices to consider the approximate profit for a block adaptive policy σ̂

in this paper.

(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.

Lemma 3.2： For any block-adaptive policy σ̂ satisfying Property (P1), we have

(
1 +O(ε2)

)
· P̃(σ̂) ≥ P(σ̂) ≥

(
1 − ε2

)
· P̃(σ̂).

Proof. The right hand of this lemma can be proved by induction: for each block M on the

decision tree, we have

P(M) ≥ (1 − ε2) · P̃(M). (3-8)

If M is a leaf, we have P(M) = P̃(M) which implies that Equation (3-8) holds. For an

internal block M , by Property (P1), we have

Gφ
M ≥


∏
b∈M
Φb (IM, IM )

 ·
∑
a∈M
Ga(IM ) ≥

1 −
∑
b∈M

(
1 − Φb (IM, IM )

) ·G̃M ≥ (1−ε2) ·G̃M

if M has more than one item and Gφ
M = G̃M if M has only one item. For each edge
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e = (M, N ), we have πφe ≥ π̃e. Then, by induction, we have

P(M) = Gφ
M +

∑
e=(M,N )

πφe · P(N )

≥ (1 − ε2) · G̃M +
∑

e=(M,N )

π̃e ·
[
(1 − ε2) · P̃(N )

]
= (1 − ε2) · P̃(M). □

To prove the left hand of the lemma, we use Equation (3-4):

P(σ̂) =
∑
M ∈Tσ̂

Φ(M) · Gφ
M

where Φ(M) is the probability of reaching the block M . For each edge e = (M, N ), if

IM = IN or M has only one item, we have π̃e = πφe . Otherwise, we have

π̃e ≥

∏
b∈M
Φb (IM, IM )

 ·
∑
a∈M
Φa(IM, IN ) ≥ (1 − ε2) ·

∑
a∈M
Φa(IM, IN ) ≥ (1 − ε2) · πφe .

Then, for each block M and its realization path R (M) = (M0,M1, . . . ,Mm = M), we have

Φ̃(M)
Φ(M)

=

m−1∏
i=0

π̃(Mi,Mi+1)

π
φ
(Mi,Mi+1)

=
∏

i : IMi
<IMi+1

π̃(Mi,Mi+1)

π
φ
(Mi,Mi+1)

≥ (1 − ε2) |V | = 1 −O(ε2),

where the last inequality holds because the value is nondecreasing and |V | = O(1). Thus

we have

P̃(σ̂) =
∑
M ∈Tσ̂

Φ̃M · G̃M ≥
∑
M ∈Tσ̂

[(
1 −O(ε2)

) · Φ(M)
]
· GM ≥

(
1 −O(ε2)

)
· P(σ̂).

3.6.1 Constructing a Block Adaptive Policy

In this section, we show that there exists a block-adaptive policy that approximates

the optimal adaptive policy. In order to prove this, from an optimal (or nearly optimal)

adaptive policy σ, we construct a block adaptive policy σ̂ which satisfies certain nice

properties and can obtain almost as much profit as σ does. Thus it is sufficient to restrict

our search to the block-adaptive policies. The construction is similar to that in [11].
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Figure 3.1 Decision tree and block policy

Lemma 3.3： An optimal policyσ can be transformed into a block adaptive policy σ̂with

approximate expected profit P̃(σ̂) at least OPT−O(ε) ·MAX. Moreover, the block-adaptive

policy σ̂ satisfies Property (P1) and (P2):

(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.

(P2) There are at most O(ε−3) blocks on any root-to-leaf path on the decision tree.

Proof. For a node v on the decision tree Tσ and a value s ∈ V , we use vs to denote the

s-child of v, which is the child of v corresponding to the realized value s. We say an edge

ev,u is non-increasing if Iv = Iu and define the leftmost path of v to be the realization path

which starts at v, ends at a leaf, and consists of only the non-increasing edges.

We say a node v is a starting node if v is the root or v corresponds to an increasing

value of its parent v ′ (i.e., Iv > Iv′). For each staring node v, we greedily partition the

leftmost path of v into several segments such that for any two nodes u,w in the same

segment M and for any value s ∈ V , we have

|P(us) − P(ws) | ≤ ε2 · MAX and µ(M) ≤ ε2. (3-9)

Since µ(R) is at most O(1/ε) for each root-to-leaf path R by Lemma 3.1, the second

inequality in (3-9) can yield at most O(ε−3) blocks. Now focus on the first inequality in

(3-9). Fix a particular leftmost path Rv = (v0, v1, . . . , vm) from a starting node v(v = v0)

on Tσ. For each value s ∈ V , we have

MAX ≥ DP1(s,A) ≥ P(v0
s ) ≥ P(v1

s ) ≥ · · · ≥ P(vms ) ≥ 0.

Otherwise, replacing the subtree Tvis
with Tv

j
s

increases the profit of the policy σ for some

i < j ≤ m if P(vis) < P(v j
s ). Thus, for each particular size s ∈ V , we could cut the

path Rv at most ε−2 times. Since |V | = O(1), we have at most O(ε−2) segments on the
22
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leftmost path Rv. Now, fix a particular root-to-leaf path. Since the value is nondecreasing

by Assumption 1.1 (2), there are at most |V | = O(1) starting nodes on the path. Thus

the first inequality in (3-9) can yield at most O(ε−2) segments on the root-to-leaf path. In

total, there are at most O(ε−3) segments on any root-to-leaf path on the decision tree.

Algorithm 1 A policy σ̂
Input: A policy σ.

1: We start at the root of Tσ.

2: repeat
3: Suppose we are at node v on Tσ. Take the items in seg(v) one by one in the original

order (the order of items in policy σ) until some node u makes a transition to an

increasing value, say s.

4: Visit the node l (v)s, the s-child of l (v) (i.e., the last node of seg(v)).

5: If all items in seg(v) have be taken and the value does not change, visit l (v)Iv .

6: until A leaf on Tσ is reached. □

Now, we are ready to describe the algorithm, which takes a policy σ as input and

outputs a block adaptive policy σ̂. For each node v, we denote its segment seg(v) and

use l (v) to denote the last node in seg(v). In Algorithm 1, we can see that the set of items

which the policy σ̂ attempts to take always corresponds to some realization path in the

original policy σ. Property (P1) and (P2) hold immediately following from the partition

argument. Now we show that the expected profit P(σ̂) that the new policy σ̂ can obtain

is at least OPT −O(ε2) · MAX.

Our algorithm deviates the policy σ when the first time a node u in the segment

seg(v) makes a transition to an increasing value, say s. In this case, σ would visit us, the

s-child of u and follows Tus
from then on. But our algorithm visits l (v)s, the s-child of

l (v) (i.e., the last node of seg(v)), and follows Tl(v)s . The expected profit gap in each such

event can be bounded by

P(us) − P(l (v)s) ≤ ε2 · MAX,

due to the first inequality in Equation (3-9). Suppose σ pays such a profit loss, and

switches to visit l (v)s. Then, σ and our algorithm always stay at the same node. Note

that there are at most |V | = O(1) starting nodes on any root-to-leaf path. Thus σ pays at
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most O(1) times in any realization. Therefore, the total profit loss is at most O(ε2) ·MAX.

By Lemma 3.2, we have

P̃(σ̂) ≥
(
1 −O(ε2)

)
·P(σ̂) ≥

(
1 −O(ε2)

)
·
(
OPT −O(ε2) · MAX

)
≥ OPT−O(ε) ·MAX.

3.6.2 Enumerating Signatures

To search for the (nearly) optimal block-adaptive policy, we want to enumerate all

possible structures of the block decision tree. Fixing the topology of the decision tree,

we need to decide the subset of items to place in each block. To do this, we define the

signature such that two subsets with the same signature have approximately the same

profit distribution. Then, we can enumerate the signatures of all blocks in polynomial

time and find a nearly optimal block-adaptive policy. Formally, for an item a ∈ A and a

value I ∈ V = (0, 1, . . . , |V | − 1), we define the signature of a on I to be the following

vector

SgI (a) =
(
Φ̄a(I, 0), Φ̄a(I, 1), . . . , Φ̄a(I, |V | − 1), Ḡa(I)

)
,

where

Φ̄a(I, J) =
⌊
Φa(I, J) · n

ε4

⌋
· ε

4

n
and Ḡa(I) =

⌊
Ga(I) · n

ε4MAX

⌋
· ε

4MAX
n

for any J ∈ V . 1O For a block M of items, we define the signature of M on I to be

SgI (M) =
∑
a∈M

SgI (a).

Lemma 3.4： Consider two decision trees T1,T2 corresponding to block-adaptive policies

with the same topology (i.e., T1 and T2 are isomorphic) and the two block adaptive

policies satisfy Property (P1) and (P2). If for each block M1 on T1, the block M2 at the

1O If MAX = maxI∈V DP1(I,A) is unknown, for some several concrete problems (e.g., ProbeMax), we can get a
constant approximation result for MAX, which is sufficient for our purpose. In general, we can guess a constant
approximation result for MAX using binary search.
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corresponding position on T2 satisfies that SgI (M1) = SgI (M2) where I = IM1 = IM2 ,

then |P̃(T1) − P̃(T2) | ≤ O(ε) · MAX.

Proof. We focus on the case when M has more than one item. Recall that for each

e = (M, N ), we have

π̃e =
∑
a∈M


*.,

∏
b∈M\a

Φb (IM, IM )+/- · Φa(IM, IN )


if IN > IM and π̃e =
∏

a∈M Φa(IM, IM ) if IN = IM . For simplicity, we use (I, J) to

replace (IM, IN ) if the context is clear, and write π̃e as πIM if J = I and πJM if J > I.

Fixing a block M , for each item a ∈ M , we define µa := Pr
[

f (I, a) > I
]
. By

Property (P1) that µ(M) =
∑

a∈M [1 − Φa(I, I)] =
∑

a∈M µa ≤ ε2, we have

πIM =
∏
a∈M

(1−µa) ≤
(
1 −

∑
a∈M µa
|M |

) |M |
≤ exp

(−µ(M)
)≤ 1−µ(M)+µ(M)2 ≤ 1−µ(M)+ε4

and πIM =
∏

a∈M (1− µa) ≥ 1−∑
a∈M µa = 1− µ(M). Since

∑
a∈M Φa(I, J) ≤ ∑

a∈M µa

for any J > I, we have

πJM =


∏
b∈M
Φb (I, I)

 ·

∑
a∈M

Φa(I, J)
Φa(I, I)

 ≥ (1 − ε2) ·
∑
a∈M
Φa(I, J) ≥

∑
a∈M
Φa(I, J) − ε4.

It is straightforward to verify the following property when M has only one item:

πIM = 1 − µ(M) and πJM =
∑
a∈M
Φa(I, J) for any J > I .

Let M1,M2 be the root blocks of T1,T2 respectively. Since SgI (M1) = SgI (M2), we have

that

������
∑
a∈M1

Φa(I, J) −
∑
a∈M2

Φa(I, J)
������ ≤ ε4,

for any J ∈ V . Then, we have

πIM1
− πIM2

≤ 1 − µ(M1) + ε4 − (1 − µ(M2)) = (µ(M2) − µ(M1)) + ε4 = O(ε4).
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and for any J > I

πJM1
− πJM2

≤
∑
a∈M1

Φa(I, J) −
∑
a∈M2

Φa(I, J) + ε4 = O(ε4).

On the tree T1, we replace M1 with M2. For each s ∈ V , we use Ms to denote the s-child

of block M1 on T1. Then we have

P̃(M1) − P̃(M2) =
(
G̃M1 − G̃M2

)
+

∑
s∈V
P̃(Ms) ·

(
πsM1
− πsM2

)
≤ ε4 · MAX +O(ε4) · MAX

= O(ε4) · MAX.

We replace all the blocks on T1 by the corresponding blocks on T2 one by one from the

root to leaf. The total profit loss is at most
∑

M ∈T2

[
Φ(M) · O(ε4) · MAX

]
≤ O(ε)MAX,

where Φ(M) is the probability of reaching M . The inequality holds because the depth of

T2 is at most O(ε−3) by Property (P2), which implies that
∑

M ∈T2 Φ(M) ≤ O(ε−3). □

Since |V | = O(1), the number of possible signatures for a block is O
(
(n/ε4) |V |

)
=

nO(1), which is a polynomial of n. By Lemma 3.3, for any block decision tree T , there

are at most (|V |)O(ε−3) = 2O(ε−3) blocks on the tree which is a constant.

3.7 Finding a Nearly Optimal Block-adaptive Policy

In this section, we find a nearly optimal block-adaptive policy and prove Theorem 1.6.

To do this, we enumerate over all topologies of the decision trees along with all possible

signatures for each block. This can be done by a standard dynamic programming.

Consider a given tree topology T . A configuration C is a set of signatures each

corresponding to a block. Let t1 and t2 be the number of paths and blocks onT respectively.

We define a vector CA = (u1, u2, . . . , ut1 ) where u j is the upper bound of the number of

items on the jth path. For each given i ∈ [n],C and CA, letM (i,C,CA) = 1 indicate that

we can reach the configuration C using a subset of items {a1, . . . , ai} such that the total

number of items on each path j is no more than u j and 0 otherwise. SetM (0, 0, 0) = 1 and

we computeM (i,C,CA) in an lexicographically increasing order of (i,C,CA) as follows:

M (i,C,CA) = max
{
M (i − 1,C,CA),M (i − 1,C′,CA′)

}
(3-10)
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Now, we explain the above recursion as follows. In each step, we should decide how to

place the item ai on the tree T . Notice that there are at most t2 = (|V |)O(ε−3) = 2O(ε−3)

blocks and therefore at most 2t2 possible placements of item ai and each placement is

called feasible if there are no two blocks on which we place the item ai have an ancestor-

descendant relation. For a feasible placement of ai, we subtract Sg(ai) from each entry

in C corresponding to the block we place ai and subtract 1 from CA on each entry

corresponding to a path including ai, and in this way we get the resultant configuration C′

and CA′ respectively. Hence, the max is over all possible such C′,CA′.

We have shown that the total number of all possible configurations on T is nt2 . The

total number of vectors CA is T t1 ≤ nt1 ≤ nt2 = nt2 where T is the number of rounds. For

each given (i,C,CA), the computation takes a constant time O(2t2 ). Thus we claim for a

given tree topology, finding the optimal configuration can be done within O(n2O(ε−3 )
) time

.

Proof. (The proof of Theorem 1.6) Suppose σ∗ is the optimal policy with expected profit

P(σ∗) = OPT. We use the above dynamic programming to find a nearly optimal block

adaptive policy σ. By Lemma 3.3, there exists a block adaptive policy σ̂ such that

P̃(σ̂) ≥ OPT −O(ε)MAX.

Since the configuration of σ̂ is enumerated at some step of the algorithm, our dynamic

programming is able to find a block adaptive policy σ with the same configuration (the

same tree topology and the same signatures for corresponding blocks). By Lemma 3.4,

we have

P̃(σ) ≥ P̃(σ̂) −O(ε)MAX ≥ OPT −O(ε)MAX.

By Lemma 3.2, we have P(σ) ≥
(
1 − ε2

)
· P̃(σ) ≥ OPT − O(ε)MAX. Hence, the proof

of Theorem 1.6 is completed. □

3.8 Partition Matroid Constraint

Our model proceeds for at most T rounds and each items can be chosen at most once,

which forms a T-uniform matroid constraint. We can extend Theorem 1.6 to partition

matroid, i.e., the set of items satisfies partition matroid.
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This proof is the same argument structure to of Theorem 1.6, except the last step,

i.e., finding a nearly optimal block-adaptive policy which satisfies the partition matroid

(U,I). Let {Bi}i∈[ℓ] be a collection of disjoint sets, and let di be integers with 0 ≤ di ≤ |Bi |.
The independent setsI are the subsets I of U such that for every index i ∈ [ℓ], |I∩Bi | ≤ di.

Let t1 be the number of paths on T . In dynamic programming, let CA =

{ui, j }(i, j)∈[t1]×[ℓ] be a capacity vector where ui, j is the upper bound of the number of

items on Ri ∩ Bj (Ri is the ith path). SetM (0, 0, 0) = 1 and we computeM (i,C,CA) in

an lexicographically increasing order of (i,C,CA) as follows:

M (i,C,CA) = max
{
M (i − 1,C,CA),M (i − 1,C′,CA′)

}
. (3-11)

Note the order of items is arranged by the {Bi}i∈[ℓ]. For any i ∈ [t1], the total number

of capacity vectors CAi = {ui, j }j∈[ℓ] is
∑

i∈[ℓ] di. Then total number of vectors CA is

(
∑

i∈[ℓ] di)t1 which is polynomial.

3.9 Summary

In this chapter, we introduce a general framework for stochastic dynamic programs.

The main technical ingredient for obtaining the PTAS for the stochastic dynamic program

is the idea of block adaptive policy, which was previously used in the context of stochastic

knapsack. We believe the framework can be used in designing better approximation

algorithms for other stochastic optimization problems.
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第 4章 Stochastic Probing Problem

In this chapter, we focus on the stochastic probing problem. Recall that on the special

case ProbeMax, we are given n items, each associated with a known (discrete) distribution

{πi}i∈[n]. When we probe the ith item, its value is realized, which is an independent sample

from the distribution πi. We can adaptively probe at most m items and each item can

be probed at most once. The reward is the maximum among the m realized values. Our

goal is to design an adaptive probing policy such that the expected value of the reward is

maximized.

4.1 Model

The ProbeMax problem is a special case of the following general stochastic probing

framework which was formulated by Gupta et al. [18]: An instance J of the stochastic

probing problem is defined with tuple J = (U, π,I), where U is a set of n items, each

having a value Xi following a known (discrete) distribution πi, and π = {πi}[i∈U]. We

can probe a subset P ⊆ U of items sequentially and choose another subset C ⊆ P as the

final set. When we probe the ith item, its value is realized, which is sampled from the

distribution πi. (The item values are independent of each other.) Our goal is to design a

policy such that the expected value E[
∑

i∈C Xi] is maximized. The constraint I consists

of two independent set systems Iout and Iin, which capture the outer (packing) constraint

and the inner (packing) constraint respectively.

• Outer constraint Iout 1O: this is the constraint on the sequence of items that we can

probe. It requires that the sequence P of items that we have probed must be in Iout
and each item can be probed at most once.

• Inner constraint Iin: this is the constraint on the set of items that we can finally

output. It requires that the set C of items that we output must be in Iin.
Depending on how we choose the probing sequence P, we distinguish two classes of

policies: adaptive and non-adaptive.

• Adaptive: we can adaptively choose the next item to probe based on the observations

so far. In other words, at each time point we have access to the value realizations of

1O Iout should be better understood as a collection of sequences. If Iout is a collection of subsets, then any sequence
of a subset in Iout can be probed.
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all the items we have probed so far.

• Non-adaptive: We should make decisions before observing the value realization of

any of them. In other words, the probing sequence P is just a priori fixed probing

order (probably over a subset of items) which satisfies the outer constraint Iout .
In fact, every non-adaptive policy is a special case of adaptive policies. Depending on

how we choose the final set C, we distinguish two natural models: the committed and

non-committed models 1O.

• Committed: once we probe an item to observe its value realization, we are com-

mitted to making an irrevocable decision whether to choose it or not, i.e., we must

either add it to the final chosen set C immediately or discard it forever.

• Non-committed: we can choose the set C after observing the values of all probed

items in P. In other words, the choice of C can be made after all value realizations

of the items in P, i.e., the probing stage.

In fact, every committed policy is a special case of non-committed policies. The stochas-

tic probing problem naturally generalizes the ProbeMax problem which is on the non-

committed model. Here, the outer constraint Iout is the simple m-uniform matroid,

i.e., Iout = {P | |P | ≤ m}. The inner constraint Iin is the 1-uniform matroid, i.e., we can

output one item. We can replace the outer constraint with some more general constraint,

e.g., a matroid. If replace the inner constraint in ProbeMax with a k-uniform matroid

(i.e., Iin = {C | |C | ≤ k}), we obtain the ProbeTop-k problem. In this thesis, we assume

k is a constant.

There are four different types (AN,NN,AC,NC) of policies for the stochastic probing

problem as showed in Figure 4.1, where the first symbol indicates if a policy is adaptive

(A) or not (N) while the second indicates if a policy is committed (C) or not (N). For a

particular stochastic probing instance J , we use OPTAN(J ) to denote the expected value

of an optimal policy restricted to the type AN. We also use the shorthand notation OPTAN

if the context is clear. Similarly we have OPTAC(J ),OPTNN(J ) and OPTNC(J ).

Notice that OPTAN is no less than OPTNN and OPTAC for each given instance J .

Hence, it would be interesting to study the following quantities, called adaptivity gap and

commitment gap respectively, which measures how much the former can be larger than

the later.

Definition 4.1： (Adaptivity Gap 2O ) For a given stochastic probing instance J , we define

1O In [18], they are called online and offline decision-making models.
2O In [18], they considered the committed model and referred to the adaptivity gap as GapJ (AC,NC) = OPTAC (J )

OPTNC (J ) ,
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Figure 4.1 Adaptivity gap and Commitment gap

the adaptivity gap for instance J on the non-commited model as

AdaptiveGap(J ) =
OPTAN(J )
OPTNN(J )

(4-1)

Definition 4.2： (Commitment Gap 1O ) For a particular stochastic probing instance J , we

define the commitment gap for instance J as

CommitGap(J ) =
OPTAN(J )
OPTAC(J )

(4-2)

Consider the stochastic probing framework where the order of items we can probe is

fixed, instead of being chosen by the policy. This can be captured by the outer constraint

contains all prefix orders. For the special case in which we can only choose one item was

studied by Krengel et al. [29] back in the 70s. They designed a committed policy which

returns a single item of expected value at least half of E[maxi∈[n] Xi], i.e., there exists a

stopping rule τ such that

2 · E[Xτ] ≥ E[max
i∈[n]

Xi]. (4-3)

This is the well known Prophet Inequality, which implies that the commitment gap of

any ProbeMax problem is at most 2 when the outer constraint is induced by a fixed order.

Recently, Kleinberg and Weinberg [30] generalized the result when we are allowed to make

more than one selection, subject to a matroid inner constraint and showed that the factor

2 still can be achieved. They also showed that under an intersection of p matroids inner

constraint, a factor O(p) can be achieved. We call the factor prophet inequality factor and

denote as ProphetFactor(Iin) for an inner constraint Iin. Then, for an optimal type NN

policy for instance J , there exists a corresponding type NC policy with the same probing

order which achieves the expected value at least (1/ProphetFactor(Iin)) · OPTNN(J ),

which can be bounded by GapJ (AN,NN) × GapJ (NN,NC).
1O For non-adaptive policies, GapJ (NN,NC) = OPTNN (J )

OPTNC (J ) is bounded by a prophet inequality factor which we will
discuss later.

31



第 4章 Stochastic Probing Problem

where Iin is the inner constraint of J . Thus we have

GapJ (NN,NC) =
OPTNN(J )
OPTNC(J )

≤ ProphetFactor(Iin), (4-4)

where Iin is the inner constraint of J and the following proposition.

Proposition 4.1： For any stochastic probing instance J , we have

CommitGap(J ) ≤ AdaptiveGap(J ) × ProphetFactor(Iin), (4-5)

where Iin is the inner constraint of J .

4.2 Our Results

ProbeMax problem: Despite being a very basic stochastic optimization problem,

we still do not have a complete understanding of the approximability of the ProbeMax

problem. It is not even known whether it is intractable to obtain the optimal policy. For

the non-adaptive ProbeMax problem (i.e., the probed set P is just a priori fixed set), it

is easy to obtain a 1 − 1/e approximation by noticing that f (P) = E[maxi∈P Xi] is a

submodular function (see e.g., Chen et al. [13]). Chen et al. [13] obtained the first PTAS.

When considering the adaptive policies, Munagala [14] provided a 1
8-approximation ratio

algorithm by LP relaxation. His policy is essentially a non-adaptive policy (it is related

to the contention resolution schemes [15,16]). They also showed that the adaptivity gap

is at most 3. For the ProbeMax problem, the best-known approximation ratio is 1 − 1
e
.

Indeed, this can be obtained using the algorithm for stochastic monotone submodular

maximization in Asadpour et al. [17]. This is also a non-adaptive policy, which implies the

adaptivity gap is at most e
e−1 . In this thesis, we provide the first PTAS, among all adaptive

policies. Note that our policy is indeed adaptive.

Theorem 4.1： There exists a PTAS for the ProbeMax problem among all adaptive poli-

cies. In other words, for any fixed constant ε > 0, there is a polynomial-time approximation

algorithm for the ProbeMax problem that finds a policy (type AN) with the expected value

at least (1 − ε)OPTAN.

Our techniques also allow us to derive the following result.
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Corollary 4.1： For the ProbeTop-k problem,

1. There is a polynomial time algorithm that finds a policy (type AN) with the expected

value at least (1 − ε)OPTAN.

2. There is a polynomial time algorithm that finds a non-adaptive policy (type NN)

with the expected value at least (1 − ε)OPTNN.

Our techniques: We use the framework formulated in Chapter 3. Let the value It be the

maximum among the realized values of the probed items at the time period t. Then, we

have the following system dynamics for ProbeMax:

It+1 = f (It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (4-6)

t = 1, 2, . . . ,T . Clearly, Assumption 1.1 (2) and (3) are satisfied. But Assumption 1.1

(1) is not satisfied because the value space V is not of constant size. Hence, we need to

discretize the value space and reduce its size to constant. See Section 4.4 for more details.

Table 4.1 A summary of approximation ratios for the stochastic probing problem

Inner constraint Outer constraint Committed OPTAC Non-committed OPTAN

1-Uniform

Uniform, Partition
PTAS 1 − 1/e [17], 1/8 [14]

[Theorem 1.5 in [11]] PTAS [Theorem 4.1]

General matroid
PTAS

1 − 1/e [17]
[Theorem 4.2]

Two matroids
PTAS 1/3 [Theorem 4.6]

[Theorem 4.2] 1/2 + ε [Theorem 4.2, 4.4] 1O

k-Uniform Uniform, Partition
PTAS 1 − 1/e [17],

[Theorem 4.3] PTAS [Corollary 4.1]

General matroid General matroid
1/2

1 − 1/e [17]
[Theorem 4.6]

k in matroids kout matroids 1
k in+kout [Theorem 4.6]

Committed ProbeMax Problem: We call the committed ProbeMax problem when the

item is chosen in the committed way. A PTAS for the committed ProbeMax problem can

be obtained by a reduction from the committed stochastic knapsack (see Chapter 5) while

1O The PTAS for the committed ProbeMax problem provides a (0.5 + ε)-approximation ratio for the non-committed
ProbeMax problem by Theorem 4.4.
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the capacity is 1 and each item has a fixed size 1. Based on the similar technique and Multi-

budget optimization [31], we can obtain the first PTAS for the committed ProbeMax problem

with more general outer constraint. For the committed ProbeTop-k problem, we use the

framework of stochastic dynamic program formulated in Chapter 3 to obtain a PTAS.

Theorem 4.2： There is a polynomial time algorithm that finds a committed policy (type

NC) with the expected value at least (1 − ε)OPTAC for the committed ProbeMax problem

when the outer constraint is a matroid or the intersection of two matroids.

Theorem 4.3： There is a polynomial time algorithm that finds a committed policy with

the expected profit at least (1 − ε)OPTAC for the committed ProbeTop-k problem, where

OPTAC is the expected total profit obtained by the optimal policy.

Our techniques: On the committed ProbeMax problem, we are committed to making a

decision immediately whenever we probe an item. If we accept the item, we stop, otherwise

reject the item and go on. Thus a committed policy for the committed ProbeMax problem

can be represented by a path, rather than a decision tree. Then we can approximate the

signature of the path by multi-budget optimization to get a nearly optimal policy.

For the committed ProbeTop-k problem, we use the framework of stochastic dynamic

program formulated in Chapter 3 to obtain a PTAS. More precisely, let bθ
i represent the

action that we probe item i with the threshold θ (i.e., we choose item i if Xi realizes to

a value s such that s ≥ θ). Let It be the the number of items that have been chosen at

the period time t. Using our framework, we have following transition dynamics for the

ProbeTop-k problem.

It+1 = f (It, bθ
i ) =


It + 1 if Xi ≥ θ, It < k,

It otherwise;
g(It, bθ

i ) =


Xi if Xi ≥ θ, It < k,

0 otherwise;
(4-7)

for t = 1, 2, . . . ,T , and h(IT+1) = 0. Since k is a constant, Assumption 1.1 is immediately

satisfied. There is one extra requirement for the problem: in any realization path, we can

choose at most one action bθ
i from the set Bi = {bθ

i }θ . See Section 4.5.1 for more details.

Commitment Gap: Gupta et al. [18] showed that the adaptivity gap of any stochastic

probing problem where the outer constraint is prefix-closed and the inner constraint is an

intersection of p matroids is at most O(p3 log(np)), where n is the number of items. By

Proposition 4.1, we can immediately obtain that the commitment gap of any stochastic
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probing problem is at most O(p · p3 log(np)) for the same inner outer constraints. Now,

we bound the commitment gap for the uniform matroid inner constraint and an arbitrary

prefix-closed outer constraint.

Theorem 4.4： The commitment gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

Note that Theorem 4.4 is a generalization of Inequality (4-3) which considered a

special case when the inner constraint is a 1-uniform matroid while the outer constraint

is induced by a fixed order. Notice that the factor 2 in Inequality (4-3) is tight, which

implies the result in Theorem 4.4 is also tight. Our techniques also allow us to derives the

following useful result from the proof of Theorem 4.4, which improves the result of 3.51

in [18].

Corollary 4.2： The adaptivity gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

Our techniques: Before talking about our techniques, we present the previous approaches

to bounding the adaptivity gap for arbitrary outer constraints. Gupta et al. [18,32] worked

on the optimal decision tree directly. In order to upper bound the adaptive gap, they took

a random path (following the probability of the path in the tree) down the tree and showed

that the expected value of this path, regarded as a non-adaptive strategy, was good. A

natural way is to consider the best path of the tree which with the best the expected value,

instead of the random path following a distribution. Our approach derives from this and

shows that there exists a path with the expected value of OPTAN
2 . The algorithm is quite

simple: compute an identical threshold and accept the items whose values exceed the

threshold on the path. This is a non-adaptive committed (type NC) policy.

Committed Pandora’s Box Problem: For Weitzman’s “Pandora’s box” problem [33], we

are given n boxes. For each box i ∈ [n], the probing cost ci is deterministic and the value

Xi is an independent random variable with a known (discrete) distribution πi. Opening a

box i incurs a cost of ci. When we open the box i, its value is realized, which is a sample

from the distribution πi. The goal is to adaptively open a subset P ⊆ [n] to maximize the

expected profit:

E
max
i∈P
{Xi} −

∑
i∈P

ci
 .
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Weitzman provided an elegant optimal adaptive strategy, which can be computed in

polynomial time. Recently, Singla [34] generalized this model to other combinatorial

optimization problems such as matching, set cover and so on. In this section, we focus

on the committed model. Again, we can adaptively open the boxes and choose at most

k values in the committed way, where k is a constant. Our goal is to design an adaptive

policy such that the expected value

E

∑
i∈C

Xi −
∑
i∈P

ci


is maximized, where C ⊆ P is the final chosen set and P is the set of opened boxes.

Although the problem looks like a slight variant of Weitzman’s original problem, it is

quite unlikely that we can adapt Weitzman’s argument (or any argument at all) to obtain

an optimal policy in polynomial time. When k = O(1), we provide the first PTAS for this

problem. Note that a PTAS is not known previously even for k = 1.

Theorem 4.5： When k = O(1), there is a polynomial time algorithm that finds a

committed policy with the expected value at least (1 − ε)OPT for the committed

Pandora’s Box problem.

Our techniques: Similar to the committed ProbeTop-k problem, let bθ
i represent the

action that we open the box i with threshold θ. Let It be the number of boxes that

have been chosen at the time period t. Using our framework, we have following system

dynamics for the committed Pandora’s Box problem:

It+1 = f (It, bθ
i ) =


It + 1 if Xi ≥ θ, It < k,

It otherwise;
g(It, bθ

i ) =


Xi − ci if Xi ≥ θ, It < k,

−ci otherwise;
(4-8)

for t = 1, 2, · · · ,T , and h(IT+1) = 0. Notice that we never take an action bθ
i for a value

It < k if E[g(It, bθ
i )] = Pr[Xt ≥ θ] · E[Xi | Xi ≥ θ] − ci < 0. Then Assumption 1.1 is

immediately satisfied. See Section 4.5.4 for more details.

Stochastic Probing: The Bernoulli version of stochastic probing was introduced in [16],

where each item i ∈ U has a fixed value wi and is “active” with an independent probability

pi. If an item i is probed and found to be “active”, then it must be added to the final

set C. It can be equivalently viewed as a special case of stochastic probing when each

item has a Bernoulli random value Xi which is equal to wi with pi and 0 otherwise. They
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essentially considered the committed setting since we would never probe an item which we

prepare to discard when it is “active”. Gupta et al. [16] presented a framework which yields

a 1
4(k in+kout ) -approximation algorithm for the case when Iin and Iout are respectively an

intersection of k in and kout matroids. This ratio was improved to 1
(k in+kout ) by Adamczyk

et al. [35] using the iterative randomized rounding approach. We generalize this result to

the case when the value of each item is no longer restricted as a Bernoulli random variable.

Our approach is a slight generalization of [16,35].

Theorem 4.6： There is a polynomial time algorithm that finds an adaptive committed

policy (type AC) for the stochastic probing problem with the expected value at least
OPTAN

k in+kout , when Iout is an intersection of kout matroids and Iin is an intersection of k in

matroids.

4.3 Related work

If there is no outer constraint for the stochastic probing on the committed model,

i.e., we can probe any sequence of items we need, this is called Bayesian online selec-

tion problem (BOSP). Chawla et al. [36] proposed a simple mechanism, called sequential

posted pricing mechanism (SPM), for Bayesian single-parameter auctions. They gave a

committed algorithm with a ratio of 1
2 (compares to the best non-committed policy) for

BOSP where the inner constraint is a matroid and Yan [37] improved the ratio to 1 − 1
e

which is tight. This implies that the commitment gap for the matroid inner constraint is

at most 1 − 1
e

when there is no outer constraint.

In another setting, the order is random instead of being chosen by the policy, which

was introduced by Esfandiari et al. [38]. The approximation ratio for the single-item case

can be improved from 1
2 to 1 − 1

e
which compares to the prophet inequality where the

order is fixed. They called this prophet secretary problem and showed that the upper

bound of the ratio is 0.75. When the distributions of items are unknown and the order

is random, this is the traditional secretary problem, introduced by Dynkin in 1960s [39].

They designed a simple committed strategy with a ratio of 1
e

which is tight for large n.

Kleinberg [40] provided an algorithm with ratio of 1 − O(
√

1/k) when inner constraint is

a k-uniform matroid. However, for the general matroid inner constraint, the current best

ratio is O(1/ log log r) [41,42], where r is the rank of the given matroid.
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4.4 ProbeMax Problem

In this section, we demonstrate the application of our framework to the ProbeMax

problem. Define the value set S =
∪

i∈[n] Si where Si is the support of the random variable

Xi and the item set A = {1, 2, . . . , n}. Let the value It be the maximum among the

realized values of the probed items at the time period t. Thus, we begin with the initial

value I1 = 0. Since we can probe at most m items, we set the number of rounds to be

T = m. When we probe an item i and observe its value realization, say Xi, we have the

system dynamic functions

It+1 = f (It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (4-9)

for It ∈ S and t = 1, 2, . . . ,T . Assumption 1.1 (2,3) is immediately satisfied. But

Assumption 1.1 (1) is not satisfied because the value space S is not of constant size.

Hence, we need discretization.

4.4.1 Discretization

Now, we need to discretize the value space, using parameter ε. We start with a

constant factor approximate solution ÕPT for the ProbeMax problem with OPT ≥ ÕPT ≥
(1 − 1/e)2OPT (this can be obtained by a simple greedy algorithm See e.g., Appendix

C of [13]). Let X be a discrete random variable with a support S = (s1, s2, . . . , sl) and

psi = Pr[X = si]. Let θ = ÕPT
ε

be a threshold. For “large” size si, i.e., si ≥ θ, set

DX (si) = θ. For “small” size si, i.e., si < θ, set DX (si) =
⌊

si

εÕPT

⌋
εÕPT. We use

V = {0, εÕPT, . . . , ÕPT/ε} to denote the discretized support. Now, we describe the

discretized random variable X̃ with the supportV . For “large” size, we set

p̃θ = Pr[X̃ = θ] = Pr[X ≥ θ] · E[X | X ≥ θ]
θ

. (4-10)

Under the constraint that the sum of probabilities remains 1, for “small” size d ∈ V \ {θ},
we scale down the probability by setting

p̃d = Pr[X̃ = d] =
1 − Pr[X̃ = θ]

Pr[X < θ]
· *.,

∑
s∈S,DX (s)=d

Pr[X = s]+/- ≤
∑

s∈S,DX (s)=d

Pr[X = s].

(4-11)
38



第 4章 Stochastic Probing Problem

Although the above discretization is quite natural, there are some technical details.

We know how to solve the problem for the discretized random variables supported onV
but the realized values are in S. Hence, we need to introduce the notion of canonical

policys (the notion was introduced in Bhalgat et al. [6] for stochastic knapsack). The policy

makes decisions based on the discretized sizes of variables, not their true size. More

precisely, when the canonical policy σ̃ probes an item X which realizes to s ∈ S, the

policy makes decisions based on discretized size DX (s). In this following lemma, we

show it suffices to only consider canonical policies. We use P(σ, π) to denote the expected

profit that the policy σ can obtain with the given distribution π.

Lemma 4.1： Let π = {πi} be the set of distributions of random variables and π̃ be the

discretized version of π. Then, we have:

1. For any policy σ, there exists a (canonical) policy σ̃ such that

P(σ̃, π̃) ≥ (1 −O(ε))P(σ, π) −O(ε)OPT;

2. For any canonical policy σ̃,

P(σ̃, π) ≥ P(σ̃, π̃).

Proof. (The proof of Theorem 4.1) Suppose σ∗ is the optimal policy with expected profit

P(σ∗, π) = OPT. Given an instance π, we compute the discretized distribution π̃. By

Lemma 4.1 (1), there exists a canonical policy σ̃∗ such that

P(σ̃∗, π̃) ≥ (1 −O(ε)) · P(σ∗, π) −O(ε)OPT = (1 −O(ε))OPT.

Now, we present a stochastic dynamic program for the ProbeMax problem with the

discretized distribution π̃. Define the value set V = {0, εÕPT, . . . , ÕPT/ε} and the item

set A = {1, 2, . . . , n}, and set T = m and I1 = 0. When we probe an item i to observe its

value realization, say Xi, we define the system dynamic functions to be

It+1 = f (It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (4-12)

for It ∈ V and t = 1, 2, . . . ,T . Then Assumption 1.1 is immediately satisfied. By
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Theorem 1.6, we can find a policy σ with profit at least

OPTd −O(ε2) · MAX,

where OPTd denotes the expected profit of the optimal policy for the discretized version

π̃ and MAX = maxI ∈V DP1(I,A) = DP1(ÕPT/ε,A) = ÕPT/ε. We can see that OPTd ≥
P(σ̃∗, π̃) ≥ (1 −O(ε))OPT. Thus, by Lemma 4.1 (2), we have

P(σ, π) ≥ P(σ, π̃) ≥ OPTd−O(ε2)MAX ≥ (1−O(ε))OPT−O(ε)OPT = (1−O(ε))OPT,

which completes the proof. □

Proof. (Proof of Lemma 4.1) Recall that for each node v on the decision tree Tσ, the value

Iv is the maximum among the realized value of the probed items right before probing the

item av. For a path R, we use W (R) to the denote the value of the last node on the path.

Let E be the set of all root-to-leaf paths in Tσ. Then we have

P(σ, π) =
∑
r ∈E
Φ(r) ·W (r). (4-13)

For the first result of Lemma 4.1, we prove that there is a randomized canonical

policy σr such that P(σr, π̃) ≥ (1−O(ε))P(σ, π) −O(ε)OPT. Thus such a deterministic

policy σ̃ exists. Let θ = ÕPT
ε

be a threshold. We interrupt the process of the policy σ on

a node v when the first time we probe an item whose weight exceeds this threshold to get

a new policy σ′ i.e., we have a truncation on the node v and do not probe items (include

v) any more in the new policy σ′. The total profit loss is equal to

∑
v∈LF
Φ(v) · [P(v) − Iv] ≤

∑
v∈LF
Φ(v) · OPT = OPT ×

∑
v∈LF
Φ(v) ≤ O(ε) · OPT,

where LF is the set of the nodes on which we have a truncation. The last inequality holds

because OPT ≥ ∑
v∈LF Φ(v) · P(v) ≥ θ ·∑v∈LF Φ(v).

The randomized policy σr is derived from σ′ as follows. T (σr, π̃) has the same

tree structure as T (σ′, π). If σr probes an item X̃ and observes a discretized size d ∈ V ,
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it chooses a random branch in T (σr, π̃) among those sizes that are mapped to d, i.e.,

{we | DX (we) = d} according to the probability distribution

Pr[branch e is chosen] =
Pr[X = we]∑

s |DX (s)=d Pr[X = s]
.

Then by Equation (A-8), if we < θ we have

p̃e = Pr[X̃ = d] · Pr[branch e is chosen] = pe ·
1 − Pr[X̃ = θ]

Pr[X < θ]

and

w̃e =

⌊
we

εÕPT

⌋
· εÕPT ≥ we − εÕPT.

Fact： For any node v in the tree T (σ′, π) such that Iv < θ, we have

Φ̃(v) ≥ (1 −O(ε))Φ(v). (4-14)

When we regard the path R (v) as a policy, the expected profit of the path R (v) can obtain

is at least

θ ·
1 −

∏
i∈R (v)

(
1 − Pr[X̃i = θ]

) ,
which is less than OPT, where R (v) is the path from the root to the node v. Then we have∏

i∈R (v)

(
1 − Pr[X̃i = θ]

)
≥ 1 −O(ε), which implies that

Φ̃(v) = Φ(v) ·
∏

i∈R (v)

1 − Pr[X̃i = θ]
Pr[Xi ≤ θ]

≥ (1 −O(ε))Φ(v).

Now we bound the profit that we can obtain from T (σr, π̃). Let E be the set of all

root-to-leaf paths in T (σ′, π). We split it into two parts E1 = {r ∈ E : W (r) < θ} and

E2 = {r ∈ E : W (r) ≥ θ}. For the first part, we have

∑
r ∈E1

Φ̃(r) · W̃ (r) ≥
∑
r ∈E1

Φ̃(r) ·
[
W (r) −O(εÕPT)

]
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≥ (1 −O(ε))

∑
r ∈E1

Φ(r) ·W (r)
 −O(εÕPT).

As mentioned before, for any path r ∈ E2, we interrupt the process of the policy σ when

the first time we probe an item whose weight exceeds this threshold θ. We use ℓr to denote

the item for path r . By Equation (A-7), we have Pr[X̃ = θ] · θ = Pr[X ≥ θ] ·E[X | X ≥ θ].
Then, we have

∑
r ∈E2

Φ̃(r) · W̃ (r) =
∑
r ∈E2

Φ̃(ℓr ) · Pr[X̃ℓr = θ] · θ

=
∑
r ∈E2

Φ̃(ℓr ) · Pr[Xℓr ≥ θ] · E[Xℓr | Xℓr ≥ θ]

≥
∑
r ∈E2

(1 −O(ε))Φ(ℓr ) · Pr[Xℓr ≥ θ] · E[Xℓr | Xℓr ≥ θ]

= (1 −O(ε))
∑
r ∈E2

Φ(r) ·W (r).

In summation, the expected profit P(σr, π̃) is equal to

∑
r ∈E
Φ̃(r) · W̃ (r) ≥ (1 −O(ε))

∑
r ∈E
Φ(r) ·W (r) −O(εÕPT)

= (1 −O(ε))P(σ′, π) −O(ε)OPT

= (1 −O(ε))P(σ, π) −O(ε)OPT.

Next, we prove the second result of Lemma 4.1. Recall that a canonical policy

makes decisions based on the discretized sizes. Then T (σ̃, π) has the same tree structure

as T (σ̃, π̃), except that it obtains the true profit rather than the discretized profit. By

Equation (A-8), for an edge e with a weight w̃e < θ on T (σ̃, π̃), we have

πe =
∑

s∈S:DX (s)=w̃e

Pr[X = s] ≥ π̃e.

Fact： For any node v in the tree T (σ̃, π̃) with Iv < θ, we have

Φ̃(v) ≤ Φ(v). (4-15)
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Similarly, we split the root-to-leaf paths set E into two parts E1 = {r ∈ E : maxe∈r w̃e < θ}
and E2 = {r ∈ E : maxe∈r w̃e = θ}. Then, we have

P(σ̃, π̃) =
∑
r ∈E1

Φ̃(r) · W̃ (r) +
∑
r ∈E2

Φ̃(r) · W̃ (r)

=
∑
r ∈E1

Φ̃(r) · W̃ (r) +
∑
r ∈E2

Φ̃(ℓr ) · Pr[X̃ℓr = θ] · θ

≤
∑
r ∈E1

Φ(r) ·W (r) +
∑
r ∈E2

Φ(ℓr ) · Pr[Xℓr ≥ θ] · E[Xℓr | Xℓr ≥ θ]

=
∑
r ∈E1

Φ(r) ·W (r) +
∑
r ∈E2

Φ(r) ·W (r)

= P(σ̃, π) □

4.4.2 ProbeTop-k Problem

In this section, we consider the ProbeTop-k problem where the reward is the sum-

mation of top-k values and k is a constant.

Theorem 4.7： There exists a PTAS for the ProbeTop-k problem. In other words, for

any fixed constant ε > 0, there is a polynomial-time approximation algorithm for the

ProbeTop-k problem that finds a policy with the expected value at least (1 − ε)OPT.

In this case, It is a vector of the top-k values among the realizes values of the probed items

at the time period t. Thus, we begin with the initial vector I1 = {0}k . When we probe an

item i and observe its value realization Xi, we update the vector by

It+1 = {It + Xi} \min{It, Xi}.

We set g(It, i) = 0 and h(IT+1) = sum(IT+1). Assumption 1.1 (2,3) is immediately

satisfied. Then We also need the discretization to satisfy the Assumption 1.1 (1). For

Lemma 4.1, we make a small change as shown in Lemma 4.2.Thus, we can prove Theorem

4.7 which is essentially the same as the proof of Theorem 4.1 and we omit it here.

Lemma 4.2： Let π = {πi} be the set of distributions of random variables and π̃ be the

discretized version of π. Then, we have:
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1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃) ≥ (1 −O(ε))P(σ, π) −O(ε)OPT;

2. For any canonical policy σ̃,

P(σ̃, π) ≥ P(σ̃, π̃) −O(ε)OPT.

Proof. This can be proved by an analogous argument as Lemma 4.1. For the first result,

we design a randomized canonical policy σr as before. Here, W (r) is the summation of

the top-k weights on the path r . For a root-to-leaf path r , the profit we get is equal to

W (r) = max
C⊆r, |C | ≤k


∑
i∈C

Xi

 . (4-16)

Now we bound the profit we can obtain from T (σr, π̃). recall that E1 = {r ∈ E :

maxe∈r we < θ} and E2 = {r ∈ E : maxe∈r we ≥ θ} where E is the set of all root-to-leaf

paths. Then for any r ∈ E1, we have

W̃ (r) ≤ W (r) − k · εÕPT = W (r) −O(εÕPT).

For the first part, we have

∑
r ∈E1

Φ̃(r) · W̃ (r) ≥ (1 −O(ε))
∑
r ∈E1

[Φ(r) ·W (r)] −O(εÕPT).

For the second part, we have

∑
r ∈E2

Φ̃(r) · W̃ (r) =
∑
r ∈E2

Φ̃(ℓr ) · Pr[X̃ℓr = θ] · (θ + W̃ ′(ℓr ))

≥
∑
r ∈E2

Φ̃(ℓr ) · Pr[Xℓr ≥ θ] ·
(
E[Xℓr |Xℓr ≥ θ] + W̃ ′(ℓr )

)
≥

∑
r ∈E2

Φ̃(ℓr ) · Pr[Xℓr ≥ θ] ·
(
E[Xℓr |Xℓr ≥ θ] +W ′(ℓr ) −O(εÕPT)

)
≥ (1 −O(ε))

∑
r ∈E2

Φ(r) ·W (r) −O(εÕPT)
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where W ′(r) is the summation of top k − 1 weights on the path r . In summation, the

expected profit P(σr, π̃) is equal to

∑
r ∈E
Φ̃(r) · W̃ (r) ≥ (1 −O(ε))P(σ, π) −O(ε)OPT.

Now, we prove the second result. Similarly, we have

∑
r ∈E1

Φ̃(r) · W̃ (r) ≤
∑
r ∈E1

Φ(r) ·W (r)

and

∑
r ∈E2

Φ̃(r) · W̃ (r) =
∑
r ∈E2

Φ̃(ℓr ) · Pr[X̃ℓr = θ] · (θ + W̃ ′(ℓr ))

≤
∑
r ∈E2

Φ(ℓr ) · Pr[Xℓr ≥ θ] · E[Xℓr | Xℓr ≥ θ] +O(ϵ )OPT

≤
∑
r ∈E2

Φ(r) ·W (r) +O(ϵ )OPT

where the first inequality holds since Pr[X̃ = θ] ≤ ε. Hence, the proof of the lemma is

completed. □

4.4.3 Non-adaptive ProbeTop-k Problem

Now, we consider the non-adaptive version of the ProbeTop-k problem. Define

f (P) = E
 max
{i1,i2,...,ik }⊆P

∑
j∈[k]

Xi j

 (4-17)

Our goal is to find a subset P ⊆ [n] of cardinality m such that the expected reward f (P)

is maximized.

Theorem 4.8： There exists a PTAS for the non-adaptive ProbeTop-k problem.

Proof. Suppose P∗ = {X1, X2, . . . , Xm} is the optimal solution with expected reward

OPT. Then there is a pseudo-adaptive policy σ∗ only using the items in the set P∗ =

{X1, X2, . . . , Xm}. The pseudo-adaptive policy is adaptive policy which can be represented

as a decision tree. In fact, for any root-to-leaf path, the set of items on the path is identical.
45



第 4章 Stochastic Probing Problem

Lemma 4.2 still holds. Now, we can find a nearly optimal pseudo-block-adaptive

policy only using m items in total. This can be done by modifying a little bit about the

dynamic program (3-10):

M (i,C,CA) = max
(
M (i − 1,C,CA),M (i − 1,C′,CA − 1)

)
, (4-18)

where the capacity CA is the number of all items used in the tree, rather than a vector

capacity for each root-to-leaf path. We can use the dynamic program to find a nearly

optimal pseudo-block-adaptive policy σ (i.e., a non-adaptive policy) with expect profit

(1 −O(ε))OPT. □

4.5 Committed Model

In the committed model, once we probe an item and observe its value realization, we

must make an irrevocable decision whether to choose it or not, i.e., we must either add it

to the final chosen set C immediately or discard it forever. 1O If we add the item to the

final chosen set C, the realized profit is collected. Otherwise, no profit is collected and

we are going to probe the next item.

4.5.1 Committed ProbeTop-k Problem

In this section, we prove Theorem 4.3, i.e., obtaining a PTAS for the committed

ProbeTop-k. In the committed model, once we probe an item and observe its value

realization, we are committed to making an irrevocable decision immediately whether to

choose it or not. If we add the item to the final chosen set C, the realized profit is collected.

Otherwise, no profit is collected and we are going to probe the next item.

Let σ∗ be the optimal committed policy. Suppose σ∗ is going to probe the item

i and choose the item i if Xi realizes to a value θ ∈ Si, where Si is the support of the

random variable Xi. Then σ∗ would choose the item i if Xi realizes to a larger value

s ≥ θ. We call θ threshold for the item i. Thus the committed policy σ∗ for the committed

ProbeTop-k problem can be represented as a decision tree Tσ∗ . Every node v is labeled

by an unique item av and a threshold θ(v), which means the policy chooses the item av if

Xv realizes to a size s ≥ θ(v), and otherwise rejects it.

1O In [16,18], it is called the online decision model.
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Now, we present a stochastic dynamic program for this problem. For each item i, we

create a set of actions Bi = {bθ
i }θ , where bθ

i represents the action that we probe item i with

the threshold θ. Since we assume discrete distribution (given explicitly as the input), there

are at most a polynomial number of thresholds. Hence the set of action A = ∪i∈[n]Bi is

bounded by a polynomial. The only requirement is that at most one action from Bi can

be selected.

Let It be the number of items that have been chosen at the period time t. Then we set

V = {0, 1, . . . , k}, I1 = 0. Since we can probe at most m items, we set T = m. When we

select an action bθ
i to probe the item i and observe its value realization, say Xi, we define

the system dynamic functions to be

It+1 = f (It, bθ
i ) =


It + 1 if Xi ≥ θ, It < k,

It otherwise;
g(It, bθ

i ) =


Xi if Xi ≥ θ, It < k,

0 otherwise;
(4-19)

for It ∈ V and t = 1, 2, . . . ,T , and h(IT+1) = 0. Since k is a constant, Assumption 1.1 is

immediately satisfied. However, in this case, we cannot directly use Theorem 4.1, due to

the extra requirement that at most one action from eachBi can be selected. In this case, we

need to slightly modify the dynamic program in Section A.2.4 to satisfy the requirement.

To computeM (i,C,CA), once we decide the position of the item i, we need to choose a

threshold for the item. Since there are at most a polynomial number of thresholds, it can

be computed at polynomial time. Hence, again, we can find a policy σ with profit at least

OPT −O(ε) · MAX = (1 −O(ε)) OPT,

where OPT denotes the expected profit of the optimal policy and MAX =

maxI ∈V DP1(I,A) = DP1(0,V ) = OPT.

4.5.2 Matroid Constraint

In this section, we prove Theorem 4.2, i.e., obtaining a PTAS for the committed

ProbeMax problem. On the committed model, we are committed to making an irrevocable

decision immediately whether to pick it or not whenever we probe an item. If we add the

item to the output set C, the profit is collected. Otherwise, no profit is collected and we

are going to probe the next item. Based on Multi-budget optimization [31], we can obtain

the PTAS for the committed ProbeMax problem with more general outer constraints.

47



第 4章 Stochastic Probing Problem

Definition 4.3 (Multi-object/Multi-budget optimization)： Given l1 linear function

f1, f2, . . . , fℓ1 : 2U → R+, ℓ2 linear function g1, g2, . . . , gℓ2 : 2U → R+ and a outer

constraint A, is there a feasible solution C of A satisfying f i (C) ≥ Di for all i ∈ [ℓ1] and

gi (I) ≤ Bi for all i ∈ [ℓ2]?

We denote the above problem as Multi-A. A multi-criteria PTASs is an algorithm which

produces a feasible solution C of A such that f i (C) ≥ (1 − ε)Di for all i ∈ [ℓ1] and

gi (I) ≤ Bi for all i ∈ [ℓ2] and the running time is polynomial in the size of the input for

any fixed ε.

Theorem 4.9： Assume there is a multi-criteria PTASs for Multi-A. For any ε, there is a

polynomial time algorithm that finds a committed policy (type NC) with the expected value

at least (1 − ε)OPTAC for the committed ProbeMax problem when the outer constraint is

A.

Proof. Let σ∗ be the optimal committed policy. Suppose σ∗ is going to probe the next

item i and choose i if Xi realizes to a value θ ∈ S. Then σ∗ would choose i if Xi realizes to

a larger value s ≥ θ. We call θ threshold for the item i. Thus the committed policy σ∗ for

the committed ProbeMax problem can be represented a path R∗. Every node v is labeled

by an unique item i(v) and a threshold θ(v), which means the policy accepts the item i(v)

and stops if Xv realizes to a size s ≥ θ(v), and otherwise rejects it and goes on. It can be

equivalently viewed as a Bernoulli case where each item i has weight wi = E[Xi | Xi ≥ θ]
and is “active” with probability pi = Pr[Xi ≥ θ].

WLOG we assume
∑

i∈R∗ pi ≤ 1/ε similar in Lemma 4.1 in [11] (otherwise we can

have a truncation on the path R∗ and the profit loss is at most εOPT). We call an item i a

heavy item if pi ≥ ε2. Otherwise we call it light. Then the number of heavy items in the

path R∗ is at most ε−3. For an item i, we define the signature of i to be

Sg(i) =
(⌊

pi ·
n
ε4

⌋
· ε

4

n
,
⌊
piwi ·

n
ε4OPT

⌋
· ε

4OPT
n

)

For a block M , define its signature to be Sg(M) = (Sg1(M),Sg2(M)) =
∑

i∈M Sg(i).

Now, we greedily partition the path R∗ into several segments, such that: each segment

contains one heavy item or several light items such that
∑

i∈seg pi ≤ ε2. Then the number

of segments is at most ε−3. We regard each segment as a block to get a block policy Rb

with the expected value at least (1 − ε)OPT (we lose the profit when there are two items

in the same block which are active simultaneously).
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Algorithm 2 Approximation Algorithm of the committed ProbeMax problem
1: Enumerate all possible heavy items set H;

2: for each such H do
3: Enumerate all possible signatures Sg:

4: for each such Sg do
5: Try to find a set of blocks B such that H ∪ B ∈ A (feasible) and

6: Sg1(Bi) ≤ Sg1
i , Sg2(Bi) ≥ Sg2

i for all Bi ∈ B;

7: end for
8: end for
9: Pick the feasible H ∪ B with the largest profit.

Denote Rb = H∗ ∪ B∗, where H∗ is the set of heavy items and B is a set of blocks

which contain light items. Assume our algorithm 2 has guessed H∗ correctly. By the

assumption, we can obtain a set of blocks B of A such that

Sg1(Bi) ≤ Sg1(B∗i ) and Sg2(Bi) ≥ (1 − ε2)Sg2(B∗i ) for all Bi ∈ B. (4-20)

Fact： The expected value of H∗ ∪ B is at least (1 −O(ε))OPT.

Let π0
B be the probability of all items in the block B are non-active. Then π0(B) =∏

i∈B (1 − pi) ≥ 1 −∑
i∈B pi ≥ 1 − ε2. On the other hand

π0(B) =
∏
i∈B

(1 − pi) ≤
(
1 −

∑
i∈B pi

|B |

) |B |
≤ 1 −

∑
i∈B

pi + (
∑
i∈B

pi)2.

Thus, by the definition of the signature and Inequality (4-20), we have

π0(B∗) − π0(B) =
∏
i∈B∗

(1 − pi) −
∏
i∈B

(1 − pi)

≤ *,1 −
∑
i∈B∗

pi + ε
4+- − *,1 −

∑
i∈B

pi
+-

≤ −Sg1(B∗) +
(
Sg1(B) + ε4

)
+ ε4

≤ O(ε4).

Let P(B) be the expected profit we can get from B. Suppose we insert the items in B one

by one. For any item i ∈ B, with probability at least π0(B), all the previous items are not
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”active”. Thus the expected profit we can get from i is at least π0(B) · piwi. Thus, we have

P(B) ≥ π0(B) ×
∑
i∈B

piwi ≥ (1 − ε2)Sg2(B).

We also have that

P(B) ≤
∑
i∈B

piwi ≤ Sg2(B) + ε4OPT.

Let B∗1 be the root block of the optimal policy. Then, replacing B∗1 with B1 in the path R∗,

the expected profit loss is at most

P(B∗1) − P(B1) + OPT(π0
B∗1
− π0

B1
)

≤
(
Sg2(B∗1) + ε4OPT

)
− (1 − ε2)Sg2(B1) +O(ε4)OPT

≤ (1 + ε2)Sg2(B1) − (1 − ε2)Sg2(B1) +O(ε4)OPT

≤ O(ε) · P(B1) +O(ε4)OPT.

When we replace all the blocks in B∗ by the corresponding ones in B, the total profit loss

is at most

∑
B

Φ(B)[O(ε) · P(B) +O(ε4)OPT]

= O(ε) ·
∑
B

Φ(B) · P(B) +O(ε4)OPT
∑
B

Φ(M)

≤ O(ε) · OPT +O(ε4)OPT · ε−3

= O(ε)OPT,

where Φ(B) is the probability of reaching the block B. □

Theorem 4.10 (Theorem 5 in [31])： For any ε ≥ 0 and any constant number of ℓ1 + ℓ3,

there is a polynomial-time randomized algorithm which is multi-criteria PTASs with high

probability for matching or matroid intersection.

By combining Theorem 4.9 and Theorem 4.10, we get Theorem 4.2.
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4.5.3 Commitment Gap

In this section, we prove Theorem 4.4, i.e., bounding the commitment gap for the

uniform matroid inner constraint and arbitrary prefix-closed outer constraint. Recall that

for a particular stochastic probing instance J , we have

CommitGap(J ) =
OPTAN(J )
OPTAC(J )

(4-21)

For the prophet inequality where we can only choose one item from a fixed order, a simple

policy which uses θ = OPT/2 = E[maxi∈[n] Xi]/2 as a threshold and accepts the first item

whose weight exceeds this threshold can achieve the 2-approximation ratio in Inequality

(4-3).

For the m-uniform matroid inner constraint and arbitrary prefix-closed outer con-

straint, a best adaptive non-committed policy σ can be represented as a decision tree

T (σ, π). We let θ = OPTAN
2m be the threshold where OPTAN is the expected value of the

optimal adaptive non-committed policy σ. Set X+ = max{X, 0}.

Lemma 4.3： Then, we have

OPTAN ≤ m · θ +
∑
R∈R
Φ(R) · *,

∑
v∈R
E[(Xv − θ)+]+- . (4-22)

Proof. By the definition, we have OPTAN =
∑

R∈R Φ(R) · W (R), where W (R) is the

summation of the top-m weights on the path R. Then, we have

OPTAN − m · θ =
∑
R∈R
Φ(R) · (W (R) − m · θ)

≤
∑
R∈R
Φ(R) ·

∑
e∈R

(we − θ)+

=
∑
v∈Tσ

Φ(v) · E[(Xv − θ)+]

=
∑
R∈R
Φ(R) · *,

∑
v∈R
E[(Xv − θ)+]+- .

Note that the leaf nodes are dummy nodes which can be ignored. □

Thus, there is at least a root-to-leaf path, say R∗ ∈ R, such that
∑

v∈R∗ E[(Xv − θ)+] ≥
OPTAN/2. Consider the following simple committed strategy:
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Algorithm 3 A simple non-adaptive committed strategy ALG(R∗)

1: Follow the path R∗ and accept items whose value exceeds the threshold θ = OPTAN
2m ,

until we accept m items.

Claim： The the expected value of ALG(R∗) shown in Algorithm 3 is at least OPTAN/2.

Proof. Let p be the probability that there are at least m items whose value exceed θ on the

path R∗. For a node v on the path R∗, let I (v) be the indicator function which is equal to 1

if there are at most m − 1 items whose values exceed θ before probing v and 0 otherwise.

Thus for any node v, E[I (v)] ≥ 1 − p. And we let I (Xv ≥ θ) be the indicator function

which is equal to 1 if Xv ≥ θ and 0 otherwise. Then the expected profit we obtain from

the path R∗ is equal to

E[ALG(R∗)] =
∑
v∈R∗
E[Xv · I (Xv ≥ θ) · I (v)]

≥ p · m · θ +
∑
v∈R∗
E[(Xv − θ) · I (Xv ≥ θ) · I (v)]

= p · OPTAN

2
+

∑
v∈R∗
E[(Xv − θ)+] · E[I (v)]

≥ p · OPTAN

2
+ (1 − p)

∑
v∈R∗
E[(Xv − θ)+]

≥ OPTAN

2
. □

Thus, there is a committed policy which can obtain at least OPTAN
2 profit. Hence, Theorem

4.4 is proved. The fact that the policy is non-adaptive implies that:

Corollary 4.3： The adaptivity gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is an uniform matroid is at most 2.

4.5.4 Committed Pandora’s Box Problem

In this section, we obtain a PTAS for the committed Pandora’s Box problem. This

can be proved by an analogous argument to Theorem 4.3 in Section 4.5.1. Similarly, for

each box i, we create a set of actions Bi = {bθ
i }, where bθ

i represents the action that we

open the box i with threshold θ. Let It be the number of boxes that have been chosen at

the time period t. Then we set A = ∪i∈[n]Bi,V = {0, 1, . . . , k}, T = n and I1 = 0. When
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we select an action bθ
i to open the box i and observe its value realization, say Xi, we define

the system dynamic functions to be

It+1 = f (It, bθ
i ) =


It + 1 if Xi ≥ θ, It < k,

It otherwise;
g(It, bθ

i ) =


Xi − ci if Xi ≥ θ, It < k,

−ci otherwise;
(4-23)

for It ∈ V and t = 1, 2, · · · ,T , and h(IT+1) = 0. Notice that we never take an action bθ
i for

a value It < k if E[g(It, bθ
i )] = Pr[Xt ≥ θ] ·E[Xi | Xi ≥ θ]− ci < 0. Then Assumption 1.1

is immediately satisfied. Similar to the Committed ProbeTop-k Problem, we can choose at

most one action from eachBi. This can be handled in the same way. So again we can find a

policy σ with profit at least OPT−O(ε) ·MAX = (1 −O(ε)) OPT,where OPT denotes the

expected profit of the optimal policy and MAX = maxI ∈V DP1(I,A) = DP1(0,A) = OPT.

4.6 Stochastic Probing Problem

Consider the stochastic probing problem (Stoch-Prob) with general constraints. We

use the same LP as introduced in Munagala et al. [14] and develop several policies based

on the fractional optimal solution. Consider an instance of the stochastic probing problem

with inner constraints (U,Iin) and outer constraints (U,Iout ). Let S be the union of

supports of all {Xi}. For each s ∈ S, let pi,s = Pr[Xi = s]. Suppose in an optimal

adaptive non-committed policy (type AN) for Stoch-Prob, (xi, yi) is the probability that

item i is chosen (to output) and probed respectively while xi,s is the probability that Xi

is added into the final set and the value realization of Xi is s. Thus xi =
∑

s∈S xi,s. Let

x = (x1, x2, . . . , xn) and y = (y1, . . . , yn). We have the following LP relaxation:

max
∑
i,s

s · xi,s (4-24)

s.t. xi,s ≤ yi · pi,s ∀i ∈ U, s ∈ S (4-25)

x ∈ P (Iin) (4-26)

y ∈ P (Iout ) (4-27)

Claim： The optimal value of LP (4-24) is an upper bound of OPTAN.
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4.6.1 Contention Resolution Schemes

We need to design a policy from a solution (x, y) for the LP relaxation. We use the

rounding scheme called contention resolution schemes (CR schemes) to obtain constant

approximations under several combinatorial constraints. Here is the formal definition.

Definition 4.4： (CR Scheme) A (b, c)-balanced CR scheme π for a downwards-closed

set system I is a scheme such that for any x ∈ P (I), the scheme returns a set π(I) ⊆
I = R(bx) with the following property, where R(bx) ⊆ U is the random set obtained by

independently choosing each item i ∈ U with probability bxi.

1. π(I) ∈ I.

2. Pr[i ∈ π(I) | i ∈ I] ≥ c for every item i.

A scheme is said to be monotone if Pr[i ∈ π(R1)] ≥ Pr[i ∈ π(R2)] for any i ∈ R1 ⊆ R2. A

scheme is said to be ordered if there is a (possibly random) permutation σ on U so that

for any I = R(bx) ⊆ U, the output of the scheme π(I) is the maximal independent subset

of I obtained by considering items in the order of σ.

Theorem 4.11 ( [15,16]))： There are monotone CR-schemes for the following downwards

closed (0 < b ≤ 1 is any value)

• (b, (1 − e−b)/b)-balanced CR-scheme for matroid.

• (b, 1 − kb)-balanced order CR-scheme for k-matroids.

• (b, 1 − 2kb) CR-scheme for k-column sparse packing integer programs set system.

Gupta et al. [16] considers the Bernoulli version of Stoch-Prob with commitment

satisfying the following properties:

(a). There is a (b, cout)-CR scheme πout for P (Iout).

(b). There is a monotone (b, cin) order CR scheme πin for P (Iin).

Gupta et al. [16] gave an algorithm achieving a ratio of 1
b(cout+cin−1) . Now we assume

the same properties while we consider the Stoch-Prob: the value of each item can be an

arbitrary discrete random variable. We extend the same result here.

Theorem 4.12： There is an algorithm (see ALG 4) that finds a non-adaptive committed

policy (type NC) with the expected value at least OPTAN
b(cout+cin−1) for the Stoch-Prob satisfying

Property (a) and (b).

By combining Theorems 4.11 and 4.12, we have
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Corollary 4.4： There is a 1
4(k+ℓ) -approximation algorithm when the inner and outer

constraints are intersections of k and ℓ matroids respectively.

Now, we present a formal statement of Algorithm 4.

Algorithm 4 Rounding Algorithm for the Stochastic Probing Problem
1: Solve the LP relaxation and obtain the optimal LP solution (x, y);

2: Pick I ⊆ 2U by choosing each i ∈ U independently with probability byi;

3: Let P = πout(I) ∈ Iout;

4: Order items in P according to the permutation given by the ordered CR scheme πin;

5: C ← ∅;
6: for i = 1, 2, . . . , |P | do
7: if C ∪ i ∈ Iin then
8: Probe the item i;

9: If Xi = s, let C ← C ∪ {i} with probability xi,s/(yi · pi,s);

Now, we analyze the expected value of the above algorithm and prove Theorem 4.12.

Proof. Notice that the probability we choose i conditioning on its probing is

pi =
∑
s∈S

Pr[Xi = s] · xi,s

yi · pi,s

=
∑
s∈S

xi,s

yi
≤ 1.

Let J ⊆ U be the random set by choosing each i ∈ U independently with probability pi.

From the result of Lemma 3.5 in [16], we see for each i ∈ U,

Pr
I,πout,J,πin

[i ∈ πin(πout (I) ∩ J)] ≥ b · (cout + cin − 1) · piyi .

Now, the expected value of the chosen set C is

E

∑
i∈C

Xi

 =
∑
i∈U

Pr[i ∈ πin(P ∩ J)] · E[Xi | i ∈ C]

≥ b · (cout + cin − 1) ·
∑
i∈U

piyi · E[Xi | i ∈ C].
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Notice that

E[Xi | i ∈ C] = E[Xi | i ∈ J] =
∑
s∈S

s · Pr[Xi = s ∧ i ∈ J]
Pr[i ∈ J]

=
∑
s∈S

s · Pr[Xi = s] · Pr[i ∈ J | Xi = s]
Pr[i ∈ J]

=
∑
s∈S

s · pi,s · xi,s/(yi · pi,s)
pi

=
1

piyi

∑
s∈S

s · xi,s . □

Indeed, we can see that

E

∑
i∈C

Xi

 ≥ b · (cout + cin − 1)
∑

i∈U,s∈S
s · xi,s ≥ b · (cout + cin − 1)OPTAN.

4.6.2 The Iterative Randomized Rounding Approach

Next, we give a description of another rounding approach called Iterative Randomized

Rounding approach which derives from [35]. We only focus on matroid intersections

constraints, i.e. on the special case in which Iout is an intersection of kout matroids

Mout
1 , . . . ,Mout

kout , and Iin is an intersection of k in matroids Min
1 , . . . ,Min

k in
. Let M =

(E,I) be a matroid. For an item i ∈ E, we denote the the matroidM with i contracted by

M/i, i.e. M/i = (E− e, {S ⊂ E− e | S+ e ∈ I}). Then Iin/i is an intersection of matroids

Min
1 /i, . . . ,Min

k in
/i and Iout/i is an intersection of matroidsMout

1 /i, . . . ,Mout
kout/i.

Initially, x = x0, y = y0,C = ∅. At each step, we select single item i to probe, then

permanently set yi = 0, xi = 0. Then update the outer constraints by replacing Iout with

Iout/i. If item i is added into C, we update the inner constraints by replacingIin withIin/i.
Finally, we modify our fractional solution (x, y) such that it is feasible for the updated

constraints. The algorithm terminates when (x, y) = 0.

Let xt, yt , and Ct be the current value of x, y, and C at the beginning of step t+1. The

the expected value of our algorithm is guaranteed by following lemma based on Doob’s

optional stopping theorem for martingales.

Lemma 4.4 (Lemma 8 in [35])： Suppose the algorithm runs for τ steps and that g(x0) ≥
β · E[OPT], xτ = 0. Let Fi represent all information available after the ith iteration.

Suppose that in each step, E[ f (Ct+1) − f (Ct ) | Ft] ≥ α · E[g(xt ) − g(xt+1) | Ft]. Then,

the final output Cτ satisfies E[ f (Cτ)] ≥ αβ · E[OPT].
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Algorithm 5 The Iterative Randomized Rounding for Stochastic Probing
1: Solve the LP relaxation and obtain the optimal LP solution (x0, y0);

2: Set C = ∅, x = x0, y = y0.

3: repeat
4: Randomly select an item i with probability yi/

∑
j yj and then probe it;

5: If Xi = s, let C ← C ∪ {i} with probability xi,s/(yi · pi,s);

6: Update y such that y ∈ P (Iout/i);
7: Update x such that the set of Inequalities (4-25) holds;

8: If i is added into C, then
9: Update x such that x ∈ P (Iin/i);

10: until x = 0;

11: Output C.

In this setting, g(x) =
∑

i∈U,s∈S s · xi,s and f (C) =
∑

i∈C wi. The x0 is the optimal LP

solution, then z0 = g(x0) ≥ OPTAN. Thus β = 1. We discuss arbitrary step t + 1, then

denote (xt, yt ) by (x, y) and (xt+1, yt+1) by (x ′, y′). We denote Λ =
∑

i∈U yi, then

E[ f (Ct+1− f (Ct )) | Ft] =
∑

i∈U,s∈S

yi

Λ
×pi,s×

xi,s

yi · pi,s

×s =
1
Λ

∑
i∈U,s∈S

s·xi,s =
g(xt )
Λ
. (4-28)

We now describe how to update the current solution (x, y) to ensure feasibility in

each of the update matroid constraints. We use the same technique as used in [35]. Let

i be the item that we probed and Mout
j be some outer matroid. Currently we have

y ∈ P (Mout
j ) and we want to get a solution y′ such that y′ ∈ P (Mout

j /i). We represent

y as a convex combination y =
∑m

ℓ=1 λi1Bℓ
, where B1, B2, . . . , Bm is the support of y.

We random pick one set Ba which contains item i with probability λa/yi (note that for

any item i,
∑

a:i∈Ba
λa = yi). Then for any set Bb : i < Bb, there is item ϕa,b such that

Bb + e − ϕa,b ∈ Mout
j . By replacing set Bb with Bb + e − ϕa,b and setting yi = 0, we

obtain y′ ∈ P (Mout
j /i).

Lemma 4.5 (Lemma 9 in [35])： Let y and y′ be the current fractional solution before

and after one update for a given outer matroid Mout
j . Then, for each i ∈ U, we have

E[(yi − y′i )] ≤ 1
Λ

(1 − yi)yi.

In order to satisfy the set of Inequalities (4-25), we set x ′i,s = min{xi,s, y
′
i · pi,s} for any

i ∈ U and s ∈ S.
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Lemma 4.6： Then, for each i ∈ U, s ∈ S, we have

E[δi,s] = E[(xi,s − x ′i,s)] ≤
1
Λ

(1 − yi) xi,s . (4-29)

Proof. Since xi,s ≤ pi,s · yi and yi ≥ y′i , thus

Ex ′i,s
xi,s

=
E[min{xi,s, pi,s · y′i }]

xi,s

= E

[
min

{
1,

pi,s · y′i
xi,s

}]
≥ E

[
min

{
1,

pi,s · y′i
pi,s · yi

}]
=
Ey′i
yi

≥ 1 − 1
Λ

(1 − yi),

the last equality holds by Lemma 4.5. Then, Equation (4-29) holds. □

Next, if the item i is added to C, we similarly update x for each inner matroidMin
j and

get x ′ such that x ′ ∈ P (Min
j /i).

Lemma 4.7 (Lemma 10 in [35])： Let x and x ′ be the current fractional solution before

and after one update for a given inner matroid Min
i . Then, for each i ∈ U, we have

E[(xi − x ′i)] ≤ 1
Λ

(1 − xi)xi

For any i ∈ U, s ∈ S, we set x ′i,s = xi,s ·
x′i
xi

. Then
∑

s∈S x ′i,s =
∑

s∈S xi,s ·
x′i
xi
= x ′i.

Lemma 4.8： Then, for each i ∈ U, s ∈ S, we have

E[δini,s] = E[(xi,s − x ′i,s)] ≤
1
Λ

(1 − xi)xi,s . (4-30)

Proof. Because

xi,s − E[x ′i,s] = xi,s

(
1 −
Ex ′i
xi

)
≤ 1
Λ

(1 − xi)xi,s .
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We perform the matroid updates sequentially for each of the kout and k in matroids. Then

we have

E[
∑
s∈S

s · (xi,s − x ′i,s)]

≤
∑
s

s · xi,s · Pr[i is probed] + kout
∑
s∈S

s · E[δouti,s ] + k in
∑
s∈S

s · E[δini,s]

≤ 1
Λ

∑
s∈S

s · xi,s · yi +
kout

Λ

∑
s∈S

s · (1 − yi)xi,s +
k in

Λ

∑
s∈S

s · (1 − xi)xi,s

=
kout + k in

Λ

∑
s∈S

s · xi,s −
kout − 1
Λ

∑
s∈S

s · xi,s · yi −
k in

Λ

∑
s∈S

s · xi,s · xi

≤ kout + k in

Λ

∑
s∈S

s · xi,s .

Then

E[g(xt ) − g(xt+1)] = E[
∑

i∈U,s∈S
s · (xi,s − x ′i,s)] ≤

kout + k in

Λ

∑
i∈U,s∈S

s · xi,s . (4-31)

By combining Equation (4-28) and (4-31), we have

E[ f (Ct+1) − f (Ct ) | Ft] ≥
1

kout + k in
· E[g(xt ) − g(xt+1) | Ft].

By Lemma 4.4, we have E[ f (Cτ)] ≥ OPTAN
kout+k in

. This prove Theorem 4.6.

4.7 Summary

In this chapter, we propose an approximation algorithm for the general stochas-

tic probing problem. The main technical ingredient for obtaining the PTAS for the

ProbeMax problem is the framework of stochastic dynamic programs which is formulated

in Chapter 3. We believe the framework can be used in designing better approximation

algorithms for other stochastic optimization problems.

For the ProbeMax Problem with a general matroid outer constraint, the best known

approximation ratio is 1 − 1/e, based on submodular maximization [17] (which is in fact a

non-adaptive policy). To design an adaptive policy and improve the approximation ratio

is still a open problem. We note that in the corresponding committed model, we have

obtained a PTAS (due to the special structure of the policy).
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第 5章 Stochastic Knapsack and Variants

The knapsack problem is one of the most well-studied combinatorial optimization

problem. In this problem, we are given as input a set of n items. Each item i ∈ [n] has a

size si and a profit pi. The goal is to find a maximum-profit subset of these items whose

total size is at most a given capacity C. The knapsack problem is NP-hard and has a fully

polynomial time approximation scheme (FPTAS) [43].

5.1 Model

In many applications, the size and/or the profit of an item many not be fixed values

and only their probability distributions are known to us in advance. The real size and profit

of an item are revealed to us so soon as it inserted into the knapsack. For the stochastic

variant of this problem, we have following definition.

Definition 5.1： Stochastic Knapsack (SKP) An instance J of the stochastic knapsack

problem is defined with tuple J = (π,C), where π = {π1, π2, . . . , πn}. πi is the joint

distribution of size and profit for item i. The distributions for different items are mutually

independent. In general, for each item i, its size si is a random variable and its profit

pi is deterministic. C is the capacity of the knapsack. Once we decide to insert an item

i into the knapsack, we observe its real size si which follows the distribution πi. We

can adaptively insert the items to the knapsack, as long as the capacity constraint is not

violated. The goal is to design a policy that maximizes the expected total profit of all

items that are successfully inserted into the knapsack.

Gupta et al. [20] introduced a variant of stochastic knapsack which is referred as Stochastic

Knapsack with Correlated Rewards and Cancelations (SK-CC) where (1) each item can

have a random profit which can be correlated with its size and (2) we can cancel a job

during its execution in the policy. For the committed model, we refer as Stochastic

Knapsack with Commitment (SK-Commit 1O), where once we select an item and observe

its size realization, we can make an irrevocable decision whether to insert it or not,

i.e., we must either insert it into the knapsack or discard it forever. Next, Levin et al. [23]

1O Li et al. [11] called the Bayesian online selection problem subject to a knapsack constraint.
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introduced another variant of stochastic knapsack where all the profits are lost if we violate

the capacity constraint.

Definition 5.2： Stochastic Blackjack Knapsack (SBK) 1O In this problem, we are given

a instance J = (π,C). Our goal is to design an adaptive policy such that the expected

total profits of all items inserted is maximized. The different from SKP is that we gain

zero if the total size of all items inserted is larger than the capacity C.

For a particular stochastic knapsack instanceJ , we use OPTSKP(J ) to denote the expected

profit of an optimal policy for stochastic knapsack. Similarly, we denote OPTSKC(J ) for

stochastic knapsack with commitment and OPTSBK(J ) for stochastic blackjack knapsack.

Since a policy for SBK is also a policy for SKP and a policy for SKP is also a policy for

SK-Commit, we have following proposition.

Proposition 5.1： For any stochastic knapsack instance J , we have

OPTSKC(J ) ≥ OPTSKP(J ) ≥ OPTSBK(J ). (5-1)

The stochastic knapsack problem with deterministic sizes and random profits has been

studied in [45]. In the model, a threshold profit is specified, and the goal is to design

an adaptive policy to insert a set of items with maximum probability of achieving that

threshold profit. We denote Stochastic Target Problem (STP) where all items are the same

size. 2O

Definition 5.3： Stochastic Target (STP) We are given a predetermined target T and

a set of n items. Each item i ∈ [n] has a profit Xi which is an independent random

variable with a known (discrete) distribution πi. Once we decide to insert an item i into

a knapsack, we observe a profit realization Xi which follows the distribution πi. We can

insert at most m items into the knapsack and our goal is to design an adaptive policy such

that Pr[
∑

i∈P Xi ≥ T] is maximized, where P ⊆ [n] is the set of the inserted items.

1O Chen et al. [44] call it "zero return if broken".
2O [45] called the problem the adaptive stochastic knapsack instead. However, their problem is quite different from the

stochastic knapsack problem studied in the theoretical computer science literature. So we use a different name.
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Table 5.1 A summary of approximation ratios for the stochastic knapsack and variants

Problem single-criterion approx
bi-criterion approx (C relaxed to

(1 + ε)C or T relaxed to (1 − ε)T)

SKP 1
3 − ε [5], 3

8 − ε [6], 1
2 − ε [22] 1 − ε [6,11]

[Theorem 5.1]

SK-CC 1
16

[20], 1
2 − ε [21] 1 − ε [11]

SK-Commit 1
2 − ε [22] 1 − ε [11]

SBK
(
√

2 − 1)2/2 ≈ 1/11.66 [23] 1 − ε
1/8 − ε [Theorem 5.4] [Theorem 5.3]

STP -
OPT − ε

[Theorem 5.5]

5.2 Our Result

Stochastic Knapsack: For stochastic knapsack (SKP), Dean et al. [5] gave an algorithm

with an approximation ratio of 1
3−ε. Later, Bhalgat et al. [6] improved that ratio to 3

8−ε and

gave an algorithm with ratio of (1 − ε) by using ε extra budget for any given ε ≥ 0. The

best known single-criterion approximation factor is 2 [11,21,22]. It is still an open problem

to design a PTAS for stochastic knapsack.

For the stochastic knapsack with correlated rewards and cancelations (SK-CC), Gupta

et al. [20] gave a randomized algorithm achieving a ratio of 1
16 and Ma [21] improved that

ratio to ( 1
2 − ε) for any given ε > 0. Li et al. [11] gave an algorithm with ratio (1 − ε) by

using ε extra budget for any given ε > 0.

In this dissertation, we use the framework formulated in Chapter 3 to simplify the

proof for stochastic knapsack in [11]. For stochastic knapsack, let the value It be the

total sizes of the items in the knapsack at time period t. Using our framework, we have

following system dynamics for the stochastic knapsack:

It+1 = f (It, i) = It + Xi, g(It, i) =


pi if It + Xi ≤ C,
0 otherwise;

(5-2)

for t = 1, 2, · · · ,T and h(IT+1) = 0. See Section 5.4 for more details.

Theorem 5.1： For any ε > 0, there is a polynomial algorithm that finds a (1 − ε)-
approximate adaptive policy for stochastic knapsack problem when the capacity is relaxed

to (1 + ε)C.
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The above theorem is also holds for SK-CC and SK-Commit. If the sizes of items are

bounded, we have following theorem.

Theorem 5.2： For any ε ∈ (0, 1), there is a polynomial algorithm that finds a (1 − 4ε)-

approximate adaptive policy for stochastic knapsack problem when the sizes are bounded

by ε, i.e., for any i ∈ [n], Pr[si ≤ ε] = 1.

Stochastic Blackjack Knapsack: This extra restriction that all profits are lost if we violate

the capacity constraint might induce us to take more conservative policies. Levin et al. [23]

presented a non-adaptive policy with expected value that is at least (
√

2−1)2/2 ≈ 1/11.66

times the expected value of the optimal adaptive policy. Chen et al. [44] assumed each size

Xi follows a known exponential distribution and gave an optimal policy for n = 2 based

on dynamic programming. In this dissertation, we consider the general case where the

distribution of each Xi is allowed to follow an arbitrary discrete distribution.

Theorem 5.3： For any fixed constant ε > 0, there is a polynomial-time approximation

algorithm for the stochastic blackjack knapsack that finds a policy with the expected profit

at least (1 − O(ε))OPT, when the capacity is relaxed to (1 + ε)C, where OPT is the

expected profit of the optimal adaptive policy.

For the case without relaxing the capacity, we can improve the result of 11.66 in [23]

below.

Theorem 5.4： For any ε ≥ 0, there is a polynomial time algorithm that finds a ( 1
8 − ε)-

approximate adaptive policy for SBK.

Denote It = (It,1, It,2) and let It,1, It,2 be the total sizes and total profits of the items in the

knapsack at the time period t respectively. When we insert an item i into the knapsack

and observe its size realization, say si, we define the system dynamics function to be

It+1 = f (It, i) = (It,1 + si, It,2 + pi), h(IT+1) =


IT+1,2 if IT+1,1 ≤ C,
0 otherwise;

(5-3)

and g(It, i) = 0 for t = 1, 2, · · · ,T . Then Assumption 1.1 (2,3) is immediately satisfied.

But Assumption 1.1 (1) is not satisfied for that the value spaceV is not of constant size.

Hence, we need discretization. Unlike the stochastic knapsack, we need to discretize the

sizes and profits at the same time. See Section 5.5 for more details.
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Stochastic Target Problem:
For the stochastic target problem, İlhan et al. [45] provided some heuristic based on

dynamic programming for the special case where the random profit of each item follows

a known normal distribution. Recall that the target is the goal to be achieved. If allowed

to relax the target to (1 − ε)T, we provide an additive PTAS for it.

Theorem 5.5： There exists an additive PTAS for stochastic target problem if we relax the

target to (1−ε)T. In other words, for any given constant ε > 0, there is a polynomial-time

approximation algorithm that finds a policy such that the probability of the total rewards

exceeding (1−ε)T is at least OPT−ε, where OPT is the resulting probability of an optimal

adaptive policy.

Let the value It be the total profits of the items in the knapsack at time period t. Using

our framework, we have following system dynamics for the stochastic target problem:

It+1 = f (It, i) = It + Xi, g(It, i) = 0, and h(IT+1) =


1 if IT+1 ≥ T,
0 otherwise;

(5-4)

for t = 1, 2, · · · ,T . Then Assumption 1.1 (2,3) is immediately satisfied. But Assumption

1.1 (1) is not satisfied for that the value spaceV is not of constant size. Hence, we need

discretize the value space and reduce its size to a constant. See Section 5.6 for more

details.

5.3 Policies and Decision Trees

The process of applying a policy σ on an instance (π,C) can be represented as a

decision tree T (σ, π,C). Each node v in Tσ is labeled by a unique item i(v) ∈ U with

a size sv following a known (discrete) distribution πv. It has several children, and let

e = (v, u) (u is the s-child) be the s-th edge emanating from s ∈ S where S is the support

of the size distribution. Thus e has probability πe := Pr[sv = s] and weight we := s. The

edge e has profit pe := pv if the item is successfully inserted into the knapsack and pe := 0

otherwise. In order to clearly illustrate the tree structure, we add a dummy node at the

end of each root-to-leaf path.

For a node v, we say the path from the root to it in Tσ as the realization path of v, and

denote it by R (v). We denote the total weight W (v) = W (R (v)) =
∑

e∈R (v) we, total profit
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P(v) = P(R (v)) =
∑

e∈R (v) pe, and the probability of reaching v as Φ(v) = Φ(R(v)) =∏
e∈R(v) πe.

Let E be the set of all root-to-leaf paths in Tσ. We define E1 = {r ∈ E : W (r) ≤ C}.
We use P(σ, π,C) to denote the expected profit that the policy σ can obtain with the given

distribution π. For SKP, we have

P(σ, π,C) =
∑
r ∈E
Φ(r) · P(r). (5-5)

For SBK, we have

P(σ, π,C) =
∑
r ∈E1

Φ(r) · P(r). (5-6)

5.4 Stochastic Knapsack

In this section, we use the framework formulated in Chapter 3 to simplify the proof

for stochastic knapsack in [11]. Also, we show the same result can be obtained for stochastic

knapsack with commitment.

For stochastic knapsack, define the item setA = {1, 2, . . . , n}. Let the value It be the

total sizes of the items in the knapsack at time period t. Then we set T = n and I1 = 0.

When we insert an item i into the knapsack and observe its size realization, say si, we

define the system dynamic functions to be

It+1 = f (It, i) = It + si, g(It, i) =


pi if It + si ≤ C,
0 otherwise;

(5-7)

for t = 1, 2, · · · ,T and h(IT+1) = 0. Then Assumption 1.1 (2,3) is immediately satisfied.

But Assumption 1.1 (1) is not satisfied for that the value spaceV is not of constant size.

Hence, we need to discretize the value space and reduce its size to a constant.

5.4.1 Discretization

We use the same discretization technique as in [11] for the Expected Utility Maxi-

mization. The main idea is as follows. Without loss of generality, we set C = 1. Now, we

discuss how to discretize the size distributions for items, using parameter ε. For an item

b, we say Xb is a big realization if Xb > ε
4 and small otherwise. For a big realization of
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Xb, we simple define the discretized version of X̃b as ⌊ Xb

ε5 ⌋ε5. For a small realization of

Xb, we define X̃b = 0 if Xb < d and X̃b = ε
4 if d ≤ Xb ≤ ε4, where d is a threshold such

that Pr[Xb ≥ d | Xb ≤ ε4]ε4 = E[Xb | Xb ≤ ε4]. For more details, please refer to [11].

Consider a given adaptive policy σ. For each node v ∈ Tσ, let W (v) and W̃ (v) be

the sum of sizes on the path R (v) before and after discretization respectively. Recall that

Φ(v) is the probability of reaching v. In the proof of Lemma 4.2 of [11], it shows that for

any given set F of nodes in Tσ which contains at most one node from each root-leaf path,

our discretization has the below property:

∑
v∈F : |W (v)−W̃ (v) | ≥2ϵ

Φ(v) = O(ε). (5-8)

We use the notion of canonical policies introduced in [6] (see Section 4.4.1).

Lemma 5.1 (Lemma 4.2 in [11])： Let π be the distribution of size for items and π̃ be the

discretized version π. Then, the following statement hold:

1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃, (1 + 4ε)C) = (1 −O(ε))P(σ, π,C);

2. For any canonical policy σ̃,

P(σ̃, π, (1 + 4ε)C) = (1 −O(ε))P(σ̃, π̃,C).

Proof. (The proof of Theorem 5.1) Suppose σ∗ is the optimal policy with expected value

OPT = P(σ∗, π, 1 + 5ε). Given an instance π, we compute the discretized distribution π̃.

By Lemma 5.1 (1), there exists a policy σ̃∗ such that

P(σ̃∗, π̃, (1 + 4ε)) ≥ (1 −O(ε))P(σ∗, π, ) = (1 −O(ε))OPT.

Now, we present a stochastic dynamic program for the instance (π̃, (1 + 4ε)). Define the

value set V = {0, ε5, 2ε5, . . . , 1 + 5ε}, the item set A = {1, 2, . . . , n}, T = n and I1 = 0.

When we insert an item i into the knapsack and observe its profit realization, say si, we
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define the system dynamic functions to be

It+1 = f (It, i) = min{It + si, 1 + 5ε}, g(It, i) =


pi if It + si ≤ 1 + 4ε,

0 otherwise;
(5-9)

for t = 1, 2, · · · ,T and h(IT+1) = 0. Then Assumption 1.1 is immediately satisfied. By

Theorem 1.6, we can find a policy σ with value P(σ, π̃, 1 + 4ε) at least

OPTd −O(ε) · MAX ≥ (1 −O(ε))P(σ̃∗, π̃, (1 + 4ε)) ≥ (1 −O(ε))OPT,

where OPTd denotes the expected value of the optimal policy for instance (π̃, 1+ 4ε) and

MAX = maxI ∈V DP1(I,A) = DP1(0,A) = OPTd. By Lemma 5.1 (2), we have

P(σ, π, (1 + 4ε)(1 + 4ε)) ≥ P(σ, π̃, (1 + 4ε)) ≥ (1 −O(ε))OPT,

which completes the proof. □

Since Lemma 5.1 holds for correlated size and profit, Theorem 5.1 can be easily extended

to SK-CC (see [11]).

5.4.2 Stochastic Knapsack with Commitment

Li et al. [11] gave a reduction from SK-Commit to SKP. The main idea is following.

For the stochastic knapsack with commitment, we create a set of action Bi = {bθ
i } for each

item, where bθ
i represents the action that we choose the item i with threshold θ, i.e., we

insert the item into the knapsack is its size is less than or equal to θ. Then we set set

A = ∪i∈[n]Bi. Let the value It be the total sizes of the items in the knapsack at time period

t. Then we set T = n and I1 = 0. When we insert an item i into the knapsack and observe

its size realization, say Xi, we define the system dynamic functions to be

It+1 = f (It, bθ
i ) =


It + Xi if Xi ≤ θ,

It otherwise;
g(It, bθ

i ) =


pi if (Xi ≤ θ) ∧ (It + Xi ≤ C),

0 otherwise;
(5-10)

for t = 1, 2, · · · ,T and h(IT+1) = 0.

Theorem 5.6： For any fixed constant ε > 0, there is a polynomial-time approximation

algorithm for the stochastic knapsack with commitment that finds a policy with the
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expected profit at least (1 − O(ε))OPT, when the capacity is relaxed to (1 + ε)C, where

OPT is the expected profit of the optimal adaptive policy.

The action bθ
i is equivalent to an item with the size sθi and profit pθ

i , jointly distributed

as follows:

(sθi , p
θ
i ) =


(si, pi) if si ≤ θ;
(0, 0) if si > θ,

This allows us to reduce SK-Commit to SKP. The only requirement is that at most one

item from Bi can be packed in the knapsack. Since we assume discrete distributions, there

are at most a polynomial number threshold. Theorem 5.6 directly follows from Theorem

5.1.

The the algorithm developed in [22] can be easily extended to SK-Commit and gives a

( 1
2 − ε)-approximation ratio for SK-Commit without relaxing the capacity.

5.4.3 Stochastic Knapsack with Bound Size

Theorem 5.7： For any ε ∈ (0, 1), there is a polynomial algorithm that finds a (1 − 4ε)-

approximate adaptive policy for stochastic knapsack problem when the sizes are bounded

by ε, i.e., for any i ∈ [n], Pr[si ≤ ε] = 1.

Proof. We use OPTλ to denote the expected profit of the optimal adaptive policy when

the capacity is λ. Let k = ⌊ 1
ε
⌋.

We perform a simulation. There are k knapsacks. Each knapsack has a capacity 1− 1
k
.

We simulate realization of σ∗ for a knapsack with capacity 1. We follow the decision tree

associated with σ∗, dynamically assigning each item chosen by σ∗ to the knapsacks. We

notice that decision is always before the item size is realized. The assignment strategy is

very simple: for each item chosen by σ∗, we simultaneously assign it to k − 3 knapsack

with largest remaining capacity. We define a vector (W1,W2, . . . ,Wk ) where Wi is total

weight of items inserted in knapsack i. Then at any time, we have

|Wi −Wj | ≤
1
k
∀i, j ∈ [k] (5-11)

This is because that we always assign the item to the largest remaining capacity and the

size is bounded by 1
k
. We claim that the k knapsack are never violated. Otherwise we
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assume knapsack 1 is violated. Then we have W1 > 1 − 2
k

before insert the last item. We

have

k∑
i=1

Wi > 1 − 2
k
+ (k − 1) ·

(
1 − 3

k

)
> k − 3,

which is a contradiction. Thus the experiment creates k policies, one for each knapsack.

Then we have

OPT1−1/k ≥
(
1 − 3

k

)
OPT. (5-12)

Then, we can use Theorem 5.1, to compute a policy with expected profit (1 − 1
k
)OPT1− 1

k
,

using total knapsack capacity of (1 − 1
k
) + 1

k
= 1. □

5.5 Stochastic Blackjack Knapsack

In this section, we consider the stochastic blackjack knapsack and prove Theorem

5.3. Define the item set A = {1, 2, . . . , n}. Denote It = (It,1, It,2) and let It,1, It,2 be the

total sizes and total profits of the items in the knapsack at the time period t respectively.

We set T = n and I1 = (0, 0). When we insert an item i into the knapsack and observe its

size realization, say si, we define the system dynamics function to be

It+1 = f (It, i) = (It,1 + si, It,2 + pi), g(It, i) = 0, and h(IT+1) =


IT+1,2 if IT+1,1 ≤ C,
0 otherwise;

(5-13)

for t = 1, 2, · · · ,T . Then Assumption 1.1 (2,3) is immediately satisfied. But Assumption

1.1 (1) is not satisfied for that the value spaceV is not of constant size. Hence, we need

discretization. Unlike the stochastic knapsack, we need to discretize the sizes and profits

at the same time.

Consider a given adaptive policyσ. For each node v ∈ Tσ, we have P(v) =
∑

i∈R (v) pi

where R (v) is the realization path from root to v. Define D = {v ∈ LF : W (v) ≤ C}
where LF is the set of leaves on Tσ. Then we have

P(σ) =
∑
v∈D
Φ(v) · P(v). (5-14)
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Without loss of generality, we assume C = 1 and Xi ∈ [0, 1] for any i ∈ [n]. Let P(σ, π, 1)

be the expected profit of the policy σ for the instance (π, 1), where π = {πi} denotes the

set of size distributions and 1 denotes the capacity.

5.5.1 Discretization

Next, we show that item profits can be assumed to be bounded θ2 = OPT/ε2. We set

θ1 = OPT/ε and θ3 = OPT/ε3. Now, we define an item to be a huge profit item if it has

profit greater that or equal to θ2. We use the same discretization technique as in [6] for the

stochastic knapsack. For a huge item bi with size Xi and profit pi, we define a new size

X̂i and profit p̂i as follows: for ∀s ≤ 1

Pr[X̂i = s] = Pr[X̂i = s] · pi

θ2
, Pr[X̂i = 1 + 4ε] = 1 −

∑
s≤1

Pr[X̂i = s] (5-15)

and p̂i = θ2. In Lemma 5.3, we show that this transformation can be performed with only

an O(ε) loss in the optimal profit. Before to prove the lemma, we need following useful

lemma.

Lemma 5.2： For any policy σ on instance (π,C), there exists a policy σ′ such that

P(σ′, π,C) = (1 −O(ε))P(σ, π,C) and in any realization path, the sum of profit of items

except the last item that σ′ inserts is less than θ1.

Proof. We interrupt the process of the policy σ on a node v when the first time that

P(v) ≥ θ1 to get a new policy σ′, i.e., , we have a truncation on the node v and do not add

items (include v) any more in the new policy σ′. Let F be the set of the nodes on which

we have truncation. Then we have
∑

v∈F Φ(v) ≤ ε. Thus, the total profit loss is equal to∑
v∈F Φ(v)OPT ≤ εOPT. □

W.l.o.g, we assume that all (optimal or near optimal) policies σ considered in this section

satisfy the following property.

(P1) In any realization path, the sum of profit of items except the last item that σ inserts

is less than θ1.

Lemma 5.3： Let π be the distribution of size and profit for items and π̂ be the scaled

version of π by Equation (5-15). Then, the following statement holds:
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1. For any policy σ, there exists a policy σ̂ such that

P(σ̂, π̂,C) = (1 −O(ε))P(σ, π,C).

2. For any policy σ,

P(σ, π,C) = (1 −O(ε))P(σ, π̂,C).

Proof. (Proof of Lemma 5.3) For the first result, by Lemma 5.2, there exists a policy σ̂

such that P(σ̂, π,C) = (1 −O(ε))P(σ, π,C) and in any realization path, there are at most

one huge profit item and always at the end of the policy. For huge profit item v, the

expected profit contributed by the realization path from root to v to P(σ̂, π,C) is

Φ(v) · Pr[Xv ≤ C −W (v)] · (P(v) + pv).

In P(σ̂, π̂,C) with scaled distributions on huge profit items, the expected profit contributed

by the realization path from the root to v is

Φ(v) · Pr[X̂v ≤ C −W (v)] · (P(v) + θ2)

= Φ(v) ·
(
Pr[Xv ≤ C −W (v)] · pv

θ2

)
· (P(v) + θ2).

Since v is a huge profit item, we have pv ≥ θ2, which implies pv

θ2
· (P(v)+ θ2) ≥ P(v)+ pv.

This completes the proof of the first part.

Now, we prove the second part. By Property (P1), for a huge item v, we have

P(v) ≤ OPT/ε. Then we have

pv

θ2
· (P(v) + θ2) = pv ·

(
1 +

P(v)
θ2

)
≤ pv · (1 + ε) ≤ (1 + ε)(pv + P(v)).

This completes the proof of the second part. □

In order to discretize the profit, we define the approximate profit P̃(σ, π̂) =∑
v∈D Φ(v) · P̃(v) where

P̃(v) = θ3 ·
1 −

∏
i∈R (v)

(
1 − pi

θ3

) (5-16)
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Lemma 5.4 below can be used to bound the gap between the approximate profit and the

original profit.

Lemma 5.4： For any adaptive policy σ for the scaled distribution π̂, we have

P(σ, π̂,C) ≥ P̃(σ, π̂,C) ≥ (1 −O(ε))P(σ, π̂,C).

Proof. Fix a node v on the tree Tσ. For the left side, we have

P̃(v) = θ3 ·
1 −

∏
i∈R (v)

(
1 − pi

θ3

) ≤ θ3 ·
1 −

*.,1 −
∑

i∈R (v)

pi

θ3

+/-
 =

∑
i∈R (v)

pi = P(v).

For the right size, we have

P̃(v) = θ3 − θ3 ·

∏

i∈R (v)

(
1 − pi

θ3

)
≥ θ3 − θ3 ·

1 −
∑

i∈R (v)

pi

θ3
+
*.,

∑
i∈R (v)

pi

θ3

+/-
2

=
*.,

∑
i∈R (v)

pi
+/- ·

[
1 −

∑
i∈R (v) pi

θ3

]
≥ (1 −O(ε))P(v),

where the last inequality holds by Property (P1) that P(v) ≤ θ1 + θ2. □

Now, we choose the same discretization technique which is used in Section 5.4.1.

Lemma 5.5： Let π̂ be the distribution of size and profit for items and be π̃ be the

discretized version of π̂. Then, the following statements hold:

1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃, (1 + 2ε)) ≥ (1 −O(ε))P(σ, π̂, 1).

2. For any canonical policy σ̃,

P(σ̃, π̂, (1 + 2ε)) ≥ (1 −O(ε))P(σ̃, π̃, 1).
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Proof. (The proof of Lemma 5.5) For the first result, consider a randomized canonical

policy σ̃ which has the same structure as σ. If σr inserts an item X̃ and observes a

discretized size d ∈ V , it chooses a random branch in T (σr, π̃) among those sizes that

are mapped to d, i.e., {we | DX (we) = d} according to the probability distribution

Pr[branch e is chosen] =
Pr[X = we]∑

s |DX (s)=d Pr[X = s]
.

Then, the probability of an edge on Tσr
is the same as that of the corresponding edge on

Tσ. The only difference is two edges are labeled with different weight we on Tσ and w̃e

on Tσr
.

We have P(v) =
∑

i∈R (v) pi which is less than O(OPT/ε) by Lemma 5.3. Define

D = {v ∈ LF : W (v) ≤ 1} and D̃ = {v ∈ LF : W̃ (v) ≤ 1 + 2ε}, where LF is the set of

leaves on T (σ, π). Then we have

P(σ, π̂, 1) =
∑
v∈D
Φ(v) · P(v), P(σ̃, π̃, 1 + 2ε) =

∑
v∈D̃

Φ(v) · P(v).

Define ∆ = {v ∈ LF : |W (v) − W̃ (v) | ≥ 2ε}. Then we have D \ D̃ ⊆ ∆. By the result of

Equation (5-8), we have

∑
v∈D\D̃

Φ(v) ≤
∑
v∈∆
Φ(v) = O(ε3).

By Property (P1), for any node v, we have P(v) ≤ θ1 + θ2.Then the gap P(σ, π, 1) −
P(σ̃, π̃, (1 + 2ε) is less than

∑
v∈D\D̃

Φ(v) · P(v) ≤
∑

v∈D\D̃

Φ(v) · 2OPT
ε2 = O(ε)OPT.

This completes the proof of the first part.

Now, we prove the second part. Since a canonical policy makes decisions based

on the discretized, T (σ̃, π̃, 1) has the same tree structure as T (σ̃, π̂, 1 + 2ε). Define

D = {v ∈ LF : W (v) ≤ 1 + 2ε} and D̃ = {v ∈ LF : W̃ (v) ≤ 1}, where LF is the set of

leaves on T (σ̃, π̃, 1). Then we have

P(σ̃, π̂, 1 + 2ε) =
∑
v∈D
Φ(v) · P(v), P(σ̃, π̃, 1) =

∑
v∈D̃

Φ(v) · P(v).
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Then the gap P(σ̃, π̃, 1) − P(σ̃, π̂, (1 + 2ε) is equal to

∑
v∈D̃\D

Φ(v) · P(v) ≤
∑

v∈D̃\D

Φ(v) · 2OPT
ε2 = O(ε)OPT.

5.5.2 Proof

Now, we ready to prove Theorem 5.3.

Proof. (The proof of Theorem 5.3) Suppose σ∗ is the optimal policy with expected profit

OPT = P(σ∗, π, 1). Given an instance π, we compute the scaled distribution p̂i and

discretized distribution π̃. By Lemma 5.4, Lemma 5.5 (1) and Lemma 5.3 (1), there exist

a policy σ̃∗ such that

P̃(σ̃∗, π̃, (1 + 2ε))

≥ (1 −O(ε))P(σ̃∗, π̃, (1 + 2ε)) [Lemma 5.4]

≥ (1 −O(ε))P(σ∗, π̂, 1) [Lemma 5.5 (1)]

≥ (1 −O(ε))P(σ∗, π, 1) [Lemma 5.3 (1)]

= (1 −O(ε))OPT.

Now, we present a stochastic dynamic program for the instance (π̃, 1 + 2ε). Define the

value setV = {0, ε5×3, 2ε5×3, . . . , 1 + 3ε} × {0, 1} and the item set A = {1, 2, . . . , n}. We

set T = n and I1 = 0. When we insert an item i into the knapsack, we observe its size

realization si and toss a coin to get a value p̃i with Pr[p̃i = 1] = p̂i
θ3

and Pr[p̃i = 0] = 1− p̂i
θ3

. Then we define the system dynamics function to be

It+1 = f (It, i) = (It+1,1, It+1,2) = (min{1 + 3ε, It,1 + si},max{It,2, p̃i}) (5-17)

and g(It, i) = 0 for It ∈ V and t = 1, 2, · · · ,T . The terminal function is

h(IT+1) =

θ3 · IT+1,2 if IT+1 ≤ 1 + 2ε,

0 otherwise;
(5-18)

Then Assumption 1.1 is immediately satisfied. By Theorem 1.6, we can find a policy σ
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with profit P̃(σ, π̃, 1 + 2ε) at least

OPTd −O(ε4) · MAX ≥ P̃(σ̃∗, π̃, (1 + 2ε)) −O(ε)OPT = (1 −O(ε))OPT,

where OPTd denotes the expected approximate profit of the optimal policy for instance

(π̃, 1+ 2ε) and MAX = maxI ∈V DP1(I,A) = DP1((0, 1),A) = θ3 = OPT
ε3 . By Lemma 5.4,

Lemma 5.5 (2) and Lemma 5.3 (2), we have

P(σ, π, (1 + 4ε))

≥ (1 −O(ε))P(σ, π̂, (1 + 4ε)) [Lemma 5.3 (2)]

≥ (1 −O(ε))P(σ, π̃, (1 + 2ε)) [Lemma 5.5 (2)]

≥ (1 −O(ε))P̃(σ, π̃, (1 + 2ε)) [Lemma 5.4]

≥ (1 −O(ε))OPT,

which completes the proof. □

5.5.3 Without Relaxing the Capacity

Before design a policy for SBK without relaxing the capacity C, we establish a

connection between adaptive policies for SKP and SBK.

Lemma 5.6： For any policy σ for SKP on instance J = (π,C), there exists a policy σ′

for sbk such that

PSBK(σ′, π,C) ≥ 1
4
· PSKP(σ, π,C). (5-19)

Proof. W.l.o.g, we assume that for any node v ∈ Tσ, we have P(v) ≤ PSKP(σ, π,C).

Otherwise, we use the subtree Tv to instead Tσ for SKP. Set θ = PSKP(σ, π,C)/2. We

interrupt the process of the policy σ on a node v when the first time that the summation

of is larger than or equal to θ to get a new policy σ′, i.e., we have a truncation on the node

v and do not insert the item (include v) any more in the new policy σ′. Let F be the set of

the nodes on which we have a truncation. Let F̄ = LF \F be the set of rest leaves, where

LF is the set of leaves of the tree Tσ′. Then we have

2θ =
∑
v∈F̄

Φ(v) · P(v) +
∑
v∈F
Φ(v) · [P(v) + P(v)]
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≤ θ ·
∑
v∈F̄

Φ(v) +
∑
v∈F
Φ(v)[P(v) + 2θ]

= θ +
∑
v∈F
Φ(v)[P(v) + θ]

≤ θ + 2
∑
v∈F
Φ(v)P(v). □

Thus the expect profit of the policy σ′ for SBK is equal to

∑
v∈F
Φ(v)P(v) ≥ 1

2
· θ = 1

4
· PSKP(σ, π,C).

Lemma 5.7： For any stochastic knapsack instance J , we have

OPTSKP(J ) ≥ OPTSBK(J ) ≥ 1
4

OPTSKP(J ). (5-20)

For any fixed ε ≥ 0 and instance J , by the result of [22], there is a polynomial time

algorithm to compute a policy σ for SKP with expected profit ( 1
2 − ε)OPTSKP(J ). By

Lemma 5.6, we can find a policy σ′ for SBK expected profit at least

1
4
× (

1
2
− ε)OPTSKP(J ) ≥ (

1
8
− ε)OPTSBK(J ).

This completes the proof os Theorem 5.4.

5.6 Stochastic Target Problem

In this section, we consider the stochastic target problem and prove Theorem 5.5.

Define the item set A = {1, 2, . . . , n}. Let the value It be the total profits of the items in

the knapsack at time period t. Then we set T = m and I1 = 0. When we insert an item i

into the knapsack and observe its profit realization, say Xi, we define the system dynamic

functions to be

It+1 = f (It, i) = It + Xi, g(It, i) = 0, and h(IT+1) =


1 if IT+1 ≥ T,
0 otherwise;

(5-21)

for t = 1, 2, · · · ,T . Then Assumption 1.1 (2,3) is immediately satisfied. But Assumption

1.1 (1) is not satisfied for that the value spaceV is not of constant size. Hence, we need
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discretization.

We use the same discretization technique as in Section 5.4.1. Let P(σ, π, 1) be the

expected objective value of the policy σ for the instance (π, 1), where π = {πi} denotes

the set of reward distributions and 1 denotes the target. Let π̃ be the discretized version

of π. Then, we have following lemmas.

Lemma 5.8： For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃, (1 − 2ε)) ≥ P(σ, π, 1) −O(ε).

Lemma 5.9： For any canonical policy σ̃,

P(σ̃, π, (1 − 2ε)) ≥ P(σ̃, π̃, 1) −O(ε).

Proof. (The Proof of Theorem 5.5) Suppose σ∗ is the optimal policy with expected value

OPT = P(σ∗, π, 1). Given an instance π, we compute the discretized distribution π̃. By

Lemma 5.8, there exists a policy σ̃∗ such that

P(σ̃∗, π̃, (1 − 2ε)) ≥ P(σ∗, π, 1) −O(ε) = OPT −O(ε).

Now, we present a stochastic dynamic program for the instance (π̃, 1 − 2ε). Define the

value setV = {0, ε5, 2ε5, . . . , 1}, the item set A = {1, 2, . . . , n}, T = m and I1 = 0. When

we insert an item i into the knapsack and observe its profit realization, say Xi, we define

the system dynamic functions to be

It+1 = f (It, i) = min{1, It + Xi}, g(It, i) = 0, and h(IT+1) =


1 if IT+1 ≥ 1 − 2ε,

0 otherwise;
(5-22)

for It ∈ V and t = 1, 2, . . . ,T . Then Assumption 1.1 is immediately satisfied. By

Theorem 1.6, we can find a policy σ with value P(σ, π̃, 1 − 2ε) at least

OPTd −O(ε) · MAX ≥ P(σ̃∗, π̃, (1 − 2ε)) −O(ε) = OPT −O(ε),

where OPTd denotes the expected value of the optimal policy for instance (π̃, 1− 2ε) and
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MAX = maxI ∈V DP1(I,A) = DP1(1,A) = 1. By Lemma 5.9, we have

P(σ, π, (1 − 4ε)) ≥ P(σ, π̃, (1 − 2ε)) −O(ε) ≥ OPT −O(ε),

which completes the proof. □

Proof. (The Proof of Lemma 5.8) Consider a randomized canonical policy σ̃ which has

the same structure as σ. If σr inserts an item X̃ and observes a discretized size d ∈ V ,

it chooses a random branch in T (σr, π̃) among those sizes that are mapped to d, i.e.,

{we | DX (we) = d} according to the probability distribution

Pr[branch e is chosen] =
Pr[X = we]∑

s |DX (s)=d Pr[X = s]
.

Then, the probability of an edge on Tσr
is the same as that of the corresponding edge on

Tσ. The only difference is two edges are labeled with different weight we on Tσ and w̃e

on Tσr
.

Notice that P(σ̃, π̃, (1−2ε)) is the sum of all paths R (v) with W̃ (v) ≥ 1−2ϵ . Define

D = {v ∈ LF : W (v) ≥ 1} and D̃ = {v ∈ LF : W̃ (v) ≥ 1 − 2ε}, where LF is the set of

leaves on T (σ, π). Therefore we have

P(σ, π, 1) =
∑
v∈D
Φ(v), P(σ̃, π̃, (1 − 2ε)) =

∑
v∈D̃

Φ(v).

Consider the set∆1 = D\D̃. For each v ∈ ∆1, we have W (v) ≥ 1 and W̃ (v) < 1−2ε.

Thus we claim that |W (v) − W̃ (v) | > 2ε, implying that ∆1 ⊆ ∆ � {v ∈ LF : |W (v) −
W̃ (v) | ≥ 2ϵ }. Thus we have

P(σ̃, π̃, (1 − 2ε)) ≥ P(σ, π, 1) −
∑
v∈∆1

Φ(v) ≥ P(σ, π, 1) −
∑
v∈∆
Φ(v) ≥ P(σ, π, 1) −O(ε).

Proof. (The Proof of Lemma 5.9) In our case, we focus on the decision tree T (σ̃, π̃, 1)

and assume all w̃e take discretized value. T (σ̃, π̃, 1) has the same tree structure as

T (σ̃, π, 1 − 2ε).

Define ∆2 = {v ∈ LF,W (v) < 1− 2ε, W̃ (v) ≥ 1}, where LF is the set of leaves in Tσ.

Then we see W̃ (v) −W (v) > 2ε, implying ∆2 ⊆ ∆ = {v ∈ LF : |W (v) − W̃ (v) | ≥ 2ε}.
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By the result of Equation (5-8), we see

∑
v∈∆2

Φ(v) ≤
∑
v∈∆
Φ(v) = O(ε).

Therefore we claim that

P(σ̃, π, (1 − 2ε)) ≥ P(σ̃, π̃, 1) −
∑
v∈∆2

Φ(v) ≥ P(σ̃, π̃, 1) −O(ε).
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第 6章 Conclusion

We conclude this thesis with a summary of our results as well as the techniques, and

raise some open problems suggested by our studies.

In the first part of the dissertation, we formally define a model based on stochastic

dynamic programs. This is a generic model. There are a number of stochastic optimization

problems which fit in this model. We design a polynomial time approximation scheme

for this model.

We also study two important stochastic optimization problems, stochastic probing

problem and stochastic knapsack problem. We propose an approximation algorithm for

stochastic probing problem. Using the stochastic dynamic programs, we design a PTAS

for ProbeMax, which improves the best known approximation ratio 1−1/e. We also design

a PTAS for committed ProbeMax with a general matroid outer constraint. To improve the

approximation ratio for ProbeMax with a matroid outer constraint is still a open problem.

We also study the commitment gap and adaptivity gap for stochastic probing, and give a

bound about them.

Next, we focus on the variants of stochastic knapsack problem: stochastic blackjack

knapsack and stochastic target problem. Using the stochastic dynamic programs and

discretization technique, we design a PTAS for them if allowed to relax the capacity or

target. To improve the ratio for stochastic knapsack problem and variants without relaxing

the capacity is still a open problem.
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附录 A 中文论文

A.1 简介

近年来，在很多应用场景中都产生了不确定的数据。这几乎覆盖了从电信，

医药到金融工程的所有科学领域。在这些场景中，不确定性是不可避免的。如何

以严谨的方式，分析和解决这些问题成为近年来一个热门的课题。该领域起源于

Dantzig [1] 的工作，并延伸出了广泛的研究。其研究成果也在许多领域都得到了

应用。1957 年，Richard Bellman [2] 提出了随机动态规划模型（stochastic dynamic

programming）。这是一种用来建模和解决不确定条件下决策问题的技术。因为这

是一个很通用的模型，可用来设计优化算法，它在随机优化模型中扮演着很重要

的角色。对于一些特定问题，可以通过直接求解 Bellman 方程获得多项式时间的

闭式或精确解。另一方面，由于“维度的诅咒”和超大的状态空间，这种方法也有

许多的局限。我们推荐参考书籍 [3,4]。

目前，随机优化已经成为处理各种优化问题中不确定性的主要方法。对于一

些特定的场景，研究人员提出了一组模型并给出了相应的多项式时间的近似算法，

如随机背包 [5,6]（stochastic knapsack），随机匹配 [7,8]（stochastic matching），随机集

覆盖 [9,10]（stochastic set cover），随机容器包装 [11]（stochastic bin packing）等等。感

兴趣的读者可以参考 [12]。

在本论文中，我们关注一类随机动态规划问题。针对这些问题，我们提出了一

个基于随机动态规划的模型，并设计了一个有效的多项式时间的近似算法。通过

我们的模型，可以为一群适合这个模型的随机组合优化问题设计多项式算法。接

下来我们引入两类问题：随机探测问题（stochastic probing problem）和随机背包问

题（stochastic knapsack），并简要陈述我们的结果。

A.1.1 随机探测问题

假设一家公司准备招聘一位秘书。当把招聘广告投放出去之后，一共收到了

n份简历，通过简历，公司可以大致评估应聘者是否与公司的职位要求相匹配，并

给一个分数，称之为匹配度。这个匹配度可能是不确定，而是一个已知分布的随

机变量（例如 50%的概率为 70，50%的概率为 80）。想要了解应聘者真实的匹配

度，公司需要安排面试。由于时间精力有限，公司只能从中挑选 m(≤ n)个应聘者

来进行面试。那应该设计一个怎样的策略，能让公司可以选到一个匹配度尽可能

高的秘书？这个问题可以被下面这个模型所表示。
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问题 A.1 (探测最大值问题 ProbeMax)： 给定一组非负独立的随机变量 {Xi}ni=1，并

已知每个随机变量的（离散）分布 πi。我们可以按一定顺序探测一个子集 P ⊆ [n]，

每当探测变量 i后，我们就可以得到来自分布 πi 的一个独立样本值 Xi。我们可以

自适应地（adaptively）探测最多 m的变量，并且每个变量最多可以探测一次。最

后的收益是这 m个样本中的最大值。我们的目标是设计一个自适应探测策略，使

得收益的期望值最大。

图 A.1 探测最大值问题的一个例子.
备注: 图中所示的是一个探测最大值问题的一个示例。它最优的自适应策略可以表示成图中
的一棵决策树。这颗决策树的期望收益为 71.67。如果考虑一个非自适应策略，那最优的策略
是选择探测变量 1和变量 3。这个策略的期望收益为 Emax{X1, X3} = 70。

探测最大值问题及其变体已在许多论文中都研究过 (参考 [13–18])。尽管是一个

非常基本的随机优化问题，我们仍然没有完全理解探测最大值问题的近似性，甚

至不知道获得最佳策略是不是可能的。

一个非自适应策略只是一个先验的固定的变量集合 P ⊆ [n]。注意到 f (P) =

E[maxi∈P xi] 是一个次模函数，因此根据标准的做法，很容易得到一个 1 − 1/e 的

近似解。后来陈等 [13]找到了在所有非适应性策略中的第一个 PTAS。参见图 A.1这

个简单的例子，相比非自适应策略，我们可以很明显的对比出适应性策略的优势。

对于探测最大值问题，目前所知道的最优的近似解是 1− 1
e
近似 [17,19]，这可以通过

使用 Asadpour 等人 [17] 的随机最大化单调次模算法得到，不过这也是一个非适应

性策略，这就意味着最优的自适应策略和最优的非自适应策略的比值最多为 e
e−1。

后来 Golovin等人 [19] 介绍一个自适应单调次模的概念，同样可以得到 1 − 1
e
近似。

在本文中，我们提供第一个在所有适应性策略中的 PTAS，需要强调是我们的策略

确实是一个自适应策略。
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定理 A.1： 对于所有自适应策略的探测最大值问题，都存在一个 PTAS。也就是

说，对于任何固定的常数 ε > 0，有一个可以用于探测最大值问题的多项式时间近

似算法，它可以找到一个期望收益值至少为 (1 − ε)OPT的策略，这里的 OPT是最

优自适应策略的期望收益值。

Gupta等 [18]提出了一个随机探测问题（stochastic probing problem）的框架。其

中探测最大值问题就是这个通用框架的一个特例。

问题 A.2 (随机探测问题 stochastic probing problem)： 随机探测问题的实例 J 由
三元组 J = (U, π,I)组成，其中U 是一组非负随机变量 {Xi}ni=1，并已知每个随机

变量的（离散）分布 πi 以及 π = {πi}[i∈U]，约束条件 I由两个独立的集合系统 Iout
和 Iin组成，分别表示外部（打包）约束和内部（打包）约束。我们可以按一定顺
序自适应地探测一个子集 P ⊆ U，并选择另一个子集 C ⊆ P 作为最终输出集合。

每当探测变量 i后，我们就可以得到来自分布 πi 的一个独立样本值 Xi。约束条件

是我们探测的变量序列集合 P 必须在 Iout 中，我们输出的最终集合 C 必须在 Iin
中。我们的目标是设计一个策略，使预期值 E[

∑
i∈C Xi]最大。

这里有两种约束条件：

• 外部约束 Iout 1O: 这是我们可以探测变量序列的集合。这要求我们探测的变量

集合 P必须属于 Iout，并每个变量最多被探测一次。
• 内部约束 Iin: 这是我们最终可以输出的变量集合 C的约束条件。它要求集合

C必须属于 Iin。
根据我们如何选择最终集合 C，可以自然的分成两个模型：承诺模型（committed）

和非承诺模型（non-committed） 2O。

• 承诺模型（committed）：每当我们探测一个变量，并得到它的样本值，我们

必须立即做出一个是否选择它的决定，并且不可撤销。也就是说，我们必须

立即将它添加到最终选择的集合 C或者永远抛弃它。

• 未承诺模型（non-committed）：我们可以在得到 P 中所有探测变量的样本值

后再选择集合 C。也就是说，C的选择可以在 P中的变量都被探测之后进行。

实际上，每一个承诺策略都是一个非承诺策略的特例。随机探测问题可以很自然

地推广到非承诺模型的探测最大值问题（ProbeMax ），这里，外部约束 Iout 是简
单的 m-均匀拟阵（m- uniform matroid），也就是说 Iout = {P | |P | ≤ m}。内部约束
Iin是 1-均匀拟阵，也就是说我们只输出一个最大值。我们可以用一些更一般的约

1O Iout 可以理解为一些序列的集合。如果 Iout 由集合的组成,那么集合以任何顺序组成的序列都可以被探
测。

2O Gupta等 [18] 把它们称为在线和离线决策模型。
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图 A.2 承诺差距与自适应差距

束来替换外部约束，例如一个拟阵。如果用 k-均匀拟阵代替探测最大值问题中的

内部约束（i.e., Iin = {C | |C | ≤ k}），这就是探测前 k大和问题（ProbeTop-k）。在

本文中，我们假设 k 是一个常数。

如图A.2所示，有四种不同类型的 (AN,NN,AC,NC)策略用于随机探测问题，其

中第一个符号指示策略是否是自适应的, A表示是，N表示不是，第二个符号指示

是否是承诺策略，C表示是，N表示不是。对于特定的随机探测实例 J，我们使用
OPTAN(J )来表示为类型 AN的最优策略的期望值，如果上下文清楚，我们还使用

简写符号 OPTAN表示，类似我们有 OPTAC(J ),OPTNN(J )和 OPTNC(J )。

注意到对于特定的随机探测实例 J，OPTAN 值不小于 OPTNN 和 OPTAC。我们

用承诺差距（commitment gap）和自适应差距（adaptivity gap）来测量之间的差距，

定义如下：

定义 A.1：（自适应差距） 对于特定的随机探测实例 J，我们定义在非承诺模型
的自适应差距

AdaptiveGap(J ) =
OPTAN(J )
OPTNN(J )

(A-1)

定义 A.2：（承诺差距）对于特定的随机探测实例 J，我们定义承诺差距为

CommitGap(J ) =
OPTAN(J )
OPTAC(J )

(A-2)

现在，我们在表格A.1中列出我们的主要结果。这个表格A.1中的所有近似值

都是与最优自适应策略进行比较。

定理 A.2： 当内部约束是均匀拟阵，外部约束是任意前缀闭包约束时，任何随机

探测问题的承诺差距最多为 2。

我们的技术可以从定理A.2的证明中推导出以下有用的结果，该结果还改进了 [18]

中 3.51的结果。

推论 A.1： 当内部约束是均匀拟阵，外部约束是任意前缀闭包约束时，任何随机

探测问题的适应性差距最多为 2。
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表 A.1 随机探测问题（stochastic probing problem）近似结果总结

内部约束 外部约束 承诺模型 未承诺模型

1-均匀拟阵

均匀拟阵
PTAS 1 − 1/e [17], 1/8 [14], PTAS

[Thm 1.5 in [11]] [定理 A.1 in SA.3]

拟阵
PTAS

1 − 1/e [17]
[Thm 4.2 in S4.5.2]

2个拟阵
PTAS 1/3 [Thm 4.6], 1/2 + ε

[Thm 4.2 in S4.5.2] [Thm 1.2 in S4.5.3 ]

k-均匀拟阵 均匀拟阵
PTAS 1 − 1/e [17], PTAS

[Thm 4.3 in S4.5.1] [Corollary 4.1 in S4.4.2]

拟阵 拟阵
1/2

1 − 1/e [17]
[Thm 4.6 in S4.6]

k in 个拟阵 kout 个拟阵 1
k in+kout [Thm 4.6 in S4.6]

A.1.2 随机背包问题及其变种

问题 A.3 (随机背包问题 (SKP))： 给我们一个容量为 C 的背包和 n 个物品，每个

物品 i ∈ [n]的大小 Xi 是随机的，由已知分布 πi 决定，每个物品 i的价值为 pi。当

我们决定将一个物品 i 放入背包中，我们就知道其实际的大小 si。它与分布 πi 有

关。只要不超过容量限制，我们可以自适应地将物品放入背包。一旦超过容量，我

们就停止放入物品。我们的目标是设计一个策略，使得背包中物品总价值最大。

图 A.3 随机背包问题的一个例子
备注: 图中所示的是一个随机背包问题的一个示例。它的最优的自适应策略可以表示成图中
的一棵决策树。这颗决策树的期望价值为 1.75。如果考虑一个非自适应策略，那最优的非适
应性策略是依次放入物品 1, 2, 3，可以实现的期望价值为 1.5。

这个问题是随机组合优化中的一个经典问题。一个自然的动机是来自如下的
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随机调度问题。假设我们想要在单台机器上安排 n 份作业。每项作业都有一个随

机的处理时间（已知其分布）和相应完成所获得的固定利润。给定一个固定的截

止日期，我们希望在截止日期前获得尽可能多的利润。

我们考虑自适应策略（参见图A.3），这个问题是 PSPACE 难题（这个问题的

一个变体已被证明是 PASACE-难 [5]）。为这个问题设计好的近似算法近年来受到了

相当多的关注 [5,6,11,20–22]。接下来，Levin等人 [23]引入了随机背包问题的一种变体：

一旦超过背包容量，所有的物品的价值都会失去，这被形象的称为随机二十一点

背包问题。

问题 A.4 (随机二十一点背包问题 (SBK))： 在这个问题中，我们给出了一个实例

J = (π,C)。我们的目标是设计一个适应性策略，使得放入背包的预期物品总价值

最大。与随机背包问题的区别是，如果放入的总物品大小超过容量 C，我们获得的

价值为 0。

定理 A.3： 如果我们将背包容量放宽到 (1 + ε)C，那么存在一个随机二十一点背

包问题的 PTAS。换句话说，对于任何给定的常量 ε > 0，都有一个多项式时间近

似算法，它找到一个期望价值至少为 (1 − ε)OPT的策略，其中 OPT是为最佳适应

性策略的期望价值。

接下来的一个问题的动机来自选择渔场，这也是随机背包问题的一个变种。假

设杰克船长有一艘渔船并准备去捕鱼，他有几个渔场可供选择。通过近乎实时的

海洋学分析和历史数据，可以预先估计渔场的产量。但是，预估的也仅仅是一个

产量的分布，真实的产量只有到捕获结束时才能知道。给定一个捕鱼目标，如何

选择正确的渔场可以以最高的概率达到目标。这个问题可以用下面的模型来表示。

问题 A.5 (随机目标问题（STP）)： 我们给定预定目标 T 和一组非负的随机变量

{Xi}i∈[n]，并已知每个随机变量的（离散）分布 πi。每当选择一个变量 i时，我们就

可以得到来自分布 πi的一个独立样本值 Xi。可以自适应的选择 m变量，我们的目

标是设计一个适应性策略，使得 Pr[
∑

i∈P xi ≥ T]是最大，其中 P ⊆ [n]是选择的变

量集合。

定理 A.4： 如果我们将目标放松到 (1−ε)T，那么存在一个随机目标问题的 PTAS。

换句话说，任何给定的常量 ε > 0，都有一个多项式时间近似算法，该算法可以找

到一个策略，使得变量总和超过 (1 − ε)T的概率至少为 OPT − ε，其中 OPT是最

优自适应策略能达到目标的概率。
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图 A.4 随机目标问题的例子
备注: 图中所示的是一个随机目标问题的一个示例，这里只能选择 2个变量。它的最优的自适
应策略可以表示成图中的一棵决策树。这颗决策树能达到目标的概率为 0.75。如果考虑一个
非自适应策略，那最优的非适应性策略是选择 1, 3，能达到目标的概率为 0.5。

通过图A.4中一个简单的例子，我们可以看到自适应策略的优势。如本例所示，

如果使用自适应策略，它会显著的提高最优解。现在，我们在表A.2中列出我们的

主要结果。

表 A.2 随机背包问题（stochastic knapsack）及其变种的近似结果总结

问题 单参数近似
双参数近似 (C放宽至

(1 + ε)C或者 T放宽至 (1 − ε)T)

随机背包问题 1
3 − ε [5], 3

8 − ε [6], 1
2 − ε [22] 1 − ε [6,11]

[定理 5.1在 S5.4]

随机二十一点背包
(
√

2 − 1)2/2 ≈ 1/11.66 [23] 1 − ε
1/8 − ε [定理 5.4在 S5.5.3] [定理A.3在 SA.5]

随机目标问题 -
OPT − ε

[定理 A.4在 SA.4]

如果随机背包问题中的物品大小有界，我们有以下定理。

定理 A.5： 对于任何 ε ∈ (0, 1)，当满足 i ∈ [n]，Pr[si ≤ ε] = 1，存在有一个多项

式算法，可以为随机背包问题找到一个 (1 − 4ε)的多项式近似算法。

A.1.3 随机动态规划

上面讨论的问题都是重要的随机优化问题，从这三个展示的示例（图A.1，A.3，

A.4），我们可以看到自适应策略的优势，但是设计一个自适应策略是相当困难的，

这是因为对应最优策略的决策树可能是指数级大，并且非常复杂的，因此，在多

项式空间中表示最佳决策树几乎是不可能的，这就是研究人员热衷于设计非适应
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性策略的原因。在本文中，我们提供了一个解决方案，为了解决这些问题，我们开

发了一个基于随机动态规划的通用模型，我们还设计了一个有效的多项式时间近

似算法来寻找自适应策略，这个模型可以用于很多包括前面提到的随机优化问题。

考虑一个有限轮次的在线随机优化问题，给定一组任务（或项目，物品，工

作，副本或行动），在每一轮中，我们都可以选择一项任务，每个任务最多可以选

择一次。我们有一个初始的系统“状态”（称为系统的价值）。在每一轮，我们可以

选择一个任务，完成任务会产生一些（可能是随机的）反馈，包括改变系统的价值

并为本轮提供一些收益。我们的目标是设计一个策略，使得我们的总（预期）收益

最大。这个模型可以被形式化表示如下：

问题 A.6 (随机动态规划（Stochastic Dynamic Programs）)： 给定一个 6 元组

(V,A, f , g, h,T )。这里，V 是系统所有可能价值的集合，A 是项目或者任务集
合，每个项目最多可以选择一次。这个模型最多可以进行 T 轮，在每一轮 t ∈ [T]，

我们用 It ∈ V 表示系统的当前价值，At ⊆ A 表示剩余可用的项目集合。如果我
们选择一个项目 at ∈ At，系统的价值更改为 f (It, at )，这里 f 可能是随机的，并

对于每个项目 at ∈ A是独立的。系统同时产生一个随机收益 g(Itat )。函数 h(IT+1)

是过程结束时的最终收益函数。给定系统初始价值 I1 ∈ V，我们的目标是设计一
个适应性策略，使得收益总额的期望值 ETt=1g(It, at ) + h(IT+1)]最大。

对于随机动态规划，为了获得多项式时间近似方案（PTAS），我们需要以下假

设。

假设 A.1： 我们有如下假设：

1. 价值空间 V 是离散的和有序的，并且其空间大小 |V | 为常数。不失一般性，
假设V = {0, 1, . . . , |V | − 1}。

2. 函数 f 满足 f (It, at ) ≥ It，也就是说系统价值是非减的。

3. 函数 h : V → R≥0 是一个非负函数。期望收益 E[g(It, at )]也是非负的（即使

g(It, at )可能为负）

假设（1）看起来似乎是相当严格的。但是，对于几个具体问题，当它们的价

值空间的大小不是常数（例如探测最大值问题，参见第 A.3节），可以利用离散技

术，可以将价值空间离散化，将其规模缩小到一个常数，同时不会损失太多的收

益。假设（2）和（3）对于许多问题都是很自然的。现在，我们阐述我们的主要结

果。

定理 A.6： 对于任何固定的 ε > 0，如果假设 A.1成立，我们可以在多项式时间

n2O(ε−3 ) 中找到一个自适应策略，它的期望收益至少为 OPT − O(ε) · MAX，这里
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MAX = maxI ∈V DP(I,A) 是所有初始值 I ∈ V 中的上界，其中 DP(I,A) 是对于初

始值 I 的最优自适应策略的期望收益和 OPT = DP(I1,A) 的给定初始值 I1 的最优

自适应策略的预期收益。

通过定理A.6和不同的离散化技术，我们得到第一个用于探测最大值问题

（定理A.1），随机二十一点背包问题（定理A.3）和随机目标问题（定理 A.4）的

PTAS。定理A.6也可以用于其他问题，例如探测前 k大和问题（请参见第4.5.1节），

Pandora’s Box问题（请参见第4.5.4节）和 SKP（参见第5.4节）。这项工作发表在第

45届国际自动机，语言和编程国际学术讨论会上（ICALP2018）[24]。

A.2 主要技术

对于随机动态规划，假设系统初始状态为 s1 = (I1,A)，当我们选择一个项目

a1 ∈ A，系统就产生收益 g(I1, a1)，并转移到下一状态 s2 = (I2,A2)，其中 I2 遵循

分布 f (I1, a1)，A2 = A \ a1，这个过程迭代产生一个随机序列

s1, a1, s2, a2, s3, . . . , aT, sT+1

总共收益可以累计 T 步 1O，这里的目标是找到一个使收益总额最大的策略。在形式

化上，我们想求解如下方程：

DP∗(s1) = max
{a1,...,aT }⊆A

E
[ T∑

t=1

g(It, at ) + h(IT+1)
]

(DP)

使得: It+1 = f (It, at ), t = 1, . . . ,T .

根据 Bellman 方程 [2]，对于每个初始状态 s1 = (I1,A)，最优解 DP∗(s1) 由函数

DP1(I1,A)计算，这里 DP1是由 DPT+1(IT+1) = h(IT+1)和递归函数：

DPt (It,At ) = max
at ∈At

E
[
DPt+1( f (It, at ),At \ at ) + g(It, at )

]
, t = 1, . . . ,T . (A-3)

当价值空间和项目空间是有限的，并且这里的期望是可以计算时，这个递归

函数产生的算法可以用来计算最优值。然而，由于状态空间 S = V × 2A 是指数级

大的，所以这个算法需要指数时间。由于这个模型可以归纳的几个随机优化问题

1O 如果步骤小于 T，我们可以使用一些特殊项目来填充。这个项目对于任何值 I ∈ V，满足 f (I, a) = I 和
g(I, a) = 0。
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是（或相信为）#P-难或者 PSPACE-难，我们更关注于多项式时间可证明性能保证

的近似算法。

对于随机动态规划，最优自适应策略 σ可以表示为决策树 T（更多细节参见
第3.5节）。最优策略的决策树可能是指数级大小，并且非常复杂的，甚至不可能在

多项式空间中表示。为了减少空间，我们专注于一类特殊的策略，称为块自适应

策略（block adaptive policy）。块自适应策略的概念首先由 Bhalgat等 [6]引入，并且

进一步被 Li 等 [11] 推广到随机背包问题中。据我们所知，这个想法还没有扩展到

其他应用。在本文中，我们也利用了块自适应策略的概念，但我们的目标是制定

一个总体框架。为此，我们提供了一个通用的块策略模型（参见第A.2.1节）。由于

我们需要使用更抽象的动态规划，我们建立的块自适应策略与 [6,11]有所不同。

粗略地讲，在一个块适应策略中，我们每次都会同时选择一组项目，而不是

单个项目，这可以显着减少决策树的大小。此外，我们证明存在一个块自适应策

略，它可以近似于最佳自适应策略，并且在决策树上只有常数数量的块（常数取

决于 ε）。由于对应于块自适应策略的决策树具有常数数量的节点，所以块决策树

的所有拓扑结构的数量是常数。固定一个对应于块自适应策略决策树的拓扑结构，

我们仍需要决定要放置在每个块中的项目的子集，这可能的选择再次的指数数量

的。对于每个块，我们可以为它定义一个签名（signature），并且我们只使用多项

式数量的签名。根据签名的定义，两个具有相同签名的子集有大致相同的价值分

配。最后，我们证明可以使用动态规划在多项式时间中枚举所有块的签名并找到

一个近乎最佳的块自适应策略。这里高层次的思想有点类似于 [11]中的思想，但细

节完全不同。因此定理A.6的证明可以总结为如下步骤：

1. 证明对随机动态规划，存在一个块自适应策略，它的期望收益值与最优自适

应策略的期望值差距很小，并且这个块自适应策略的决策树上只有常数数量

的块（常数取决于 ε）。

2. 固定一个决策树的拓扑结构，证明对于两个不同，但签名相同的方案，它们

的期望收益差距同样很小。

3. 枚举所有的决策树的拓扑结构和所有的签名，找到一个近似最优的块自适应

策略。

在中文论文中，我们主要从高层次方面描述主要方法和技术，忽略一些技术细节，

具体的技术细节请参考相应的英文原文。
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A.2.1 块自适应策略

这节我们来介绍块自适应策略（block adaptive policy）。由于对应于最优策略

的决策树可能是指数级大的，并且非常复杂，我们才考虑块自适应策略，这个概

念最初由 Bhalgat等 [6]引入。我们的结构与 [6,11]有所不同，在这里，我们需要为每

个块定义一个顺序，并引进近似区块策略的概念。

图 A.5 块自适应策略

这里，块自适应策略 σ̂也可以表示成决策树 Tσ̂（见图A.5）。每一个块是一组

项目，树上的每个节点都是一个块。当操作一个块时块，我们为块中的项目选择

任意顺序 φ，根据 φ 的顺序，我们逐个操作项目，直到我们系统转移到一个更大

的价值，或者块中的所有项目都被操作，系统的价值没有改变（从假设 A.1知道系

统的价值不递减），然后我们访问与价值相对应的子块。

A.2.2 创建块自适应策略

在本节中，我们证明存在一个近似于最优自适应策略的块自适应策略。为了

证明这一点，从最优（或接近最优）的自适应策略 σ出发，我们构造了一个块自适

应策略 σ̂，并且它满足了一些很好的属性，还能获得与 σ 几乎一样多的收益。因

此，我们将搜索限制在块自适应策略中就足够了。该结构与 [11]中的结构相似。这

里的符号定义参考第3.5节。

引理 A.1： 一个最优的策略 σ 可以转换成一个块自适应策略 σ̂，其期望收益为

P(σ̂)至少为 OPT−O(ε) ·MAX。此外，这个块自适应策略 σ̂满足性质 (P1)和 (P2)：

(P1) 每个有多于一个项目的块 M 满足 µ(M) ≤ ε2。

(P2) 在决策树的任何根到叶的路径上至多有 O(ε−3)块。
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图 A.6 决策树与自适应块策略

Proof. 对于决策树 Tσ 的节点 v 和值 s ∈ V 中的，我们使用 vs 来表示 v 的 s-字节

点。如果 Iv = Iu，我们说边 ev,u 是非增加的（non-increasing），并且定义 v的最左

路径（leftmost path）为，开始于节点 v，结束于叶节点，并且只包含非增加的边。

如果 v 是根节点或者 v 对应于其父节点 v ′的值是增加的（也就是说 Iv > Iv′），

那么我们说节点 v是一个起始节点（starting node）。对于每个起始节点 v，我们贪

心地将 v 的最左边路径分成若干段，这样对于任何两个节点 u,w 在同一个段中和

任何值 s ∈ V ，满足

|P(us) − P(ws) | ≤ ε2 · MAX and µ(M) ≤ ε2. (A-4)

由于根据引理3.1，(A-4)中的第二个不等式最多可以产生 O(ε−3)块。现在关注 (A-

4)中的第一个不等式。固定起始节点 v(v = v0) 最左边路径 Rv = (v0, v1, . . . , vm)on

Tσ，对于每个值 s ∈ V，我们有

MAX ≥ DP1(s,A) ≥ P(v0
s ) ≥ P(v1

s ) ≥ · · · ≥ P(vms ) ≥ 0.

否则，对某些 i < j ≤ m，如果 P(vis) < P(v j
s )，用 Tvis

替换子树 Tv
j
s
会增加策略

σ 的收益。因此，对于每个特定的大小 s ∈ V，路径 Rv 至多被分 ε−2 次。由于

|V | = O(1)，所以最左路径 Rv中至多有 O(ε−2)段。现在，固定一个特定的根到叶

的路径，由假设A.1（2），该值不会降低，所以路径上至多有 |V | = O(1)个起始节

点。因此，(A-4)中的第一个不等式可以从根到叶路径上产生最多 O(ε−2)段。总的

来说，决策树上的任何根到叶路径上最多有 O(ε−3)段。

现在，我们准备描述算法，该算法把策略 σ作为输入，输出块自适应策略 σ̂。

对于每个节点 v，我们用 seg(v)表示其段，并使用 l (v)表示 seg(v)中的最后一个

节点。在算法6中，我们可以看到策略 σ̂尝试操作的项目集总是对应于原始策略 σ

中的某个实现路径，因此根据我们的分段，性质（P1）和（P2）容易满足。现在，

我们证明新策略 σ̂可以获得的预期收益 P(σ̂)至少为 OPT −O(ε2) · MAX。
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Algorithm 6策略 σ̂
Input: 策略 σ.

1: 我们从 Tσ 的根节点开始
2: repeat
3: 假设现在在 Tσ 的节点 v上，按照之前策略 σ中的顺序一个一个操作 seg(v)

中项目直到某个节点 u产生了一个更大的价值，记做 s.

4: 访问 l (v)的 s子节点 l (v)s

5: 如果所有的项目操作完成之后，系统价值不变，则访问 l (v)Iv .

6: until到达 Tσ 的叶节点

当段 seg(v)中的节点 u第一次转换为增加值（例如 s）时，我们的算法偏离了

策略 σ。在这种情况下，σ将访问 u的 s的子节点 us，并遵循 Tus
之后。但是我们

的算法访问 l (v)s，并且遵循 Tl(v)s。每个此类事件的预期收益差距为

P(us) − P(l (v)s) ≤ ε2 · MAX,

这由于 (A-4)中的第一个不等式。假设σ支付这样的收益损失，并切换到访问 l (v)s，

然后，σ 和我们的算法总是停留在同一个节点上。注意在任何根到叶的路径上最

多有 |V | = O(1)个起始节点，σ最多支付 O(1)次收益损失。因此，总利润损失最

多为 O(ε2) · MAX。证毕！ □

A.2.3 枚举签名

为了搜索（几乎）最优的块自适应策略，我们想列举出所有可能的块决策树

的拓扑结构。固定一个决策树的拓扑结构，我们需要决定放在每个块中的项目集

合。为此，我们为每个块定义签名（signature），使两个具有相同签名的子集具有

大致相同的收益分布，然后，我们可以在多项式时间内枚举所有块的签名，并找

到一个近似最优的块自适应策略。具体的，对于每个项目 a ∈ A 和价值 I ∈ V =
(0, 1, . . . , |V | − 1),我们定义 a在 I 的签名为下面的向量

SgI (a) =
(
Φ̄a(I, 0), Φ̄a(I, 1), . . . , Φ̄a(I, |V | − 1), Ḡa(I)

)
,

其中

Φ̄a(I, J) =
⌊
Φa(I, J) · n

ε4

⌋
· ε

4

n
和 Ḡa(I) =

⌊
Ga(I) · n

ε4MAX

⌋
· ε

4MAX
n
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对于任意 J ∈ V。 1O对于集合块 M，我们定义其在 I 的签名为

SgI (M) =
∑
a∈M

SgI (a).

引理 A.2： 给定两个相同拓扑结构的自适应块策略的决策树 T1,T2 （也就是说 T1
和 T2 是同构的)，并且满足性质 (P1)和 (P2)。如果对于 T1 的任何块 M1 和在 T2 的
相应块 M2，满足 SgI (M1) = SgI (M2)，我们有 |P̃(T1) − P̃(T2) | ≤ O(ε) · MAX。

由于 |V | = O(1)，区块所有可能的签名有 O
(
(n/ε4) |V |

)
= nO(1) 种，这是关于

n的多项式大小。通过引理A.1,每个自适应块策略最多有 (|V |)O(ε−3) = 2O(ε−3) 个区

块，这也是一个常数。

A.2.4 寻找近似最优的块自适应策略

在本节中，我们寻找一个近似最优的块自适应策略，并证明了定理A.6。为此，

我们列举决策树的所有拓扑结构以及每个块的所有可能的签名，然后可以通过标

准的动态规划来完成。

固定一个树形拓扑 T 结构，定义配置C是一组签名，每个签名对应一个块。假

设 t1和 t2分别为 T 上的路径和块的数量。我们定义一个向量 CA = (u1, u2, . . . , ut1 )，

其中 u j 是 jth 路径上能放的项目数上限。对于每个给定的 i ∈ [n],C 和 CA，设

置M (i,C,CA) = 1表示我们可以使用项目子集 {a1, . . . , ai} 就可以到达配置 C，并

且在每个路径上 j 的项目总数不超过 u j，否则设置M (i,C,CA) = 0。设置初始值

M (0, 0, 0) = 1，我们以 (i,C)的字典顺序计算M (i,C,CA)：

M (i,C,CA) = max
{
M (i − 1,C,CA),M (i − 1,C′,CA′)

}
(A-5)

现在，我们解释如上的递归，在每一步中，我们都应该决定如何将项目 ai 放置在

树 T 上。请注意，至多有 t2 = (|V |)O(ε−3) = 2O(ε−3) 块，因此最多有 2t2 种可能的放

置 ai 位置。如果没有两个块有祖先后裔关系，且都放置该项目 ai，称这个布局是

有效的。对于 ai 的可行布局，我们从 C中减去放置 ai 块的签名 Sg(ai)，CA中放

置 ai 的对应路径减去 1，这样我们得到配置 C′和 CA′。这里最大值是遍历所有可

能的可行布局相对应的 C′,CA′。

1O 如果 MAX = maxI∈V DP1(I,A)是未知的，对于具体问题（例如探测最大值问题），我们可以得到 MAX的
常数近似结果，这对我们来说已经足够了。更一般来，我们可以用二元搜索来得到 MAX的一个常数近似
结果。
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T 所有可能的配置个数为 nt2，向量 CA可能总数为 T t1 ≤ nt1 ≤ nt2 = nt2，这里

T 是系统轮数。对于给定的 (i,C,CA)，可以通过常数时间 O(2t2 ) 计算所得。因此，

给定一个树形拓扑结构，可以在 O(n2O(ε−3 )
)内找到一个最优的配置。

Proof. (定理A.6的证明) 假设 σ∗最优策略，期望收益为 P(σ∗) = OPT。我们使用上

面的动态规划来找到一个近似最优的块自适应策略 σ。通过引理A.1，存在一个块

自适应策略 σ̂，使得

P̃(σ̂) ≥ OPT −O(ε)MAX.

由于在算法的某个步骤枚举了 σ̂ 的配置，我们的动态规划能够找到一个具有相同

配置的块自适应策略 σ（相同的树形拓扑和相同的签名）。通过引理A.2，我们有

P̃(σ) ≥ P̃(σ̂) −O(ε)MAX ≥ OPT −O(ε)MAX.

证毕！ □

A.3 探测最大值问题

在本节中，我们演示了我们的框架在探测最大值问题中的应用。定义价值集

合 S =
∪

i∈[n] Si 其中 Si 是随机变量 Xi 的支撑集和变量集合A = {1, 2, . . . , n}。假设
价值 It 是在时间段 t 内被探测项目的最大值。因此，我们的初始值为 I1 = 0。由

于我们可以探测最多 m物品，我们将回合数设置为 T = m。当我们探测一个变量 i

并得到一个独立样本值 Xi，我们有系统动态规划函数：

It+1 = f (It, i) = max{It, Xi}, g(It, i) = 0, 和h(IT+1) = IT+1 (A-6)

对于 It ∈ S和 t = 1, 2, . . . ,T。这个模型满足假设 A.1 (2,3)。但是由于价值空间 S不

是常数大小，假设A.1 (1)不满足。因此我们需要离散化技术。

现在，我们需要使用参数 ε离散价值空间。首先，我们求解一个探测最大值问

题的常数近似解 ÕPT，它满足OPT ≥ ÕPT ≥ (1−1/e)2OPT（这可以通过简单的贪心

算法获得，参见 [13]的附录 C）。假设离散随机变量 X 的支撑集为 S = (s1, s2, . . . , sl)，

并且 psi = Pr[X = si]的。令阈值 θ = ÕPT
ε
。对于“大”的值 si，也就是 si ≥ θ，设

置 DX (si) = θ。对于“小”的值 si，也就是 si < θ，设置 DX (si) =
⌊

si

εÕPT

⌋
εÕPT。我
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们使用V = {0, εÕPT, . . . , ÕPT/ε}来表示离散支撑集。现在，我们来定义支撑集为
V 的离散随机变量 X̃。对于“大”的值，我们设定

p̃θ = Pr[X̃ = θ] = Pr[X ≥ θ] · E[X | X ≥ θ]
θ

. (A-7)

在概率总和保持为 1的约束下，对于 ‘‘小’’的值 d ∈ V \ {θ}，我们通过设置

p̃d = Pr[X̃ = d] =
1 − Pr[X̃ = θ]

Pr[X < θ]
· *.,

∑
s∈S,DX (s)=d

Pr[X = s]+/- ≤
∑

s∈S,DX (s)=d

Pr[X = s].

(A-8)

虽然上面的离散化很自然，但也有一些技术细节。我们知道如何解决V 支持的离
散随机变量的问题，但实现的值是在 S。因此，我们需要介绍规范策略（canonical

policy），该概念在 Bhalgat等 [6]介绍随机背包中所引用。该策略根据变量的离散化

之后的大小做出决策，而不是其真实大小。更准确地说，当规范策略 σ̃ 探测一个

在 S中样本为 s的项目 X 时，该策略将根据离散大小 DX (s)作出决策。在下面的

引理中，我们证明只考虑规范政策就足够了。我们使用 P(σ, π)来表示策略 σ在分

布 π获得的预期收益。

引理 A.3： 假设 π = {πi} 为随机变量的分布，π̃ 为分布 π 的离散版本。我们有如
下结论：

1. 对于任意的策略 σ，都存在一个规范策略 σ̃满足

P(σ̃, π̃) ≥ (1 −O(ε))P(σ, π) −O(ε)OPT

2. 对于任意的规范策略 σ̃,

P(σ̃, π) ≥ P(σ̃, π̃).

Proof. (定理A.1的证明) 假设 σ∗是最优策略，它的期望收益为 P(σ∗, π) = OPT。给

定一个分布 π，我们计算离散分布 π̃。通过引理A.3 (1),存在一个规范策略 σ̃∗使得

P(σ̃∗, π̃) ≥ (1 −O(ε)) · P(σ∗, π) −O(ε)OPT = (1 −O(ε))OPT.

现在，我们描述探测最大值问题在离散分布 π̃ 的随机动态规划。设置价值集合

V = {0, εÕPT, . . . , ÕPT/ε}，项目集合 A = {1, 2, . . . , n}。设置 T = m 和 I1 = 0。当
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我们探测变量 i，并得到其样本值 Xi，那我们系统动态规划函数为

It+1 = f (It, i) = max{It, Xi}, g(It, i) = 0, 和h(IT+1) = IT+1 (A-9)

对于 It ∈ S和 t = 1, 2, . . . ,T。这个模型满足假设 A.1 (1,2,3)。通过定理A.6，我们可

以得到一个策略 σ，它的收益至少为

OPTd −O(ε2) · MAX

这里 OPTd 表示在离散分布 π̃下的最优策略的期望值，MAX = maxI ∈V DP1(I,A) =

DP1(ÕPT/ε,A) = ÕPT/ε。我们可以得到 OPTd ≥ P(σ̃∗, π̃) ≥ (1 −O(ε))OPT。因此

通过引理A.3 (2)，有

P(σ, π) ≥ P(σ, π̃) ≥ OPTd−O(ε2)MAX ≥ (1−O(ε))OPT−O(ε)OPT = (1−O(ε))OPT

证毕！ □

A.4 随机目标问题

这一节我们讨论随机目标问题，并证明定理A.4。定义变量集合 A =

{1, 2, . . . , n}。设置系统价值 It 是在 t轮已经被选择的随机变量之和。然后我们设置

T = m和 I1 = 0。当我们探测一个变量 i并得到一个独立样本值 Xi，我们有系统动

态规划函数：

It+1 = f (It, i) = It + Xi, g(It, i) = 0, 和h(IT+1) =


1 if IT+1 ≥ T,
0 otherwise;

(A-10)

对于 t = 1, 2, · · · ,T。这满足假设A.1 (2,3)，但是由于价值空间 V 不是常数，假设
A.1 (1)不被满足，我们需要离散化。

这里利用第5.4.1节中描述的离散技术。令 P(σ, π, 1) 为策略 σ 达到目标的概

率，其中 π = {πi}表示变量分布集合，1表示目标。令 π̃是 π的离散版本，我们有

以下引理。

引理 A.4： 对于任意的策略 σ，存在一个规范策略 σ̃满足

P(σ̃, π̃, (1 − 2ε)) ≥ P(σ, π, 1) −O(ε).
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引理 A.5： 对于任意的规范策略 σ̃,

P(σ̃, π, (1 − 2ε)) ≥ P(σ̃, π̃, 1) −O(ε).

Proof. (定理A.4的证明) 假设 σ∗ 是最优策略，它到达目标的概率为 P(σ∗, π, 1) =

OPT。给定一个分布 π，我们计算离散分布 π̃。通过引理A.4，存在一个策略 σ̃∗使

得

P(σ̃∗, π̃, (1 − 2ε)) ≥ P(σ∗, π, 1) −O(ε) = OPT −O(ε).

现在，我们为实例 (π̃, 1 − 2ε) 提供一个随机动态规划。定义价值集合 V =

{0, ε5, 2ε5, . . . , 1}，项目集合 A = {1, 2, . . . , n}，T = m 和 I1 = 0。当我们探测一

个变量 i并得到一个独立样本值 Xi，我们有系统动态规划函数：

It+1 = f (It, i) = min{1, It + Xi}, g(It, i) = 0, and h(IT+1) =


1 if IT+1 ≥ 1 − 2ε,

0 otherwise;
(A-11)

对于 It ∈ V，t = 1, 2, . . . ,T。这满足假设A.1。通过定理A.6，我们找到一个策略 σ，

它到达目标的概率 P(σ, π̃, 1 − 2ε)至少为

OPTd −O(ε) · MAX ≥ P(σ̃∗, π̃, (1 − 2ε)) −O(ε) = OPT −O(ε),

这里 OPTd 表示在实例 (π̃, 1 − 2ε) 下的最优策略的期望值，和 MAX =

maxI ∈V DP1(I,A) = DP1(1,A) = 1。通过引理A.5，有

P(σ, π, (1 − 4ε)) ≥ P(σ, π̃, (1 − 2ε)) −O(ε) ≥ OPT −O(ε),

证毕！ □

A.5 随机二十一点背包问题

在本节中，我们考虑随机二十一点背包问题。定义项目集A = {1, 2, . . . , n}。在
t 轮，定义系统价值 It = (It,1, It,2)，其中 It,1, It,2 是背包中物品的总大小和总价值。

我们设置 T = n和 I1 = (0, 0)。当我们将一个项目 i插入背包并得到其实际大小 si，
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我们定义系统动态规划函数为

It+1 = f (It, i) = (It,1 + si, It,2 + pi), g(It, i) = 0, and h(IT+1) =


IT+1,2 if IT+1,1 ≤ C,
0 otherwise;

(A-12)

对于 t = 1, 2, · · · ,T。这满足假设A.1 (2,3)，由于价值空间 V 不是常数大小，故不
满足假设A.1 (1)。因此，我们需要离散技术，具体细节请参考第5.5节。

A.6 相关工作

有一些框架为某些类别的随机动态规划提供近似方案。Shmoys 等 [25] 处理的

是随机线性规划。Halman等 [26–28]研究具有标量状态随机离散 DPs，并为其框架设

计了 FPTAS。作为应用之一，他们用它来解决随机有序自适应背包问题。相比之

下，在我们的模型中，状态空间 S = V × 2A 指数规模很大，因此不能由以前的框

架解决。

在随机探测问题中，如果在承诺模型上没有外部约束，即我们可以探测任何

我们需要的项目序列，这就是所谓的贝叶斯在线选择问题（BOSP）。Chawla等 [36]

提出了一种简单的机制，称为连续发布定价机制（SPM），用于贝叶斯单参数拍卖。

当内部约束条件是一个拟阵，他们给出了一个近似比率为 1
2 的承诺算法（相比于

最佳非承诺策略），Yan [37] 将该比率提高到 1 − 1
e
，这个 1 − 1

e
最优的，无法提高，

这意味着当没有外部约束时，对于拟阵内部约束的承诺差距最多为 1 − 1
e
。

Esfandiari等 [38]介绍了另外一种设置，这里变量顺序是随机的，而不是由策略

决定。相比顺序是固定的，这里的近似比率可以从 1
2 提高到 1 − 1

e
。他们称这个问

题为先知秘书，并证明该比率的上限为 0.75。当变量的分布是未知的，顺序是随机

的，这是由 Dynkin在 20世纪 60年代引入的传统的秘书问题 [39]。他们设计了一个

简单的承诺策略，当 n很大，其近似比率为 1
e
。Kleinberg [40] 提供了一个算法，当

内部约束是一个 k-均匀拟阵时，近似比率为 1 −O(
√

1/k)。然而，对于拟阵的内部

约束条件，当前的最佳近似比率是 O(1/ log log r) [41,42]，其中 r 是拟阵的等级。
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A.7 总结

在最后，我们总结本文的研究结果和技术，并给出一些在我们研究过程中未

解决的问题。在论文的第一部分，我们正式定义了一个基于随机动态规划的模型。

这是一个通用的模型，有许多随机优化问题适合这个模型，我们为这个模型设计

了一个多项式时间近似方案。

我们还研究了两个重要的随机优化问题，即随机探测问题和随机背包问题，我

们为随机探测问题设计近似算法。使用随机动态规划，我们为探测最大值问题设

计了一个 PTAS，它提高了之前最好的近似比率 1− 1/e。我们还为通用拟阵外部约

束的承诺模型下的探测最大值问题设计了 PTAS。当外部约束是拟阵，提高非承诺

模型下的探测最大值问题近似比率仍然是一个悬而未决的问题。我们还研究随机

探测问题的承诺差距和自适应差距，并给出一个上界。

接下来，我们重点研究随机背包问题及其变体：随机二十一点背包问题和随

机目标问题。使用随机动态规划和离散化技术，如果允许放松容量或目标，我们

为他们设计一个 PTAS。在不放宽容量的情况下提高随机背包问题近似比例仍然是

一个悬而未决的问题。
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