/I*

—RBEHLE S XA

Q2R R T R SNE I 3 L = 2 VAY8'S)

O X U B A R

FELREE TS
% oAk R

B HE % B % B

H 4k oF
ﬁ

—O0—/\4ENH






Approximation Algorithms for a class of

stochastic dynamic programs

Dissertation Submitted to
Tsinghua University
in partial fulfillment of the requirement
for the degree of
Doctor of Philosophy
in

Computer Science and Technology

by

Hao Fu

Dissertation Supervisor : Associate Professor Jian Li

June, 2018






KT AR STfE AR A A

ANGEE T RGN KR . B A A0e e e, R

AR EANATEE EBERAUE VER A=A A0e SCRI AL, b
i (1) CIRANIBE S A RE AL AR S, SRR DA
KA. R e AR ) F BeORAF O A EAmye e scs (2) R
FUARBMITH R, AR AR AT R A0 S E N SORHE R A30E . 52
T S 3 e (RS PRI A 352, B el X (R PR O A 0] B 3 AL 5
(3) MR e N RSLHIE A AL BT SEREIMEY , 1) E K & A5 TE R
& DA IR A8 3

AR NPRAUEEST ERHE .

(PR TR SCTEAR 3 B S L )

((EETE FINZES -

H H







w =

REALZN LI (SDP) & — Xt AN RE 26 {F T 1 kSR b A T A B2 R
Richard Bellman #H 7 “He AU LIEN” . x4~ U0 BEHE T Hh s S LRIRE, ©n]
PARIR e — RS BEALC AL IR . AR, fh " ZERCIOUE” AR HPIRS =SR], X
T2 SR A 108, Bellman (1) J DI H AN BB 7 RIHE St — AR B

HT R, X EIe SOT & T T SDP RYMESE . X MEZE
T BATRI T =20 A7 % (PTAS). A HEATAIRESL, it
PAH—ZRBENL GO R PTAS . ASCHFFE R N (a) FEALEZRI
A, (b) BENLE AR, (o) BEPL—+—mi e (d) FBEYLE R, Bl
N Lk MRS 2 T R I RR . RO R B AR AS, A fE
S HZ A

MG TG — N REVLERIN P — B SR AR ) AR A
T, E AR —HE MR ML LR B AT DA R Bk LA B LAZ
BT, AU DA E (. XAMER AR . PEERAE R
FEKIA AR EA RGN 2. BT NECAR, ABAEHRRIT—1
FUE LY S, BN Rzt i Ko SRFATETR, BAER AT IUAA 2 Asadpour
it 1= 1/e. FATnILABIT—4> PTAS,

KR BEOLOCIL, shSHLRI, ATURRE, S/RRHRIERRE, BB



Abstract

Abstract

Stochastic Dynamic Programming (SDP) is a technique for modeling and solving
problems of decision making under uncertainty. Richard Bellman introduced the “princi-
ple of optimality” which leads to dynamic programming algorithms for solving sequential
stochastic optimization problems. However, Bellman’s principle does not immediately
lead to efficient algorithms for many realistic stochastic combinatorial problems, due to
the “curse of dimensionality” and the large state space.

To address these challenges, we develop a framework based on SDP in this disser-
tation. For this framework, we obtain a polynomial time approximation scheme (PTAS).
Using our framework, we obtain the first PTAS for a class of stochastic combinatorial op-
timization problems. The problems we study in this thesis are the following: (a) stochastic
probing problem, (b) stochastic knapsack problem, (c¢) stochastic blackjack knapsack and
(d) stochastic target problem. We present polynomial-time algorithms for all the above
problems with near-optimal approximation guarantees. We believe that the techniques are
fairly general and have wider applications.

We highlight the application on Probemax problem which is a special case of stochas-
tic probing problem. We are given a set of n items. Each item i € [n] has a value X;
which is an independent random variable with a known (discrete) distribution m;. We
can probe a subset P C [n] of items sequentially. Each time after probing an item i, we
observe its value realization, which follows the distribution 7;. We can adaptively probe
at most m items and each item can be probed at most once. The reward is the maximum
among the m realized values. Our goal is to design an adaptive probing policy such that
the expected value of the reward is maximized. To the best of our knowledge, the best
known approximation ratio is 1 — 1/e. We also obtain PTAS for some generalizations and

variants of the problem.

Key words: stochastic optimization; dynamic program; markov decision process; block

policy; approximation algorithm
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% 1E Introduction

% 1E Introduction

In recent years, uncertain data has been generated in many application scenarios, oc-
curring in almost all fields of science and engineering from telecommunications, medicine,
to finance. In these scenarios, uncertainty is inevitable. How to analyze and solve these
problems in a rigorous manner has become a hot topic in recent years. This area originated
from Dantzig’s work !, and has been studied extensively and found numerous applications
in many areas. Richard Bellman'? proposed the stochastic dynamic programming which
is a technique for modeling and solving problems of decision making under uncertainty.
It plays a very important role in the stochastic optimization model because it is a very
general model that can be used to design optimization algorithms. For some specific
problems, it is possible to obtain a closed form or exact solution in polynomial-time by
solving the Bellman equation directly. On the other hand, due to "curse of dimensions"
and the large state space, this method has several limitations. We refer to the books !,

Stochastic optimization has established itself as a major method to handle uncertainty
in various optimization problems, by modeling the uncertainty by a probability distribution
over possible realizations. For some specific scenarios, researchers have proposed a set
of models and given corresponding polynomial-time approximation algorithms, such as
stochastic knapsack >, stochastic matching!”®!, stochastic set cover!®!%!, stochastic bin
packing!"!! and so on. We refer interested readers to the survey 2.

In this dissertation, we focus on a class of stochastic dynamic programs. For these
problems, we propose a model based on the stochastic dynamic program and design
an effective polynomial-time approximation algorithm. By our model, we can design
polynomial algorithms for a bunch of stochastic combinatorial optimization problems
which fit in the model.

Now, we introduce two classes of problems in this dissertation: the stochastic probing
problem and stochastic knapsack. We also briefly state our contributions one by one as

follows.

1.1 Stochastic Probing Problem

Suppose a company is going to hire a secretary. After putting out recruitment

advertisements, a total of n resumes were received. Through a resume, the company can
1



% 1E Introduction

assess whether the candidate matches the company’s position. However the matching
score is uncertain and follows a distribution. To know the true score, the company needs
to arrange an interview. Due to limited time and energy, the company can only select
m(< n) candidates for interview. What strategy should be designed to allow companies
to choose a secretary with the highest possible matching score? This problem can be

expressed by the following model.

Problem 1.1 (ProbeMax): We are given a set of n items. Each item i € [n] has a value
X; which is an independent random variable following a known (discrete) distribution ;.
We can probe a subset P C [n] of items sequentially. Each time after probing an item i,
we observe its value realization, which is an independent sample from the distribution x;.
We can adaptively probe at most m items and each item can be probed at most once. The
reward is the maximum among the m realized values. Our goal is to design an adaptive

probing policy such that the expected value of the reward is maximized.

X
Item | Value Distribution (m = 2) 0 N
1 0 (prob 1/2) 80 (prob 1/2) /
2 0 (prob 2/3) 90 (prob 1/3) X X,
3 60 (prob 1)
v } /&
Reward = 60 Reward = 80 Reward = 90
Prob=1/2 Prob =1/3 Prob=1/6

Figure 1.1 Instance of the ProbeMax.
Notes: An optimal adaptive policy for ProbeMax shown as a decision tree achieves an expected
reward of 71.67. For a non-adaptive policy, the optimal is to select items 1 and 3 for which the
expected reward is equal to E max{X;, X3} = 70.

The problem and its variants have been studied in a number of papers (see e.g., [1>~131).

Despite being a very basic stochastic optimization problem, we still do not have a complete
understanding of the approximability of the ProbeMax problem. It is not even known
whether it is intractable to obtain the optimal policy.
A non-adaptive policy is simply a priori fixed set P of items to probe. It is easy to
obtain a 1 — 1/e approximation by noticing that f(P) = E[max;cp X;] is a submodular
2
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function (see e.g., Chen et al.!¥1). Chen et al.!'3! obtained the first PTAS, among all
non-adaptive policies. The benefit of an adaptive solution can be shown by a simple
example, see Figure 1.1. For the ProbeMax problem, the best-known approximation ratio

is 1 — L0719
e

. Indeed, this can be obtained using the algorithm for stochastic monotone
submodular maximization in Asadpour et al.!'”). This is also a non-adaptive policy, which
implies the adaptivity gap — the ratio between the values of optimal adaptive and optimal
non-adaptive policies — is at most —<;. Golovin!'! introduced the notion of adaptive
submodularity which is a generalization of Asadpour’s setting. In this dissertation, we
provide the first PTAS, among all adaptive policies. Note that our policy is indeed
adaptive. We will discuss this problem and its generalizations in more details in Chapter

4.

Theorem 1.1: There exists a PTAS for the ProbeMax problem among all adaptive poli-
cies. Inother words, for any fixed constant & > 0, there is a polynomial-time approximation
algorithm for the ProbeMax problem that finds a policy with the expected value at least
(1 — &)OPT, where OPT is the expected value of the optimal adaptive policy.

The ProbeMax problem is a special case of the following general stochastic probing

framework which was formulated by Gupta et al.!'8.

Problem 1.2 (Stochastic Probing): An instance J of the stochastic probing problem is
defined with tuple J = (U, n, 1), where U is a set of n items, each having a value X;
following a known (discrete) distribution r;, and 7 = {7;};e;. The constraint 7 consists
of two independent set systems 7,,,; and Z;,,, which capture the outer (packing) constraint
and the inner (packing) constraint respectively. We can adaptively probe a subset P C U
of items sequentially and choose another subset C C P as the final set. When we probe
the ith item, its value is realized, which is sampled from the distribution ;. (The item
values are independent of each other.) We require that the sequence P of items that we
have probed must be in 7,,,; and the set C of items that we output must be in Z;,,. Our goal

is to design a policy such that the expected value E[} ;.- X;] is maximized.

There are two kinds of constraint:
e Quter constraint I,,,,®: this is the constraint on the sequence of items that we can
probe. It requires that the sequence P of items that we have probed must be in 7,

and each item can be probed at most once.

® I, should be better understood as a collection of sequences. If 7,,,,, is a collection of subsets, then any sequence
of a subset in Z,,,,, can be probed.
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* Inner constraint 1;,: this is the constraint on the set of items that we can finally
output. It requires that the set C of items that we output must be in 7;,.

Depending on how we choose the final set C, we distinguish two natural models: the
committed and non-committed models ©.

* Committed: once we probe an item to observe its value realization, we are com-
mitted to making an irrevocable decision whether to choose it or not, i.e., we must
either add it to the final chosen set C immediately or discard it forever.

* Non-committed: we can choose the set C after observing the values of all probed
items in P. In other words, the choice of C can be made after all value realizations
of the items in P, i.e., the probing stage.

In fact, every committed policy is a special case of non-committed policies. The stochas-
tic probing problem naturally generalizes the ProbeMax problem which is on the non-
committed model. Here, the outer constraint 7,,, is the simple m-uniform matroid,
i.e., I,,, = {P | |P| £ m}. The inner constraint J;, is the 1-uniform matroid, i.e., we can
output one item. We can replace the outer constraint with some more general constraint,
e.g., amatroid. If we replace the inner constraint in ProbeMax with a k-uniform matroid
(i.e., I;, = {C | |C| £ k}), we obtain the ProbeTop-k problem. In this thesis, we assume
k is a constant. Now, we list our main results in Table 1.1. All approximation ratios in

Table 1.1 are compared to the best adaptive strategies.

Table 1.1 A summary of approximation ratios for the stochastic probing problem

Inner constraint | Outer constraint Committed Non-committed
. N PTAS 1—1/e1711/81141 PTAS
Uniform, Partition 1"
[Thm 1.5 in!11] [Thm 1.1 in S4.4]
PTAS
1-Uniform General matroid _ 1 —1/ell7
[Thm 4.2 in S4.5.2]
) PTAS 1/3 [Thm4.6],1/2+ ¢
Two matroids
[Thm 4.2 in S4.5.2] [Thm 1.2 in S4.5.3 ]
PTAS 1 —1/e!'71 PTAS
k-Uniform Uniform, Partition
[Thm 4.3 in S4.5.1] | [Corollary 4.1 in S4.4.2]
1/2
General matroid | General matroid ] 1—1/el7
[Thm 4.6 in S4.6]
k™ matroids k" matroids m [Thm 4.6 in S4.6]

® In!'® they are called online and offline decision-making models.

4
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For the stochastic probing problem, we denote commitment gap the upper bound on
the ratio of the value of the optimal non-committed policy to the value of the optimal

committed policy.

Theorem 1.2: The commitment gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

For the non-committed model, we denote adaptivity gap the upper bound on the ratio of the
value of the optimal adaptive policy to the value of the optimal non-adaptive policy. Our
techniques also allow us to derive the following useful result from the proof of Theorem

1.2, which improves the result of 3.51 in!!8],

Corollary 1.1: The adaptivity gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

1.2 Stochastic Knapsack and Variants

Problem 1.3 (Stochastic Knapsack Problem (SKP)): We are given a knapsack of capac-
ity C and a set of n items, each item i € [n] having a random size X; with a known
distribution xr; and a profit p;. Once we decide to insert an item i into a knapsack, we
observe its real size s; which follows the distribution r;. We can adaptively insert the items
to the knapsack, as long as the capacity constraint is not violated. Once one item violates
the constraint, the selection process stops. The goal is to design a policy that maximizes

the expected total profit of all items that are successfully inserted into the knapsack.

This problem is a classical problem in stochastic combinatorial optimization. One
natural motivation is the stochastic scheduling problem as follows. Suppose we want to
schedule a subset of n jobs on a single machine. Each job has a processing time and a
profit. We have a fixed deadline and we want to gain as much profit as possible before the
deadline. However, the processing time of each job is a random variable and follows an
individual distribution.

We also consider adaptive policies which is very different from fixed set policies (see
Figure 1.2). The problem is likely to be PSPACE-hard (a variant of the problem and its
generalizations has been shown to be PASACE-hard?'). Designing good approximation
algorithms for this problem has received considerable attention in recent years!>611:20-221,
which we discuss in more detail in Chapter 5. Levin et al.'?*! introduced another variant

of stochastic knapsack where all the profits are lost if we violate the constraint.
5
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Item | Size Distribution (C= 1) Profit X1

1 0.2 (prob 0.5) 0.6 (prob 0.5) | 1 0.2 0.6

2 0.8 (prob 1) 1

3 0.4 (prob 0.5) 0.9 (prob 0.5) | 1 X, X;
08 \ 0/\9
Profit =2 Profit =2 Profit=1
Prob =0.5 Prob =0.25 Prob =0.25

Figure 1.2 Instance of the stochastic knapsack problem.
Notes: An optimal adaptive policy for the stochastic knapsack problem showed as a decision tree
achieves an expected profit of 1.75. An optimal nonadaptive policy inserts items in order 1, 2, 3, and
achieves expected an profit of 1.5.

Problem 1.4 (Stochastic Blackjack Knapsack (SBK)): In this problem, we are given an
instance J = (7, C). Our goal is to design an adaptive policy such that the expected total
profits of all items inserted is maximized. The difference from SKP is that we gain zero

profit if the total size of all items inserted is larger than the capacity C.

Theorem 1.3: There exists a PTAS for stochastic blackjack knapsack if we relax the
capacity to (1 + &)C. In other words, for any given constant € > 0, there is a polynomial-
time approximation algorithm that finds a policy with the expected profit at least (1-£)OPT
if we relax the capacity to (1+&)C, where OPT is the expected profit of an optimal adaptive

policy for the stochastic blackjack knapsack without relaxing the capacity.

As a variant of stochastic knapsack, another problem is motivated by fishing ground
selection. Assume that Jack has a fishing ship and is ready to go fishing. There are several
fishing grounds to choose from. The yields of fishing grounds can be estimated by almost
real time oceanographic analysis and historical figures in advance. But, the yield of a
fishing ground is a random variable which will not be realized until the end of harvesting
at that location. Due to the limited number of fishing trips, how to pick the right fishing
ground to fill up the storage with the highest probability. This problem can be expressed
by the following model.

Problem 1.5 (Stochastic Target Problem): We are given a predetermined target T and

a set of n items. Each item i € [n] has a profit X; which is an independent random

6
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variable with a known (discrete) distribution 7;. Once we decide to insert an item i into
a knapsack, we observe a profit realization X; which follows the distribution ;. We can
insert at most m items into the knapsack and our goal is to design an adaptive policy such

that Pr[}};cp X; > T] is maximized, where P C [n] is the set of inserted items.

Theorem 1.4: There exists an additive PTAS for stochastic target problem if we relax the
target to (1 —&)T. In other words, for any given constant € > 0, there is a polynomial-time
approximation algorithm that finds a policy such that the probability of the total rewards
exceeding (1 — &)T is at least OPT — &%, where OPT is the resulting probability of an

optimal adaptive policy.

X;
Item Value Distribution (target = 30) 20 10
1 10 (prob 1)
2 10 (prob 1/2) 20 (prob 1/2)
X, X3
3 0 (prob 1/2) 20 (prob 1/2)

10 \ zm
Succeed (0.5)  Succeed (0.25) Fail (0.25)

Figure 1.3 Instance of the stochastic target problem.
Notes: An optimal adaptive policy for stochastic target problem shown as a decision tree reaches the
target with probability 0.75. The optimal non-adaptive policy is to select items 1 and 3 for which the
probability of reaching the target level is Pr[X; + X5 > 30] = 0.5.

The benefit of an adaptive solution can be shown by a simple example. See Figure
1.3. As this example shows, it may significantly increase the optimal value of the objective
function if one uses an adaptive policy. Now, we list our main results in Table 1.2.

If the sizes of items are bounded, we have following theorem, which can be found in

Section 5.4.3.

Theorem 1.5: For any € € (0, 1), there is a polynomial algorithm that finds a (1 — 4¢)-
approximate adaptive policy for stochastic knapsack problem when the sizes are bounded

by g, i.e., forany i € [n], Pr[s; < €] = 1.

®  Since the upper bound of the probability for the stochastic target problem is 1, we get the an additive PTAS, not a
multiplicative.
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Table 1.2 A summary of approximation ratios for the stochastic knapsack and variants

) o bi-criterion approx (C relaxed to
Problem single-criterion approx
(1+&)CorTrelaxed to (1 —&)T)
_ 16,11]
SKP L_glsl 3_glol L _ g2 I-¢
3 8 2 [Theorem 5.1 in S5.4]
SBK (V2 — 1)2/2 ~ 1/11.66!%3] l-—¢
1/8 — € [Theorem 5.4 in S5.5.3] [Theorem 1.3 in S5.5]
OPT - ¢
STP -
[Theorem 1.4 in S5.6]

1.3 Stochastic Dynamic Programs

The above problems are all important stochastic optimization problems. From three
examples (Figure 1.1,1.2,1.3), we can see the advantages of adaptive strategies. But it
is quite difficult to design an adaptive strategy. This is because the decision tree corre-
sponding to the optimal strategy may be exponentially large and arbitrarily complicated.
Therefore, it would seem impossible to represent an optimal decision tree in a polynomial
space. This is why researcher is keen to design non-adaptive strategies. In this disserta-
tion, we provide a solution. To solve these problems, we develop a generic model that is
based on the stochastic dynamic program. We also design an effective polynomial-time
approximation algorithm for it to find adaptive strategies. There are a number of other
stochastic optimization problems fit in this model, including those mentioned earlier.

Consider an online stochastic optimization problem with a finite number of rounds.
There are a set of tasks (or items, boxes, jobs or actions). In each round, we can choose
a task and each task can be chosen at most once. We have an initial “state” of the system
(called the value of the system). At each time period, we can select a task. Finishing
the task generates some (possibly stochastic) feedback, including changing the value of
the system and providing some profit for the round. Our goal is to design a strategy to

maximize our total (expected) profit.

Problem 1.6 (Stochastic Dynamic Programs): Given a 6-tuple (V, A, f, g, h,T). Here,
“V is the set of all possible values of the system. (A is a finite set of items or tasks which
can be selected and each item can be chosen at most once. This model proceeds for at
most 7 rounds. At each round ¢ € [T], we use I, € V to denote the current value of the
system and A; € A the set of remaining available items. If we select an item a, € A;,
the value of the system changes to f(/;, a,). Here f may be stochastic and is assumed

to be independent for each item a, € A. Meanwhile the system yields a random profit
8
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g(l;, a;). The function h(I7,) is the terminal profit function at the end of the process. We
begin with the initial value /; € V. The goal is to find an adaptive policy that maximizes

the expectation of the total profits E[ Zthl g, a;) + h(Iry )].

In order to obtain a polynomial time approximation scheme (PTAS) for the stochastic

dynamic program, we need the following assumptions.

Assumption 1.1: In this thesis, we make the following assumptions.
1. The value space V is discrete and ordered, and size |V| is a constant. W.l.0.g, we
assume V = {0, 1,...,|V]| - 1}.
2. The function f satisfies that f(/;, a,) > I,, which means the value is nondecreasing.
3. The function h : V — R*° is a nonnegative function. The expected profit
E[g(1;, a,)] is nonnegative (although the function g(/;, a,) may be negative with

nonzero probability).

Assumption (1) seems to be quite restrictive. However, for several concrete problems
where the value space is not of constant size (e.g., ProbeMax, see Section 4.4), we can
discretize the value space and reduce its size to a constant, without losing much profit.
Assumption (2) and (3) are quite natural for many problems. Now, we state our main

result.

Theorem 1.6: For any fixed € > 0, if Assumption 1.1 holds, we can find an adaptive
policy in polynomial time 72" with expected profit at least OPT — O(¢e) - MAX. Here
MAX = max;cq DP(I, A) is an upper bound for all initial value I € V where DP(/, A) is
the expected profit of the optimal adaptive policy for initial value I and OPT = DP(/;, A)

is the expected profit for the given initial value /.

By Theorem 1.6 and different discretization techniques, we obtain the first PTAS
for ProbeMax (Theorem 1.1), SBK (Theorem 1.3) and STP (Theorem 1.4). Theorem 1.6
also can be used to design PTASs for committed ProbeTop-k problem (see Section 4.5.1),
committed Pandora’s Box problem (see Section 4.5.4) and SKP (see Section 5.4). This
work is published in the 45th International Colloquium on Automata, Languages, and

Programming (ICALP2018)124.,

1.4 COutline

In Chapter 2, we list some of the basics of mathematics and computer science and

the terms that will be used in the dissertation. In Chapter 3, we discuss the stochastic
9
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dynamic program (Problem 1.6) and prove Theorem 1.6. In the next chapters, we discuss
a few problems and techniques in details. In particular, we discuss the stochastic probing
problem (Problem 1.2) and the ProbeMax (Problem 1.1) in Chapter 4, the stochastic knap-
sack (Problem 1.3), the stochastic target problem (Problem 1.5) and stochastic blackjack

knapsack (Problem 1.4) in Chapter 5. Finally, we summarize the dissertation in Chapter 6.

10
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g 2E Preliminaries and Notations

For a maximization problem, we say an algorithm achieves approximation ratio of

a < 1if
E[SOL] > aOPT,

here SOL denotes the value of the solution found by the algorithm, OPT denotes the
optimal value and the expectation is over the randomness of the problem instance and
the algorithm (if it is randomized). Similarly, for a minimization problem, we say an
algorithm achieves approximation ratio of @ > 1 if E[SOL] < «OPT.

A polynomial time approximation scheme (PTAS) is an algorithm which takes an
instance of a maximization problem and a parameter & and produces a solution whose
value is at least (1 — &)OPT, and the running time is polynomial in the size of input, for
fixed €. If € appears as an additive factor in the above definition, namely the value of the
solution is at least OPT — g, we say the algorithm is an additive PTAS. We say a PTAS is
a fully polynomial time approximation scheme (FPTAS) is the running time is polynomial

in the size of the input and *.

2.1 Adaptive vs Non-adaptive

According to the permissions of the policy, we distinguish two classes of policies:
adaptive and non-adaptive.
* Adaptive: At each step, we can adaptively make decision based on the observations
so far. All the information regarding the previous actions of the policy is known.
In other words, the policy has access to the actual realized value of all the elements
it has picked so far.
* Non-adaptive: It does not have access to such information and should make their
decisions before observing the outcome of any of them.
We denote the adaptivity gap by the ratio between the values of optimal adaptive and
optimal non-adaptive policies. In this dissertation, if not specified, we are considering

adaptive policies.

11
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2.2 Prefix-close and Downward-closed

A pair (E, I') where 1 is a collection of sequences of distinct items from FE is prefix-
closed if for every sequence I € I, any prefix of [ is also in . This captures most
reasonable outer constraints, e.g., a tour of total length at most B in the metric space
(see!'8! for more examples). A pair (E, 7) where T is a collection of distinct (unordered)
items from E is downward-closed if for every set I € I, any subset of [ is also in 7. In
the case when 7 is a collection of subsets of (unordered) items, 7 is prefix-closed iff 7 is

downward-closed.

2.3 Matroid

Definition 2.1: A pair (E, 1) is called a matroid if E is a finite set and 7 is a nonempty
collection of subsets of E satisfying:

(@) iflefandJ C I, thenJ € 71,

(i) ifI,J € J and |I| < |J|,thenI +z € 1 forsome z € J \ I.

The rank of a matroid M = (E, 1) is defined by ry, := max{|Z| | Z € I}. A uniform
matroid is determined by a set £ and a number k where the independent sets are the
subsets I of E with || < k. Partition matroids. Let B; be a collection of disjoint sets, and
let d; be integers with 0 < d; < |B;|. The independent sets are the subsets / of E such
that for every index i, |I N B;| < d;.

2.4 Submodular functions

Definition 2.2: A function f : 2!"! — R is called submodular, if and only if VS, T C [n],

FO+fT) 2 f(SNT) + f(SUT).

It is called monotone if for any two subsets 7 C S C [n] : f(T) < f(S).

Linear function f(S) = };cs w; for some weights {w;} is a special monotone sub-

modular function.

12
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% 3E Stochastic Dynamic Programs

Stochastic dynamic program has been widely studied in computer science and op-
eration research (see, for example,*#) and has many applications in different fields. It
is a natural model for decision making under uncertainty. In 1950s, Richard Bellman!?!
introduced the “principle of optimality” which leads to dynamic programming algorithms
for solving sequential stochastic optimization problems. However, Bellman’s principle
does not immediate lead to efficient algorithms for many problems due to “curse of
dimensionality” and the large state space.

Consider an online stochastic optimization problem with a finite number of rounds.
There are a set of tasks (or items, boxes, jobs or actions). In each round, we can choose
a task and each task can be chosen at most once. We have an initial “state” of the system
(called the value of the system). At each time period, we can select a task. Finishing
the task generates some (possibly stochastic) feedback, including changing the value of
the system and providing some profit for the round. Our goal is to design a strategy to

maximize our total (expected) profit.

3.1 Model

The above problem can be modeled as a class of stochastic dynamic programs
which was introduced by Bellman'?!. There are many problems in stochastic combina-
torial optimization which fit in this model, e.g., the stochastic knapsack problem!®, the
ProbeMax problem!'*!. Formally, the problem is specified by a 6-tuple (V, A, f, g, h,T).
Here, V is the set of all possible values of the system. A is a finite set of items or tasks
which can be selected and each item can be chosen at most once. This model proceeds for
at most 7 rounds. At each round ¢t € [T], we use I, € YV to denote the current value of the
system and A, C A the set of remaining available items. If we select an item a, € A;,
the value of the system changes to f(/;,a,). Here f may be stochastic and is assumed
to be independent for each item a, € A. Using the terminology from Markov decision

processes, the state at time ¢ is s, = (I, A;) € V x27. ¥ Hence, if we select an item

@® This is why we do not call /, the state of the system.
13
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a, € A,, the evolution of the state is determined by the state transition function f:

See1 = (L1, Ap) = (fUpa), A\ ay) t=1,...,T. (3-1)

Meanwhile the system yields a random profit g(/;, a,). The function (/1) is the terminal
profit function at the end of the process.

We begin with the initial state s; = (I}, A). We choose an item a; € A. Then the
system yields a profit g(/;, a;), and moves to the next state s, = (I, A,) where I, follows
the distribution f(ly,a;) and A, = A \ a;. This process is iterated yielding a random

sequence

81, A1, 82, A2, 835« « ., ATy ST+1 -

The profits are accumulated over T steps. © The goal is to find a policy that maximizes
the expectation of the total profits E[ Zthl g, a;) + h(ITH)]. Formally, we want to

determine:

T
DP'(s)= max_ E[ ) g(Una)+h(ir.)]  (DP)

Aly.e.., A <
{a T} po

subject to: .41 = f(I,, a;), t=1,...,T.

By Bellman’s equation?!, for every initial state s, = (I}, A), the optimal value DP*(s,) is
given by DP; (1, A). Here DP; is the function defined by DP7, | (I711) = h(Ir4;) together

with the recursion:
DP,(I,, A,) = max E[DPyi(f (I ar). A\ a)) + g(Unap)|. 1=1....T.  (3-2)

When the value and the item spaces are finite, and the expectations can be computed,
this recursion yields an algorithm to compute the optimal value. However, since the
state space S = V x 27 is exponentially large, this exact algorithm requires exponential
time. Since this model can capture several stochastic optimization problems which are
known (or believed) to be #P-hard or even PSPACE-hard, we are interested in obtaining

polynomial-time approximation algorithms with provable performance guarantees.

® If less than T steps, we can use some special items to fill which satisfy that f(/,a) = I and g(/,a) = O for any
value I € V.

14
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3.2 QOur Results

In order to obtain a polynomial time approximation scheme (PTAS) for the stochastic

dynamic program, we need the following assumptions.

Assumption 3.1: In this thesis, we make the following assumptions.
1. The value space V is discrete and ordered, and size |V| is a constant. W.l.0.g, we
assume V = {0, 1,...,|V]| - 1}.
2. The function f satisfies that f(/;, a,) > I,, which means the value is nondecreasing.
3. The function h : V — R*" is a nonnegative function. The expected profit
E[g(1;, a,)] is nonnegative (although the function g(/;, a,) may be negative with

nonzero probability).

Assumption (1) seems to be quite restrictive. However, for several concrete problems
where the value space is not of constant size (e.g., ProbeMax in Section 4.4), we can
discretize the value space and reduce its size to constant, without losing much profit.
Assumption (2) and (3) are quite natural for many problems. Now, we state our main

result.

Theorem 3.1: For any fixed & > 0, if Assumption 3.1 holds, we can find an adaptive
policy in polynomial time nZO({}) with expected profit at least OPT — O(g) - MAX where
MAX = max;cy DP; (1, A) and OPT denotes the expected profit of the optimal adaptive
policy.

3.3 Main Technique

For the stochastic dynamic program, an optimal adaptive policy o can be represented
as a decision tree 7~ (see Section 3.5 for more details). The decision tree corresponding
to the optimal policy may be exponentially large and arbitrarily complicated. Hence, it
is unlikely that one can even represent an optimal decision for the stochastic dynamic
program in polynomial space. In order to reduce the space, we focus on a special class of
policies, called block adaptive policies. The idea of block policy was first introduced by
Bhalgat et al.'®! and further generalized in!'"! to the context of the stochastic knapsack.
To the best of our knowledge, the idea has not been extended to other applications. In this
thesis, we make use of the notion of block policy as well, but we target at the development

of a general framework. For this sake we provide a general model of block policy (see

15
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Section 3.6). Since we need to work with the more abstract dynamic program, our
construction of block adaptive policy is somewhat different from that in[®!!,

Roughly speaking, in a block adaptive policy, we take a batch of items simultaneously
instead of a single one each time. This can significantly reduce the size of the decision
tree. Moreover, we show that there exists a block-adaptive policy that approximates the
optimal adaptive policy and has only a constant number of blocks on the decision tree
(the constant depends on ¢). Since the decision tree corresponding to a block adaptive
policy has a constant number of nodes, the number of all topologies of the block decision
tree is a constant. Fixing the topology of the decision tree corresponding to the block
adaptive policy, we still need to decide the subset of items to place in each block. Again,
there are an exponential number of possible choices. For each block, we can define a
signature for it, which allows us to represent a block using polynomially many possible
signatures. The signatures are so defined such that two subsets with the same signature
have approximately the same reward distribution. Finally, we show that we can enumerate
the signatures of all blocks in polynomial time using dynamic programming and find a
nearly optimal block-adaptive policy. The high level idea is somewhat similar to that

in!"!, but the details are again quite different.

3.4 Related Work

There are some constructive frameworks that provide approximation schemes for
certain classes of stochastic dynamic programs. Shmoys et al.!*! dealt with stochastic
linear programs. Halman et al.°?% studies stochastic discrete DPs with scalar state and
action spaces and designed an FPTAS for their framework. As one of the applications,
they used it to solve the stochastic ordered adaptive knapsack problem. In contrast, in our
model, the state space S = V x 27 is exponentially large and hence cannot be solved by

previous framework.

3.5 Policies and Decision Trees

An instance of stochastic dynamic program is given by J = (V, A, f,g h,T).
For each item a € A and values I,J € V, we denote ®,(I,J) := Pr[f(l,a) = J]
and G,(I) := E[g(l,a)]. The process of applying a feasible adaptive policy o can be
represented as a decision tree 7. Each node v on 7, is labeled by a unique item a, € A.

Before selecting the item a,, we denote the corresponding time index, the current value
16



%5 3% Stochastic Dynamic Programs

and the set of the remaining available items by ¢,, I, and A(v) respectively. Each node
has several children, each corresponding to a different value realization (one possible
f,,a,)). Let e = (v,u) be the s-th edge emanating from s € V where s is the realized
value. We call u the s-child of v. Thus e has probability =, := n, ; = @, (/,,s) and
weight w, = s.

We use P(0) to denote the expected profit that the policy o can obtain. For each
node v on 7, we define G, := G, (1,). In order to clearly illustrate the tree structure, we
add a dummy node at the end of each root-to-leaf path and set G, = h([,) if v is a dummy

node. Then, we recursively define the expected profit of the subtree 7, rooted at v to be

POV) =G+ ) 7P, (3-3)

e=(v,u)

if v is an internal node and P(v) = G, = h(l,) if v is a leaf (i.e., the dummy node).
The expected profit P(o) of the policy o is simply P(the root of 7). Then, according to
Equation (3-2), we have

P(v) < DP, (I,, A(v)) < DP({,, A) < l;na(l‘)/(DPl(I,ﬂ) = MAX

for each node v. For a node v, we say the path from the root to it on 7, as the realization
path of v, and denote it by R(v). We denote the probability of reaching v as ®(v) =
O(R(v)) = [cerw) e Then, we have

Po) = ). ®(1)- G- (3-4)

veTs
We use OPT to denote the expected profit of the optimal adaptive policy. For each node v

on the tree 7., by Assumption 1.1 (2) that f(/,, a,) > I,, we define u, := Pr[f(l,,a,) >
I,]=1-®, (1,1,). For a set of nodes P, we define u(P) := ,cp Hy-

Lemma 3.1: Given a policy o, there is a policy o’ with profit at least OPT — O(¢) -
MAX which satisfies that for any realization path R, u(R) < O(1/g), where MAX =
maxyeq DPl (I, ﬂ)

Proof. Consider a random realization path R = (vy, v,, ..., vr41) generated by o. Recall

in Assumption 1.1 (1), the value space is V = {0, 1, - - -, |'V| — 1}. For each node v on the

17
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tree, we define y, := E[f(/,, a,)] — I,,, which is larger than
I, - Pr[f(lm av) = Iv] + (Iv + 1) : Pr[f(lv’ av) > Iv] - Iv = Pr[f(lv, av) > Iv] = Hy.

We now define a sequence of random variables {Y;}, (71

-1
Y, =5 - ) .
i=1

This sequence {Y;} is a martingale: conditioning on current value Y;, we have

[ t
Bl | Y1 =E |l = )y, | ¥
L i=1

[ -1
=E (It - Zyvi)+1,+1 — 1=,

v=1

Y,

=Y, +E[L | Y]-1L -y, =Y.

The last equation is due to the definition of y,,. By the martingale property, we have
E[Yr.1] = E[Y;] =Y, = 0 for any ¢ € [T]. Thus, we have

V| > Ellr] =E =E

S,

veR

2 E[u®R)].

T
2.0
i=1

Let E be the set of realization paths r on the tree for which u(r) > 1/e. Then, we have
El#(R)] 2 5yex | ©(r) - £] which implies that 5, ¢ ®(r) < & E[u(R)] < O(e), where
®(r) is the probability of passing the path r. For each path r € E, let v, be the first node

on the path such that u(R(v,)) > 1/&, where R(v,) is the path from the root to the node
v,. Let F be the set of such nodes. For the policy o, we have a truncation on the node v,
when we reach the node v,, i.e., we do not select items (include v,) any more in the new

policy o’. The total profit loss is at most

Z [D(v) - P(v)] < MAX - ZCI)(r) < O(g) - MAX,

veF rekE

where MAX = max;cq DP; (1, A). m|

18
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W.L.o.g, we assume that all (optimal or near optimal) policies o~ considered in this paper

satisfy that for any realization R, u(R) < O(1/e).

3.6 Block Adaptive Policies

The decision tree corresponding to the optimal policy may be exponentially large and
arbitrarily complicated. Now we consider a restrict class of policies, called block-adaptive
policy. The concept was first introduced by Bhalgat et al.!®! in the context of stochastic
knapsack. Our construction is somewhat different from that in!®!!!, Here, we need to
define an order for each block and introduce the notion of approximate block policy.

Formally, a block-adaptive policy ¢ can be thought of as a decision tree 75. Each
node on the tree is labeled by a block which is a set of items. For a block M, we choose an
arbitrary order ¢ for the items in the block. According to the order ¢, we take the items
one by one, until we get a bigger value or all items in the block are taken but the value does
not change (recall from Assumption 1.1 that the value is nondecreasing). Then we visit
the child block which corresponds to the realized value. We use ), to denote the current
value right before taking the items in the block M. Then for each edge e = (M, N), it has
probability

ny = Z [( l_l Dy, (1y, IM))'(Da(IM7 IN)]
")

aeM b<@a

lfIN > Iy and ﬂzp = HaEM (Da(]Ma IM) lfIN = Iy.
Similar to Equation (3-3), for each block M and an arbitrary order ¢ for M, we
recursively define the expected profit of the subtree 73, rooted at M to be

P(M)=Gf+ ). xf-P(N) (3-5)

e=(M,N)

if M is an internal block and P(M) = h(Iy,) if M is a leaf (i.e., the dummy node). Here

Gy, is the expected profit we can get from the block which is equal to

Gi=>. [( [ ] @i, IM)) : ga(lM)].

aeM Pb<Pa

Since the profit G}, and the probability 7¢ are dependent on the order ¢ and thus difficult
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to deal with, we define the approximate block profit and the approximate probability which

do not depend on the choice of the specific order ¢:

Gu=) Gally) and 7 =) [( [] @ IM>)-<Da<IM, 1N>] (3-6)

aeM aeM beM\a

if Iy > Iy and 7w, = [Jaems Pulps, Ing) if Iy = Ip;. Then we recursively define the

approximate profit

B(M)=Gu+ )| 7 BN), (3-7)

if M is an internal block and IAP5(M) =P(M) = h(ly,) if M is aleaf. For each block M, we
define u(M) := Y epr [1 — ©u(Ipg, Iny)]. Lemma 3.2 below can be used to bound the gap
between the approximate profit and the original profit if the policy satisfies the following
property. Then it suffices to consider the approximate profit for a block adaptive policy &
in this paper.

(P1) Each block M with more than one item satisfies that u(M) < &.

Lemma 3.2: For any block-adaptive policy ¢ satisfying Property (P1), we have
(1+0() -B(6) 2 P(6) 2 (1-&°) - P(d).

Proof. The right hand of this lemma can be proved by induction: for each block M on the

decision tree, we have
P(M) > (1 - &%) - P(M). (3-8)

If M is a leaf, we have P(M) = ﬂlS(M ) which implies that Equation (3-8) holds. For an
internal block M, by Property (P1), we have

Gu 2

[ oot o) |- > Gathn) =

beM ] aeM

1= (1= @i 1n)) |-G = (1-6")-Gus

beM
if M has more than one item and G}, = Gw if M has only one item. For each edge
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e = (M, N), we have 7 > 7,. Then, by induction, we have

P(M) =G+ ). xf-P(N)

e=(M,N)
>(1-6-Gu+ ), T [(1-6")-P(V)]
e=(M,N)
=(1-¢&) -P(M). O

To prove the left hand of the lemma, we use Equation (3-4):

P() = ) ®M)- G,

MeTs

where ®(M) is the probability of reaching the block M. For each edge e = (M, N), if

Iy = Iy or M has only one item, we have 7, = xri,. Otherwise, we have

TTe >

[ ] @i, IM)] D Oulla ) 2 (1 =) - ) Oallag Iy) 2 (1= &%) - 7f.

beM aeM aeM

Then, for each block M and its realization path R(M) = (My, My, . .., M,,, = M), we have

= m—-1 ~ ~
oM M, M,
( ) _ l_[ (M, Mi11) — 1_[ T(M;, Mi41) > (1 _ 82)|(V| =1- 0(82),

oM) Llg® ¢ -

i=0 T(MiMiv) il <Ing,,, T (Mi M)
where the last inequality holds because the value is nondecreasing and |V | = O(1). Thus

we have

P()= > Ou-Guz ), [(1-0() 0] Gy = (1-0(s)) - B(&).

MeTs MeTs

3.6.1 Constructing a Block Adaptive Policy

In this section, we show that there exists a block-adaptive policy that approximates
the optimal adaptive policy. In order to prove this, from an optimal (or nearly optimal)
adaptive policy o, we construct a block adaptive policy 6 which satisfies certain nice
properties and can obtain almost as much profit as o does. Thus it is sufficient to restrict

our search to the block-adaptive policies. The construction is similar to that in!'!,
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Figure 3.1 Decision tree and block policy

Lemma 3.3: Anoptimal policy o can be transformed into a block adaptive policy 6 with
approximate expected profit P(¢) atleast OPT—O (&) -MAX. Moreover, the block-adaptive
policy ¢ satisfies Property (P1) and (P2):

(P1) Each block M with more than one item satisfies that u(M) < &.

(P2) There are at most O(&~>) blocks on any root-to-leaf path on the decision tree.

Proof. For a node v on the decision tree 7, and a value s € V, we use v, to denote the
s-child of v, which is the child of v corresponding to the realized value s. We say an edge
e, is non-increasing if I, = I, and define the leftmost path of v to be the realization path
which starts at v, ends at a leaf, and consists of only the non-increasing edges.

We say a node v is a starting node if v is the root or v corresponds to an increasing
value of its parent v’ (i.e., I, > I,,). For each staring node v, we greedily partition the
leftmost path of v into several segments such that for any two nodes u, w in the same

segment M and for any value s € V, we have
|P(uy) — P(wy)| < &% - MAX and u(M) < &°. (3-9)

Since p(R) is at most O(1/g) for each root-to-leaf path R by Lemma 3.1, the second
inequality in (3-9) can yield at most O(&g~>) blocks. Now focus on the first inequality in
(3-9). Fix a particular leftmost path R¥ = (+v%, v!,...,v™) from a starting node v(v = v")

on 7. For each value s € V, we have
MAX > DP; (s, A) > P(v?) > P(v}) > -+ > P(v") > 0.

Otherwise, replacing the subtree 7,: with T, increases the profit of the policy o for some
i <j<mifPO) < P(v{). Thus, for each particular size s € V, we could cut the

path RY at most £~2 times. Since |V| = O(1), we have at most O(£72) segments on the
22
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leftmost path R”. Now, fix a particular root-to-leaf path. Since the value is nondecreasing
by Assumption 1.1 (2), there are at most [V| = O(1) starting nodes on the path. Thus
the first inequality in (3-9) can yield at most O(g™?) segments on the root-to-leaf path. In

total, there are at most O(£~>) segments on any root-to-leaf path on the decision tree.

Algorithm 1 A policy &

Input: A policy o.

1: We start at the root of 7.

2: repeat

3:  Suppose we are at node v on 7. Take the items in seg(v) one by one in the original
order (the order of items in policy o) until some node u makes a transition to an
increasing value, say s.

4:  Visit the node /(v)y, the s-child of [(v) (i.e., the last node of seg(v)).

5:  If all items in seg(v) have be taken and the value does not change, visit [(v);, .

6: until A leaf on 7, is reached. O

Now, we are ready to describe the algorithm, which takes a policy o as input and
outputs a block adaptive policy 6. For each node v, we denote its segment seg(v) and
use /(v) to denote the last node in seg(v). In Algorithm 1, we can see that the set of items
which the policy ¢ attempts to take always corresponds to some realization path in the
original policy o. Property (P1) and (P2) hold immediately following from the partition
argument. Now we show that the expected profit P(6-) that the new policy 6 can obtain
is at least OPT — O(&?) - MAX.

Our algorithm deviates the policy o when the first time a node u in the segment
seg(v) makes a transition to an increasing value, say s. In this case, o~ would visit u,, the
s-child of u and follows 7, from then on. But our algorithm visits /(v),, the s-child of
[(v) (i.e., the last node of seg(v)), and follows 7;(,.. The expected profit gap in each such

event can be bounded by

P(uy) — P(I(v)s) < & - MAX,

due to the first inequality in Equation (3-9). Suppose o pays such a profit loss, and

switches to visit /(v),. Then, o and our algorithm always stay at the same node. Note

that there are at most ['V| = O(1) starting nodes on any root-to-leaf path. Thus o pays at
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most O(1) times in any realization. Therefore, the total profit loss is at most O(&?) - MAX.

By Lemma 3.2, we have

P(6) 2 (1-0()) - P(6) 2 (1-0()) - (OPT - O(&?) - MAX) > OPT - O(e) - MAX.

3.6.2 Enumerating Signatures

To search for the (nearly) optimal block-adaptive policy, we want to enumerate all
possible structures of the block decision tree. Fixing the topology of the decision tree,
we need to decide the subset of items to place in each block. To do this, we define the
signature such that two subsets with the same signature have approximately the same
profit distribution. Then, we can enumerate the signatures of all blocks in polynomial
time and find a nearly optimal block-adaptive policy. Formally, for an item a € A and a
value I € V = (0, 1,...,|V| - 1), we define the signature of a on I to be the following

vector

8g;(a) = (®u(L,0). By (L 1),.... Bu(L V] = 1), Gu(D)).

where

84

n J g*MAX

- n
O, J) = |01, 0) - L1
al:J) l ol J) 84J £*MAX

£ and G = {gaa) :
n n

for any J € V. © For a block M of items, we define the signature of M on I to be

Sg,(M) = )" Sg, (a).

aeM

Lemma 3.4: Consider two decision trees 77, 7, corresponding to block-adaptive policies
with the same topology (i.e., 77 and 7, are isomorphic) and the two block adaptive

policies satisfy Property (P1) and (P2). If for each block M; on 77, the block M, at the

® If MAX = max;ey DP;(/, A) is unknown, for some several concrete problems (e.g., ProbeMax), we can get a
constant approximation result for MAX, which is sufficient for our purpose. In general, we can guess a constant
approximation result for MAX using binary search.
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corresponding position on 7, satisfies that Sg;(M;) = Sg;(M,) where I = Iy, = Iy,
then |P(77) — P(72)| < O(g) - MAX.

Proof. We focus on the case when M has more than one item. Recall that for each

e = (M,N), we have

o= ), [( [ ] @, 1M>) @, (I, 1N>]

aeM |\beM\a

if Iy > Ipy and 7, = [Jaep ©@ang, Ing) if Iy = Iy, For simplicity, we use (/, J) to
replace (Iy, Iy) if the context is clear, and write 7, as 71}, if J = [ and 7], if J > I.

Fixing a block M, for each item a € M, we define u, := Pr|[f(l,a) > I]. By
Property (P1) that u(M) = 3 scp[1 = @ (L, 1)] = X peps Ma < €2, we have

|M |
= | | (0-ma) < (1 - %TM(‘) < exp (—pu(M))< 1=p(M)+p(M)* < 1-p(M)+&*
aeM

and 7TII\4 = HaeM(l _Ma) 2 I_ZaEM Ha = l_ﬂ(M) Since ZaEM q)a(l’ J) < ZaEM Ha

for any J > I, we have

[ ] 1)] :

beM

Z D, (1))
D, (1)

aeM

> (1=&%- Y 0Ly 2 Y 0. ,]) =&,

aeM aeM

J
7TM—

It is straightforward to verify the following property when M has only one item:

nh, =1—u(M)and nj, = Z ®,(1,J) forany J > I.
aeM

Let M,, M, be the root blocks of 71, 7; respectively. Since Sg,(M;) = Sg,(M,), we have
that

PIK AT PR N EE

aeM, aeM,

for any J € V. Then, we have

Ty — Tap, < 1= p(My) + &% = (1 = (M) = (u(Mp) — pu(My)) + &* = 0(*).
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and for any J > [

T = o, < D Qall, D) = >0 DL J) + 8% = 0™,

aeM, aeM,

On the tree 77, we replace M; with M,. For each s € V, we use M to denote the s-child
of block M, on 7;. Then we have

P(M)) = B(My) = (G, = Gi,) + ) | B(M,) - (m3,, = 73y,

seV

< &* - MAX + 0(g*) - MAX
= 0(g") - MAX.

We replace all the blocks on 77 by the corresponding blocks on 7; one by one from the
root to leaf. The total profit loss is at most }, /< [CD(M) -0(g") - MAX] < O(e)MAX,
where ®(M) is the probability of reaching M. The inequality holds because the depth of
7, is at most O(£~3) by Property (P2), which implies that 2mer; QM) < O(s7?). O

Since |V| = O(1), the number of possible signatures for a block is O ((n/s4)'("‘) =
n®® which is a polynomial of n. By Lemma 3.3, for any block decision tree 7, there

)0(8-3> —

are at most (|V| 20(™) plocks on the tree which is a constant.

3.7 Finding a Nearly Optimal Block-adaptive Policy

In this section, we find a nearly optimal block-adaptive policy and prove Theorem 1.6.
To do this, we enumerate over all topologies of the decision trees along with all possible
signatures for each block. This can be done by a standard dynamic programming.

Consider a given tree topology 7. A configuration C is a set of signatures each
corresponding to ablock. Let?, and 7, be the number of paths and blocks on 7™ respectively.
We define a vector CA = (uy, uo, . . ., u; ) where u; is the upper bound of the number of
items on the jth path. For each giveni € [n], C and CA, let M(i, C, CA) = 1 indicate that
we can reach the configuration C using a subset of items {ay, ..., a;} such that the total
number of items on each path j is no more than u; and 0 otherwise. Set M(0,0,0) = 1 and

we compute M(i, C, CA) in an lexicographically increasing order of (i, C, CA) as follows:

M(i, C,CA) = max {M(i - 1,C,CA, M(i-1,C, CA’)} (3-10)
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Now, we explain the above recursion as follows. In each step, we should decide how to
place the item a; on the tree 7. Notice that there are at most 7, = (|V])°¢ ™) = 20¢™
blocks and therefore at most 2”2 possible placements of item «@; and each placement is
called feasible if there are no two blocks on which we place the item a; have an ancestor-
descendant relation. For a feasible placement of a;, we subtract Sg(a;) from each entry
in C corresponding to the block we place a; and subtract 1 from CA on each entry
corresponding to a path including a;, and in this way we get the resultant configuration C’
and CA’ respectively. Hence, the max is over all possible such C’, CA".

We have shown that the total number of all possible configurations on 7~ is n>. The
total number of vectors CA is 7" < n"t < n" = n” where T is the number of rounds. For
each given (i, C, CA), the computation takes a constant time O(2%). Thus we claim for a

given tree topology, finding the optimal configuration can be done within O(nZO(E_S)) time

Proof. (The proof of Theorem 1.6) Suppose o* is the optimal policy with expected profit
P(c*) = OPT. We use the above dynamic programming to find a nearly optimal block

adaptive policy o. By Lemma 3.3, there exists a block adaptive policy ¢ such that
P(&) > OPT — O(s)MAX.

Since the configuration of ¢ is enumerated at some step of the algorithm, our dynamic
programming is able to find a block adaptive policy o~ with the same configuration (the
same tree topology and the same signatures for corresponding blocks). By Lemma 3.4,

we have
P(c) > P(6) — O()MAX > OPT — O(g)MAX.

By Lemma 3.2, we have P(0) > (1 - 82) -@5(0) > OPT — O(e)MAX. Hence, the proof

of Theorem 1.6 is completed. O

3.8 Partition Matroid Constraint

Our model proceeds for at most 7 rounds and each items can be chosen at most once,
which forms a T-uniform matroid constraint. We can extend Theorem 1.6 to partition

matroid, i.e., the set of items satisfies partition matroid.
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This proof is the same argument structure to of Theorem 1.6, except the last step,
i.e., finding a nearly optimal block-adaptive policy which satisfies the partition matroid
(U, I'). Let{B,};¢[¢ be acollection of disjoint sets, and let d; be integers with 0 < d; < |B;].
The independent sets J are the subsets I of U such that for every index i € [€], [INB;| < d;.

Let #; be the number of paths on 7. In dynamic programming, let CA =
{uij}ijyernixier be a capacity vector where u;; is the upper bound of the number of
items on R; N B; (R; is the ith path). Set M(0,0,0) = 1 and we compute M(i, C, CA) in

an lexicographically increasing order of (7, C, CA) as follows:
M(i,C,CA) = max {M(i - 1,C,CA), M(i - 1,C',CA")}. (3-11)

Note the order of items is arranged by the {B,};cs). For any i € [t,], the total number
of capacity vectors CA; = {u;;}jere i8 Xicirydi- Then total number of vectors CA is

(Xiere) di)" which is polynomial.

3.9 Summary

In this chapter, we introduce a general framework for stochastic dynamic programs.
The main technical ingredient for obtaining the PTAS for the stochastic dynamic program
is the idea of block adaptive policy, which was previously used in the context of stochastic
knapsack. We believe the framework can be used in designing better approximation

algorithms for other stochastic optimization problems.
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88 4EF Stochastic Probing Problem

In this chapter, we focus on the stochastic probing problem. Recall that on the special
case ProbeMax, we are given n items, each associated with a known (discrete) distribution
{7i}ietn)- When we probe the ith item, its value is realized, which is an independent sample
from the distribution ;. We can adaptively probe at most m items and each item can
be probed at most once. The reward is the maximum among the m realized values. Our
goal is to design an adaptive probing policy such that the expected value of the reward is

maximized.

4.1 Model

The ProbeMax problem is a special case of the following general stochastic probing
framework which was formulated by Gupta et al.!'8): An instance J of the stochastic
probing problem is defined with tuple J = (U, r, 1), where U is a set of n items, each
having a value X; following a known (discrete) distribution n;, and 7 = {m;};;e). We
can probe a subset P C U of items sequentially and choose another subset C C P as the
final set. When we probe the ith item, its value is realized, which is sampled from the
distribution ;. (The item values are independent of each other.) Our goal is to design a
policy such that the expected value E[ ;.- X;] is maximized. The constraint 7 consists
of two independent set systems 1,,,, and 1;,, which capture the outer (packing) constraint
and the inner (packing) constraint respectively.

* Outer constraint 1,,,%: this is the constraint on the sequence of items that we can
probe. It requires that the sequence P of items that we have probed must be in 7,
and each item can be probed at most once.

* Inner constraint I;,: this is the constraint on the set of items that we can finally
output. It requires that the set C of items that we output must be in 7;,,.

Depending on how we choose the probing sequence P, we distinguish two classes of
policies: adaptive and non-adaptive.

* Adaptive: we can adaptively choose the next item to probe based on the observations

so far. In other words, at each time point we have access to the value realizations of

® I, should be better understood as a collection of sequences. If 7,,,,, is a collection of subsets, then any sequence

of a subset in Z,,,,, can be probed.
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all the items we have probed so far.

* Non-adaptive: We should make decisions before observing the value realization of
any of them. In other words, the probing sequence P is just a priori fixed probing
order (probably over a subset of items) which satisfies the outer constraint Z,,,,,.

In fact, every non-adaptive policy is a special case of adaptive policies. Depending on
how we choose the final set C, we distinguish two natural models: the committed and
non-committed models ©.

* Committed: once we probe an item to observe its value realization, we are com-
mitted to making an irrevocable decision whether to choose it or not, i.e., we must
either add it to the final chosen set C immediately or discard it forever.

* Non-committed: we can choose the set C after observing the values of all probed
items in P. In other words, the choice of C can be made after all value realizations
of the items in P, i.e., the probing stage.

In fact, every committed policy is a special case of non-committed policies. The stochas-
tic probing problem naturally generalizes the ProbeMax problem which is on the non-
committed model. Here, the outer constraint 7,,, is the simple m-uniform matroid,
i.e., I,,, = {P | |P| £ m}. The inner constraint J;, is the 1-uniform matroid, i.e., we can
output one item. We can replace the outer constraint with some more general constraint,
e.g., a matroid. If replace the inner constraint in ProbeMax with a k-uniform matroid
(i.e., I;, = {C | |C| £ k}), we obtain the ProbeTop-k problem. In this thesis, we assume
k is a constant.

There are four different types (AN, NN, AC, NC) of policies for the stochastic probing
problem as showed in Figure 4.1, where the first symbol indicates if a policy is adaptive
(A) or not (N) while the second indicates if a policy is committed (C) or not (N). For a
particular stochastic probing instance J, we use OPTan(J) to denote the expected value
of an optimal policy restricted to the type AN. We also use the shorthand notation OPTay
if the context is clear. Similarly we have OPTac(J ), OPTyn(9) and OPTyc ().

Notice that OPTay is no less than OPTyy and OPT,c for each given instance J .
Hence, it would be interesting to study the following quantities, called adaptivity gap and
commitment gap respectively, which measures how much the former can be larger than

the later.

Definition 4.1:  (Adaptivity Gap® ) For a given stochastic probing instance J, we define

@ In'¥ they are called online and offline decision-making models.
@ In", they considered the committed model and referred to the adaptivity gap as Gap . (AC,NC) =
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Adaptivity gap

AN: Adaptive Non-committed NN: Non-adaptive Non-committed
Commitment gap Prophet Inequality
AC: Adaptive Committed NC: Non-adaptive Committed

Figure 4.1 Adaptivity gap and Commitment gap

the adaptivity gap for instance J on the non-commited model as

. OPTan(T)
AdaptiveGap(J) = ———= 4-1)
PRI OPTw ()
Definition 4.2:  (Commitment Gap® ) For a particular stochastic probing instance 7, we
define the commitment gap for instance J as

CommitGap(J) = OPTm(T) (4-2)

OPTac(J)

Consider the stochastic probing framework where the order of items we can probe is
fixed, instead of being chosen by the policy. This can be captured by the outer constraint
contains all prefix orders. For the special case in which we can only choose one item was
studied by Krengel et al.!*' back in the 70s. They designed a committed policy which
returns a single item of expected value at least half of E[max;c,) X;], i.e., there exists a

stopping rule 7 such that

2-E[X;] > E[m[a)]( X;]. 4-3)

IASIN)
This is the well known Prophet Inequality, which implies that the commitment gap of
any ProbeMax problem is at most 2 when the outer constraint is induced by a fixed order.

Recently, Kleinberg and Weinberg*"!

generalized the result when we are allowed to make
more than one selection, subject to a matroid inner constraint and showed that the factor
2 still can be achieved. They also showed that under an intersection of p matroids inner
constraint, a factor O(p) can be achieved. We call the factor prophet inequality factor and
denote as ProphetFactor(Z;,) for an inner constraint ;,. Then, for an optimal type NN
policy for instance 7, there exists a corresponding type NC policy with the same probing

order which achieves the expected value at least (1/ProphetFactor(Z;,)) - OPTyn (Y ),

which can be bounded by Gap (AN, NN) x Gap (NN, NC).
OPTnN ()
OPTNc(T)

@  For non-adaptive policies, Gap;(NN,NC) = is bounded by a prophet inequality factor which we will

discuss later.
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where 7;,, is the inner constraint of . Thus we have

OPT
Gap 4 (NN,NC) = OPTw(T) < ProphetFactor(Z;,), (4-4)

OPTnc(J)

where 7;,, is the inner constraint of 4 and the following proposition.

Proposition 4.1:  For any stochastic probing instance ./, we have

CommitGap(J) < AdaptiveGap(J) X ProphetFactor(Z;,), 4-5)

where 7;,, is the inner constraint of .

4.2 Our Results

ProbeMax problem: Despite being a very basic stochastic optimization problem,

we still do not have a complete understanding of the approximability of the ProbeMax
problem. It is not even known whether it is intractable to obtain the optimal policy. For
the non-adaptive ProbeMax problem (i.e., the probed set P is just a priori fixed set), it
is easy to obtain a 1 — 1/e approximation by noticing that f(P) = E[max;cp X;] is a
submodular function (see e.g., Chen et al.!"3!). Chen et al.!'3! obtained the first PTAS.
When considering the adaptive policies, Munagala!'¥ provided a %—approximation ratio
algorithm by LP relaxation. His policy is essentially a non-adaptive policy (it is related
to the contention resolution schemes!'>!%). They also showed that the adaptivity gap
is at most 3. For the ProbeMax problem, the best-known approximation ratio is 1 — %
Indeed, this can be obtained using the algorithm for stochastic monotone submodular
maximization in Asadpour et al.!!”). This is also a non-adaptive policy, which implies the
adaptivity gap is at most - In this thesis, we provide the first PTAS, among all adaptive

policies. Note that our policy is indeed adaptive.

Theorem 4.1: There exists a PTAS for the ProbeMax problem among all adaptive poli-
cies. In other words, for any fixed constant & > 0, there is a polynomial-time approximation
algorithm for the ProbeMax problem that finds a policy (type AN) with the expected value
at least (1 — £)OPTpy.

Our techniques also allow us to derive the following result.
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Corollary 4.1:  For the ProbeTop-k problem,
1. There is a polynomial time algorithm that finds a policy (type AN) with the expected
value at least (1 — £)OPTay.
2. There is a polynomial time algorithm that finds a non-adaptive policy (type NN)
with the expected value at least (1 — £)OPTyy.

Our techniques: We use the framework formulated in Chapter 3. Let the value I, be the
maximum among the realized values of the probed items at the time period ¢. Then, we

have the following system dynamics for ProbeMax:

Il+l = f(It7 l) = maX{It’ Xi}a g(lt’ l) = O, and h(IT+]) = IT+] (4_6)

t =1,2,...,T. Clearly, Assumption 1.1 (2) and (3) are satisfied. But Assumption 1.1
(1) is not satisfied because the value space V is not of constant size. Hence, we need to

discretize the value space and reduce its size to constant. See Section 4.4 for more details.

Table 4.1 A summary of approximation ratios for the stochastic probing problem

Inner constraint | Outer constraint Committed OPTac Non-committed OPTap
PTAS 1-1/e171 178114
Uniform, Partition
[Theorem 1.5 in{!!]] PTAS [Theorem 4.1]
PTAS |
1-Uniform General matroid 1—1/el7]
[Theorem 4.2]
PTAS 1/3 [Theorem 4.6]
Two matroids o
[Theorem 4.2] 1/2 + & [Theorem 4.2, 4.4]
PTAS -1/,
k-Uniform Uniform, Partition
[Theorem 4.3] PTAS [Corollary 4.1]
1/2 17
General matroid | General matroid 1—1/el7]
[Theorem 4.6]
k™™ matroids k°"" matroids m [Theorem 4.6]

Committed ProbeMax Problem: We call the committed ProbeMax problem when the

item is chosen in the committed way. A PTAS for the committed ProbeMax problem can

be obtained by a reduction from the committed stochastic knapsack (see Chapter 5) while

®  The PTAS for the committed ProbeMax problem provides a (0.5 + &)-approximation ratio for the non-committed
ProbeMax problem by Theorem 4.4.
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the capacity is 1 and each item has a fixed size 1. Based on the similar technique and Multi-
budget optimization®!!, we can obtain the first PTAS for the committed ProbeMax problem
with more general outer constraint. For the committed ProbeTop-k problem, we use the

framework of stochastic dynamic program formulated in Chapter 3 to obtain a PTAS.

Theorem 4.2: There is a polynomial time algorithm that finds a committed policy (type
NC) with the expected value at least (1 — £)OPT ¢ for the committed ProbeMax problem

when the outer constraint is a matroid or the intersection of two matroids.

Theorem 4.3:  There is a polynomial time algorithm that finds a committed policy with
the expected profit at least (1 — £)OPTxc for the committed ProbeTop-k problem, where
OPT ¢ is the expected total profit obtained by the optimal policy.

Our techniques: On the committed ProbeMax problem, we are committed to making a
decision immediately whenever we probe an item. If we accept the item, we stop, otherwise
reject the item and go on. Thus a committed policy for the committed ProbeMax problem
can be represented by a path, rather than a decision tree. Then we can approximate the
signature of the path by multi-budget optimization to get a nearly optimal policy.

For the committed ProbeTop-k problem, we use the framework of stochastic dynamic
program formulated in Chapter 3 to obtain a PTAS. More precisely, let b? represent the
action that we probe item i with the threshold 6 (i.e., we choose item i if X; realizes to
a value s such that s > 0). Let I, be the the number of items that have been chosen at
the period time ¢. Using our framework, we have following transition dynamics for the
ProbeTop-k problem.

L+1 ifX;>6,1, <k, X, iftX; >6,1, <k,

g(lta ble) =

Iy = f(Ih b?) = . .
I otherwise; 0 otherwise;

4-7)
fort =1,2,...,T,and h(Ir41) = 0. Since k is a constant, Assumption 1.1 is immediately
satisfied. There is one extra requirement for the problem: in any realization path, we can

choose at most one action bf.’ from the set B; = {bf}g. See Section 4.5.1 for more details.

Commitment Gap: Gupta et al.''® showed that the adaptivity gap of any stochastic

probing problem where the outer constraint is prefix-closed and the inner constraint is an
intersection of p matroids is at most O(p? log(np)), where n is the number of items. By

Proposition 4.1, we can immediately obtain that the commitment gap of any stochastic
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probing problem is at most O(p - p? log(np)) for the same inner outer constraints. Now,
we bound the commitment gap for the uniform matroid inner constraint and an arbitrary

prefix-closed outer constraint.

Theorem 4.4: The commitment gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

Note that Theorem 4.4 is a generalization of Inequality (4-3) which considered a
special case when the inner constraint is a 1-uniform matroid while the outer constraint
is induced by a fixed order. Notice that the factor 2 in Inequality (4-3) is tight, which
implies the result in Theorem 4.4 is also tight. Our techniques also allow us to derives the
following useful result from the proof of Theorem 4.4, which improves the result of 3.51

in181,

Corollary 4.2: The adaptivity gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is a uniform matroid is at most 2.

Our techniques: Before talking about our techniques, we present the previous approaches
to bounding the adaptivity gap for arbitrary outer constraints. Gupta et al. 32 worked
on the optimal decision tree directly. In order to upper bound the adaptive gap, they took
arandom path (following the probability of the path in the tree) down the tree and showed
that the expected value of this path, regarded as a non-adaptive strategy, was good. A
natural way is to consider the best path of the tree which with the best the expected value,

instead of the random path following a distribution. Our approach derives from this and

OPTan

shows that there exists a path with the expected value of =

. The algorithm is quite
simple: compute an identical threshold and accept the items whose values exceed the

threshold on the path. This is a non-adaptive committed (type NC) policy.

Committed Pandora’s Box Problem: For Weitzman’s “Pandora’s box” problem 3!, we

are given n boxes. For each box i € [n], the probing cost ¢; is deterministic and the value
X; is an independent random variable with a known (discrete) distribution x;. Opening a
box i incurs a cost of ¢;. When we open the box i, its value is realized, which is a sample
from the distribution ;. The goal is to adaptively open a subset P C [n] to maximize the

expected profit:

E

l'{leaPX{Xl} - ; Ci:| .
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Weitzman provided an elegant optimal adaptive strategy, which can be computed in
polynomial time. Recently, SinglaB®* generalized this model to other combinatorial
optimization problems such as matching, set cover and so on. In this section, we focus
on the committed model. Again, we can adaptively open the boxes and choose at most
k values in the committed way, where k is a constant. Our goal is to design an adaptive

policy such that the expected value

E

>5- el
ieC icP
is maximized, where C C P is the final chosen set and P is the set of opened boxes.
Although the problem looks like a slight variant of Weitzman’s original problem, it is
quite unlikely that we can adapt Weitzman’s argument (or any argument at all) to obtain
an optimal policy in polynomial time. When k£ = O(1), we provide the first PTAS for this

problem. Note that a PTAS is not known previously even for k = 1.

Theorem 4.5: When k& = O(1), there is a polynomial time algorithm that finds a
committed policy with the expected value at least (1 — &)OPT for the committed

Pandora’s Box problem.

Our techniques: Similar to the committed ProbeTop-k problem, let b represent the
action that we open the box i with threshold 6. Let I, be the number of boxes that
have been chosen at the time period 7. Using our framework, we have following system
dynamics for the committed Pandora’s Box problem:

It+1 iinZQ,I[<k, X;i—c¢; iinZH,It<k,

g(Ita blg) =

L= f(It’ b?) = . .
I, otherwise; —c;  otherwise;

(4-8)
fort = 1,2,---,T, and h(Ir,;) = 0. Notice that we never take an action bf for a value
I, < kif E[g(/,, bf’)] = Pr[X; > 0] - E[X; | X; > 6] — ¢; < 0. Then Assumption 1.1 is

immediately satisfied. See Section 4.5.4 for more details.

Stochastic Probing: The Bernoulli version of stochastic probing was introduced in!'®,

where each item i € U has a fixed value w; and is “active” with an independent probability
pi- If an item i is probed and found to be “active”, then it must be added to the final
set C. It can be equivalently viewed as a special case of stochastic probing when each

item has a Bernoulli random value X; which is equal to w; with p; and O otherwise. They
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essentially considered the committed setting since we would never probe an item which we
prepare to discard when it is “active”. Gupta et al."'%! presented a framework which yields

a -approximation algorithm for the case when 7;, and 7,,, are respectively an

1
4(kin+kout)
1

intersection of k™ and k' matroids. This ratio was improved to T

by Adamczyk
et al.®>! using the iterative randomized rounding approach. We generalize this result to
the case when the value of each item is no longer restricted as a Bernoulli random variable.

Our approach is a slight generalization of!6-33],

Theorem 4.6: There is a polynomial time algorithm that finds an adaptive committed

policy (type AC) for the stochastic probing problem with the expected value at least

OPTan
kinyjout

when 7, is an intersection of k°*' matroids and 7;, is an intersection of k"

matroids.

4.3 Related work

If there is no outer constraint for the stochastic probing on the committed model,
i.e., we can probe any sequence of items we need, this is called Bayesian online selec-
tion problem (BOSP). Chawla et al.*®! proposed a simple mechanism, called sequential
posted pricing mechanism (SPM), for Bayesian single-parameter auctions. They gave a
committed algorithm with a ratio of % (compares to the best non-committed policy) for
BOSP where the inner constraint is a matroid and Yan” improved the ratio to 1 — 1
which is tight. This implies that the commitment gap for the matroid inner constraint is
atmost 1 — % when there is no outer constraint.

In another setting, the order is random instead of being chosen by the policy, which
was introduced by Esfandiari et al.*®!. The approximation ratio for the single-item case
can be improved from % tol - é which compares to the prophet inequality where the
order is fixed. They called this prophet secretary problem and showed that the upper
bound of the ratio is 0.75. When the distributions of items are unknown and the order
is random, this is the traditional secretary problem, introduced by Dynkin in 1960s[°!.
They designed a simple committed strategy with a ratio of % which is tight for large n.
Kleinberg "' provided an algorithm with ratio of 1 — O(y/1/k) when inner constraint is
a k-uniform matroid. However, for the general matroid inner constraint, the current best

ratio is O(1/loglog r) #1421, where r is the rank of the given matroid.
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4.4 ProbeMax Problem

In this section, we demonstrate the application of our framework to the ProbeMax
problem. Define the value set § = | J;¢,) S; where §; is the support of the random variable
X; and the item set A = {1,2,...,n}. Let the value I, be the maximum among the
realized values of the probed items at the time period . Thus, we begin with the initial
value I; = 0. Since we can probe at most m items, we set the number of rounds to be
T = m. When we probe an item i and observe its value realization, say X;, we have the

system dynamic functions

Ly = f(,0) =max{l,, X;}, g(l;,i) =0, and h(Ir41) = It4 (4-9)

for I, € Sand r = 1,2,...,T. Assumption 1.1 (2,3) is immediately satisfied. But
Assumption 1.1 (1) is not satisfied because the value space S is not of constant size.

Hence, we need discretization.

441 Discretization

Now, we need to discretize the value space, using parameter £. We start with a
constant factor approximate solution OPT for the ProbeMax problem with OPT > OPT >
(1 — 1/e)?OPT (this can be obtained by a simple greedy algorithm See e.g., Appendix
C of!!3), Let X be a discrete random variable with a support S = (s, 5, ...,5;) and
ps; = Pr[X = s;]. Let6 = @ be a threshold. For “large” size s;, i.e., s; > 0, set
Dx(s;) = 0. For “small” size s;, i.e., s; < 0, set Dx(s;) = |_ fLJs(SI?T. We use

OPT
V = {0,e0PT,...,OPT/e} to denote the discretized support. Now, we describe the

discretized random variable X with the support V. For “large” size, we set

Py =Pr[X = 6] =Pr[X > 6] - w. (4-10)

Under the constraint that the sum of probabilities remains 1, for “small” size d € V \ {6},

we scale down the probability by setting

ﬁd:Pr[i:d]:w( > Pr[X:s])s > Prx =5l

Pr[X < 9] seS,Dx (s)=d seS,Dx (s)=d
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Although the above discretization is quite natural, there are some technical details.
We know how to solve the problem for the discretized random variables supported on V
but the realized values are in S. Hence, we need to introduce the notion of canonical
policys (the notion was introduced in Bhalgat et al.!! for stochastic knapsack). The policy
makes decisions based on the discretized sizes of variables, not their true size. More
precisely, when the canonical policy o probes an item X which realizes to s € S, the
policy makes decisions based on discretized size Dx(s). In this following lemma, we
show it suffices to only consider canonical policies. We use P(o, 7) to denote the expected

profit that the policy o can obtain with the given distribution .

Lemmad4.1: Let 7 = {r;} be the set of distributions of random variables and 7 be the
discretized version of 7. Then, we have:

1. For any policy o, there exists a (canonical) policy ¢ such that
P(o,7m) > (1 — 0(e))P(o, ) — O(g)OPT;
2. For any canonical policy o,
P(o, ) > P(o, 7).

Proof. (The proof of Theorem 4.1) Suppose o™ is the optimal policy with expected profit
P(o*,m) = OPT. Given an instance 7, we compute the discretized distribution 7. By

Lemma 4.1 (1), there exists a canonical policy o* such that
P(c*,7) > (1 - 0(¢)) - P(c™, 1) — O(¢)OPT = (1 — O(&))OPT.

Now, we present a stochastic dynamic program for the ProbeMax problem with the
discretized distribution 7. Define the value set V = {0, sOPT s OPT /€} and the item
set A ={1,2,...,n},and set T = m and I; = 0. When we probe an item i to observe its

value realization, say X;, we define the system dynamic functions to be
It+l = f(1t9 l) = max{[ta Xi}’ g(lt’ l) = O’ and h(IT+l) = IT+1 (4_12)

for [, € Vandt = 1,2,...,T. Then Assumption 1.1 is immediately satisfied. By
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Theorem 1.6, we can find a policy o with profit at least
OPT, — O(&”) - MAX,

where OPT; denotes the expected profit of the optimal policy for the discretized version
7 and MAX = max;cy DP; (I, A) = DP,(OPT/&, A) = OPT/e. We can see that OPT, >
P(c*,m) = (1 — O(e))OPT. Thus, by Lemma 4.1 (2), we have

P(o, 1) > P(0, %) > OPT,—0(£*)MAX > (1-0(£))OPT—0(£)OPT = (1-0(¢))OPT,

which completes the proof. O

Proof. (Proof of Lemma 4.1) Recall that for each node v on the decision tree 7, the value
I, is the maximum among the realized value of the probed items right before probing the
item a,. For a path R, we use W(R) to the denote the value of the last node on the path.
Let E be the set of all root-to-leaf paths in 7,,. Then we have

P(o,m) = ) O(r)- W(r). (4-13)

reE
For the first result of Lemma 4.1, we prove that there is a randomized canonical
policy o, such that P(o,, ) > (1 — O(g))P(o, m) — O(£)OPT. Thus such a deterministic
policy o exists. Let 6 = @ be a threshold. We interrupt the process of the policy o on
a node v when the first time we probe an item whose weight exceeds this threshold to get
a new policy o’ i.e., we have a truncation on the node v and do not probe items (include

v) any more in the new policy o’. The total profit loss is equal to

Z dW) - [P(v) = I,] < Z ®(v) - OPT = OPT x Z d(v) < O(g) - OPT,

veLF velLF velLF

where LF is the set of the nodes on which we have a truncation. The last inequality holds
because OPT > > ., r @) -P(v) =203, crr @(v).
The randomized policy o, is derived from o’ as follows. 7 (o, ) has the same

tree structure as 7 (o', ). If o, probes an item X and observes a discretized size d € V ,
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it chooses a random branch in 7 (o,, 7) among those sizes that are mapped to d, i.e.,

{w. | Dx(w.) = d} according to the probability distribution

Pr[X = w,]
s | Dy (s)=a PI[X = 5]

Pr[branch e is chosen] =

Then by Equation (A-8), if w, < 6 we have

1 - Pr[X = 6]

P. = Pr[X = d] - Pr[branch e is chosen] = p, - Pr{X < 0]

and

. { 1”:|.gcﬁzwe_g<ﬁ
eOPT

Fact: For any node v in the tree 7 (o, ) such that I, < 6, we have
D) = (1 -0(£)D(v). (4-14)

When we regard the path R(v) as a policy, the expected profit of the path R(v) can obtain

is at least

H'I‘FIO‘MX:m)’

ieR(v)

which is less than OPT, where R (v) is the path from the root to the node v. Then we have
[Tiero (1= PrX; = 6]) > 1 - O(e), which implies that
1 - Pr(X; = 6]

&mzww-r]jﬁz?a—za—m@mwy
ieR(v) L=

Now we bound the profit that we can obtain from 7 (o, 7). Let E be the set of all
root-to-leaf paths in 7 (o, ). We split it into two parts E; = {r € E : W(r) < 6} and
E, ={r € E: W(r) > 6}. For the first part, we have

Do) W) 2 Y B - [W(r) - 0(0PT)]
rek rek)
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> (1 - 0(g)) Z O(r) - W(r)| — 0(sOPT).

rekE

As mentioned before, for any path r € E,, we interrupt the process of the policy o when
the first time we probe an item whose weight exceeds this threshold 6. We use ¢, to denote
the item for path r. By Equation (A-7), we have Pr[)? =0]-6 =Pr[X > 0]-E[X|X >46].

Then, we have

D0 - W(r)= Y (L) - PriX,, =610

rek, rek,
- Z ®((,) - Pr[X, > 6]-E[X, | X, > 6]
rek,
> 2(1 —0(e)O(L,) - Pr(X, > 6]-E[X, | X, > 6]
rek,
= (1-0(e)) ) () - W().

rek,

In summation, the expected profit P(c-,, 7) is equal to

DoB(r) - W(r) = (1-0(2) ), ®(r) - W(r) — O(£OPT)

rek rekE

= (1-0(¢))P(c’,) - O(e)OPT
= (1 -0(e))P(o, ) — O(g)OPT.

Next, we prove the second result of Lemma 4.1. Recall that a canonical policy
makes decisions based on the discretized sizes. Then 7 (o, 7) has the same tree structure
as 7 (o, m), except that it obtains the true profit rather than the discretized profit. By

Equation (A-8), for an edge e with a weight w, < 6 on 7 (o, ), we have

T = Z Pr[X = 5] > 7,.

s€S:Dx (5)=We

Fact: For any node v in the tree 7 (o, ) with I, < 0, we have

D(v) < D). (4-15)
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Similarly, we split the root-to-leaf paths set E into two parts E; = {r € E : max.c, w, < 0}

and E, = {r € E : max,., w, = 0}. Then, we have

PG, 7 = ) ®) - W)+ Y () - W(r)

rek rek,
= > D) - W)+ ) O(L,) - PriX,, = 0]
rekE rek,
< D O - W)+ ) O(L,) - PrX,, 2 6]-ELX,, | X;, 2 6]
rek rek,
= > () W)+ ) Or) - W(r)
rekE rek,
=P(o, n) O

4.4.2 ProbeTop-k Problem

In this section, we consider the ProbeTop-k problem where the reward is the sum-

mation of top-k values and k is a constant.

Theorem 4.7: There exists a PTAS for the ProbeTop-k problem. In other words, for
any fixed constant & > 0, there is a polynomial-time approximation algorithm for the

ProbeTop-k problem that finds a policy with the expected value at least (1 — £)OPT.

In this case, I; is a vector of the top-k values among the realizes values of the probed items
at the time period ¢. Thus, we begin with the initial vector I, = {0}*. When we probe an

item i and observe its value realization X;, we update the vector by

Ly ={I; + X;} \ min{/, X;}.

We set g(I;,i) = 0 and h(l741) = sum(l741). Assumption 1.1 (2,3) is immediately
satisfied. Then We also need the discretization to satisfy the Assumption 1.1 (1). For
Lemma 4.1, we make a small change as shown in Lemma 4.2.Thus, we can prove Theorem

4.7 which is essentially the same as the proof of Theorem 4.1 and we omit it here.

Lemma4.2: Let 7 = {r;} be the set of distributions of random variables and 7 be the

discretized version of 7. Then, we have:
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1. For any policy o, there exists a canonical policy ¢ such that
P(o, ) > (1 — O(g))P(o, ) — O(e)OPT,;
2. For any canonical policy o,
P(o,n) > P(o, ) — O(e)OPT.

Proof. This can be proved by an analogous argument as Lemma 4.1. For the first result,
we design a randomized canonical policy o, as before. Here, W (r) is the summation of
the top-k weights on the path r. For a root-to-leaf path r, the profit we get is equal to

> %
ieC

W(r) = max

ccr,|Cl<k

. (4-16)

Now we bound the profit we can obtain from 7 (o, 7). recall that E; = {r € E :
max.c w, < 8} and E, = {r € E : max,.c, w, = 0} where E is the set of all root-to-leaf

paths. Then for any r € E;, we have
W(r) < W(r) — k - €OPT = W(r) — O(sOPT).
For the first part, we have

D0 W(r) 2 (1-0(e) ) [0(r) - W(r)] = O(zOPT).

rekE; rekE;

For the second part, we have

D0 W)= )DL, - PriXy, =601 (0 + W(L,)

rek, rek;
> > B(L,) - PriX,, 2 0] (BLX, |X,, 2 0]+ W(L,))
rek,
> )" @) - PriX,, > 0]- (BIX, X, > 0]+ W'(£,) - O(s0PT))
rek,
> (1-0(e) ) ®(r) - W(r) - O(sOPT)

reky
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where W’(r) is the summation of top k — 1 weights on the path . In summation, the

expected profit P(o,, 7) is equal to

Z O(r) - W(r) = (1 - 0(e))P(co, ) — O()OPT.

rekE

Now, we prove the second result. Similarly, we have

DO W) < ) O W(r)

rekE; rekE;

and

D0 W) = Y 0L, - PriXy, =601 (0 + W(L,)

rek, rek,
< > O - PriX,, 2 0]-E[X,, | X, 2 0]+ O(e)OPT
rek,
< Z O(r) - W(r) + O(e)OPT
rek,

where the first inequality holds since Pr[)? = 0] < &. Hence, the proof of the lemma is

completed. O

4.4.3 Non-adaptive ProbeTop-k Problem

Now, we consider the non-adaptive version of the ProbeTop-k problem. Define

f(P)=E (4-17)

max Z X;
{i1,02,....i;. JCP 4 j

Our goal is to find a subset P C [n] of cardinality m such that the expected reward f(P)

is maximized.

Theorem 4.8: There exists a PTAS for the non-adaptive ProbeTop-k problem.

Proof. Suppose P* = {X|,X5,...,X,,} is the optimal solution with expected reward
OPT. Then there is a pseudo-adaptive policy o only using the items in the set P* =
{X1, X, ..., X,u}. The pseudo-adaptive policy is adaptive policy which can be represented

as a decision tree. In fact, for any root-to-leaf path, the set of items on the path is identical.
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Lemma 4.2 still holds. Now, we can find a nearly optimal pseudo-block-adaptive
policy only using m items in total. This can be done by modifying a little bit about the

dynamic program (3-10):
M(i, C,CA) = max (M(i -1,C,CA), M(i - 1,C’,CA - 1)), (4-18)

where the capacity CA is the number of all items used in the tree, rather than a vector
capacity for each root-to-leaf path. We can use the dynamic program to find a nearly
optimal pseudo-block-adaptive policy o (i.e., a non-adaptive policy) with expect profit

(1-0(e))OPT. O

4.5 Committed Model

In the committed model, once we probe an item and observe its value realization, we
must make an irrevocable decision whether to choose it or not, i.e., we must either add it
to the final chosen set C immediately or discard it forever. © If we add the item to the
final chosen set C, the realized profit is collected. Otherwise, no profit is collected and

we are going to probe the next item.

4.5.1 Committed ProbeTop-k Problem

In this section, we prove Theorem 4.3, i.e., obtaining a PTAS for the committed
ProbeTop-k. In the committed model, once we probe an item and observe its value
realization, we are committed to making an irrevocable decision immediately whether to
choose it or not. If we add the item to the final chosen set C, the realized profit is collected.
Otherwise, no profit is collected and we are going to probe the next item.

Let o* be the optimal committed policy. Suppose o™ is going to probe the item
i and choose the item i if X; realizes to a value 6 € S;, where S; is the support of the
random variable X;. Then o would choose the item i if X; realizes to a larger value
s > 6. We call 6 threshold for the item i. Thus the committed policy o for the committed
ProbeTop-k problem can be represented as a decision tree 7,-. Every node v is labeled
by an unique item a, and a threshold 6(v), which means the policy chooses the item a,, if

X, realizes to a size s > 6(v), and otherwise rejects it.

® In""®181 it is called the online decision model.
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Now, we present a stochastic dynamic program for this problem. For each item 7, we
create a set of actions B; = {bf}g, where bl‘.’ represents the action that we probe item i with
the threshold 8. Since we assume discrete distribution (given explicitly as the input), there
are at most a polynomial number of thresholds. Hence the set of action A = U, B; is
bounded by a polynomial. The only requirement is that at most one action from 8; can
be selected.

Let I, be the number of items that have been chosen at the period time z. Then we set
YV ={0,1,...,k}, I, = 0. Since we can probe at most m items, we set 7 = m. When we
select an action bf to probe the item i and observe its value realization, say X;, we define
the system dynamic functions to be

IL+1 ifX; >6,1, <k, X, ifX; >6,1, <k,

g(lla ble) =

L = f(L, b?) = . .
I, otherwise; 0 otherwise;

(4-19)
forl, e Vandt=1,2,...,T, and h(Ily,;) = 0. Since k is a constant, Assumption 1.1 is
immediately satisfied. However, in this case, we cannot directly use Theorem 4.1, due to
the extra requirement that at most one action from each 8; can be selected. In this case, we
need to slightly modify the dynamic program in Section A.2.4 to satisfy the requirement.
To compute M (i, C,CA), once we decide the position of the item i, we need to choose a
threshold for the item. Since there are at most a polynomial number of thresholds, it can

be computed at polynomial time. Hence, again, we can find a policy o with profit at least
OPT - O(e) - MAX = (1 — O(g)) OPT,

where OPT denotes the expected profit of the optimal policy and MAX =
maXjey DPl(l,ﬂ) = DP] (O,(V) = OPT.

4.5.2 Matroid Constraint

In this section, we prove Theorem 4.2, i.e., obtaining a PTAS for the committed
ProbeMax problem. On the committed model, we are committed to making an irrevocable
decision immediately whether to pick it or not whenever we probe an item. If we add the
item to the output set C, the profit is collected. Otherwise, no profit is collected and we
are going to probe the next item. Based on Multi-budget optimization!®!, we can obtain

the PTAS for the committed ProbeMax problem with more general outer constraints.
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Definition 4.3 (Multi-object/Multi-budget optimization): Given [/; linear function
fio foreeos fo, 2 2Y = Ry, ¢, linear function g, g,...,8, : 2Y — R, and a outer
constraint U, is there a feasible solution C of U satisfying f;(C) > D; for all i € [£;] and
gi(I) < B; foralli € [£;]?

We denote the above problem as Multi-2. A multi-criteria PTASs is an algorithm which
produces a feasible solution C of U such that f;(C) > (1 — &)D; for all i € [{;] and
gi(I) < B; for all i € [{;] and the running time is polynomial in the size of the input for

any fixed &.

Theorem 4.9:  Assume there is a multi-criteria PTASs for Multi-2. For any &, there is a
polynomial time algorithm that finds a committed policy (type NC) with the expected value
at least (1 — £)OPTxc for the committed ProbeMax problem when the outer constraint is
A.

Proof. Let o be the optimal committed policy. Suppose o™ is going to probe the next
item i and choose i if X; realizes to a value § € S. Then o* would choose i if X; realizes to
a larger value s > 6. We call 6 threshold for the item i. Thus the committed policy o* for
the committed ProbeMax problem can be represented a path R*. Every node v is labeled
by an unique item i(v) and a threshold 6(v), which means the policy accepts the item i(v)
and stops if X, realizes to a size s > 6(v), and otherwise rejects it and goes on. It can be
equivalently viewed as a Bernoulli case where each item i has weight w; = E[X; | X; > 6]
and is “active” with probability p; = Pr[X; > 6].

WLOG we assume Y;cg- pi < 1/& similar in Lemma 4.1 in!'!! (otherwise we can
have a truncation on the path R* and the profit loss is at most eOPT). We call an item i a

heavy item if p; > &. Otherwise we call it light. Then the number of heavy items in the

path R* is at most 3. For an item i, we define the signature of i to be

oo =[] o ] 227

e*OPT n

For a block M, define its signature to be Sg(M) = (Sg' (M), Sg*>(M)) = X;car S9(i).
Now, we greedily partition the path R* into several segments, such that: each segment
contains one heavy item or several light items such that ;.. p; < &*. Then the number
of segments is at most . We regard each segment as a block to get a block policy R”
with the expected value at least (1 — £)OPT (we lose the profit when there are two items

in the same block which are active simultaneously).
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Algorithm 2 Approximation Algorithm of the committed ProbeMax problem

1: Enumerate all possible heavy items set H;
2: for each such H do
3:  Enumerate all possible signatures Sg:

4. for each such Sg do

5: Try to find a set of blocks 8 such that H U 8 € U (feasible) and
6: Sg'(B;) < Sg;, Sg*(B;) > Sg7 for all B; € B;

7. end for

8: end for

9: Pick the feasible H U B with the largest profit.

Denote R” = H* U B*, where H* is the set of heavy items and 8 is a set of blocks
which contain light items. Assume our algorithm 2 has guessed H* correctly. By the

assumption, we can obtain a set of blocks B of U such that
Sg'(B;) < Sg'(B}) and Sg*(B;) > (1 — £*)Sg*(B;) for all B; € B. (4-20)

Fact: The expected value of H* U B is at least (1 — O(g))OPT.

Let 7Y% be the probability of all items in the block B are non-active. Then n°(B) =
[Tics(1=pi) > 1=3,c5pi > 1 — &> On the other hand

Siespi)”
B = [a-p) < (1 - ﬁ) <1=> P+ p)

ieB ieB ieB

Thus, by the definition of the signature and Inequality (4-20), we have

2B - 7By = [ [ =p -] (1 =p»)

ieB* ieB
S(l—Zpi+84)—<l—Zpi)
ieB* ieB
< -Sg'(B") + (Sg'(B) + &*) + &*
< 0(gh).

Let P(B) be the expected profit we can get from B. Suppose we insert the items in B one

by one. For any item i € B, with probability at least 7°(B), all the previous items are not
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“active”. Thus the expected profit we can get from i is at least 7°(B) - p;w;. Thus, we have

P(B) > 2°(B) x ) piwi > (1 - £*)Sg*(B).
ieB
We also have that
P(B) < ) piwi < Sg*(B) + &'OPT.

ieB

Let B} be the root block of the optimal policy. Then, replacing B} with B, in the path R”,

the expected profit loss is at most

P(B}) — P(B)) + OPT(np. — mp,)
< (ng(Bf) + 84OPT) — (1 -¢&%Sg*(B)) + O(*)OPT
< (1+&%)Sg*(B)) - (1 — £*)Sg*(B)) + O(*)OPT
< O(e) - P(B;) + O(g*)OPT.

When we replace all the blocks in 8* by the corresponding ones in 8, the total profit loss

is at most
D ®(B)[O() - P(B) + O(s)OPT]
B
= 0(e) - Z ®(B) - P(B) + O(H)OPT Z D(M)
B B

< O(g) -OPT + O(¢")OPT - &°

= 0(&)OPT,
where ®(B) is the probability of reaching the block B. O

Theorem 4.10 (Theorem 5 in®'):  For any & > 0 and any constant number of ¢ + {3,
there is a polynomial-time randomized algorithm which is multi-criteria PTASs with high

probability for matching or matroid intersection.

By combining Theorem 4.9 and Theorem 4.10, we get Theorem 4.2.
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4.5.3 Commitment Gap

In this section, we prove Theorem 4.4, i.e., bounding the commitment gap for the
uniform matroid inner constraint and arbitrary prefix-closed outer constraint. Recall that

for a particular stochastic probing instance ., we have

CommitGap(J) = OPTm(T) (4-21)

OPTac(J)

For the prophet inequality where we can only choose one item from a fixed order, a simple
policy which uses 6 = OPT/2 = E[max,¢[,; X;]/2 as a threshold and accepts the first item
whose weight exceeds this threshold can achieve the 2-approximation ratio in Inequality
(4-3).

For the m-uniform matroid inner constraint and arbitrary prefix-closed outer con-
straint, a best adaptive non-committed policy o can be represented as a decision tree
T (o,m). Weletf = % be the threshold where OPT,y is the expected value of the

optimal adaptive non-committed policy o-. Set X* = max{X, 0}.
Lemma 4.3: Then, we have
OPTay <m0+ ) O(R)- (Z E[(X, — 9)+]). (4-22)
ReR VER
Proof. By the definition, we have OPTay = D rer P(R) - W(R), where W(R) is the

summation of the top-m weights on the path R. Then, we have

OPTAN—m~9:ZCD(R)~(W(R)—m~9)

ReR

< D O(R) - Y (we =)
ReR e€R

= ) ®@)-El(X, - 6)"]
VET S,

= > o) (Z E[(X, - 9)*]) .
ReR vER

Note that the leaf nodes are dummy nodes which can be ignored. O

Thus, there is at least a root-to-leaf path, say R* € R, such that ) .z E[(X, — 6)"] >

OPTan/2. Consider the following simple committed strategy:
51



%% 4 ¥ Stochastic Probing Problem

Algorithm 3 A simple non-adaptive committed strategy ALG(R")

OPTan
2m

1: Follow the path R* and accept items whose value exceeds the threshold 6 =

b

until we accept m items.

Claim: The the expected value of ALG(R*) shown in Algorithm 3 is at least OPTy/2.

Proof. Let p be the probability that there are at least m items whose value exceed 6 on the
path R*. For a node v on the path R*, let /(v) be the indicator function which is equal to 1
if there are at most m — 1 items whose values exceed 6 before probing v and 0 otherwise.
Thus for any node v, E[/(v)] > 1 — p. And we let I(X, > ) be the indicator function
which is equal to 1 if X, > 6 and O otherwise. Then the expected profit we obtain from

the path R* is equal to

E[ALG(R")] = Z E[X, - [(X, > 6) - I(v)]

veER*

>p-m-0+ ZE[(XV—Q)-I(XV > 0) - I(v)]
VER*

OPTan
2

OPTan
2

OPTan
> . m]
-2

+ D BI(X, - )] E[I()]

vER*

+(1-p) > BIX, - 0)]

VER*

=p-

>p-

Thus, there is a committed policy which can obtain at least % profit. Hence, Theorem

4.4 is proved. The fact that the policy is non-adaptive implies that:

Corollary 4.3: The adaptivity gap of any stochastic probing problem where the outer

constraint is prefix-closed and the inner constraint is an uniform matroid is at most 2.

454 Committed Pandora’s Box Problem

In this section, we obtain a PTAS for the committed Pandora’s Box problem. This
can be proved by an analogous argument to Theorem 4.3 in Section 4.5.1. Similarly, for
each box i, we create a set of actions B; = { bf}, where bf represents the action that we
open the box i with threshold 6. Let I, be the number of boxes that have been chosen at

the time period . Then we set A = U;¢(,nB;, V ={0,1,...,k}, T =nand I, = 0. When
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we select an action b? to open the box i and observe its value realization, say X;, we define

the system dynamic functions to be

Iz+l iinZH,Il<k, Xi—Ci iin29,1t<k,

It+1 = f(ll’ blg) = { g(lta bla) = {

—c;  otherwise;
(4-23)

forl, e Vandt =1,2,---,T,and h(Ily,,) = 0. Notice that we never take an action bf for

avalue I, < kif E[g([,, bf’)] = Pr[X; > 0] - E[X; | X; = 0] —¢; < 0. Then Assumption 1.1

I; otherwise;

is immediately satisfied. Similar to the Committed ProbeTop-k Problem, we can choose at
most one action from each B;. This can be handled in the same way. So again we can find a
policy o with profit at least OPT —O(g) - MAX = (1 — O(e)) OPT, where OPT denotes the
expected profit of the optimal policy and MAX = max;.q DP; (1, A) = DP;(0, A) = OPT.

4.6 Stochastic Probing Problem

Consider the stochastic probing problem (Stoch-Prob) with general constraints. We
use the same LP as introduced in Munagala et al.!'* and develop several policies based
on the fractional optimal solution. Consider an instance of the stochastic probing problem
with inner constraints (U, Z;,,) and outer constraints (U, 1,,,;). Let S be the union of
supports of all {X;}. For each s € S, let p;; = Pr[X; = s]. Suppose in an optimal
adaptive non-committed policy (type AN) for Stoch-Prob, (x;, y;) is the probability that
item i is chosen (to output) and probed respectively while x; ; is the probability that X;

is added into the final set and the value realization of X; is s. Thus x; = X ¢ x; . Let

x = (X, X2 ...,x,)and y = (yy,...,y,). We have the following LP relaxation:
max Z St X (4-24)
st. X3 <Yyi-pis VieUseSs (4-25)
x € P(;) (4-26)
y € PLour) (4-27)

Claim: The optimal value of LP (4-24) is an upper bound of OPTay.
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4.6.1 Contention Resolution Schemes

We need to design a policy from a solution (x, y) for the LP relaxation. We use the
rounding scheme called contention resolution schemes (CR schemes) to obtain constant

approximations under several combinatorial constraints. Here is the formal definition.

Definition 4.4: (CR Scheme) A (b, ¢)-balanced CR scheme 7 for a downwards-closed
set system 7 is a scheme such that for any x € (), the scheme returns a set (/) C
I = R(bx) with the following property, where R(bx) C U is the random set obtained by
independently choosing each item i € U with probability bx;.

1. n(l)e 1.

2. Prli e n(I) | i € I] > c for every item i.
A scheme is said to be monotone if Pr[i € 7(R;)] > Pr[i € n(R;)]foranyi € Ry C R,. A
scheme is said to be ordered if there is a (possibly random) permutation o on U so that
for any I = R(bx) C U, the output of the scheme 7 (/) is the maximal independent subset

of I obtained by considering items in the order of o.

Theorem 4.11 (1!3161)):  There are monotone CR-schemes for the following downwards
closed (0 < b < 1 is any value)

e (b, (1 — e7?)/b)-balanced CR-scheme for matroid.

e (b, 1 — kb)-balanced order CR-scheme for k-matroids.

* (b,1 —2kb) CR-scheme for k-column sparse packing integer programs set system.

Gupta et al.!'9 considers the Bernoulli version of Stoch-Prob with commitment
satisfying the following properties:
(a). There is a (b, cout)-CR scheme gy for P (Loy)-

(b). There is a monotone (b, ¢;,) order CR scheme 7, for P (1;,).

1

Y Now we assume

Gupta et al.''%! gave an algorithm achieving a ratio of
the same properties while we consider the Stoch-Prob: the value of each item can be an

arbitrary discrete random variable. We extend the same result here.

Theorem 4.12:  There is an algorithm (see ALG 4) that finds a non-adaptive committed

OPTaN
b(couttCin—

policy (type NC) with the expected value at least 5 for the Stoch-Prob satisfying

Property (a) and (b).
By combining Theorems 4.11 and 4.12, we have
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1

Corollary 4.4: There is a 0

-approximation algorithm when the inner and outer

constraints are intersections of k and ¢ matroids respectively.

Now, we present a formal statement of Algorithm 4.

Algorithm 4 Rounding Algorithm for the Stochastic Probing Problem

1: Solve the LP relaxation and obtain the optimal LP solution (x, y);

2: Pick I € 2Y by choosing each i € U independently with probability by;;

3: Let P = mou(I) € Zous

4: Order items in P according to the permutation given by the ordered CR scheme 7;,,;
5. C « 0

6: fori =1,2,...,|P| do

7. ifCUIi € 1, then

8: Probe the item i;

9: If X; = s, let C « C U {i} with probability x; ;/(y; - pis);

Now, we analyze the expected value of the above algorithm and prove Theorem 4.12.

Proof. Notice that the probability we choose i conditioning on its probing is

= > PrX, = 5]- x‘;ls _Zx”

seS seS Yi

Let J € U be the random set by choosing each i € U independently with probability p;.

From the result of Lemma 3.5 in!'%!, we see for eachi € U,

Pr [l € ﬂ'in(ﬂ'out(l) N J)] > b- (Cout + Cin — 1) *DiYi-

I)”OMI’anin

Now, the expected value of the chosen set C is

>x

ieC

E - ZPr[i em,(PNJ)]-E[X,|i€C]

ieU

2b'(Couz"'Cin—l)'Zpiy,--E[XiIiGC].

ieU
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Notice that

Pr[X:. =s A
E[Xiliec]:E[XiliEJ]ZZs- r[X; =sAieJ]

~ Prli € J]
Z Pr[X;=s]-Prlie J| X; = 5]
= S - -
e Pr[i € J]
B Z S Pis Xis/ (Vi pis) 1
= = S Xig- O
ses Pi Piyi

Indeed, we can see that

S

ieC

E > b (Cour + Cin— 1) Z S Xis 2 b (Cour + Cin — 1)OPTan.

ieU,seS

4.6.2 The lterative Randomized Rounding Approach

Next, we give a description of another rounding approach called Iterative Randomized
Rounding approach which derives from!*!. We only focus on matroid intersections
constraints, i.e. on the special case in which Z,,,, is an intersection of k°*’ matroids
M M, and T, is an intersection of k™ matroids M;", ..., MI’;’}H. Let M =
(E, I') be a matroid. For an item i € E, we denote the the matroid M with i contracted by
Mli,ie. M/i=(E—-e,{SCE—-e|S+e € 1}). Then 1;,/iis an intersection of matroids
M i, ..., M [i and T,,,, /i is an intersection of matroids M{™“ /i, ..., MZ4: /i.

Initially, x = x%y =y°C = 0. Ateach step, we select single item i to probe, then
permanently set y; = 0, x; = 0. Then update the outer constraints by replacing 7,,, with
1,,./i. Ifitem i is added into C, we update the inner constraints by replacing Z;, with 1;,,/i.
Finally, we modify our fractional solution (x, y) such that it is feasible for the updated
constraints. The algorithm terminates when (x, y) = 0.

Let x’, y*, and C" be the current value of x, y, and C at the beginning of step ¢+ 1. The

the expected value of our algorithm is guaranteed by following lemma based on Doob’s

optional stopping theorem for martingales.

Lemma 4.4 (Lemma 8 in®"):  Suppose the algorithm runs for r steps and that g(x°) >
B - E[OPT],x™ = 0. Let ¥; represent all information available after the ith iteration.
Suppose that in each step, E[f(C'*') — f(C") | ;] = a - E[g(x") — g(x'*") | #;]. Then,
the final output C™ satisfies E[ f(C7)] > a B - E[OPT].
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Algorithm 5 The Iterative Randomized Rounding for Stochastic Probing

1: Solve the LP relaxation and obtain the optimal LP solution (x°, y°);
2: SetC=0,x=x"%y=y"
3: repeat
4. Randomly select an item i with probability y;/ »’; y; and then probe it;
50 IfX; =s,let C « C U {i} with probability x; ;/(y; - pis);
6:  Update y such that y € P(Z,,,/i);
7:  Update x such that the set of Inequalities (4-25) holds;
8:  If i is added into C, then
9: Update x such that x € P(1;,/i);
10: until x = 0;

11: Output C.

In this setting, g(x) = Yicyses 5 - Xis and f(C) = Y;ec wi. The x¥ is the optimal LP
solution, then z° = g(xo) > OPTan. Thus B = 1. We discuss arbitrary step ¢ + 1, then
denote (x', y") by (x,y) and (x’*!, y"*1) by (x’,y’). We denote A = 3, y;, then

BLA(CT-fCDITN= 3] Joxpaxs=t ) s-xi,s:g(f). (4-28)

ieU,seS i " Pis ieU,seS

We now describe how to update the current solution (x, y) to ensure feasibility in
each of the update matroid constraints. We use the same technique as used in®>!. Let
i be the item that we probed and M]‘?“t be some outer matroid. Currently we have
y € P(M?"") and we want to get a solution y’ such that y* € £ (M?"'/i). We represent
y as a convex combination y = ., A;1g,, where By, By, ..., B, is the support of y.
We random pick one set B, which contains item i with probability 4,/y; (note that for
any item i, ), ,.;cp, Ao = y;). Then for any set B, : i ¢ By, there is item ¢, such that
By, +e—¢qp € MJ?'”. By replacing set B, with B, + e — ¢, and setting y; = 0, we
obtain y’ € P(M]‘.’“’/i).

Lemma 4.5 (Lemma 9 in®"):  Let y and y’ be the current fractional solution before

and after one update for a given outer matroid M;.’”t . Then, for each i € U, we have

E[(y: — y)1 < (1 = y)y.

In order to satisfy the set of Inequalities (4-25), we set x;,s = min{x;,, y; - p;s} for any

ieUands e S.
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Lemma 4.6: Then, foreachi € U, s € S, we have
, 1
E[d:s] = E[(xis — x{ )] < X (I =y xis- (4-29)

Proof. Since x;; < p; s - y; and y; > y/, thus

Ex;,s E[min{x;, pis - ¥/ }]

_ By
Vi
> 1 ! (1 )
Z A Yi)s
the last equality holds by Lemma 4.5. Then, Equation (4-29) holds. O

Next, if the item i is added to C, we similarly update x for each inner matroid M;" and
get x’ such that x’ € P (M /i).

Lemma 4.7 (Lemma 10 in®>"): Let x and x’ be the current fractional solution before

and after one update for a given inner matroid Ml’" Then, for each i € U, we have

1
E[(x; —x))] < £(1 = xp)x;
Foranyi € U,s € S, weset x, = x;;- . Then Y s x] = Yoes Xiy - = = XL

Lemma 4.8: Then, for eachi € U, s € S, we have
. , 1
E[5i] = Bl(xis = X )] < (1= x0)xis. (4-30)

Proof. Because
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We perform the matroid updates sequentially for each of the k°*’ and k" matroids. Then

we have
B[ s+ (xis = x],)]
seS
< Y s+ xy - Prli is probed] + k" s - E[874] + k™ )" s - E[o1]
K seS seS
- 1 Z . kout Z (1 ) N kin Z (1 )
- A S xt,s yl A s yz xt,s A N Xi -xl,s
seS seS seS
kout + kin kouz -1 kin
:Tzs'xi,s_ A Zs'xi,s'yi_xzs’xi,s'xi
seS seS seS
kout + kin
I
seS
Then

Elg(x') - g(x" )] =E[ ) s-(xl-,s—x;,snsw > sixie @31

ieU,seS ieU,seS

By combining Equation (4-28) and (4-31), we have

E[f(C™) = f(C) | 2] 2

_— ry _ t+1
= fout 4 k[n E[g(x ) g(x ) | 7-;]

By Lemma 4.4, we have E[ f(C7)] > —=Ia__ This prove Theorem 4.6.

kout 4 fin

4.7 Summary

In this chapter, we propose an approximation algorithm for the general stochas-
tic probing problem. The main technical ingredient for obtaining the PTAS for the
ProbeMax problem is the framework of stochastic dynamic programs which is formulated
in Chapter 3. We believe the framework can be used in designing better approximation
algorithms for other stochastic optimization problems.

For the ProbeMax Problem with a general matroid outer constraint, the best known
approximation ratio is 1 — 1/e, based on submodular maximization!!”! (which is in fact a
non-adaptive policy). To design an adaptive policy and improve the approximation ratio
is still a open problem. We note that in the corresponding committed model, we have
obtained a PTAS (due to the special structure of the policy).
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8 5% Stochastic Knapsack and Variants

The knapsack problem is one of the most well-studied combinatorial optimization
problem. In this problem, we are given as input a set of n items. Each item i € [n] has a
size s; and a profit p;. The goal is to find a maximum-profit subset of these items whose
total size is at most a given capacity C. The knapsack problem is NP-hard and has a fully

polynomial time approximation scheme (FPTAS) 3!,

5.1 Model

In many applications, the size and/or the profit of an item many not be fixed values
and only their probability distributions are known to us in advance. The real size and profit
of an item are revealed to us so soon as it inserted into the knapsack. For the stochastic

variant of this problem, we have following definition.

Definition 5.1:  Stochastic Knapsack (SKP) An instance J of the stochastic knapsack
problem is defined with tuple J = (r,C), where © = {m,m,,...,m,}. m; is the joint
distribution of size and profit for item i. The distributions for different items are mutually
independent. In general, for each item i, its size s; is a random variable and its profit
p; is deterministic. C is the capacity of the knapsack. Once we decide to insert an item
i into the knapsack, we observe its real size s; which follows the distribution ;. We
can adaptively insert the items to the knapsack, as long as the capacity constraint is not
violated. The goal is to design a policy that maximizes the expected total profit of all

items that are successfully inserted into the knapsack.

Gupta et al.!?”! introduced a variant of stochastic knapsack which is referred as Stochastic
Knapsack with Correlated Rewards and Cancelations (SK-CC) where (1) each item can
have a random profit which can be correlated with its size and (2) we can cancel a job
during its execution in the policy. For the committed model, we refer as Stochastic
Knapsack with Commitment (SK-Commit ), where once we select an item and observe
its size realization, we can make an irrevocable decision whether to insert it or not,

i.e., we must either insert it into the knapsack or discard it forever. Next, Levin et al.!?!

@ Lietal. " called the Bayesian online selection problem subject to a knapsack constraint.
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introduced another variant of stochastic knapsack where all the profits are lost if we violate

the capacity constraint.

Definition 5.2:  Stochastic Blackjack Knapsack (SBK) ® In this problem, we are given
a instance J = (m,C). Our goal is to design an adaptive policy such that the expected
total profits of all items inserted is maximized. The different from SKP is that we gain

zero if the total size of all items inserted is larger than the capacity C.

For a particular stochastic knapsack instance ', we use OPTgkp(J) to denote the expected
profit of an optimal policy for stochastic knapsack. Similarly, we denote OPTgkc () for
stochastic knapsack with commitment and OPTggy (7)) for stochastic blackjack knapsack.
Since a policy for SBK is also a policy for SKP and a policy for SKP is also a policy for

SK-Commit, we have following proposition.

Proposition 5.1:  For any stochastic knapsack instance 7, we have

OPTskc(J) = OPTskp(J) = OPTgek(J). (-1

The stochastic knapsack problem with deterministic sizes and random profits has been
studied in!*!. In the model, a threshold profit is specified, and the goal is to design
an adaptive policy to insert a set of items with maximum probability of achieving that
threshold profit. We denote Stochastic Target Problem (STP) where all items are the same

size. @

Definition 5.3:  Stochastic Target (STP) We are given a predetermined target T and
a set of n items. Each item i € [n] has a profit X; which is an independent random
variable with a known (discrete) distribution ;. Once we decide to insert an item i into
a knapsack, we observe a profit realization X; which follows the distribution ;. We can
insert at most m items into the knapsack and our goal is to design an adaptive policy such

that Pr[}};cp X; > T] is maximized, where P C [n] is the set of the inserted items.

@  Chen et al.™ call it "zero return if broken".
@ ™l called the problem the adaptive stochastic knapsack instead. However, their problem is quite different from the
stochastic knapsack problem studied in the theoretical computer science literature. So we use a different name.
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Table 5.1 A summary of approximation ratios for the stochastic knapsack and variants

Problem single-criterion approx bi-criterion approx (C relaxed to
(1+&)CorTrelaxed to (1 — &)T)
_ ~l6.11]
SKP L_glsl 3 _glol L _ g2 I-¢
3 8 2 [Theorem 5.1]
SK-CC 12001 — gl20 1-gllll
SK-Commit % — gl??] 1 —gltll
SBK (V2 -1)%/2 ~ 1/11.66!% 1-¢
1/8 — & [Theorem 5.4] [Theorem 5.3]
STP OPT —¢
[Theorem 5.5]

5.2 OQOur Result

Stochastic Knapsack: For stochastic knapsack (SKP), Dean et al.'®! gave an algorithm

with an approximation ratio of % —&. Later, Bhalgat et al.!® improved that ratio to % —gand
gave an algorithm with ratio of (1 — &) by using ¢ extra budget for any given £ > 0. The
best known single-criterion approximation factor is 2['1-21-221 Tt s still an open problem
to design a PTAS for stochastic knapsack.

For the stochastic knapsack with correlated rewards and cancelations (SK-CC), Gupta
et al.*™ gave a randomized algorithm achieving a ratio of 1= and Ma'?!! improved that

ratio to (3 — ) for any given & > 0. Li ez al.!"!

gave an algorithm with ratio (1 — &) by
using & extra budget for any given £ > 0.

In this dissertation, we use the framework formulated in Chapter 3 to simplify the
proof for stochastic knapsack in!'!!.  For stochastic knapsack, let the value I, be the
total sizes of the items in the knapsack at time period #. Using our framework, we have

following system dynamics for the stochastic knapsack:

. . pi it +X; <C,
Ly =fU,D)=1L+X;, gU,i)= _ (5-2)
0 otherwise;

fort =1,2,---,T and h(I7,;) = 0. See Section 5.4 for more details.

Theorem 5.1: For any € > 0, there is a polynomial algorithm that finds a (1 — &)-
approximate adaptive policy for stochastic knapsack problem when the capacity is relaxed

to (1 +¢&)C.
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The above theorem is also holds for SK-CC and SK-Commit. If the sizes of items are

bounded, we have following theorem.

Theorem 5.2: For any € € (0, 1), there is a polynomial algorithm that finds a (1 — 4&)-
approximate adaptive policy for stochastic knapsack problem when the sizes are bounded

by g, i.e., forany i € [n], Pr[s; < €] = 1.

Stochastic Blackjack Knapsack: This extra restriction that all profits are lost if we violate

the capacity constraint might induce us to take more conservative policies. Levin et al.**!
presented a non-adaptive policy with expected value that is at least (V2 —1)2/2 ~ 1/11.66
times the expected value of the optimal adaptive policy. Chen et al.*¥ assumed each size
X; follows a known exponential distribution and gave an optimal policy for n = 2 based
on dynamic programming. In this dissertation, we consider the general case where the

distribution of each X; is allowed to follow an arbitrary discrete distribution.

Theorem 5.3: For any fixed constant £ > 0, there is a polynomial-time approximation
algorithm for the stochastic blackjack knapsack that finds a policy with the expected profit
at least (1 — O(g))OPT, when the capacity is relaxed to (1 + &)C, where OPT is the
expected profit of the optimal adaptive policy.

For the case without relaxing the capacity, we can improve the result of 11.66 in?*!

below.

Theorem 5.4: For any £ > 0, there is a polynomial time algorithm that finds a (% —-£)-

approximate adaptive policy for SBK.

Denote I, = (1,1, 1;,) and let I, 1, I, , be the total sizes and total profits of the items in the
knapsack at the time period ¢ respectively. When we insert an item i into the knapsack

and observe its size realization, say s;, we define the system dynamics function to be

. Ity ifIp <G
Lo = f(yi) = Uy + su Lo +p), b)) =1 : (5-3)
0 otherwise;

and g(I,,i) =0fort = 1,2,---,T. Then Assumption 1.1 (2,3) is immediately satisfied.
But Assumption 1.1 (1) is not satisfied for that the value space V is not of constant size.
Hence, we need discretization. Unlike the stochastic knapsack, we need to discretize the

sizes and profits at the same time. See Section 5.5 for more details.
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Stochastic Target Problem:

For the stochastic target problem, Ilhan ef al.™!

provided some heuristic based on
dynamic programming for the special case where the random profit of each item follows
a known normal distribution. Recall that the target is the goal to be achieved. If allowed

to relax the target to (1 — )T, we provide an additive PTAS for it.

Theorem 5.5: There exists an additive PTAS for stochastic target problem if we relax the
target to (1 —&)T. In other words, for any given constant £ > 0, there is a polynomial-time
approximation algorithm that finds a policy such that the probability of the total rewards
exceeding (1 —&)T is at least OPT —&, where OPT is the resulting probability of an optimal
adaptive policy.

Let the value /; be the total profits of the items in the knapsack at time period ¢. Using

our framework, we have following system dynamics for the stochastic target problem:

. . I iflry 2T,
It+1 = f(Ital) = It + Xia g(lt’l) = Oa and h(IT+l) = (5_4)
0 otherwise;

fort =1,2,---,T. Then Assumption 1.1 (2,3) is immediately satisfied. But Assumption
1.1 (1) is not satisfied for that the value space V is not of constant size. Hence, we need
discretize the value space and reduce its size to a constant. See Section 5.6 for more

details.

5.3 Policies and Decision Trees

The process of applying a policy o on an instance (mr, C) can be represented as a
decision tree 7 (o, m, C). Each node v in 7, is labeled by a unique item i(v) € U with
a size s, following a known (discrete) distribution m,,. It has several children, and let
e = (v,u) (u is the s-child) be the s-th edge emanating from s € S where S is the support
of the size distribution. Thus e has probability n, := Pr[s, = s] and weight w, := 5. The
edge e has profit p, := p, if the item is successfully inserted into the knapsack and p, := 0
otherwise. In order to clearly illustrate the tree structure, we add a dummy node at the
end of each root-to-leaf path.

For anode v, we say the path from the root to it in 7, as the realization path of v, and

denote it by R(v). We denote the total weight W (v) = W(R(v)) = X cr() We, total profit
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P(v) = P(R(V)) = Y.er) Pe» and the probability of reaching v as ®(v) = ®(R(v)) =
[lecriy) e

Let E be the set of all root-to-leaf paths in 7,,. We define E; = {r € E : W(r) < C}.
We use P(o, mr, C) to denote the expected profit that the policy o can obtain with the given

distribution 7r. For SKP, we have

P(o,m,C) = ) ®(r) - P(r). (5-5)
rekE
For SBK, we have
P(o,m,C) = > &(r)- P(r). (5-6)
rekE;

5.4 Stochastic Knapsack

In this section, we use the framework formulated in Chapter 3 to simplify the proof
for stochastic knapsack in!'!!. Also, we show the same result can be obtained for stochastic
knapsack with commitment.

For stochastic knapsack, define the item set A = {1,2,..., n}. Let the value I, be the
total sizes of the items in the knapsack at time period . Then we set T = n and I; = 0.
When we insert an item 7 into the knapsack and observe its size realization, say s;, we

define the system dynamic functions to be

. . pi ifl+s5; <C,
L = f(ltal) =1 +s;, gl,i)= (5-7)
0 otherwise;

fort =1,2,---,T and h(Ilr,;) = 0. Then Assumption 1.1 (2,3) is immediately satisfied.
But Assumption 1.1 (1) is not satisfied for that the value space V is not of constant size.

Hence, we need to discretize the value space and reduce its size to a constant.

5.41 Discretization

We use the same discretization technique as in!'!! for the Expected Utility Maxi-
mization. The main idea is as follows. Without loss of generality, we set C = 1. Now, we
discuss how to discretize the size distributions for items, using parameter . For an item

b, we say X, is a big realization if X;, > &* and small otherwise. For a big realization of
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X, we simple define the discretized version of fb as L%Jss. For a small realization of
X, we define X, = 0if X, < d and X, = &*if d < X,, < &*, where d is a threshold such
that Pr[X,, > d | X;, < &*]e* = E[X, | X}, < &*]. For more details, please refer to!!!l.
Consider a given adaptive policy o. For each node v € 7, let W(v) and W(v) be
the sum of sizes on the path R(v) before and after discretization respectively. Recall that
®(v) is the probability of reaching v. In the proof of Lemma 4.2 of!!!), it shows that for
any given set F' of nodes in 7, which contains at most one node from each root-leaf path,

our discretization has the below property:

Z D) = O(s). (5-8)

VEF:IWW)-W (v)|>2€

We use the notion of canonical policies introduced in!® (see Section 4.4.1).

Lemma 5.1 (Lemma 4.2 in!"!!):  Let 7 be the distribution of size for items and 7 be the
discretized version zr. Then, the following statement hold:

1. For any policy o, there exists a canonical policy ¢ such that
P(o, 7, (1 +4¢)C) = (1 - O(g))P(o, 7, C);
2. For any canonical policy o,
P(o, 7, (1 +4¢)C) = (1 - 0(e))P(o, 7w, C).
Proof. (The proof of Theorem 5.1) Suppose o* is the optimal policy with expected value
OPT = P(c* n, 1 + 5¢). Given an instance 7, we compute the discretized distribution 7.
By Lemma 5.1 (1), there exists a policy o* such that
P(o*, 7, (1 +4¢)) > (1 - 0(e))P(c",m,) = (1 — O(g))OPT.
Now, we present a stochastic dynamic program for the instance (7, (1 + 4¢)). Define the

value set V = {0,&°,2¢,...,1 + 5S¢}, the item set A = {1,2,...,n}, T =nand I, = 0.

When we insert an item i into the knapsack and observe its profit realization, say s;, we
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define the system dynamic functions to be

. . ) pi iflL+s; <1+4e,
It+l = f(1t9l) = mln{]t + 85 1+ 58}’ g(ll’l) = (5_9)
0 otherwise;

fort =1,2,---,T and h(Ir;;) = 0. Then Assumption 1.1 is immediately satisfied. By

Theorem 1.6, we can find a policy o with value P(o, 7, 1 + 4¢) at least
OPT,; - 0(e) -MAX > (1 = O(&))P(c*, 7, (1 +4¢)) > (1 — O(g))OPT,

where OPT, denotes the expected value of the optimal policy for instance (7, 1 + 4¢) and

MAX = max;cy DP; (I, A) = DP;(0, A) = OPT,. By Lemma 5.1 (2), we have
P(o,n, (1 +4e)(1 +4¢)) > P(o,m, (1 +4¢)) > (1 — O(g))OPT,

which completes the proof. O

Since Lemma 5.1 holds for correlated size and profit, Theorem 5.1 can be easily extended

to SK-CC (see!!!).

5.4.2 Stochastic Knapsack with Commitment

Li et al.'""! gave a reduction from SK-Commit to SKP. The main idea is following.
For the stochastic knapsack with commitment, we create a set of action B; = {big} for each
item, where b? represents the action that we choose the item i with threshold 6, i.e., we
insert the item into the knapsack is its size is less than or equal to 8. Then we set set
A = U Bi. Let the value I, be the total sizes of the items in the knapsack at time period
t. Then we set T = n and I; = 0. When we insert an item i into the knapsack and observe

its size realization, say X;, we define the system dynamic functions to be

I, + X; lez <6, Di lf(Xl SQ)/\([Z+X1' SC),

gL = ,
I, otherwise; 0 otherwise;

Ly = f(It’ b?) = {
(5-10)
fort=1,2,---,T and h(Iy,;) = 0.

Theorem 5.6: For any fixed constant & > 0, there is a polynomial-time approximation

algorithm for the stochastic knapsack with commitment that finds a policy with the
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expected profit at least (1 — O(g))OPT, when the capacity is relaxed to (1 + £)C, where
OPT is the expected profit of the optimal adaptive policy.

The action b? is equivalent to an item with the size s¢ and profit p?, jointly distributed

as follows:

(s, pi) ifs; <6,
(0,0) ifs; >0,

(s?,p!) =

[ AP 4]

This allows us to reduce SK-Commit to SKP. The only requirement is that at most one
item from B; can be packed in the knapsack. Since we assume discrete distributions, there
are at most a polynomial number threshold. Theorem 5.6 directly follows from Theorem
5.1.
The the algorithm developed in!?*! can be easily extended to SK-Commit and gives a
1

5 — &€)-approximation ratio for SK-Commit without relaxing the capacity.

5.4.3 Stochastic Knapsack with Bound Size

Theorem 5.7: For any € € (0, 1), there is a polynomial algorithm that finds a (1 — 4¢)-
approximate adaptive policy for stochastic knapsack problem when the sizes are bounded

by g, i.e., forany i € [n], Pr[s; < €] = 1.

Proof. We use OPT, to denote the expected profit of the optimal adaptive policy when
the capacity is 4. Let k = | 1].

We perform a simulation. There are k knapsacks. Each knapsack has a capacity 1 — %
We simulate realization of o* for a knapsack with capacity 1. We follow the decision tree
associated with o, dynamically assigning each item chosen by o* to the knapsacks. We
notice that decision is always before the item size is realized. The assignment strategy is
very simple: for each item chosen by o, we simultaneously assign it to k — 3 knapsack
with largest remaining capacity. We define a vector (Wi, W,, ..., W) where W; is total

weight of items inserted in knapsack i. Then at any time, we have

1
[W; = W;| < T Vi, j € [k] (5-11)
This is because that we always assign the item to the largest remaining capacity and the

size is bounded by % We claim that the k knapsack are never violated. Otherwise we
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assume knapsack 1 is violated. Then we have W, > 1 — % before insert the last item. We

have
k
2 3
E W,»>1——+(k—l)-(1——)>k—3,
i=1 k k

which is a contradiction. Thus the experiment creates k policies, one for each knapsack.

Then we have
3
OPT -1k > (1 - z) OPT. (5-12)

Then, we can use Theorem 5.1, to compute a policy with expected profit (1 — %)OPT - Ls

using total knapsack capacity of (1 — 1) + 1 = 1. m

5.5 Stochastic Blackjack Knapsack

In this section, we consider the stochastic blackjack knapsack and prove Theorem
5.3. Define the item set A = {1,2,...,n}. Denote I, = (I, 1,,) and let I, ;, I, , be the
total sizes and total profits of the items in the knapsack at the time period ¢ respectively.
Weset T = nand I; = (0,0). When we insert an item i into the knapsack and observe its

size realization, say s;, we define the system dynamics function to be

) : Ity ifIpi <G
Lt = fUni) = Ly + s Lo+ p). gL i) = 0, and h(Ipey) =4 i
0 otherwise;

(5-13)
fort =1,2,---,T. Then Assumption 1.1 (2,3) is immediately satisfied. But Assumption
1.1 (1) is not satisfied for that the value space V is not of constant size. Hence, we need
discretization. Unlike the stochastic knapsack, we need to discretize the sizes and profits
at the same time.

Consider a given adaptive policy o-. Foreachnode v € 7, wehave P(v) = } ;e Pi
where R(v) is the realization path from root to v. Define D = {v € LF : W(v) < C}

where LF is the set of leaves on 7. Then we have

P(o) = Z O - P(v). (5-14)

veD
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Without loss of generality, we assume C = 1 and X; € [0, 1] forany i € [n]. Let P(o, 7, 1)
be the expected profit of the policy o for the instance (rr, 1), where m = {x;} denotes the

set of size distributions and 1 denotes the capacity.

5.5.1 Discretization

Next, we show that item profits can be assumed to be bounded 6, = OPT/ £2. We set
0, = OPT/e and 6; = OPT/&?. Now, we define an item to be a huge profit item if it has
profit greater that or equal to #,. We use the same discretization technique as in!® for the
stochastic knapsack. For a huge item b; with size X; and profit p;, we define a new size
X, and profit p; as follows: for Vs < 1

Pr[X; = 5] = Pr[X; = s] - %, PriX, = 1+4e] =1- ) Pr[R; = 5] (5-15)

2 s<l1

and p; = 6,. In Lemma 5.3, we show that this transformation can be performed with only
an O(¢) loss in the optimal profit. Before to prove the lemma, we need following useful

lemma.

Lemma 5.2: For any policy o on instance (r, C), there exists a policy o’ such that
P(o’,n,C) = (1 — O(e))P(o, m,C) and in any realization path, the sum of profit of items

except the last item that o’ inserts is less than 6.

Proof. We interrupt the process of the policy o on a node v when the first time that
P(v) > 6, to get a new policy o, i.e., , we have a truncation on the node v and do not add
items (include v) any more in the new policy o’. Let F be the set of the nodes on which
we have truncation. Then we have },.r ®(v) < e. Thus, the total profit loss is equal to

S op ®(V)OPT < £OPT. O

W.l.o.g, we assume that all (optimal or near optimal) policies o considered in this section
satisfy the following property.
(P1) In any realization path, the sum of profit of items except the last item that o inserts

is less than 6,.

Lemma 5.3: Let  be the distribution of size and profit for items and 7 be the scaled

version of by Equation (5-15). Then, the following statement holds:
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1. For any policy o, there exists a policy ¢ such that
P(o,7,C) = (1 -0(e))P(o, n,C).
2. For any policy o,
P(o,m,C) = (1 -0(e))P(o, 7, C).

Proof. (Proof of Lemma 5.3) For the first result, by Lemma 5.2, there exists a policy &
such that P(6, 7, C) = (1 — O(¢))P(o, n, C) and in any realization path, there are at most
one huge profit item and always at the end of the policy. For huge profit item v, the

expected profit contributed by the realization path from root to v to P(&, &, C) is
OW)-Pr[X, <C-WW)]-(P(V)+p,).

InP(o, 7, C) with scaled distributions on huge profit items, the expected profit contributed

by the realization path from the root to v is

O(v) -Pr[X, <C=WOW)]- (POV) + 6,)

—O() - [Pr[X, <C-W®)]- % (PO + 6,).
2

Since v is a huge profit item, we have p, > 6,, which implies ’;—: (P(v)+60y) =2 P(v)+p,.
This completes the proof of the first part.

Now, we prove the second part. By Property (P1), for a huge item v, we have
P(v) < OPT/e. Then we have

% ~(P(v) +62) =py- (1 + PH(V)) <pv-(I+e) <(I+e)(py+PW)).
2 2

This completes the proof of the second part. O

In order to discretize the profit, we define the approximate profit P(o, %) =

2ven POV) - ﬁ(V) where

P(v) = 65 [1 - 11 (1 - ;ﬁ) (5-16)

ieRWv)
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Lemma 5.4 below can be used to bound the gap between the approximate profit and the

original profit.

Lemma 5.4: For any adaptive policy o for the scaled distribution 7, we have

P(o, #,C) > P(o, #,C) > (1 — O(&))P(c, #,C).

Proof. Fix anode v on the tree 7. For the left side, we have

P(v)=05-|1- _bi J1-f1= Pill _ o
P(v) = 65 [1 ];1 (1 93) <6;- |1 (1 Z 93) = Z pi=PO).
ieER(WV) iER(V) iER(V)
For the right size, we have
P(v) = 05 — 05 - _ b
P(v) = 6; - 6 n (1 93)
licR(v) i
- 2
Pi Pi
>0;—05-(1- — + —
i ie;(v) 0 ie?%z(:v) 93)
:( Z il [1 _ ZieR(v)pi]
. l 63
ieR(v)
> (1-0(e)P(v),
where the last inequality holds by Property (P1) that P(v) < 6, + 6,. O

Now, we choose the same discretization technique which is used in Section 5.4.1.

Lemma5.5: Let # be the distribution of size and profit for items and be 7 be the
discretized version of 7. Then, the following statements hold:

1. For any policy o, there exists a canonical policy o such that

P(o, 7, (1 +2¢)) > (1 -0(e))P(0, 7, 1).

2. For any canonical policy o,

P(o,#, (1 +2¢)) > (1 -0(e))P(o, 7, 1).
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Proof. (The proof of Lemma 5.5) For the first result, consider a randomized canonical
policy o which has the same structure as o. If o, inserts an item X and observes a
discretized size d € V, it chooses a random branch in 7 (o, 1) among those sizes that

are mapped to d, i.e., {w, | Dx(w,.) = d} according to the probability distribution

Pr[X = w,]
s 1 Dx(s)=a PIIX =51’

Pr[branch e is chosen] =

Then, the probability of an edge on 7, is the same as that of the corresponding edge on
7. The only difference is two edges are labeled with different weight w, on 7, and w,
on7,,.

We have P(v) = };cr() pi Which is less than O(OPT/g) by Lemma 5.3. Define
D={veLF: W) < 1}and D = {v € LF: W(v) < | + 2}, where LF is the set of

leaves on 7 (o, m). Then we have

P(o, 7, 1) = Z O() - P(v), PG 7, 1+28)= Z dW) - P(v).

veD veD

Define A={veLF:|W() - W(V)| > 2¢}. Then we have D \ D C A. By the result of
Equation (5-8), we have

Z D(v) < Z D(v) = O(&).

veD\D veA

By Property (P1), for any node v, we have P(v) < 6; + 6,.Then the gap P(o, 7w, 1) —

P(o, 7, (1 + 2¢) is less than

Z d() - P(v) < Z @(v)-zOPT = O(¢)OPT.

82
veD\D veD\D

This completes the proof of the first part.

Now, we prove the second part. Since a canonical policy makes decisions based
on the discretized, 7 (o, 7, 1) has the same tree structure as 7 (o, #, 1 + 2¢). Define
D={velF: W) < 1+2s}and D = {v € LF : W(v) < 1}, where LF is the set of

leaves on 7 (o, m, 1). Then we have

P(T, %, 1 + 2¢) = Z dv)-P(v), PG 7 1)= Z D) - P(v).

veD veD
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Then the gap P(o, 7, 1) — P(0, 7, (1 + 2¢) is equal to

Z d) - P(v) < Z q)(v)-ZOPT — O(¢)OPT.

82
veD\D veD\D

5.5.2 Proof

Now, we ready to prove Theorem 5.3.

Proof. (The proof of Theorem 5.3) Suppose o is the optimal policy with expected profit
OPT = P(o*, m,1). Given an instance m, we compute the scaled distribution ﬁi and
discretized distribution 7. By Lemma 5.4, Lemma 5.5 (1) and Lemma 5.3 (1), there exist

a policy o* such that

P&, 7, (1 +2¢))
> (1 -0(e))P(F", 7,1 +2¢)) [Lemma 5.4]
> (1 -0(e))P(c*, #,1) [Lemma 5.5 (1)]
> (1 -0(e))P(c*, 7, 1) [Lemma 5.3 (1)]
= (1 - 0(g))OPT.

Now, we present a stochastic dynamic program for the instance (7, 1 + 2¢). Define the
value set V = {0,&73,2¢”3, ..., 1 + 3¢} x {0, 1} and the item set A = {1,2,...,n}. We
set T = nand I, = 0. When we insert an item i into the knapsack, we observe its size

realization s; and toss a coin to get a value p; with Pr[p; = 1] = %3 and Pr[p; =0] = 1- %

. Then we define the system dynamics function to be
L1 = fUy,0) = (L1, L 2) = (min{l + 3, I, + s;}, max{/,», p;}) (5-17)
and g(/,,i) =0for I, € Vandt =1,2,---,T. The terminal function is

0s-1 if It <1+ 2¢,
h(IT+1) _ { 3 1T+1,2 T+1 (5—18)

0 otherwise;

Then Assumption 1.1 is immediately satisfied. By Theorem 1.6, we can find a policy o
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with profit P(o, 7, 1 + 2¢) at least
OPT, — O(g*) - MAX > P(c%, 7, (1 + 2¢)) — O(£)OPT = (1 — O(¢))OPT,

where OPT, denotes the expected approximate profit of the optimal policy for instance
(m, 1+ 2¢&) and MAX = max;cqy DP{ (I, A) = DP((0,1), A) = 05 = %. By Lemma 5.4,
Lemma 5.5 (2) and Lemma 5.3 (2), we have

P(o, 7, (1 + 4€))
> (1-0(e)P(o, #,(1 +4¢)) [Lemma 5.3 (2)]
> (1-0(e)P(o, 7, (1 +2¢)) [Lemma 5.5 (2)]
> (1 -0(e))P(o, 7, (1 +2¢)) [Lemma 5.4]

> (1 - 0(&))OPT,

which completes the proof. O

5.5.3 Without Relaxing the Capacity

Before design a policy for SBK without relaxing the capacity C, we establish a

connection between adaptive policies for SKP and SBK.

Lemma 5.6: For any policy o for SKP on instance J = (7, C), there exists a policy o’

for sbk such that
, 1
Pggk (o, m,C) > 1 - Pskp (o, m, C). (5-19)

Proof. W.l.o.g, we assume that for any node v € 7,, we have P(v) < Pgkp(o, 7, C).
Otherwise, we use the subtree 7, to instead 7, for SKP. Set § = Pgkp (o, 1, C)/2. We
interrupt the process of the policy o on a node v when the first time that the summation
of is larger than or equal to 6 to get a new policy o, i.e., we have a truncation on the node
v and do not insert the item (include v) any more in the new policy o’. Let F be the set of
the nodes on which we have a truncation. Let F = LF \ F be the set of rest leaves, where

LF is the set of leaves of the tree 7,.. Then we have

20= ) O) - P)+ ) d) - [P(v) + P(v)]

veF veF
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<0- Z D) + Z OW)[P(V) + 20]

veF veF

-0+ Z D(V)[P(v) + 6]

veF

< 9+ZZCD(V)P(V). O

veF

Thus the expect profit of the policy o’ for SBK is equal to

1 1
Z(I)(V)P(v) > 5 0= 1 - Pskp (0, 71, C).

veF

Lemma 5.7: For any stochastic knapsack instance ./, we have

1
OPTskp(J) = OPTgpk(J) > ZOPTSKP(j)- (5-20)

For any fixed & > 0 and instance J, by the result of!??!, there is a polynomial time
algorithm to compute a policy o for SKP with expected profit (% — &)OPTskp(J). By

Lemma 5.6, we can find a policy o’ for SBK expected profit at least

1 1 1
7% (5 — &)OPTskp(J) > (g — &)OPTgek (J).

This completes the proof os Theorem 5.4.

5.6 Stochastic Target Problem

In this section, we consider the stochastic target problem and prove Theorem 5.5.
Define the item set A = {1,2,...,n}. Let the value I, be the total profits of the items in
the knapsack at time period . Then we set T = m and I; = 0. When we insert an item i
into the knapsack and observe its profit realization, say X;, we define the system dynamic

functions to be

1 iflr =T,

It+l = f(lt’ l) = It + Xi’ g(lta l) = O’ and h(IT+1) = (5-21)
0 otherwise;

fort =1,2,---,T. Then Assumption 1.1 (2,3) is immediately satisfied. But Assumption

1.1 (1) is not satisfied for that the value space V is not of constant size. Hence, we need
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discretization.

We use the same discretization technique as in Section 5.4.1. Let P(o, m, 1) be the
expected objective value of the policy o for the instance (r, 1), where 7 = {x;} denotes
the set of reward distributions and 1 denotes the target. Let 7 be the discretized version

of 7. Then, we have following lemmas.

Lemma 5.8: For any policy o, there exists a canonical policy o such that

P(o,m, (1 -2¢)) > P(o, 7, 1) — O(e).

Lemma 5.9: For any canonical policy o,

P(o,n, (1 -2¢)) 2 P(o,7, 1) — O(e).

Proof. (The Proof of Theorem 5.5) Suppose o * is the optimal policy with expected value
OPT = P(c* x, 1). Given an instance 7, we compute the discretized distribution 7. By

Lemma 5.8, there exists a policy * such that

P(oc*,m (1 -2¢)) 2 P(c",m,1) — O(g) = OPT - O(¢).

Now, we present a stochastic dynamic program for the instance (7, 1 — 2¢). Define the
value set V = {0, &,2¢5, ..., 1}, the item set A = {1,2,...,n}, T = mand I, = 0. When
we insert an item i into the knapsack and observe its profit realization, say X;, we define

the system dynamic functions to be

0 otherwise;
(5-22)

for [, € Vandt = 1,2,...,T. Then Assumption 1.1 is immediately satisfied. By

I = f(, 1) =min{l, I, + X3}, g(I;,i) =0, and h(l7,) = {

Theorem 1.6, we can find a policy o with value P(o-, w, 1 — 2¢) at least
OPT,; — O(¢) - MAX > P(c", 7, (1 — 2g)) — O(g) = OPT — O(&),

where OPT, denotes the expected value of the optimal policy for instance (7, 1 — 2¢) and
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MAX = max;cq DP; (I, A) = DP;(1, A) = 1. By Lemma 5.9, we have

P(o,m, (1 —4¢g)) > P(o, 7, (1 —2¢)) — O(¢) > OPT — O(e),

which completes the proof. O

Proof. (The Proof of Lemma 5.8) Consider a randomized canonical policy o which has
the same structure as o-. If o, inserts an item X and observes a discretized size d € V ,
it chooses a random branch in 7 (o, 7) among those sizes that are mapped to d, i.e.,

{w. | Dx(w,.) = d} according to the probability distribution

Pr[X = w,]
s | Dx(s)=d PIIX = 51

Pr[branch e is chosen] =

Then, the probability of an edge on 7, is the same as that of the corresponding edge on
7. The only difference is two edges are labeled with different weight w, on 7, and w,
on7,,.

Notice that P(o, 7, (1 —2¢)) is the sum of all paths R (v) with W() > 1-2¢. Define
D={veLF: W) > 1}and D = {v € LF: W(v) > | — 2}, where LF is the set of

leaves on 7 (o, ). Therefore we have

P(o,m, 1) = > ®(1), B (1-28) = Y ®®).

veD veD

Consider the set A; = Z)\ﬁ. Foreachv € A;, wehave W(v) > 1 and W(V) < 1-2e.
Thus we claim that |[W(v) — W(V)l > 2¢g, implying that Ay € A = {v € LF : |[W(v) —
VT/(v)I > 2¢}. Thus we have

PG, 7, (1-28) 2 P(o,m 1) = > @) 2 B(o,m, 1) = )" (1) = P(o, 7, 1) - O(e).

VEA| veA

Proof. (The Proof of Lemma 5.9) In our case, we focus on the decision tree 7 (o, 7, 1)
and assume all w, take discretized value. 7 (o, m, 1) has the same tree structure as
T (o, 1-2¢).
Define A, = {v e LE W(v) < 1-2g, VT/(v) > 1}, where LF is the set of leaves in 7.
Then we see W(v) — W(v) > 2, implying Ay C A ={v eLF: |W({)- W) > 2&).
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By the result of Equation (5-8), we see

Z d(v) < Z d(v) = O(e).

vEA, veEA

Therefore we claim that

P(o,m, (1 -2¢)) 2 P(o, 7w, 1) - Z d(v) > P(o,m, 1) - O(e).

vEA,
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% 6= Conclusion

We conclude this thesis with a summary of our results as well as the techniques, and
raise some open problems suggested by our studies.

In the first part of the dissertation, we formally define a model based on stochastic
dynamic programs. This is a generic model. There are a number of stochastic optimization
problems which fit in this model. We design a polynomial time approximation scheme
for this model.

We also study two important stochastic optimization problems, stochastic probing
problem and stochastic knapsack problem. We propose an approximation algorithm for
stochastic probing problem. Using the stochastic dynamic programs, we design a PTAS
for ProbeMax, which improves the best known approximation ratio 1—-1/e. We also design
a PTAS for committed ProbeMax with a general matroid outer constraint. To improve the
approximation ratio for ProbeMax with a matroid outer constraint is still a open problem.
We also study the commitment gap and adaptivity gap for stochastic probing, and give a
bound about them.

Next, we focus on the variants of stochastic knapsack problem: stochastic blackjack
knapsack and stochastic target problem. Using the stochastic dynamic programs and
discretization technique, we design a PTAS for them if allowed to relax the capacity or
target. To improve the ratio for stochastic knapsack problem and variants without relaxing

the capacity is still a open problem.
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MR A BXIEX

Al TR

AR, ERZ NN stP A TAE SR, XILTERE T ARG,
P25 B il TARM Pr A Rles il . FEXSyserh, A e MR A v ey . e
PAJEEIY) 2, 0 B R e X 8 [ i A A R — AT PR . i U 5 T
Dantzig"! /) TAE, FFEMH T Z 050, HOF5E SR AR 2 SRR 2] T
M. 1957 4E, Richard Bellman™! $2 1! T FEHL3 S H R EL (stochastic dynamic
programming ) . X2 I R BRIRI AR IO S5 TSR AR ROR . R IX
e MRE AL, AR, EAEREHLOCA B rh 4 i R E %
PR . X T —S8reE 8, AT DA i B2 K f# Bellman 5 A2 5545 22 0 X B[R] 1)
PSS, 55—, BT “4EEERYEIT” AU RIS S, XM R
WZM R, HEES S FEPA,

HHEl, BEVLOLIG T 250 A A A O Ak 0] R OB e PR B . W T —
SRR R, MR S T — A28 TR S Y 22 3 s TR 3 (R
TFENLEY A5 (stochastic knapsack), FEHLPCHEL® (stochastic matching), BFftLEE
78 15101 (stochastic set cover) , [EMLZA#EEI (stochastic bin packing) 545, Ja%
QLB T AS 1P

AR, FATRE—SEFHALBN SR F)d . BExhxX L), AT 7 —
ANET VLSS BAL, FH T — A 0N 2T [ R . it
FTATBAL, AT DU —HEE A X BB I BEALAH & 0k B T 2 IG5k . B2
TORFATFIA PR FEHLERI A (stochastic probing problem ) FIFEHL T £ ]
i (stochastic knapsack), Fffaj ZEREIATRATHISEH .

A1 BEHLER E] &

B —H N EME TR — (LR MBS RGh £ 2 s, —Hlk® 7
n yfailly, kR by, 2wl AR SO 25 2w RO ZOR A LR,
H— 0%, W RICEERE . AT TR @A E , hE— B MRkl
PIAS & (BN S0% AR 70, 50% HAEAY 80) . AHZL [ A 85 HSLHY VLT
B, nrlFE s b T ER AR, AR P PkIE m(< n) I
RHEATHNR . BRI BET— AN ERER S, BELE 2wl DARER]— S PERCEER T i
AR ? XA BT AR B X MR TR
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B R A.1 (BN AEE IR ProbeMax): 45 € —HAEMSZ I BEHLAS & (X, IF
CAEA BN B (BRL) 200 o FRATAT AR —E TR — 54 P C [nl,
BERFMAER 15, FATRAT AR B0y i9— DN SZAEAE X o FRATTATLA
Fg A (adaptively) HEMEZ m A8, I HAFAR & i 2 Al AR —IR. 5%
JER R X m DR PR RO . FRATHY H g Bt —A B & BRI SR,
(EUVE TR SR> PN

X
Item | Value Distribution (m = 2) 0 w‘
1 0 (prob 1/2) 80 (prob 1/2) /
2 0 (prob 2/3) 90 (prob 1/3) Xs X,
3 60 (prob 1)
60 } 0 90
Reward = 60 Reward = 80 Reward = 90
Prob=1/2 Prob=1/3 Prob=1/6

BAL BRI AR A — Bl 1
#ks BT BT 92— AR R KA P — /s Bl SRR 1 38 1 SR ] RAZR 7S i P v
R — R SRR o X SR B SRR G T1.67 . JSE S PR EOE RO, AR SR
AR 1 MIAR R 3. XA AYI B E max{ X, X3} = 70,

PRI e AR 17 RN HAR (R BAEF 28 SO PR RS (%) RER—4
AR EARREALUCAL AT, FAMIIRBEA 8 4 BRI S R AR R A A, B
EATITE AT AR ZAZ AT HERY o

— M EEHEN KR A E R B EN A RES P C [n]. EEE f(P) =
Elmax;ep x;] 22— PUBRE, NIARSGEVSHER L, RESHFE 1 1-1/e /1y
UCRME . JERBRAE T KB TR RIE A SRS Y 5 — > PTAS. 2L AL
ARG, AHECAR B R SRN, FRATTAT AR IS R X6 B b o B 1 SRS F (I 75
TR B BV, A I B PR SR 1 = L el S mr P 1
i J1} Asadpour % AU BREHLER AL IR URRA 2], AR — P AREy
PESS , RE RE BR LAY 18 B SRR e DL Al & BLSRIS  HUE iR 2l 5
J5i o Golovin &5 A9 7p28—A~ FE Y B PR VB, [T AR 1 - ¢ 20U
TEARTCH, FRATFALEE — N TEFTA G MWL SRS T PTAS, 55 SE5mIREFRATHY SR
B S A HE R
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IR AL RTErA B &N RIS AR S E A, #RAFAE—> PTAS. tBale
Ui, MTALMEER L e > 0, Al DU TR0 S R AE M 2 T [l i
R, el AR — MR EHE /DN (1 - )OPT H5ENE, X B OPT 2%
(UNEBEIVA SR ST Ena

Gupta ZEUSFR 7 —NBELIZM )3 (stochastic probing problem) FRHEZE, H
R e KA IR R e A2 X A 38 FH REZR B — 1

(B8 A.2 (BE4LER i) stochastic probing problem):  FEHLIRM IE Y LB T H
=JEH I = U, n 1) 4D, K U Z2—AHA AR (X)L, e REl
AR (BSHL) 730 1 DA o= (midiewy, PIRSAE T BPIDISLIEE G RS Low
I Loy AU, 20 ZRANES (3T6) LURANNTR (FT0L) Z03Re FATTT AT — 7 i
P HIE AR — T8 P C U, Hik#En 714 C C PEARKEITES.
BN R 5, FATHRT AR B0 A1 7 09— N SIREAE X o YRR
BRI AL RPIV RS P ASIIE L ', Bl i A LS C WIHE Ly
Fro FATH AR BTN, (EHUUIE E[X ec Xi] SR

X A PR A R A

© INRAR L0 : X2 FRATAT ARIAS BP9 B o X ZORBATHRI A2
BB PUNET L, HENZERZHEIRN—IK.

o NEBAIR Ly 3K FA TR AW DA R S R G C MR AT . BERER
C WAET Lino

FRARFRAT UM B A S C, W DAE R4 BT IMRAL : ZRIERAY (committed )
FHER AR (non-committed) @,

o IR (committed) : ARG FRATIRM — A&, HARRERAEAME, A
AT B — S R B geE , AT . a2, AT
SERPRFE RSN B R AR RS C BCE K FE .

o RAEHERIA (non-committed ) : FRATTFT ATEAS ] P e 600 A% R AL AR(E
JE RS Co W2, C RYIEEEn] DATE P rh 22 BRI 2 5 24T

Sbr b, BRI ER R — A AR AT RIS B R . BEMLARI A 8] AR H 24
HuHET B AR AR A AL RN S (B IR (ProbeMax ), X HL, AMFAW L., 218
H) m-3 2401 (m- uniform matroid) , WEERUL Zow = (P | [P] < m}. PEBAH
L 52 13921000, Wl @ i — A K fE . AT DA — 28—l i) 2

@ Loy ATLAFRARA—LEP A . TR Toue MR AL, A 25 A DUEAT I ZELISC Y 13 1 # AT DARAR
.
@  Gupta %S B IR FEL AN B LR PSR AR AL
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Adaptivity gap
[ AN: Adaptive Non-committed J [ NN: Non-adaptive Non-committedJ
Commitment gap Prophet Inequality
| AC: Adaptive Committed J | NC: Non-adaptive Committed J

A2 KRR Y 22

HORBRANERAH, BIAN— DU . 2R AT k-3 27 DL AR R e AL TF) A 1)
NTRLIR (ie., Ly = {C | |C| < k}), XHL2IRNET k KA (ProbeTop-k). 7k
A, FAMRE k2 — A

INEA 207, A PYRAFZEZLR) (AN, NN, AC, NC) g F T FEALEAN s,
FEE— PSR RIS R R BN, A B, NFERAR, B MR
SEERIE RIS, CRINE, NFRAE . WTHREE MR SEG T, A1 H
OPTan(J) KRR HIEAL AN ISR B, PR B R SOE R, FfTie i A
H G475 OPTan i, FIKRATH OPTac(J), OPT\(T ) Fl OPTne(T) -

R T4 E I BEN LIRS B T, OPTan fEHA/INT OPTyw Al OPTac. FiAI
I IEZEE (commitment gap) 1 H & N 225H (adaptivity gap) S &2 [ 220,
S SCANR -
B AL (FENIEIE) XETARRMBHNSE T A R
) B Y. 22

OPTan(J)

AdaptiveGap(J) = OPTw T (A-1)

EX A2 UREZER) MTRERBEPLERI O] T, FAN1E OKE RN

CommitGap(J) = m (A-2)

OPTac(J)

BAE, BATEFARA RSN AT ERER . XAREA TR T ME
#hae SR A G PRSI T R
EIE A2 YNARARE L S, SRR R AT 2R, AR REL
P A AR ZE R R N 2.
FATHIFEARTT A GE BLA 2B IE B et DA A Y E2R, ig il et 71
3,51 gk
HIE AL USRI SR, SMERAACR AL BRI A AL AN, AR AT ERL

PRI R ) s I 22 R 2 N 2.
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BSk A HSCit s
ZF A1 BEWLEM )T (stochastic probing problem) #/T (P45 5 i 45

NEBZI R ANERZ R HRIE LAY ARARERRAY
X PTAS 1—1/e171, 1/81141 PTAS
[Thm 1.5 int'*] [‘F# A.1in SA.3]
PTAS
1-593 D 1—1/e!7]
KPR | [Thm 4.2 in §4.5.2] /e
X PTAS 1/3 [Thm 4.6], 1/2 + ¢
2 UL . .
[Thm 4.2 in $4.5.2] [Thm 1.2 in $4.5.3 ]
PTAS 1 -1/ PTAS
k-394, Sk
HEIIE | SR [Thm 4.3 in S4.5.1] | [Corollary 4.1 in S4.4.2]
1/2
b b 1—1/el7
W W [Thm 4.6 in S4.6] /e
K AR | koM AR Zrozear [Thm 4.6 in $4.6]

Al2 BENEEREREEM

B A3 (FEHE ELEIE (SKP)): 4N AAE N C sl n M, B4
Pift i € [n] R/ X 2 REOLEY, E R m g, A 1 BIBHEA pie 24
FNTRERF— D AT B, BATREH LR RN 5o B5 21 i F
Ko REORNBL ARG, FATAE YY) A S . — BB s, &
IS LA o FRATHY H AR Bt — 3, fss e b i S E R K

Item | Size Distribution (C= 1) Profit X1

1 0.2 (prob 0.5) 0.6 (prob 0.5) | 1 0.2 0.6

2 0.8 (prob 1) 1

3 0.4 (prob 0.5) 0.9 (prob 0.5) | 1 X, X;
as\ %//N\Qf
Profit=2 Profit =2 Profit=1
Prob=0.5 Prob =0.25 Prob =0.25

K A3 LSRR — T
wik: B IR — A RELT R — AR . ERYE LR & Y S T DA A
) — AR . SOBPSR HIENE 175, AR5 Ak HE SRS, AR Ik
7 PESR IS AR YA A 1,2,3, AT DASE SRS SR B 1.5.

XA AU FEALA A A B — A G ). —~ B AR sl ok H AR iy
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BEALIERE e RS A AR A B S LS B2 n (ool BIUELAA — B8
HUAY AL BRI (] (C R ) IR LS8 BT SRS 1 [ R o 45 0 — 1 I8 5 FO 40
1L H, Bl el H AR n] fE 2 1A o

HATH R HER RN (S ILEA3), XATEE PSPACE MERT (X))
— AR C B E PASACE-HER!) o XA AR A U BRI AR R 2 5 T
R Z B RED 2022 ROk, Levin S8 NP 51T BEHLE A [ ) —Fh AL -
—HEdTUER, IrArYnmEs kLR, SETERMAORIHL A+ —
GRS

B A4 BEL = +—AEREE (SBK): XM, HAIGH T 45561
J = (m,C)o FATHY HARZ BT — @ BRSNS, ST i BUN Y i S
K. SRHLE R XA, MR RSP K/ NV AR C, AT
Hr{EA 0.

B A3 RN UAERER (1 +oC, WafffE— TR+ — KK
W) PTAS, )i, X ARG EN TR e > 0, A 2 WU R
URRE, EkE—MIEMEZ A8 (1 - e)OPT Hysfng, Hr OPT & A iy
PR R

ORI MRS ALK A s , X 2RI R — AR . (]
WO A — A g LAl AR LN T bR @ T SE Y
A AT AN T S, R AR A Y . (B, B R AUGE A
PR, EIR R A B RETR I A BEANE . S —MlE E AR, A
VPR IERARY A3 AT DALASR R BOME SRR 2 H s o 34 0 AT R] DA T T B 2

B A.5 (FEHLEREIE (STP) ):  FRATAENE Hbr T Fl—A A Bt LA &
(Xiliep, OBV ER (BHD 20 o SRR R (I, FATl
ATLAREIR B 04 m 09— N SLREAE X0 ATDAH GG e m 225, AT H
PR BT ANE LR, (A5 Pl cp xi > T128K, Ho P C [n] AL

RBEA.

I A4 WERIFARF HAREANE] (1-8)T, IBAAAE—HEHLH AR ) PTAS.
Baiid, (ERAERNTR e > 0, A A2 U ERTRE R, REART A
Bl—~sems, fRAR R A (1 - oT MR 2400 OPT — e, Hirf OPT 2t
DL B T A EA 2 H AR
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X3
Item Value Distribution (target = 30) 20 10
1 10 (prob 1)
2 10 (prob 1/2) 20 (prob 1/2)
X1 X3
3 0 (prob 1/2) 20 (prob 1/2)

10 l ZW
Succeed (0.5)  Succeed (0.25) Fail (0.25)

B A4 BENLHE AR AR 55
Ak B R iR — A RELE PR — AR, X HUR R 2 AR, BRI ILN H i
7 SRS T DA 7S B P P ) — BR PRSI . IR SR REIR B H AR R 0.75. WRF A
B A E RS, IR LA ARG PR 2 1,3, RERE] A AR 0.5,

WS A A ARG, AT VAE 2 f B RIS A LSS . A Bl
URGEH] F S RIS, B RERIR SR U D, RAOTERA2HI AW
FEGL,

F A2 FEVL LS (stochastic knapsack) Az HAR fb ) 3 {DLgh SR w4k

\ SHGRA, (C e &
] 55 SR . -
8 HBHOEM (1+£)CHH T HIE (1-&)T)
26 £ ] B L I5103 _ 161 1 _ .[22] Lo el
BEBLE (1)t 378,576 ,37¢ [5EFE 5.1 7% S5.4]
V2 -1)2/2 ~ 1/11.6623 -
gL g | VTR A 1
1/8 — & [EH 5.4 4 §5.5.3] [EFEA.3 7E SA.S)
OPT —¢
; 7 i 51
BEAIL H A [0 EFE A4 7F SA4]

WERFEALE I P NS, AT AR E

A5 XTLAT e e (0,1), H|LE i €[nl], Prls; <&l =1, fFAEH P2
XEIR, ATPUNEENLF AR 2] 4> (1 - 4e) B2 TITURIE

A1.3 BEYLEIZEHKI

T R T T BALAG AL A, M = ARG (BIALL, A3,

A4), TeATT DA S R MR TR, (ELRUE T 8 A 24 TR

53 DR A % I B 00 SR B T R RSOk, I LARRESE 0, I, FEZ

2% 75 ] R LT R AR T ARG, ORI A R T v RE B
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PRSI IR FEASCH, FRAHRBE T — AR5, 8 T AR S, AT
KT —AEET FENLSh SR p AR, FATE B 1 — A R 2 s A] ik
AR T4 Al B SR, X M R DA AR 2 A0 w42 21 i BED LU AL e AL

R AR REIELEIIL L, fE—8Es (WA, Y, T
18, BIARSATE)), R, ROMATARE—TES, B MEFHRZ AL
B TATHE MRS SRS (FRNRERINE) - E5—5, AT
PepE—MMESS, seE S 2 A —28 (TRERFENLEY) [, SFdvE RGN (E
AR — et . M09 B AR Bt — g, BASRRATRE (FU0) Yt
Ko XA A AR AR 4T

B8 A.6 (FEHLBhZSMKI (Stochastic Dynamic Programs) ): Z5%E — 6 G4
(VA f.g:hT). EH, V ZREGIHAWREMENES, A 2T HBEEFE
A, BAIE RS AR K. EMERRZ AT T 5, fElg—% 1 € [T,
BATH L € V FRAZWLHINE, A € A FRBIRHTHES. WEEK
IEHE—ADIHE a € A, REWIWETEYUCH f(La), X8 fATREERELE, I
XTEATE a, € A RMLI . RGERIN A — D FEVLI R g(Lay) o PREL h(I741)
e AW I I AR R A 45 RGEWIIR I E L €V, FATH H 2T —
ANTE NSRS, AR ST I A B g (1, a,) + h(Ire)] Fe K.

XITREALSI SRR, b T RS20 RIS (PTAS), JATFELA TR
W
Big A1 FATTAE I Mk :
L YMEZSE Vo2 BRI MA PR, HHESRTUN V] BER. ARk,
vV =1{0,1,..., V] -1},
2. R W fUa) > 1, WELRLRGEMNEZ IR .
3. RV - R 2N ERRE. WIRILEE Ele(, a)] H2IEE (Bl
g, ar) ﬂﬁgﬂ‘jﬁ)

i (1) BERAAFRAY . 2, MNTIUNREAE, SerTmn
EZS AR/ E R (BRI R AE I, 20058 A3Y), W RARIH R Rl
A, APARIEZS R A, FHAEG DR — N EAL IR SR IR Z
fite B (2) F1 (3) XTFHZ EHERAR B ARRY . BUAE, FATELATANTM 32245
R

EIE A6 XTAEMEIZER e > 0, WERMER A USGE, AT ATEZ Wi H)

27 B A R, MR % 0 OPT - O(e) - MAX, X AL
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MAX = max;eq DP(, A) ZFFAHIGAE [ € V hiy LS, Hrd DPU, A) X4
TR1E T B9 B 38 N SR A 2RI & A OPT = DP(I,, A) ML BRI I YAl
I 22 1 A P P S

i ok o PRAOFIA [A] I B RO BEAR, FRAT45 3 28 — A H T I S5 R | )
(EHAL), FEHL =+ — S ams CEPA3) MEEPLE R 8 (Z8 Ad4) 1
PTAS. EFEA.6ULR] DA T A&, BFansRmwl k a8 (12 W554.5.177),
Pandora’s Box [H]/l (152 WL554.5.4757) 1 SKP (ZWEE5.477) . X LAE R FAEH
45 JmE PR B3, B EAgmREE AR RS L (ICALP2018)RY,

A2 EFEHEAK

XTFREVLE SR, B RZFEWIEIRER 51 = (L, A), BFRATEFE 1T H
ar € A, RGN g(Iy ar), HEERREIT—IRE 52 = (L, Ay, H L B
A f(h,a), A=A\ ar, XN RER A —DHEVLF

S1, A1, 82, A2, 83, .« ar, St+1

BIHGEITDARIE T 59, ULAG F R — MO AR AH Fas . 7Tt
ek, BRI R

T
DP’(s)) = r_ggg}mE[;gw,a»+h<1m)] (DP)

{ai,-

ﬁﬁ%: I[+1 = f(It7 al‘)a r = 1 7777 T'

4l Bellman KA XTFEAMIRIRES s1 = (I, A), HME DP*(s) HEEL
DP, (I}, A) 115, iXH DP; 2 DPr.yi(Ir+1) = h(Iry) FIEBHEELC:

DP;(1,, A,) = max B[P (f (I a). A\ a) +g(na)]. t=1....T. (A3)

MU RN 25 A2 A BRI, 5 Hoax B B2 nl DAV, X~
PRE™ A SRR AT A RAT SRR A . 28107, TR S = V x 27 24544k
K, B PAXAN R ZAE R0 ]l X A a] ARG LA BEDLL AL )

O  WAPBNT T, FATAT AT — L0k H RIS X ANTEXS TARE 1 €V, WE f(La) =1F
g(l,a) =0,
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& (WUM{EY) #P-ES PSPACE-XE, FATH SCH T 2 W ] nl ik 1 AE R
HUBUR(VE v
X EENLEh AR, BRIt H GRS o WA AP 7 (EZ 4112 1L
B3.577) o E USRS R PR AT BE R A5 RPO/D, FF HARR A, B AR AT HEAE
Z WA E PR N TP, BATL T —IAFIRIIENS, POy E LY
H#m (block adaptive policy ) . Bk [ & WY SR A MEE 1 6 i Bhalgat 45 5IA, I+ H.
FE— i Li U e BIRELE (R b RFRATIATA, XA A YRS
HAWN T AEARSCH, FATHA T8 B m RME S, (HEATH H ArE il E
—ANEAAERL. S, FATRRBE TR (S IEEA2.19Y). BT
FA T R SR, A TSR B B IS RS 5 1T TR
M HLF, FE— PR SR, AT RIS R A H , AR
AT, XA AR E A ISER BRI EAh, FATIERAAE — R B G 3R
W, BRI AT T R AR & BRI HAER SRR B R AR B (FEOR
T &) o HITR YT HR SN B RS A T RO R, BT AR PSR
WA I R 2 A B — X Bk B T Y SR S R Hh  hEH
A5 Lok R EONCEAE RN PRI H #9745, X vl BERY ER PR S R0 R
Ao PR, AT E E L—1 284 (signature), Ff HFATH G 250
AP . RIS WE S, PIA-EA MRS 0 TA KEM R E2
Beo e, FRATTUERA R] DA 2h 725 MR A 22 3 i ] rp ez i A Bk ) 25 42 9 4R 2
— AP B EER B EE . X L R AR R LT Y A AR, (A
TSR e A6 UL W] AR S A AR 20 3R
L AR BEPLEh SRR, AFAE— B FE B SR, E R ek (S e H
I SRES R ST B A 22 AR /N, L ke 1 o B SR 4 RSy b A e i
A (BT &)
2. [EE— PSRRI, IEBIX TSR, HEAMER TR, e
AR B o 2 B AL AR
3. MR A PSR A MR 0284, R8s LA R 2 Y
M
FEAF SR SO, AT REEM S Z R T A R TTIEMBAR, 20— LR Ry
NI & SR TE = I VAT §
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A21 REIEN R

EKATHATAA G H LY 5K (block adaptive policy ). H1 T3 W T e L
W BRSER I] B AR AR, I BARMIR, AAH I8 Bk e, X AR
Il Bhalgat 55 5L FAIMEEHS O HEORNR, X, RATFEAE
ABE SN, H 5 SR X SRS AR

_ —@—@
BE—TN —T, HIRS
B[R —DEKRKAME v > Iy

BIAS  BH B

XH, BB o WA AR SHSER 75 (LEAS) . & Hug—4l
WH , B EREEAT A AR, AT e
EEIY ¢, RHE @ WY, BATEMRESH, BRENRGEHEBLR] R
RIOTE, BCEHH R ITA I AR, RN ERA SRS (B A LHE &R
GERINEA RN ), SREFATT -5 A (RN R Y 1B

A22 SIEHREIEN KK

EAATH, FATERFAE—ANE I T fe i B8 RIS R B 3E B R . S T
TERAIE —p, Mt (Bt ) 09 B Rokmg o ik, FATE 7— i
NSRHS 6, I H e T SR EN:, BRRAS o LRk, K
i, FATRHE R BIFES 5 & BRI 208 T 45 5 gl X
BT & XSEH3.577,

SEE AL — R URRNE o W PAREH R — N Bl B S o, HIUE R R
P(6) /074 OPT - O(e) - MAX. IEAb, IXANHL & Y 5 o i 2 s (P1) #l (P2):
(P1) GMEZT—AWHH M B (M) < &

(P2) TEDSRIAEATAR B B2 0(7) B,
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o O ‘
Leftmost path of v

B A6 BLFR-S H AE BB SRN

Proof. 3T IRFR T BT RL v FUE s € V Ry, FATR vy RIS v /Y 5775
Mo QR = L, BATU ey, s AFHE A (non-increasing) , F HE X v By /e
B4t (leftmost path) y, JFIAT AL v, SRT M, I RGOS IEEmML.

AR v AR R v R T A v IER N (Ratedl L > 1),
IBAFAMIVEAT /L v R MELETT R (starting node) o XFFAEEAEIGI A v, FAT5T
DR v AR AR AR o T B, IR TR RPN Y 5w, w ZE [ — > Berp Al
EffE s €V, 2

IP(us) — P(wy)| < & - MAX and u(M) < % (A-4)

HTARES (B3, (A-4) HEEE —ARERIRZ A DA 0(e7%) St BIHERIE (A-
4) HEEE— AR BERRT N v =) RABERE RV = 0% ..., v™)on
Tor MTHEAMEs €V, HATH

MAX > DP; (s, A) > P(v?) > P(v}) > -+ > P(»") > 0.

B, AHLE < j o< om, QR POD < POY), I T BT T, S0hnskm
o ks, Ik, XMTEMEERNRN s € V, BRE R B2 e k. BT
|VI=00), FiPAiZiitia Ry MR LEZH 0(e™) Br. MAE, [EE—NReE AR
PR, MIRZAL (2), ZEAXEM, FIABE EZZH 1V = 0() MMM
Ao HIE, (A-4) PRSNGSR AMARE 2 e ® 0(e7) B B
Heil, YORM EREATIR SRR LI O(e7) BL.

WAE, FATERIIAEYR, ZEIRITEE o VR, i B & R 0.
MR R v, FATH seg(v) FRnHE:, HAEH 1(v) TR seg(v) S GF—1
WAL TEREOT, AT DAE BIRNE o R BRI H 52 S0 X T IR R SR o
AL A, IR AT 7B, i (P1) F1 (P2) &G e . ITE,
TATERH RS o FTLARAS M T R P(6) 208 OPT — O(€?) - MAX,
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Algorithm 6 % o
Input: %% o
1 FAI T BRI 1R
2: repeat
BRI 7o BT s v b, =B RIS o FrAg iy — D — 44 seg(v)
HIH BRI A w AT AN REE, 0 s
Vil L(v) B s T30 5 L),
WRFA R H SN G, REMEAZ, WPTE L),
6: until ik 75 BTN

(98]

B

W

B seq(v) YT AL u H5— YR INE (B0 s) F, FRATHSE NS T
Hg oo FERXFMFOL T, o KU w 09 s BT 5w, HEE T, Z 5. H2HA]
WSREDT L(v)s, FF HIEE T, o BRSO R 2280

P(uy) — P(I(v)y) < & - MAX,

X T (A-4) PR DAERX RIE o SRR R, HUIR BT [(v)s,
WG, o MIBATWEL S ZFEAER — D A b R AR A i Bt i
ZAHVI=00) MRIETT A, o &Z XA 00) Wik, Fi, SRE K&
%0 O(%) - MAX, JIFEE! O

A23 HMHEEA

NTER ULTF) SR EEN N, BATEZZE LA A ARy S s oy
AP ENEE R o T E — DRSO PR M, FRATT T Sk s A B i 0 H 4
o M, FATHEEAPE XEA (signature), (IR AR M THEAA
REAFRGER T, IR, FRATRALEZ U ] I MC2E BT il 2644, 4k
Bl — SRR B F G SR . BARE, X TEAH a e AMME eV =
O, L., VI = 1), FATE L a 78 T 124404 H I )

89;(a) = (®u(L.0). Bu(L 1)..... Bu(L V] = 1). Gu(D)).

y
|

] I i n £*MAX
cDa(I,J):{q)a(I’J)'EJ'Z Al GaD = g“(l)'g4MAxJ'
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XTAERE J € Ve OXTRAGIR M, A& SCHAE THES N

Sg,(M) = )" Sg, (a).

aeM

B3R A2 AP ENGE Y B SRR SR 7L T (R T
T S WA, FF B R HER (P R (P2). QLSRN T 77 MTEe M, FITE 75 11
R EE My, W2 Sg;(My) = Sg;(Ms), FA1H IP(T7) — P(T)] < O(s) - MAX,

BT V=0, RIFTATTRIESA O ((n/eh)'V) = n®D F, XEET
n Z WK/, A5 IBIAL HA BB SRS A (V)OED =206 AKX
e, R EE

A2.4 FHITUSMLRIRBIE R R

FEATT, AT DI PR B B BN, HHIEA T EBA6. ML,
FAI 28 P 1 T Hh DS DA SRR BRI T T RERG RS 44, AR5 ] DA s A
HERY B S AL A 52 A

B — TN T 458, 8 S C 2 — 4, IR0 — 8. iR
Wt Mt 350 T ERIBEAEFIER AL . FRNTE L—A 10 & CA = (ui, uz, . ., uy,),
Horfru; g2 jth A2 RERCA I H & EIR . XET R4 5ER @ € [n],C F1 CA, X
B M@, C,CA) = | FURIATRIABAIIE 14 {an, ..., ai} HERTLAZGARCE C, I
HAERAN A b j T H BRI w;, RIE MG, C,CA) = 0. WEHIIHHE
M(0,0,0) =1, FAIPA G, C) BT HINIFIT5 M, C,CA):

M(i, C,CA) = max {M(i —1,C,CA, M(i — 1,C/, CA')} (A-5)

e, TR BRI, (e — T, FRATERR % E T a OB AE
T b R, B2 6= (VDOED =200 e IR 20 AT RER K
Boa fiE. WERATAREHEER 2R, BERERIH «, KX
BRI XT a AR, AT C I ZEIE a B4 Sa(a;), CA ik
B oa; A RN 1, SRER TSRO C Rl CA” . i3k HLIR A (236 A 7]
R AT AT SR AR A R C7, CA”

© R MAX = maxjey DPy (1, A) S RA, X TR (G0 S E ), A1 ATSE] MAX (Y
WROLRIZER, EXFAPRRC LR T ok, FATHT LA ZI0ZRARATE] MAX 1 — Bl
LI E
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T A TR BN n®, T CA TTRREICH T < nf < n® = n2, XH
T RAEGHRE. WTAEN (,C,CA), TTRLEIT#EN ] 028 HE . Hit,
Y AN, TTRAEE 02 ) PR B bk B B

Proof. (EIEA.GHIIERR) ik o s iLsems, W8y P(o") = OPT. AR E
T B SRR AR E — T R LR B B B WY SR o lad 51 AL, FRfE— R
I Y g o, A5

P(6) > OPT — O(g)MAX.

M TAERIRR AP IR T o RIICEL, FRNTHI SIS BE 4R 2] — > BA A
FCEAYE B B LY SR o (F R RHIESRFMRIAERI A92E 4 )l 51 A2, FATA

P(c) > P(6) — O()MAX > OPT — O(g)MAX.
ESe! O

A3 RillEK{ER

FEATT R, AT T A HESRAE N e AR B - 5 AN E A
7S= Uie[n] S; /E\EP S; LA & X, E@iﬁ%%ﬂ@f%&mé A=1{12,..., n}. 1?)(?&
W I SRAERTAEE ¢ BRI B R AE. Pk, FROTARILR(ES L = 0. H
THATT AR R Z m W), FARFEIGEOREAN T = mo AR — A&
HAFE—DSIAEAME Xi, FATH RGBSR R 2

Il‘+l = f(ll" l) = maX{It’ Xi}’ g(It, l) = O’ ﬂ:‘nh(IT+l) = IT+1 (A_6)

XTI e SHIt =12, T, XA LR AL Q3). HRHTOEER S R
EEIUN, BRZAL Q) AR FHIRIFE SR AR,

WA, FMFELM I SE e BEUNMEZS ). 58, FoATRARE— R fH 1
S H RO DL OPT , B3 JE OPT > OPT > (1—1/€)2OPT (3T AT i fif B Y 5.0
BPHAE, S0 IS C) . R B AN B X BRI S = (s 82080,
I H py, = PriX = s;] 9. AHE 0 = T, 3T “R” MfH s, ks >0, &
B Dx(s;) = 0. X+ /N W si, WRt2 s <0, WE Dx(s;) = [ﬁJ gOPT, F*
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i V = {0,60PT, ..., OPT/e) K FmES Mo it . ITE, FoNToRE L4 N
VB EEENAR R X W R B, ROTRE
E[X | X > 0]

Py =Pr[X = 0] = Pr[X > 6] - — (A-7)

FEREA AR T IOZ00CR , XETF N i d €V \ (0), R

ﬁd:Pr[f:d]:M-( > Pr[X:s])s > Prix =s)

Pr[X < 0] s€S.Dx(s)=d s€S,Dx (s)=d
(A-8)

SR BB LR B AR, (Rt — LB RORANTT . FRATAE Tk V SRR B
AR A A, (HSCEIRERAE S. UL, FATFHEANZITEHNE (canonical
policy ) , I%ME&TE Bhalgat 41 /M BEHLE G H TS - RIS AR A B ) B LA
I R/IMB RS, AR LSRN SRR, AT o PR
TE S AN s INTTH X I, RIERHARIE B RO/ Dx (s) MR SR FE R TRy
FIEF, TATERE BATEBCRUEE T ATV P(o, m) SRFRHM o £
fii 7 AT FUYI AR o

SIA3: BB 7 = (m) REOVERION, 7 H5M0 x MBSHORA . 1A
Tk
L XEFERHOENS o, HFE— IR & WL
P(o,m) > (1 - 0(e))P(o, 1) — O(g)OPT
2. TR LN 5.

P(o, ) > P(o, 7).

Proof. (EIZA.IRNIERR) X o R fUsems, B2kl P(o", n) = OPT, 4
SE— A, AT B 7. @5 [ BEA3 (), FAE— DL RN o i1

P(@",7) = (1 - 0(g)) - P(o", ) — O(£)OPT = (1 - O(&))OPT.
BUE, FATH ARSI 5 K AE B B0 A 7 A RERLEh Sk BeE M &

V ={0,e0PT,...,OPT/e}, HES A={1,2,....n}. WET=mHf I =0, 4
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FATRMAE R i, HAGEIHEAE X, IR RGBS B
Iy = f(I, ) = max{l,, X},  g(L,,i) = 0, Mlh(lrs1) = Iy (A-9)

¥ LeSHt=12... T, ZMERPREBAL(12,3), HEidEHA6, FTA
PAMRE] 30 o, ERlER =00

OPT, — O(&?%) - MAX

X B OPT, FORTEBS BT 7 F A MG I 22E, MAX = max;cq DP (1, A) =
DP,(OPT/s, A) = OPT/s., FA10PAFSEE] OPT, > P(o,7) > (1 — O(e))OPT . [l
HF5 A3 Q2), H

P(o, 7) > P(0, ) > OPT,—O0(e*)MAX > (1-0(&))OPT—0(g)OPT = (1-0(g))OPT

EEE g

A4 BB EFRiE)E

X = AT FEALH b5 )8, I UER] E A4, B LERES A =
{L2,...,n}e WERGME I 21 t REEPOAFERIBEIIERZH . R)EIRATSE
T=mML =0, LFAHRM—N2EE § HRE—DUAEARE X, RAITE RS
YRR €

Lo =fU,D)=1L+X;, g,i)=0, flh(lry) = , ’ (A-10)
0 otherwise;

=12 T, XWEMRIKALQ23), H2HTHEZR V ARRFER, Bk
AL (D) AR, FAIFHFZ UL,

XA RS A1 PR B R AR . 2 P(o,m, 1) N3 o 53] HbrrR
R, H = {m) FoRERDES, 1 TR 212 FEERA, RITE
N

S A4 XTALERRN o, A DRI o L

P(o,m, (1 —2&)) > P(o,m 1) — O(e).
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SIHE A5 XTTATEAHTE RN o,
P&, 7, (1 —2¢)) > P(7, 7, 1) — O(&).

Proof. (BIZAARVIERR) R o 2 LRMG, EHEHARMREARN P(o" 1) =
OPT. ZiE— A7l n, BATAERUMG 7. W5 HA4, FEE— 3 o

4

5
P(T* 7, (1 —2¢)) > P(o", 7, 1) — O(g) = OPT — O(¢).

BAE, BATHES (11 - 20) R PRVLZIEHE. EXMESRE V =
{0,%,28% ..., 1}, BHEA A ={L2....,n}, T =mH L =0, LA —
AR IR AEAE X, AT RS ASRI sR %L

1 ifIT+1 > 1—28,

Iy = [, 1) =min{l, I; + X;}, g(l;,i) =0, and h(Ir41) = { _
otherwise;

(A-11)
ML eV, 1=1,2...,T. ZHEBREZA L @il EHA6, FATHI—%KEE o,
EEEARR P(o, 7 1 - 26) 208

OPT,; — O(e) - MAX > P(c*, 7, (1 — 2¢)) — O(g) = OPT — O(e),

XH OPT, FRARFELERF (m,1 — 2e) TFHERMIKMEKHEME, 1 MAX =
max;cy DP; (I, A) = DP; (1, A) = 1., @IE|BIAS, &

P(o, 7, (1 -4¢)) > P(o, 7, (1 - 2¢)) — O(e) = OPT - O(e),
UESE! o

A5 B —+—=E a3

AT, FATHEEIL -+ — S F 8. & XMHE A =(1,2,...,n}. &
! %7 Xﬁéxgéb’ﬁl\{ﬁ It = (It,l’ Iz,2); ;H\:EF' It,l’ Iz,z ZEI%;I%:'@AEP%F%E"JE‘\ﬁA‘%ﬁ%\ﬁI\{Eo
FATKET =n I = (0,0). HBIATRE—DIH i AT WIHFAGFRNHEFR R s,
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A E LRGBS R ECH

) ) Iy ifIpsy) <G
Lt = fUni) = Ly + S0 Lo+ p), gL i) = 0, and h(Ipey) =4 o
0 otherwise;

(A-12)
MNP r=12---,T, XWHEMRZAL23), ATMESE V S2EHKRN, B8R
WAL (D). HI, ROFEEHBIA, BEATIESHHESST.

A6 TAXIIE

A — LERE SR FE L G R BEHL S S IR B B % . Shmoys 45 b B
T FENLA AR . Halman 45 2028 BF5E B BR BRARSHEHL &L DPs, I 0 HAESEE
17 FPTAS. fE MWz —, MATHIERMIEEYIA B IE NS W8, Mz
N, FEFRATER G, REE S = V x 27 SRR K, A EE ABTRIAE
IR

TEREALRI U, ARAE AR A 3T SR, RIFRATT AT DASR AL fr]
FAFERIE A, X e il p) DU E LB (BOSP) ., Chawla 40
P TR RAILE], FONESERATEMPLE (SPM), HT WM s SR 3
M TR H AR MU, T2 TR 3 ARIERE (T
AR IESRIE ), YanU7 SRR IR SR m ] 1 - ¢, XA 1 - ¢ RAIB, ki,
KRR 2 A SMIBLTSRN X T UL AR L s AR 22 B o 1 - 4

Esfandiari %% 22177 55 Ab—Fisc X BV B 0UF )2 BEALIY , 1A 2 i SRS
P . AT B ER, X EAECILERT AN 5 #2580 1 - 2. MR A
WOk SRS, FEIEHZ LR LR M 0.75. 4AS B2 R, iy 2R
[, %2 i Dynkin 7£ 20 {22 60 4R A5 AR LGERIARLFS R flAT et 77—
T EL R ARSI, 24 m AR, UL ESh ;o Kleinberg " 424E T —ANHETE, 2
NTRATAUR—A> k-3 SRR, IR 1 - O(VITK) . SRTIT, T SRR AP
LI AAT, AT RAET R 01/ loglog r) #1421 Hovh r S DL (1) 45 4%
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A.7 ,ﬁb\g:él:

TEfe ), FANTEEACHIFIFEEERAMBAR, I HH— AR A A PR
FRDLR R . AR SO —AR ), FRATIERUE LT — DR T RIS AR Ry
R — Nl AR, A2 BELOCAL MIAEUE S X B, AT X B
T2 IR %

FATEWHIE T AR BEVLOAL R, B EERLEAIN ) R BE B B A, 3K
A REALERIN ) R RIAE . S BEALEh SR, FRAT RN e KA AR
WA PTAS, EfR © Z AR 1 - 1/e. FATIE N0 FESMBLY
WA TERC BRI S B M) T T PTAS . AN ARARE UM, S MR A
A2 PRI e AR DR ) B 3T S — Al R B . AT T 5 L
TR MR R ZE BN B M2, A 4 B

TR, FATEROFFERENLF A MR AR Bl — 1 R B A R B
PLH BRI, GE BEPLEh SR A s R RO, R ARAFOR AR B H AR, AT
AT A PTAS . TEATR A R B0 B o AL 62 ) Al ol Be il 4T3 282
— AT R R ) A
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TAER. AFPELZRHIFERBIEHARTARE

N
1992 4£ 06 H 13 H AT HEE T 2 .
2009 4F 9 A A\ iEHRKEAT UE BBt ENRIE SR AR L, 2013457 A4
B I IRAE: T 22 A,
2013 4F 9 A4 it A G B R A UG B BB 240 2 4
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