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Abstract

Abstract

The ubiquity of location-based services greatly benefits people’s daily life. In
consequence, a large volume of massive data records has been generated routinely in
location-based services. Such data records contain both location information and time
information, which we denote as spatio-temporal data. Mining spatio-temporal data
shows great potentials in many industrial and commercial applications, such as traffic
analysis!' ! travel recommendation!*"! and location-based social network!®-!!. In
order to achieve meaningful and accurate mining results, an important step is to extract

effective feature representations from the raw data.

In this thesis, we study learning representations of spatio-temporal data. Due
to characteristics of spatio-temporal data, learning representations of such data faces
many challenges. First, spatio-temporal data usually contains complex spatial and tem-
poral correlations simultaneously, and it is also affected by various external factors such
as the weather conditions and holidays. An effective feature representation should be
able to capture such correlations in data. Furthermore, in many industrial scenarios,
spatio-temporal data is massive, noisy, and in very large scales, which makes it hard to
obtain accurate feature representations. We study three concrete problems to illustrate

how to learn the spatio-temporal data representations while addressing such challenges.

In Chapter 3, we study capturing complex correlations in data representations.
We use travel time estimation problem as an example. In this problem, we estimate the
travel time of any given path (denoted by a sequence of connected roads). We propose
an end-to-end framework based on deep neural networks called DeepTTE. Specifically,
we present a geo-convolution operation for capturing the spatial correlations of differ-
ent roads. We stack a recurrent layer on the geo-convolution layer to further capture the
temporal dependencies of these roads. Such architecture enables us to extract effective
feature representations from raw data. A multi-task learning component is given on the

top of DeepTTE, that learns the travel time based on the extracted features.

I



Abstract

In Chapter 4, we study handing missing values while learning spatio-temporal
data representations. We extend the result in Chapter 3 and propose BRITS (Bi-
directional Recurrent Imputation Time Series), a novel method for imputing missing
values in spatio-temporal data. Our method does not impose any assumption about the
data-generating process. Alternatively, we use a bi-directional recurrent neural network
(RNN) to learn correlations in data and transform the learned correlations into several
hidden space representations. We predict the missing values directly based on the hid-
den representations. Our model treats the missing values as variables of RNN graph.
Thus, the imputation errors can be fully backpropagated which makes the imputation
more accurate.

In Chapter 5, we further study learning representations for extremely massive
spatio-temporal data. We use the user identification problem as an example, where
we are supposed to identify users across heterogeneous mobility data sources. In this
problem, we focus on the massiveness and scales of spatio-temporal data. We formu-
late the user identification problem over large-scale mobility datasets. We present a
MapReduce-based framework called Automatic User Identification (AUI) which can
scale to very large datasets. Our framework is based on a novel similarity measure
called the signal based similarity (SIG) which measures the similarity of users’ tra-
jectories gathered from different data sources, typically with very different sampling
rates and noise patterns. In signal based similarity, we transform users’ trajectories
to a series of “co-occurrence” events representations. We calculate the similarity s-
cores based on such representations in multiple resolutions. We show that comparing
with other existing similarity measures, SIG is much more accurate and robust for very

massive mobility datasets.

Key words: Spatio-temporal data; Representation learning; Deep neural networks.
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% 1 E Introduction

1.1 Background

In recent years, the advances in communication technologies and the ubiquity of
location-based services (LBS) greatly benefit people’s daily life. For example, people
use their GPS embedded devices to search the destinations, plan the routes or share
their mobilities; institutes use the loop sensors to monitor the traffic or schedule the
vehicles. In these scenarios, a large volume of massive data records are generated rou-
tinely. The data records contain both the location information and the time information,
which we denote as the spatio-temporal data. Mining massive spatio-temporal data
shows great potentials in various industrial and commercial applications, such as traf-

1531 travel recommendation*71, and location-based social network 8131,

fic analysis!

A typical way in mining spatio-temporal data contains two phases. In the first
phase, we extract useful information from the raw data and represent such information
as a fixed length feature vector. In the second phase, based on the extracted features,
we train a machine learning model (e.g., logistical regression, probabilistic graphical
model) to solve the mining task. In order to achieve meaningful and accurate results,
it is important to extract effective feature representations of the raw data in the first
stage. However, due to characteristics of spatio-temporal data, learning representations
of such data is highly non-trivial and faces many challenges:

e (Complex correlations) The spatio-temporal data usually contains complex cor-
relations. Due to its inherent characteristics, the spatial and temporal correlations
both exist in the data simultaneously. For example, in a traffic system, the traffic
condition in one road is correlated with its historical conditions, as well as its
neighboring roads. Furthermore, the spatio-temporal patterns are also affected
by various of external factors, such as weather conditions and holidays. Effec-

tive feature representations should be able to capture such complex correlations
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in data.

o (Sensitive to granularities) The spatio-temporal data is sensitive to the granular-
ities. The information loss caused by the coarse granularities can cause damages
to the model performance. Comparing with vision or natural language tasks, for
spatio-temporal data, it is important to retain the fine granularity information in
the data when learning its representations. As an example, in image classifica-
tions, if we replace the original images with relatively coarse images, we can still
identify the image classes (e.g., dogs, cats) with high probability. However, in
the urban traffic, if we mix up two road segments, even if the road segments are
very close, their properties (e.g., congestion level, traffic flow) can be extremely
different.

o (Missing values) The spatio-temporal data is usually very noisy and irregular.
Due to the communication error or unexpected device error, it is common that
the data contains a large number of missing values. Existing methods often use
interpolation or smoothing methods to impute the missing values'*~'"1. Howev-
er, since the correlations in spatio-temporal data are much more complex, simply
adopting the smoothing values can lead to very inaccurate results!'8].

e (Massiveness) In many industrial applications, the spatio-temporal data is very
massive and in very large scales. For example, for Google Map Services, there
are as many as one billion monthly active users and the patterns of different
users in using the services can be very different. We should also consider the
robustness of feature representations for some extreme cases and the efficiency

for large-scale datasets.

In this thesis, we study learning representations of spatio-temporal data while
addressing the above-mentioned challenges. Specifically, we introduce three concrete
problems to illustrate how to handle such challenges in learning the spatio-temporal
data representations. We present the descriptions of the problems and summarize our

contributions in the following sections.
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1.2 Capturing Complex Correlations

In Chapter 3, we study capturing complex correlations in data representations.
The granularity sensitive issue is also considered in this chapter. Specifically, we use
the travel time estimation problem as an example. Given a specific path, denoted by
a sequence of connected road segments, the corresponding start time, and external
factors such as weather conditions and driving habits, our objective is to estimate the
time of traveling through this path. In this problem, the travel time is affected by
diverse complex factors, including the spatial correlations, the temporal dependencies,
and the external factors. Prior work!!%-22! usually focuses on estimating the travel
times of individual road segments or sub-paths and then summing up these times. Such
methods did not consider the correlations between different road segments, which lead
to inaccurate estimations.

Contributions: We propose an end-to-end Deep learning framework for Travel
Time Estimation (called DeepTTE), that estimates the travel time of the whole path
directly. We present a geo-convolution operation for capturing the spatial correlations
of road segments in a fine granularity, by integrating the geographic information into
the classical convolution. We stack a recurrent layer on the geo-convolution layer to
further capture the temporal dependencies. With such architecture, we can directly
learn effective feature representations from raw data. A multi-task learning component
is given on the top of DeepTTE, that learns the travel time of both the entire path and
each local path at the same time. Extensive experiments on two trajectory datasets

show that our DeepTTE significantly outperforms the state-of-the-art methods.

1.3 Imputing Missing Values

In Chapter 4, we study handling the missing values while learning representations
of spatio-temporal data. Given multiple correlated time series data, our objective is
to predict their class labels and to fill in missing values at the same time. Existing
imputation methods often impose strong assumptions of the underlying data generating

process, such as linear dynamics in the state space!'+!6:17:231 However, since the spatio-
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temporal data usually contains complex correlations, such assumptions may not hold.
Contributions: In this chapter, we propose BRITS (Bi-directional Recurrent
Imputation Time Series), a novel method for imputing missing values. Our proposed
method does not impose any assumption about the data-generating process. Instead,
we use a bidirectional recurrent neural network to capture both the spatial and tempo-
ral correlations in the data and represents the captured correlations as several hidden
states. We then predict missing values based on the obtained hidden states. We e-
valuate our model on one synthetic dataset and two real-world datasets. Experiments
show that our model outperforms the state-of-the-art methods in both imputation and

classification/regression accuracies.

1.4 Handling Massiveness

In Chapter 5, we further study the representation learning for extremely massive
spatio-temporal data. We consider the user identification problem as an example. In
this problem, we study identifying users across massive heterogeneous mobility data
sources. Formally, given two large-scale mobility datasets which are generated from
different data sources (e.g., geo-tagged check-in data, navigation points), our goal is to
find the trajectory pairs across different datasets which are essentially generated by the
same user. We face extremely complicated scenarios in finding such trajectory pairs.
For example, (a) the sampling rates in different data sources can be very different; (b)
for some sparse trajectories, it is hard to infer any movement of the users (c) for the
users who work/live together, their mobilities have a significant overlap and it is easy
to misidentify such users. There are many other cases or combinations of those cases,
that are impossible to list exhaustively.

Contributions: We present a MapReduce-based framework called Automatic Us-
er Identification (AUI) which is easy to deploy and can scale to very large data sets.
AUI is based on a novel similarity measure called the signal based similarity (SIG),
which measures the similarity of users’ trajectories, typically with very different sam-
pling rates and noise patterns. In signal based similarity, we represent users’ trajectories

as a series of co-occurrence events and calculate the similarity scores according to the



% 1 % Introduction

events in multiple resolutions. Such similarity measure is very robust for the massive
mobility datasets. We conduct extensive experimental evaluations, which show that

our framework outperforms the existing methods significantly.

1.5 Organization

The rest parts of this thesis are organized as follows: In Chapter 2, we introduce
some preliminaries on deep neural networks and map-reduce frameworks, where we
use such techniques in learning spatio-temporal data representation. In Chapter 3, we
propose our method DeepTTE on capturing data correlations in travel time estimation
problem. This chapter is based on our prior work!?*!. In Chapter 4, we propose our
model BRITS to solve the missing value problem while learning spatio-temporal data
representations. The chapter is based on our prior work[?3. In Chapter 5, we further
present the representation learning of extremely massive spatio-temporal data. We
present our framework AUI?%! to efficiently solve the user identification problem in
very massive datasets. This chapter is based on our prior work?®!. Finally, we conclude

this thesis and present several future directions in Chapter 6.
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2.1 Deep Neural Networks

Deep neural networks are a family of machine learning algorithms based on the
representation learning. It has been successfully applied in various of applications
such as the computer vision, natural language processing and speech recognition, and
achieves many break-through results 27281,

A regular deep neural network consists of an input layer, an output layer, and
multiple hidden layers. Each hidden layer can be regarded as a non-linear transforma-
tion of previous outputs. The output layer then predicts the classification/regression
labels based on the obtained non-linear features. The stacked non-linear layers great-
ly enlarge the capacity of deep neural networks and make it possible to automatically
discover high-order hierarchical features from raw data. To improve the efficiency and
effectiveness of regular deep neural networks, multiple variations of deep architectures
are further proposed. In this section, we introduce two commonly used deep architec-

tures called convolutional neural networks and recurrent neural networks.

2.1.1 Convolutional Neural Networks 2D

The two-dimensional convolutional neural networks (2D-CNN) make explicit as-
sumptions that the inputs are images. A typical 2D-CNN is comprised of multiple
convolutional layers which take advantages of 2D input structures. Specifically, each
convolutional layer contains several kernel filters. Each kernel filter is connected to a
small region of previous layer’s output and is replicated across the entire image. The
replicated filters share the same weight parameters. Comparing with the regular deep
neural networks, the convolutional neural network dramatically reduces the number of
parameters and thus leads to a much more efficient learning procedure. See Fig. 2.1

for an illustration. The motivation of such design is based on the spatially local cor-
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relation property of image data, i.e., each pixel is only correlated with the pixels in a
local receptive field. Formally, for an input image x, we denote the weight matrix of a

kernel filter as W and the bias as b. Then, we have that the output % of such filter is
I’l,’j = RGLU((W * X)ij + b)
where ReLU(x) = max(0, x) and = is the convolutional operator.

layer m-1| hidden layer m

:Mf“

- o 1 |
Wi W . - '
W WA -

Figure 2.1 Example of 2D-CNN (figure from>°)

2.1.2 Convolutional Neural Networks 1D

Similar to the 2D-CNN, the one-dimensional convolutional neural networks (1D-
CNN) use kernel filters to capture the local correlations. However, the input here is a
one-dimensional sequential data, e.g., the sentences or audio signals. As an example,
for the natural language, each kernel filter in 1D-CNN is applied on a small window of
words, as shown in Fig. 2.2. In such case, 1D-CNN captures the correlations between

adjacent words.

2.1.3 Recurrent Neural Networks

Recurrent neural networks (RNN) are also widely used to learn the temporal de-
pendencies in the sequential data. Comparing with the feed-forward architectures, it
has a “memory” cell which summarizes the information in the previous time steps. At

each step, the recurrent neural network updates its memory according to the historical
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Figure 2.2 Example of 1D-CNN (figure from )

memory and the current input recursively. Formally, we use h, to denote the memory

vector in the #-th step and x; to denote the input in this step. Then we have that
h;;; = sigmoid(W, - x, + W, - h; + b)

where W,, W, and b are parameters to be learned. In practice, vanilla recurrent neural
networks often face the gradient vanishing/exploding problem?”! which lead to train-
ing difficulties. To solve such issue, several improved architectures such as the Long

Short Term Memory (LSTM), Gated Recurrent Unit (GRU) are proposed 31,321

2.2 Map-Reduce Framework

Map-Reduce framework is a programming model proposed by Google for pro-
cessing large-scale datasets!**!. Such framework provides a flexible way to implemen-
t the distributed algorithms and can be easily deployed on a cluster. A map-reduce
framework contains two stages: the map stage and the reduce stage. In the map stage,
users perform the filtering or other pre-processing operations, and emit a key-value pair
(k,v). During the reduce stage, the values with the same key will be partitioned into the
same reducer and the users implement the summarization operations of these values on
the reducer.

To make it more concrete, we illustrate how we count the frequencies of different
words in a large corpus with Map-Reduce framework. In the map stage, for each word

w, we simply emit the key-value pair (w, 1). In the reduce stage, each reducer receives
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a word w and a list of 1’s. Since the values with the same key are partitioned into the

same reducer, we simply count the 1°s for each word w and output its frequency.
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% 3E Capturing Data Correlations in Travel Time
Estaimation

In this chapter, we study the travel time estimation problem as an example of
capturing complex correlations in spatio-temporal data representation. Estimating the
travel time of any path (denoted by a sequence of connected road segments) in a city
is of great importance to traffic monitoring, route planning, ridesharing, taxi/Uber dis-
patching, etc. However, it is a very challenging problem, affected by diverse complex
factors, including spatial correlations, temporal dependencies, external conditions (e.g.
weather, traffic lights). To effectively extract feature representations from input data,
such correlations must be carefully considered. Prior work usually focuses on estimat-
ing the travel times of individual road segments or sub-paths and then summing up
these times!!®~22!, which leads to an inaccurate estimation because such approaches do
not consider road intersections/traffic lights, and local errors may accumulate. To ad-

dress these issues, we propose an end-to-end Deep learning framework for Travel Time

Estimation (called DeepTTE) that estimates the travel time of the whole path directly.

3.1 Introduction

Estimating the travel time for a given path, which is denoted by a sequence of
connected sub-paths, is a fundamental problem in route planning, navigation, and traf-
fic dispatching. When users are searching for candidate routes, accurate travel time
estimations help them better planning routes and avoiding congested roads, which in
turn helps to alleviate traffic congestion.

Although the problem has been widely studied in the past, providing an accurate
travel time is still very challenging, affected by the following aspects:

1) Individual vs. Collective: There mainly exist two approaches to estimate the travel
time of a path: a) Individual TTE that firstly splits a path into several road segments

(or local paths), and then estimates the travel time for each local path, finally sums
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over them to get the total travel time. b) Collective TTE that directly estimates the
travel time of the entire path. Although individual TTE methods!'*?? can estimate
accurate travel time for each road segment, it cannot model complex traffic conditions
within the entire path, including road intersections, traffic lights, and direction turns.
Besides, local errors may accumulate if there are many road segments in the given path.
Collective TTE methods (e.g. Jenelius et al.!3#!) are able to capture the aforementioned
traffic conditions implicitly. However, as the length of a path increases, the number of
trajectories traveling on the path decreases, which reduces the confidence of the travel
time (derived from few drivers), pointing out that longer path is harder to estimate.
Moreover, in many cases, there is no trajectory passing the entire path.

2) Diverse complex factors: the traffic is affected by spatial correlations, temporal de-
pendencies, and external factors. Spatial correlations are various, even complex, as
shown in Fig. 3.1. With three consecutive GPS points, it depicts different driving situ-
ation, showing the driver may go straight, turn right, turn around, drive into the main
road or ramp road. Explicitly extracting these features are time-consuming, even in-
feasible because the driving situations are more complex in the real-world. We need
to consider them implicitly in the method. In addition, these spatial correlations are
time-varying. Taking Fig. 3.1 (b) as an example, in the evening rush hour, there are
many vehicles the main road, drivers have to drive into the main road from the ramp
road one after another slowly, but driving out of the main road may be very quick. But
in the non-rush hour, driving into the main road is fast. Furthermore, traffic is affected

by many external factors, like weather, driver habit, day of the week.

Main Road

(a) Go straight (yellow) or  (b) Drive into main road (yellow)

turn right (blue) or ramp road (blue) () Turn around

Figure 3.1 Various driving situations

To address the above challenges, in this chapter, we propose an end-to-end frame-
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work for Travel Time Estimation, called DeepTTE. The primary contributions of this
chapter can be summarized as follows:

e We propose a spatio-temporal component to learn the spatial and temporal de-
pendencies from the raw GPS sequence. In detail, the spatio-temporal compo-
nent consists of two parts: a) a geo-based convolutional layer that transforms the
raw GPS sequence to a series of feature maps, capable of capturing the local spa-
tial correlations (like various driving situations in Fig. 3.1) from consecutive GPS
points implicitly; b) recurrent neural nets (LSTMs) that learn the temporal de-
pendencies of the obtained feature maps and embeddings from external factors.
The spatio-temporal component directly learns effective feature representations
of the GPS data.

e We propose a multi-task learning component that learns to estimate the travel
time for each local path and the entire path simultaneously by a multi-task loss
function, capable of balancing the tradeoff between the individual and collective
estimations. For estimating the entire path accurately, we design a multi-factor
attention mechanism to learn the weights for different local paths based on their
hidden representations and the external factors.

e We present an attribute component that integrates external factors, including the
weather condition, day of the week, distance of the path, and the driver habit. The
learned latent representations are fed into several parts of the model to enhance
the importance of these external factors.

e We conduct extensive experiments on two real-world large scale data sets which
consists of GPS points generated by taxis in Chengdu and Beijing. The per-
centage errors on these two datasets are 11.89% and 10.92% respectively, which

significantly outperforms the existing methods.
3.2 Preliminary

In this section, we first present several preliminaries and define our problem for-

mally.
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Definition 1 (Historical Trajectory): We define a historical trajectory T as a se-
quence of consecutive historical GPS points, i.e., T = {p1,...,pr}®. Each GPS
point p; contains: the latitude (p;.lat), longitude (p;.Ing) and the timestamp (p;.ts).
Furthermore, for each trajectory we record its external factors such as the starting time
(timelID), the day of the week (weekID), the weather condition (weather) and corre-

sponding driver (driverID).

Definition 2 (Objective): During the training phase, we learn how to estimate the
travel time of the given path and the corresponding external factors, based on the spatio-
temporal patterns extracted from the historical trajectories as we defined in Definition.
1. During the test phase, given the path P, our goal is to estimate the travel time from
the source to the destination through P, with the corresponding external factors. We
assume that the travel path P is specified by the user or generated by the route planing
apps.

During the test phase, to make the testing data consistent with the training data,
we convert a path P to a sequence of location points with equal distance gaps. Each

location is represented as a pair of longitude and latitude.

Remark: In our experiment, to generate the test data, we remove the timestamps in the
historical trajectories and resample each trajectory into a GPS location sequence with

equal distance gaps. In this chapter, we do not consider how to optimize the path P.

3.3 Model Architecture

In this section, we describe the architecture of our proposed DeepTTE, as shown
in Fig. 3.2. DeepTTE is comprised of three components: an attribute component, a
spatio-temporal learning component, and a multi-task learning component. The at-
tribute component is used to processes the external factors (e.g. weather) and the basic

information of the given path (e.g. start time). Its output is fed to the other components

@® The GPS devices usually generate one record for every fixed length time gap. This can cause our model to
learn a trival pattern (e.g., simply counts the number of GPS records). To avoid such case, we resample each

historical trajectory such that the distance gap between two consecutive points are around 200 to 400 meters.
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as a part of their inputs. The spatio-temporal learning component is the main building
component that learns the spatial correlations and temporal dependencies from the raw
GPS location sequences. Finally, the multi-task learning component estimates the trav-
el time of the given path based on the previous two components, capable of balancing

the tradeoff between individual estimation and collective estimation.

Spatio-Temporal Learning Component Attribute Component
@ a |/ /DriverID /Weather/ Time / Dis

| b Sampled L@ |
‘ Trajectory [
v

Concat

Concat

Attention

Residual Fully-connected Blocks

Multi-task Learning

Y Fen
Component ‘

Figure 3.2 DeepTTE Architecture. Dis: distance; concat: concatenate.

3.3.1 Attribute Component

As we mentioned, the travel time of a path is affected by many complex factors,
such as the start time, the day of week, the weather condition and also the driving
habits. We design a simple yet effective component to incorporate such factors into our
model, where we call it the attribute component. We can also easily incorporate more

factors into the model.

As an example in Fig. 3.2, we incorporate the attributes of the weather condition

(rainy/sunny/windy etc.) , the driver ID, the time information (day of the week and
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timeslot of travel start® ). We use weatherID, driverID, weekID and timelD to denote
these attributes respectively. Note that these factors are categorical values which cannot
be fed to the neural network directly. In our model, we use the embedding method ! to
transform each categorical attribute into a low-dimensional real vector. Specifically, the
embedding method maps each categorical value v € [V] to a real space REX! (we refer
to such space as the embedding space) by multiplying a parameter matrix W € RY*E,
Here V represents the vocabulary size of the original categorical value and E represents
the dimension of embedding space. Usually, we have that E < V. Comparing with the

1351 the embedding method mainly has two advantages. First, since

one-hot encoding
the vocabulary size of the categorical values can be very large (e.g., there are 14863
drivers in our dataset), the embedding method effectively reduces the input dimension
and thus it is more computationally efficient. Furthermore, it has been shown that the
categorical values with similar semantic meaning are usually embedded to the close
positions*>!. Thus, the embedding method helps find and share similar patterns among
different trajectories.

Besides the embedded attributes, we further incorporate another important at-
tribute, the travel distance. Formally, we use Ad, _,,, to denote the total distance of
traveling from GPS point p, to p; along the path, ie., Ad,, _,,, = f’:_al Dis(p;, pi+1)
where Dis is the geographic distance between two GPS points. Then, we concatenate
the obtained embedded vectors together with the travel distance Ad,, ;. The con-

catenation is used as the output of the attribute component. We denote such output

vector as attr.

3.3.2 Spatio-Temporal Component

In this section, we propose the spatio-temporal component. The spatio-temporal
component consists of two parts. The first part is a geo-convolutional neural network
which transforms the raw GPS sequence to a series of feature maps. Such component
captures the local spatial correlation between consecutive GPS points. The second part

is the recurrent neural network which learns the temporal correlations of the obtained

@® We divide one day into 1440 timeslots. Each timeslot corresponds to one minute.
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feature maps.

3.3.2.1 Geo-Conv Layer

We first present the Geo-Conv layer. Recall that a historical trajectory 7 is a se-
quence of GPS location points {py, ..., pir|} where each p; contains the corresponding
longitude/latitude(See Definition 1). As we mentioned in the introduction part, captur-
ing the spatial dependencies in the GPS sequence is critical to travel time estimation.
A standard technique to capture the spatial dependencies is the convolutional neural
network (CNN), which is widely used in the image classification, object tracking and
video processing etc3®371. A typical convolutional layer consists of several convolu-
tional filters. For a multi-channel input image, a filter learns the spatial dependencies in
the input by applying the convolution operation on each of the local patches. We refer
to such convolutional layer as 2D-CNN. Zhang et al.[*! used the 2D-CNN to predict
the citywide crowd flow. In their work, they first partitioned the city into a I X J grid
and then mapped each GPS coordinate into a grid cell. However, in our case, directly
mapping the GPS coordinates into grid cells is not accurate enough to represent the o-
riginal spatial information in the data. For example, we can not distinguish the turnings
if the related locations are mapped into the same cell. Thus, our task requires a much
finer granularity. Inspired by this, we proposed a Geo-Conv layer which is able to cap-
ture the spatial dependency in the geo-location sequence while retains the information
in a fine granularity.

The architecture of Geo-Conv layer is shown in Fig. 3.3. For each GPS point p;

in the sequence, we first use a non-linear mapping
loc; = tanh(W,,, - [ p;.lat o p;.Ing]) (3-1)

to map the i-th GPS coordinates into vector loc; € R!6, where o indicates the concate-
nate operation. Thus, the output sequence loc € R'®! represents the non-linearly
mapped locations. Note that such sequence can be seen as a 16-channel input. Each
channel describes the geographical features of the original GPS sequence. We intro-

duce a convolutional filter, with parameter matrix W,,,, € RM16 1t applies the con-
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volution operation on the sequence loc, along with a one-dimensional sliding window.
We use * to denote the convolutional operation. The i-th dimension of its output is

denoted as,

loclganv = Ten(Weony * lOCiizi—1 + D) (3-2)

where b is the bias term, loc;.;x—1 1s the subsequence in loc from index i to index i+k—1

and o, is the corresponding activation function.

— M Distance

GPS IoAcation [ ||

pi i-th local e :
path |
/ - . ,;L "H‘E -

| 1 | | | | |

GPS trajectory 16 channel Geo- Conv with Concatenate features
features multiple kernels and distance

Figure 3.3 Geo-Conv Layer.

Definition 3 (Local Path): We refer to the sub-sequence from point p; to point pj ki

as the i-th local path.

Thus, loc;"" essentially captures the spatial feature of the i-th local path. By
concatenating the outputs of ¢ filters, we obtain a feature map of local paths with shape
RXUT=K+D) - Tn the literature of natural language processing, such architecture is so
called 1D-CNN 301,

Nevertheless, in our task, the travel time is highly related with the total distance of
the path. It is hard for 1D-CNN to extract the geometric distance directly from the raw
longitudes/latitudes. Therefore, in the Geo-Conv layer, we further append a column

to the previous obtained feature map. The i-th element of the new appended column

i+k—1
j=i+l

(green part in Fig. 3.3) is ), Dis(p;_1, pj), 1.e., the distance of the i-th local path.
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Thus, we obtain the final feature map of shape R€+*DX(T=4+ by our Geo-Conv layer.

We denote this feature map as loc’.

3.3.2.2 Recurrent Layer

The feature map loc/ captures the spatial dependencies of all the local paths. To
further capture the temporal dependencies among these local paths, we introduce a
recurrent layers in our model. The recurrent neural network (RNN) is an artificial neu-
ral network which is widely used for capturing the temporal dependency in sequential
learning, such as natural language processing and speech recognition*”-*1, The recur-
rent neural network is able to “memorize” the history in the processed sequence. When
processing the current time step in the sequence, it updates its memory according to the
current input and the previous memories. The output of the recurrent neural network is
the memory sequence at all the time steps in the sequence.

In our model, the input sequence of the recurrent neural network is the feature map
loc outputted by Geo-Conv layer. The feature map loc’ can be regarded as a sequence
of spatial features with length |T| — k + 1. Moreover, we find that incorporating the
attributes information is helpful to further enhance the capacity of the recurrent layers
(recall that we have obtained the attributes representation vector attr in the attribute
component). Thus, in simple terms, the updating rule of our recurrent layer can be

expressed as
hi = Tran(Wy - loc] + Wy, - hioy + W, - artr) (3-3)

where h; is the memory after we processed the i-th local path and ogyy is a non-linear
activation function. In practice, the Eq.(3-3) usually fails in processing the long se-

311 To overcome

quence due to vanishing gradient and exploding gradient problems!
such issue, we use two stacked Long Short-Term Memory (LSTM) layers instead. L-
STM was first developed by Hochreiter et al'*!l. It introduces an input gate and a
forget gate to control the in/out information flow. Such gate mechanism enables LSTM
to forget some unimportant information and effectively alleviate the gradient vanish-

ing/exploding problem. Furthermore, it has been shown that a stacked LSTM is more
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efficient to increase the model capacity compared with a single layer LSTM 401,

Now, by utilizing the Geo-Conv layer and the recurrent layer, we obtain the se-
quence {hy, hy, ..., hr-k+1} Which represents the spatio-temporal features of the raw

GPS sequence.

3.3.3 Multi-task Learning Component

We finally introduce a multi-task learning component which combines the previ-
ous components and estimates the travel time of input path. Prior work in estimating
the travel time can be divided into two types, the individual estimation and the collec-
tive estimation. The individual estimation estimates the travel time of each local path
and sum them up. The collective estimation instead estimates the travel time of the en-
tire path directly. However, as we mentioned in the challenge part, the local errors may
accumulate if we adopt the individual estimation since such method does not consider
the spatio-temporal dependencies among the local paths. In the mean time, if we use
the collective estimation, we usually face the data sparsity problem since only a few

trajectories traveled through the entire path or the longer sub-paths.

In our model, we combine these two methods with our multi-task learning com-
ponent. The multi-task learning component estimates the travel time of both entire
path and each local path simultaneously. As during the training phase, the travel times
of the local paths are available. The local path estimation utilizes this information for

stabilizing the training procedure and enhancing the accuracy.

3.3.3.1 Estimate the local paths

Recall that we use the spatio-temporal component to obtain a sequence {h, hy,
..., yrj—k+1}. Here each h; corresponds to the spatio-temporal feature of local path
Pi = Pir1 — ... = Divk—1. We simply use two stacked fully-connected layers with
size 64 and 1 to map each h; to a scalar r;. Here r; represents the travel time of the i-th
local path. The stacked fully-connected layers for different /; share the same weight

parameters, as shown in Fig. 3.2.

19



%% 3 % Capturing Data Correlations in Travel Time Estaimation

3.3.3.2 Estimate the entire path

The estimation of the entire path is relatively more complex. Recall that the
length of spatio-temporal feature sequence {4;} is also variable. To estimate the travel
time of the entire path directly, we first need to transform the feature sequence into
a fixed length vector. A simple method to achieve this is to use mean pooling, i.e.,
Nonean = m_ﬁ Zliill_ kel h;. Such mechanism is simple yet effective. It demonstrates a
good performance for most paths as shown in the experiment part. However, the mean
pooling method treats all the spatio-temporal features A; equally. In fact, the uncer-
tainty of accurately estimating the travel time is usually caused by several critical local
paths. For example, if the path contains multiple road intersections, traffic lights, or
road segments which can be extremely congested, we should pay more attention on
such parts since they are more difficult to estimate. Inspired by this, in our model, we
adopt the attention mechanism instead of the mean pooling. The attention mechanis-

m is essentially the weighted sum of sequence {/;} where the weights are parameters

learned by the model. Formally, we have that

|T|—k+1

han= ) aih (3-4)
i=1

where «; is the weight for the i-th local path, and the summation of all a; equals 1. To
learn the weight parameter @, we consider the spatial information of the local paths, as
well as the external factors such as the start time, the day of week and the weather con-
dition. For example, if the starting time of the path is a weekend evening, we would be
careful with the road segments near entertainment district since they are usually very
congested at that time. In our model, the vector attr outputted by the attribute compo-
nent captures the effect of external factors, and the feature sequence {A;} captures the
spatio-temporal information of local paths. Thus, we devise our attention mechanism

based on attr and {h;}:

i = (oarr(attr), h;)
eZi 3 5
a = S e (3-5)
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where o477 1s a non-linear mapping which maps attr to a vector with the same length

as h;. Substituting Eq. (3-5) into Eq. (3-4), we obtain the vector ;.

Finally, we pass A, to several fully-connected layers with equal size (we use the
size of 64 in our experiment). The fully-connected layers are connected with residual
connections which is a technique to train a very deep neural network !!. The residual
connection adds “shortcuts” between different layers (dashed line in Fig. 3.2). Thus,
previous information flow can skip one or more non-linear layers through the shortcut
and the skipped layers just need to learn the “residual” of the non-linear mapping.
In our model, we use o, to denote the i-th fully-connected layer. For the first fully-
connected layer, the output of this layer is o 7, (hu,). For the rest of the fully-connected
layers, suppose the output of the i-th layer is x. Then, the output of the (i + 1)-th layer
can be represented as o, (x) ® x where & is the element-wise add operation. It has
been shown that training the neural networks with residual connections is easier and

[41]

more robust'*'!. At last, we use a single neuron to obtain the estimation of the entire

path, which we denote as r,,,.

3.3.4 Model Training

We finally present the training procedure of our model. Our model is trained end
to end. During the training phase, we use the mean absolute percentage error (MAPE)
as our objective function. Since MAPE is the relative error, we can enforce our model
to provide accurate results for both the short paths and the long paths. However, we
use multiple criterions to evaluate our model, including the rooted mean squared error

(RMSE) and the mean absolute error (MAE).

Recall that during the training phase, we estimate the travel time of all the local
paths and the entire path simultaneously. For the local paths, we define the correspond-

ing loss as the average of losses in each local path, i.e.,

1 IT|—k+1
Lipcas = ————
o =Tk + 1 ;:

where € is a small constant to prevent the exploded loss value when the denominator is

ri = (Disk—1.18 — pj.ts)
Di+k—1.1S — p;.ts + €

(3-6)
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close to 0. For the entire path, we define the corresponding loss as

Loy = |ren — (piry-ts — p1.t$)|/(pr)-ts — p1.ts + €). (3-7)

Our model is trained to minimize the weighted combination of two loss terms

ﬁ * Ligear + (1 _ﬁ) * Len (3-8)

where £ is the combination coefficient that linearly balances the tradeoff between L,
and L,,. By default, during the test phase, we use the travel time estimation of the

entire path r,, as our final estimation.

3.4 Experiment

In this section, we report our experimental results on two large scale real-world
datasets. We first compare our model with several baseline methods, including the
state-of-the-art collective estimation method TEMP 4?1, We then present the effective-

ness of our model by a set of controlled experiments® .

3.4.1 Experiment Setting
3.4.1.1 Data Description

We evaluate our model on two large scale datasets:

e Chengdu Dataset: Chengdu Dataset consists of 9,737,557 trajectories (1.4 bil-
lion GPS records) of 14864 taxis in August 2014 in Chengdu, China. The short-
est trajectory contains only 11 GPS records (2km) and the longest trajectory
contains 128 GPS records (41km).

¢ Beijing Dataset: Beijing Dataset consists of 3, 149, 023 trajectories (0.45 billion
GPS records) of 20442 taxis in April 2015 in Beijing, China. The shortest tra-
jectory contains 15 GPS records (3.5km) and the longest trajectory contains 128
GPS records (50km).

@® The code and the sample data can be downloaded at https://github.com/UrbComp/DeepTTE
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The trajectories in both datasets are associated with the corresponding weekID, timelD
and driverID. For Beijing Dataset, we further collected the corresponding weather
conditions (16 types including sunny, rainy, cloudy etc) as well as the road ID of each

GPS point.

3.4.1.2 Parameter Setting

The parameters we used in our experiment are described as follows:

¢ In the attribute component, we embed weekID to R3, timelD to R'®, driverID to
R?® and the corresponding weather type to R3.

e In the geo-conv layer, we fix the number of filters ¢ = 32 and we use ELU
function* as the activation o, in Eq.(3-2). The ELU is defined as ELU(x) =
e* — 1 for x < 0and ELU(x) = x for x > 0. For the kernel size k, we evaluate our
model under different values of k.

¢ In the recurrent layer, we use tanh as the activation o,,, in Equ. (3-3). We fix the
size of the hidden vector 4; as 128.

e In the multi-task learning component, we first use a fully-connected layer with
tanh activation as o, in Eq. (3-5). We use ReLU(x) = max(0, x)!** as the
activation of residual fully-connected layers. We fix the number of the residual
fully-connected layers as 4 and the size of each layer as 128. Furthermore, we
evaluate our model for different combination coefficient 8 in Eq. (3-8) from 0.0

to 0.99.

For each dataset, we use the trajectories generated in the last 7 days as the test set and
the rest of trajectories as the training set. We adopt Adam optimization algorithm 4!
to train the parameters. The learning rate of Adam is 0.001 and the batch size during
training is 400. We train the model for 100 epochs and select the best models by 5-fold

cross-validation.

Our model is implemented with PyTorch 2.0, a widely used Deep Learning Python
library.
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3.4.2 Performance Comparison

To demonstrate the strength of our model. We first compare our model with sev-
eral baseline methods, including:

o AVG: We simply calculate the average speed in the city during a specific time
interval (e.g. 13:00-14:00 PM on Monday). We estimate the travel time of given
trajectory based on its starting time and the historical average speed.

e TEMP: TEMP!*? is the state-of-the-art collective estimation method. It es-
timates the travel time of the given path based on the “neighbor” trajectories,
1.e., the trajectories which have the closed starting and destination as the query
path. This work outperforms the most outstanding individual TTE??! as well as
Bing/Baidu Map API in their experiment. However, there are about 10% paths
that the original TEMP method can not estimate due to the lack of neighbor tra-
jectories. For those paths, we enlarge the neighborhood dynamically until we can
find enough neighbor trajectories (10 trajectories in our experiment). We refer to
such implementation as dynamic TEMP (D-TEMP).

e GBDT: Gradient Boosting Decision Tree (GBDT) is a powerful ensemble
method!#®! and widely used in practice. In our problem, the input of GBDT
is as same as the input of DeepTTE, including all the inputs in the attribute com-
ponent and the raw GPS sequence. Note that since the length of GPS sequence
is variable, GBDT can not handle such sequence directly. Here, we uniformly
sample (with replacement) each GPS sequence to a fixed length of 128.

e MIpTTE: We use a 5-layer perceptron with ReLU activation to estimate the
travel time. The input of MIpTTE is almost the same as GBDT, except that the
categorical values are properly embedded to real vectors. The size of hidden
layers in MIpTTE is fixed as 128.

e RnnTTE: RnnTTE is also a simplified model of DeepTTE. We use a vanilla
RNN and mean pooling to process the raw GPS sequence into a 128-dimensional
feature vector. We concatenate such feature vector and the output of the attribute
component. The concatenation then is passed to the residual fully-connected

layers to obtain the estimation.
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Table 3.1 Performance Comparison on Chengdu Dataset
MAPE (%) RMSE (sec) MAE (sec)
AVG 28.1 533.57 403.71
D-TEMP 22.82 441.50 323.37
GBDT 19.32 £ 0.04 | 357.09 £2.44 | 266.15 +2.24
MIpTTE | 16.90 £ 0.06 | 379.39 + 1.94 | 265.47 + 1.53
RnnTTE | 15.65 +0.06 | 358.74 +2.02 | 246.52 + 1.65
DeepTTE | 11.89 +0.04 | 282.55 +1.32 | 186.93 + 1.01
Table 3.2 Performance Comparison on Beijing Dataset
MAPE (%) RMSE (sec) MAE (sec)
AVG 24.78 703.17 501.23
D-TEMP 19.63 606.76 402.50
GBDT 19.98 £ 0.02 | 512.96 +£3.96 | 393.98 +2.99
MIpTTE | 23.73 £0.14 | 701.61 = 1.82 | 489.54 + 1.61
RnnTTE | 13.73 +£0.05 | 408.33 + 1.83 | 275.07 £ 1.48
DeepTTE | 10.92 + 0.06 | 329.65 +2.17 | 218.29 + 1.63

For our model DeepTTE, we fix the kernel size as 3 and combination coefficient
B as 0.3. We repeat each experiment for 5 times. We report the mean and the standard

variation of the different runs. The experiment result is shown in Table 3.1 and 3.2.

As we can see, simply using the average speed leads to a very inaccurate result.
In contrast, the collective method D-TEMP and the ensemble method GBDT are much
better than AVG. MIpTTE shows a good performance on Chengdu Dataset. However,
it does not consider the spatio-temporal dependencies in the data. For the dataset which
contains more complex traffic conditions (e.g., Beijing Dataset), we find that MIpTTE
tends to overfit the training data and thus leads to a bad result. RnnTTE use the re-
current layers to capture the temporal dependencies in the data. It achieves 15.65%
and 13.73% on two datasets which are much better than above mentioned methods.
Our model DeepTTE further significantly outperforms RnnTTE. The error rates in t-
wo datasets are only 11.89% and 10.92%. We use Paired T-Test!®! to further test the

significance of our model. The p-value for all the test pairs are less than 10~® which
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Figure 3.4 Error rates for trajectories with different lengths.

demonstrates that our model is significantly better than baselines. In Fig. 3.4, we
compare the model performances for the trajectories with different lengths. When the
path length goes larger, AVG and TEMP methods face a serious individual-collective
trade-off problem. As a consequence, the error rates increase sharply. RnnTTE shows
a better result for the trajectories less than 35 km. However, it fails to handle the long
paths (with length greater than 35 km). In contrast, our model demonstrates remarkable
results for longer paths. Finally, recall that there are about 10% paths that the original
TEMP can not estimate. For the rest of paths in two datasets, the average error rate is
19.96% for the original TEMP but only 11.21% for our model.

3.4.3 Effect of Attribute Component

We show the effectiveness of different attributes, including the weatherID,
driverID and weekID. We devise a set of controlled experiments on Beijing Dataset.
For each experiment, we eliminate exactly one attribute.We find that weatherID and
weekID affect the estimation significantly. Eliminating such two attributes causes an
error growth of 1.09% and 0.77% respectively. This also conforms to our intuitive
sense, i.e., we usually spend much more time for traveling the same path under bad
weather conditions. Eliminating the driver information causes an error increment of
0.30% which seems not significant. However, we stress the trajectories in our dataset

are generated by taxi drivers. Most of the taxi drivers are very experienced and have
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similar driving habits. The driver information might be more useful for estimating the

travel time of normal people. We leave it as an intriguing direction for future work.

3.4.4 Effect of Geo-Conv

We first evaluate our model under the absence of Geo-Conv layer. To achieve this,
we eliminate the geo-conv layer and directly pass the sequence of {p;.lat o p;.Ing} to
the following LSTM layers. The MAPE in Chengdu/Beijing Dataset under this setting
1s 13.14% and 12.68% (comparing with 11.89% and 10.92%).

We further test our model if we increase the kernel size k in Equ. (3-2) from 3
to 4, 5 and 6. We find that the performance of our model in Beijing Dataset decreases
when the kernel size goes larger. The percentage errors for k = 4,5,6 are 11.18%,
11.31% and 11.38%. The reason might be that when the kernel size k = 3, a local path
consists of two consecutive road segments which can exactly represent the turnings or
road intersections (see Fig. 3.1). Thus, it is more easily for our model to capture such

spatial features in the local paths.

3.4.5 Effect of Multi-task Learning

To show the effectiveness of the multi-task learning component, we first evaluate
our model under different combination coefficient 8 from 0.0 to 0.99. The result is
shown in Fig 3.5. We find that our model is pretty robust for a wide range of 5. The
high error rates are only found in two ends, i.e., when 8 = 0 or when g goes to 1.
We then replace the attention mechanism in the multi-task learning component with
the meaning pooling method. The error rates in Chengdu/Beijing Dataset increase to
12.09% and 11.11% respectively.

3.4.6 Incorporate Road Information

Recall that in the introduction part, we stress that our model does not rely on any
map-matching algorithm but directly handle the raw GPS sequence. Nevertheless, it
is very easy to incorporate the road information into our model when it is available.

We collect the corresponding road ID of each GPS point in Beijing Dataset (there are
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Figure 3.5 Error rates for different 5.

189727 road segments in total). We embed each road ID to a 32-dimensional vector.
For each GPS point, we use p;.rid to denote the embedded road ID of p;. To utilize

such road information, we can simply add p;.rid into Eq. (3-1), i.e., we have that
loc; = tanh(W,,, - [ p;.lat o p;.Ing o p;.rid])

in Geo-Conv layer. The MAPE of DeepTTE after incorporating the road information
decreases from 10.92% to 10.59%.

3.4.7 Predicting Time

Despite the training time of DeepTTE is longer, the prediction is very efficient.
During the test phase, estimating every 1000 paths takes DeepTTE 0.037s, RnnTTE
0.031s, MIpTTE 0.029s on GPU (including I/O time), GBDT 0.017s, and TEMP 0.47s.

TEMP is slower for searching neighbors.

3.5 Related work

There is a large body of literature on the estimation of travel time; we only mention

a few closely related ones.

3.5.1 Road Segment-Based Travel Time Estimation

Estimating travel time has been studied extensively ?!+7481 However, these works
estimated the travel time of individual road segment without considering the correla-

tions between the roads. Yang et al.!"”! used a spatial-temporal Hidden Markov Model
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to formalize the relationships among the adjacent roads. Wang et al.[*”! improved this
work through an ensemble model based on two observed useful correlations in the traf-
fic condition time series. Wang et al.?”! proposed an error-feedback recurrent Convolu-
tional neural network called eRCNN for estimating the traffic speed on each individual
road. These studies considered the correlation between different roads. However, they
focused on accurately estimating the travel time or speed of individual road segment.
As we mentioned in the Section 3.1, the travel time of a path is affected by various
factors, such as the number of road intersections and the traffic lights in the path. Sim-
ply summing up the travel time of the road segments in the path does not lead to an

accurate result?4,

3.5.2 Path-Based Travel Time Estimation

Rahmani et al.’ estimated the travel time of a path based on the historical data
of the path. However, the historical average based model may lead to a poor accuracy.
Moreover, as new queried path may be not included in the historical data, it suffers
from the data sparse problem. Yuan et al.l®!l built a landmark graph based on the
historical trajectories of taxis, where each landmark represents a single road. They
estimate the travel time distribution of a path based on the landmark graph. However,
as the landmarks are selected from the top-k frequently traversed road, the roads with
few traveled records can not be estimated accurately. Furthermore, Wang et al.[??!
estimated the travel time of the path, based on the sub-trajectories in the historical
data. They used the tensor decomposition to complete the unseen sub-trajectory and
such method enhance the accuracy effectively. Nevertheless, it still suffers from the
data sparsity problem since there are many sub-trajectories which were visited by very
few drivers. Yang et al.[’>33! used a hybrid graph to maintain the path weights and thus
summarized the travel time distribution of different paths. They focused on estimating
the distribution of travel time (instead of a real value), which is different from our

setting.
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3.5.3 Deep Learning in Spatial Temporal Data

Recently, the deep learning techniques demonstrate the strength on spatio-
temporal data mining problems. Song et al.!3* built an intelligent system called Deep-
Transport, for simulating the human mobility and transportation mode at a citywide
level. Zhang et al.!>! proposed a deep spatio-temporal residual network for predicting
the crowd flows. Dong et al.!>! studied characterizing the driving style of different
drivers by a stacked recurrent neural network. To best of knowledge, no prior work
studies estimating the travel time of the whole path based on the deep learning ap-

proach.

3.6 Conclusion

In this chapter, we study estimating the travel time for any given path. We propose
an end-to-end framework based on deep neural networks. Our model can capture the
spatial and temporal correlations in the given path, and transform the captured correla-
tions into an effective feature representation. Our model also considers various factors
which may affect the travel time such as the driver habit, the day of the week. We
conduct extensive experiments on two very large scale real-world datasets. The result-
s show that our model achieve a high estimation accuracy and outperforms the other

off-the-shell methods significantly.
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In this chapter, we study handling missing values while learning spatio-temporal
data representations. The proposed methods in this chapter enable our spatio-temporal
data representation learning algorithms to further handle the missing values. Given
multiple (spatially) correlated time series data, how to fill in missing values and to pre-
dict their class labels? Existing imputation methods often impose strong assumptions
of the underlying data generating process, such as linear dynamics in the state space.
In this chapter, we propose BRITS, a novel method based on recurrent neural networks
for missing value imputation in time series data. Our proposed method directly learns
the missing values in a bidirectional recurrent dynamical system, without any specific
assumption. The imputed values are treated as variables of RNN graph and can be
effectively updated during the backpropagation. BRITS has three advantages: (a) it
can handle multiple correlated missing values in time series; (b) it generalizes to time
series with nonlinear dynamics underlying; (c) it provides a data-driven imputation
procedure and applies to general settings with missing data. We evaluate our model
on three real-world datasets, including an air quality dataset, a health-care data, and a
localization data for human activity. Experiments show that our model outperforms the

state-of-the-art methods in both imputation and classification/regression accuracies.

4.1 Introduction

Multivariate time series data are abundant in many application areas, such as

39,60] (61621 " and traffic engineer-

financial marketing 7% health-care 3%l meteorology
ing[>>%3 Time series are widely used as signals for classification/regression in various
applications of corresponding areas. However, missing values in time series are very
common, due to unexpected accidents, such as equipment damage or communication
error, and may significantly harm the performance of downstream applications.

Much prior work proposed to fix the missing data problem with statistics and
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machine learning approaches. However most of them require fairly strong assump-
tions on missing values. We can fill the missing values using classical statistical time
series models such as ARMA or ARIMA (e.g., Ansley et al.[?3). But these model-
s are essentially linear (after differencing). Kreindler et al.['* assume that the data
are smoothable, i.e., there is no sudden wave in the periods of missing values, hence
imputing missing values can be done by smoothing over nearby values. Matrix com-

pletion has also been used to address missing value problems!!>64],

But it typically
applies to only static data and requires strong assumptions such as low-rankness. We
can also predict missing values by fitting a parametric data-generating model with the
observations!'®!71, which assumes that data of time series follow the distribution of hy-
pothetical models. These assumptions make corresponding imputation algorithms less

general, and the performance less desirable when the assumptions do not hold.

In this chapter, we propose BRITS, a novel method for filling the missing values
for multiple correlated time series. Internally, BRITS adapts recurrent neural network-
s (RNN) B! for imputing missing values, without any specific assumption over the data.
Much prior work uses non-linear dynamical systems for time series prediction!%>-67],
In our method, we instantiate the dynamical system as a bidirectional RNN, i.e., im-
puting missing values with bidirectional recurrent dynamics. In particular, we make

the following technical contributions:

e We design a bidirectional RNN model for imputing missing values. We directly
use RNN for predicting missing values, instead of tuning weights for smoothing
as in the method proposed by Che et al.’®). Our method does not impose specific
assumption, hence works more generally than previous methods.

e We regard missing values as variables of the bidirectional RNN graph, which are
involved in the backpropagation process. In such case, missing values get de-
layed gradients in both forward and backward directions with consistency con-
straints, which makes the estimation of missing values more accurate.

e We simultaneously perform missing value imputation and classifica-
tion/regression of applications jointly in one neural graph. This alleviates

the error propagation problem from imputation to classification/regression.
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Additionally, the supervision of classification/regression makes the estimation
of missing values more accurate.

e We evaluate our model on three real-world datasets, including an air quality
dataset, a health-care dataset and a localization dataset of human activities. Ex-
perimental results show that our model outperforms the state-of-the-art models

for both imputation and classification/regression accuracies.

4.2 Preliminary

We first present the problem formulation and some necessary preliminaries.

Definition 4 (Multivariate Time Series): We denote a multivariate time series X =
{X1,X2,...,Xr} as a sequence of T observations. The #-th observation x, € R” consists
of D features {x}, xlz, e, xf) }, and was observed at timestamp s; (the time gap between
different timestamps may be not same). In reality, due to unexpected accidents, such
as equipment damage or communication error, X, may have the missing values (e.g.,
in Fig. 4.1, xf in x; is missing). To represent the missing values in X,, we introduce a

masking vector m; where,

d 0 if x is not observed
m; =
t

1 otherwise

In many cases, some features can be missing for consecutive timestamps (e.g., blue
blocks in Fig. 4.1). We define 6 to be the time gap from the last observation to the

current timestamp s;, i.€.,

se—Si-1+0%0, ift>1,me =0
60 =1 5 — s ift>1,m" =1
0 ift =

See Fig. 4.1 for an illustration.

In this chapter, we study a general setting for time series classification/regression

problems with missing values. We use y to denote the label of corresponding classifi-
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Figure 4.1 An example of multivariate time series with missing values. X; to X¢ are observed
at s;.¢ = 0,2,7,9, 14, 15 respectively. Considering the 2nd feature in X, the last observation

of the 2nd feature took place at s, = 2, and we have that (52 = 56— 5y = 13.

cation/regression task. In general, y can be either a scalar or a vector. Our goal is to
predict y based on the given time series X. In the meantime, we impute the missing
values in X as accurate as possible. In another word, we aim to design an effective

multi-task learning algorithm for both classification/regression and imputation.

4.3 BRTIS

In this section, we describe the BRITS. Differing from the prior work which uses

RNN to impute missing values in a smooth fashion!*!

, we learn the missing values
directly in a recurrent dynamical system!®3%°! based on the observed data. The miss-
ing values are thus imputed according to the recurrent dynamics, which significantly
boosts both the imputation accuracy and the final classification/regression accuracy.
We start the description with the simplest case: the variables observed at the same time
are mutually uncorrelated. For such case, we propose algorithms for imputation with

unidirectional recurrent dynamics and bidirectional recurrent dynamics, respectively.

We further propose an algorithm for correlated multivariate time series in Section 4.3.3.

4.3.1 Unidirectional Uncorrelated Recurrent Imputation

For the simplest case, we assume that for the 7-th step, xﬁ and x{ are uncorrelated

if i # j (but x! may be correlated with some x, ). We first propose an imputation
algorithm by unidirectional recurrent dynamics, denoted as RITS-I.

In a unidirectional recurrent dynamical system, each value in the time series can
be derived by its predecessors with a fixed arbitrary function!®-71, Thus, we iterative-

ly impute all the variables in the time series according to the recurrent dynamics. For
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Figure 4.2 Imputation with unidirectional dynamics.

the #-th step, if x, is actually observed, we use it to validate our imputation and pass
X; to the next recurrent steps. Otherwise, since the future observations are correlated

with the current value, we replace x; with the obtained imputation, and validate it by

the future observations. To be more concrete, let us consider an example.

Example 1: Suppose we are given a time series X = {Xj, Xp,

..., X0}, where Xs, X¢
and x; are missing. According to the recurrent dynamics, at each time step 7, we
can obtain an estimation X, based on the previous ¢ — 1 steps. In the first 4 steps,
the estimation error can be obtained immediately by calculating the estimation loss
function L,.(X;,x;) forr = 1,...,4. However, when r = 5, 6,7, we cannot calculate the
error immediately since the true values are missing. Nevertheless, note that at the 8-th

step, X3 depends on X5 to X;. We thus obtain a “delayed” error for X,-s¢7 at the 8-th
step.

4.3.1.1 Algorithm
We introduce a recurrent component and a regression component for imputation.

The recurrent component is achieved by a recurrent neural network and the regression

component is achieved by a fully-connected network. A standard recurrent network 7"
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can be represented as

h; = c(W;h,_; + Upx; + by),

where o is the sigmoid function, W;, U, and b;, are parameters, and h, is the hidden
state of previous time steps.

In our case, since X, may have missing values, we cannot use X, as the input
directly as in the above equation. Instead, we use a “complement” input x{ derived by
our algorithm when x; is missing. Formally, we initialize the initial hidden state h as

an all-zero vector and then update the model by:

x, = W,h_; +b,, 4-1)
X, = mOox+(1-m)ox, 4-2)
v: = exp{—max(0,W,6, +b,)}, (4-3)
h;, = oc(Wyplh 0y + Uylx; omy] + by), (4-4)
& = (my, L(x, %)) (4-5)

Eq. (4-1) is the regression component which transfers the hidden state h,_; to the
estimated vector X,. In Eq. (4-2), we replace missing values in X, with corresponding
values in X,, and obtain the complement vector x;. Besides, since the time series may
be irregularly sampled, in Eq. (4-3), we further introduce a temporal decay factor y; to
decay the hidden vector h,_;. Intuitively, if J; is large (i.e., the values are missing for a
long time), we expect a small y, to decay the hidden state. Such factor also represents
the missing patterns in the time series which is critical to imputation®!. In Eq. (4-
4), based on the decayed hidden state, we predict the next state h,. Here, o indicates
the concatenate operation. In the mean time, we calculate the estimation error by the
estimation loss function £, in Eq. (4-5). In our experiment, we use the mean absolute

error for L,. Finally, we predict the task label y as

T
¥ = fou) aihy),
i=1

where f,,, can be either a fully-connected layer or a softmax layer depending on the
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specific task, and ¢; is the weight for different hidden state which can be derived by the
attention mechanism® or the mean pooling mechanism, i.e., a; = % We calculate the

output loss by L,,(y,¥). Our model is then updated by minimizing the accumulated
loss % Z;T:1 6+ Low(y, ).

4.3.1.2 Practical Issues

In practice, we use LSTM as the recurrent component in Eq. (4-4) to prevent
the gradient vanishing/exploding problems in vanilla RNN7%!, Standard RNN models
including LSTM treat X, as a constant. During backpropagation, gradients are cut at
X;. This makes the estimation errors backpropagate insufficiently. For example, in
Example 1, the estimation errors of X5 to X7 are obtained at the 8-th step as the delayed
errors. However, if we treat Xs to X7 as constants, such delayed error cannot be fully
backpropagated. To overcome such issue, we treat X, as a variable of RNN graph.
We let the estimation error passes through X, during the backpropagation. Fig. 4.2
shows how RITS-I method works in Example 1. In this example, the gradients are
backpropagated through the opposite direction of solid lines. Thus, the delayed error
{3 s passed to steps 5, 6 and 7. In the experiment, we find that our models are unstable

during training if we treat X, as a constant.

4.3.2 Bidirectional Uncorrelated Recurrent Imputation

In the RITS-I, errors of estimated missing values are delayed until the presence
of the next observation. For example, in Example 1, the error of X5 is delayed until
xg is observed. Such error delay makes the model converge slowly and in turn leads
to inefficiency in training. In the meantime, it also leads to the bias exploding prob-
lem!”! i.e., the mistakes made early in the sequential prediction are fed as input to the
model and may be quickly amplified. In this section, we propose an improved version
called BRITS-I . The algorithm alleviates the above-mentioned issues by utilizing the

bidirectional recurrent dynamics on the given time series, i.e., besides the forward di-

@® The design of attention mechanism is out of this chapter’s scope.
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rection, each value in time series can be also derived from the backward direction by
another fixed arbitrary function.

To illustrate the intuition of BRITS-I algorithm, again, we consider Example 1.
Consider the backward direction of the time series. In bidirectional recurrent dynamics,
the estimation X4 reversely depends on X5 to X;. Thus, the error in the 5-th step is back-
propagated from not only the 8-th step in the forward direction (which is far from the
current position), but also the 4-th step in the backward direction (which is closer). For-
mally, the BRITS-I algorithm performs the RITS-I as shown in Eq. (4-1) to Eq. (4-5)

in forward and backward directions, respectively. In the forward direction, we obtain

the estimation sequence {X;, X», ..., X7} and the loss sequence {{}, {2, ..., {r}. Similar-
ly, in the backward direction, we obtain another estimation sequence {X},X},..., X}
and another loss sequence {¢,’, {5, ..., {r"}. We enforce the prediction in each step to

be consistent in both directions by introducing the “consistency loss”:

cons
gl‘

= Discrepancy(X;, X;) (4-6)

where we use the mean squared error as the discrepancy in our experiment. The final
estimation loss is obtained by accumulating the forward loss ¢;, the backward loss ¢/
and the consistency loss £;"*. The final estimation in the #-th step is the mean of X; and

Y
X; .

4.3.3 Correlated Recurrent Imputation

The previously proposed algorithms RITS-I and BRITS-I assume that features
observed at the same time are mutually uncorrelated. This may be not true in some
applications. For example, in the air quality datal”?!, each feature represents one mea-
surement in a monitoring station. Obviously, the observed measurements are spatially
correlated. In general, the measurement in one monitoring station is close to those
values observed in its neighboring stations. In this case, we can estimate a missing
measurement according to both its historical data, and the measurements in its neigh-
bors.

In this section, we propose an algorithm, which utilizes the feature correlations in
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the unidirectional recurrent dynamical system. We refer to such algorithm as RITS.
The feature correlated algorithm for bidirectional case (i.e., BRITS) can be derived
in the same way. Note that in Section 4.3.1, the estimation X; is only correlated with
the historical observations, but irrelevant with the the current observation. We refer to
X; as a “history-based estimation”. In this section, we derive another “feature-based
estimation” for each xf, based on the other features at time s,. Specifically, at the 7-th
step, we first obtain the complement observation x; by Eq. (4-1) and Eq. (4-2). Then,

we define our feature-based estimation as Z; where
2, =Wx; +b,, 4-7)

W., b, are corresponding parameters. We restrict the diagonal of parameter matrix
W, to be all zeros. Thus, the d-th element in Z; is exactly the estimation of xf, based
on the other features. We further combine the historical-based estimation X; and the

feature-based estimation Z,. We denote the combined vector as ¢;, and we have that

Br = o(Wgly:omy] +bg) (4-8)
¢ BtOZ + (1 -B) OX:. (4-9)

Here we use 3; € [0,1]? as the weight of combining the history-based estimation X,
and the feature-based estimation Z,. Note that Z, is derived from x{ by Eq. (4-7). The
elements of x{ can be history-based estimations or truly observed values, depending on
the presence of the observations. Thus, we learn the weight 5, by considering both the
temporal decay y; and the masking vector m, as shown in Eq. (4-8). The rest parts are
similar as the feature uncorrelated case. We first replace missing values in x, with the
corresponding values in ¢,. The obtained vector is then fed to the next recurrent step to

predict memory h,:

th = thDXt+(1 —mt)Qé[ (4'10)

h, = o(Wilhi—; Oy + Usle; omy] +by). (4-11)

However, the estimation loss is slightly different with the feature uncorrelated case. We

find that simply using ¢, = L.(X;, ¢;) leads to a very slow convergence speed. Instead,
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we accumulate all the estimation errors of X,, Z, and ¢&;:

U= Lo(X, X)) + Lo(X1,2) + Lo(X4, &),

4.4 Experiment

Our proposed methods are applicable to a wide variety of applications. We e-
valuate our methods on three different real-world datasets. The download links of the

datasets, as well as the implementation codes can be found in the GitHub page® .

4.41 Dataset Description
4.4.1.1 Air Quality Data

We evaluate our models on the air quality dataset, which consists of PM2.5 mea-
surements from 36 monitoring stations in Beijing. The measurements are hourly col-
lected from 2014/05/01 to 2015/04/30. Overall, there are 13.3% values are missing.
For this dataset, we do pure imputation task. We use the exactly same train/test setting
as in prior work!”?!, i.e., we use the 3", 6", 9™ and 12" months as the test data and
the other months as the training data. To train our model, we randomly select every 36

consecutive steps as one time series.

4.41.2 Health-care Data

We evaluate our models on health-care data in PhysioNet Challenge 201273,

which consists of 4000 multivariate clinical time series from intensive care unit (ICU).
Each time series contains 35 measurements such as Albumin, heart-rate etc., which are
irregularly sampled at the first 48 hours after the patient’s admission to ICU. We stress
that this dataset is extremely sparse. There are up to 78% missing values in total. For
this dataset, we do both the imputation task and the classification task. To evaluate the
imputation performance, we randomly eliminate 10% of observed measurements from

data and use them as the ground-truth. At the same time, we predict the in-hospital

@® https://github.com/NIPS-BRITS/BRITS
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death of each patient as a binary classification task. Note that the eliminated measure-
ments are only used for validating the imputation, and they are never visible to the

model.

4.41.3 Localization for Human Activity Data

The UCI localization data for human activity!”* contains records of five people
performing different activities such as walking, falling, sitting down etc (there are 11
activities). Each person wore four sensors on her/his left/right ankle, chest, and belt.
Each sensor recorded a 3-dimensional coordinates for about 20 to 40 millisecond. We
randomly select 40 consecutive steps as one time series, and there are 30,917 time se-
ries in total. For this dataset, we do both imputation and classification tasks. Similarly,
we randomly eliminate 10% observed data as the imputation ground-truth. We further

predict the corresponding activity of observed time series (i.e., walking, sitting, etc).

4.4.2 Experiment Setting
4421 Model Implementations

We fix the dimension of hidden state h, in RNN to be 64. We train our model by
an Adam optimizer with learning rate 0.001 and batch size 64. For all the tasks, we

normalize the numerical values to have zero mean and unit variance for stable training.

We use different early stopping strategies for pure imputation task and classifica-
tion tasks. For the imputation tasks, we randomly select 10% of non-missing values as
the validation data. The early stopping is thus performed based on the validation error.
For the classification tasks, we first pre-train the model as an imputation task. Then we
use 5-fold cross validation to further optimize both the imputation and classification

losses simultaneously.

We evaluate the imputation performance in terms of mean absolute error (MAE)
and mean relative error (MRE). Suppose that label; is the ground-truth of the i-th

item, pred; is the output of the i-th item, and there are N items in total. Then, MAE and
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MRE are defined as

>.ilpred; — label;|
N

_ Y.ilpred; — label,|

MAE = . MRE =
2illabel|

For air quality data, the evaluation is performed on its original data. For heath-care

data

uate

and activity data, since the numerical values are not in the same scale, we eval-

the performances on their normalized data. To further evaluate the classification

performances, we use area under ROC curve (AUC) [75] for health-care data, since such

data

is highly unbalanced (there are 10% patients who died in hospital). We then use

standard accuracy for the activity data, since different activities are relatively balanced.

4.4.22 Baseline Methods

We compare our model with both RNN-based methods and non-RNN based meth-

ods. The non-RNN based imputation methods include:

Mean: We simply replace the missing values with corresponding global mean.
KNN: We use k-nearest neighbor!#®! to find the similar samples, and impute the
missing values with weighted average of its neighbors.

Matrix Factorization (MF): We factorize the data matrix into two low-rank
matrices, and fill the missing values by matrix completion 4.

MICE: We use Multiple Imputation by Chained Equations (MICE), a widely
used imputation method, to fill the missing values. MICE creates multiple impu-
tations with chained equations!'”.

ImputeTS: We use ImputeTS package in R to impute the missing values. Im-
puteTS is a widely used package for missing value imputation, which utilizes the
state space model and kalman smoothing!®!,

STMVL: Specifically, we use STMVL for the air quality data imputation.
STMVL is the state-of-the-art method for air quality data imputation. It further

utilizes the geo-locations when imputing missing values!’?!.

We implement KNN, MF and MICE based on the python package fancyimpute® .

In recent studies, RNN-based models in missing value imputations achieve remarkable

@ https://github.com/iskandr/fancyimpute
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Table 4.1 Performance Comparison for Imputation Tasks (in MAE(MRE%))

Method Air Quality Health-care Human Activity
Mean 55.51(77.97%) | 0.720 (100.00%) | 0.767 (96.43%)
KNN 29.79 (41.85%) | 0.732 (101.66%) | 0.479 (58.54%)
Non-RNN MF 27.94 (39.25%) | 0.622 (87.68%) | 0.879 (110.44%)
MICE 27.42 (38.52%) | 0.634 (89.17%) | 0.477 (57.94%)
ImputeTS | 19.58 (27.51%) | 0.390 (54.2%) 0.363 (45.65%)

STMVL | 12.12 (17.40%) / /
RNN GRU-D / 0.559 (77.58%) | 0.558 (70.05%)
M-RNN | 14.24 (20.43%) | 0.451 (62.65%) | 0.248 (31.19%)
RITS-I | 12.73 (18.32%) | 0.395 (54.80%) | 0.240 (30.10%)
Ours BRITS-T | 11.58 (16.66%) | 0.361 (50.01%) | 0.220 (27.61%)
RITS 12.19 (17.54%) | 0.300 (41.89%) | 0.248 (31.21%)
BRITS | 11.56 (16.65%) | 0.281 (39.14%) | 0.219 (27.59%)

performances>>77-71. We also compare our model with existing RNN-based imputa-

tion methods, including:

e GRU-D: GRU-D is proposed for handling missing values in health-care data. It
imputes each missing value by the weighted combination of its last observation,
and the global mean, together with a recurrent component>!,

e M-RNN: M-RNN also uses bi-directional RNN. It imputes the missing values
according to hidden states in both directions in RNN. M-RNN treats the imputed
values as constants. It does not consider the correlations among different missing

values!”!,

We compare the baseline methods with our four models: RITS-I (Section 4.3.1), RITS
(Section 4.3.2), BRITS-I (Section 4.3.3) and BRITS (Section 4.3.3). We implement all
the RNN-based models with PyTorch, a widely used package for deep learning. All
models are trained with GPU GTX 1080.
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4.4.3 Experiment Results

Table 4.1 shows the imputation results. As we can see, simply applying naive
mean imputation is very inaccurate. Alternatively, KNN, MF, and MICE perform much
better than mean imputation. ImputeTS achieves the best performance among all the
non-RNN methods, especially for the heath-care data (which is smooth and contain-
s few sudden waves). STMVL performs well on the air quality data. However, it is
specifically designed for geographical data, and cannot be applied in the other datasets.
Most of RNN-based methods, except GRU-D, demonstrates significantly better per-
formances in imputation tasks. We stress that GRU-D does not impute missing value
explicitly. It actually performs well on classification tasks. M-RNN uses explicitly
imputation procedure, and achieves remarkable imputation results. Our model BRIT-
S outperforms all the baseline models significantly. According to the performances
of our four models, we also find that both bidirectional recurrent dynamics, and the
feature correlations are helpful to enhance the model performance.

We also compare the accuracies of all RNN-based models in classification tasks.
Table 4.2 shows the performances of different RNN-based models on the classification
tasks. As we can see, our model BRITS outperforms other baseline methods for clas-
sifications. Comparing with Table 4.1, GRU-D performs well for classification tasks.
Furthermore, we find that it is very important for GRU-D to carefully apply the dropout
techniques in order to prevent the overfitting (we use p = 0.25 dropout layer on the top
classification layer). However, our models further utilize the imputation errors as the
supervised signals. It seems that dropout is not necessary for our models during train-
ing.

To better understand our model, we generate a set of univariate synthetic time
series. Speficically, we randomly generate a time series with length 7" = 36, using the

state-space representation (801

X = u+6,+e,
e = M+ A + &
A = A+ 4,
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Table 4.2 Performance Comparison for Classification Tasks

Method | Health-care (AUC) | Human Activity (Accuracy)
GRU-D 0.828 + 0.004 0.939 + 0.010
M-RNN 0.800 + 0.003 0.938 £ 0.010
RITS-I 0.821 + 0.007 0.934 + 0.008
BRITS-I 0.831 +0.003 0.940 +£ 0.012
RITS 0.840 + 0.004 0.968 + 0.010
BRITS 0.850 + 0.002 0.969 + 0.008
5—1
6 = > -0 +w,
j=1

where x; is the 7-th value in time series. The residual terms ¢, &, {; and w, are randomly
drawn from a normal distribution N(0, 0.3). We eliminate about 22% values from the
generated series, and compare our model BRITS-I (note the data is univariate) and

ImputeTS. We show three examples in Fig. 4.3.

o] s ’
1 12 \ A 2
-10{ | 10{ V”' \/ :
—20{ ! N 8| /\ /\‘ . 0 ’/“\’\
-=- missing values Y g YA A -2 " ,_\‘\
=30} ___ imputeTs ®, 2 ,\‘f’\‘vj‘\\ -4 VA
—401 — observations \ (2) Fa -6 vy
- -8
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
steps steps steps
= 14
0] -y 12 WAy g
-10 \ 10 AR, o
8 Y
—200 ___ missing values \\_ 6 =2 A ey
-30 3, 4 —4 (WY,
BRITS-| - 2 A AN PR
—401 — observations \ (2) PN —g AN
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

steps steps steps

Figure 4.3 Example for synthetic time series imputation. Each column corresponds to one
time series. The figures in the first row are imputations of ImputeTS algorithm, and the figures

in the second row are imputations by BRITS-I .

The first row corresponds to the imputations of ImputeTS and the second row
corresponds to our model BRITS. As we can see, our model demonstrates better per-
formance than ImputeTS. Especially, ImputeTS fails when the start part of time series

is missing. However, for our model, the imputation errors are backpropagated to pre-
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0.44 —— BRITS
BRITS-cut

0 50 100 150 200 250
Iteration

Figure 4.4  Validation errors for BRITS and BRITS-cut during training

vious time steps. Thus, our model can adjust the imputations in the start part with
delayed gradient, which leads to much more accurate results.

Discussion As we claimed in Section 4.3.1, we regard the missing values as variables
of RNN graph. During the backpropagation, the imputed values can be further updated
sufficiently. In the experiment, we find that if we cut the gradient of X, (i.e., regard it as
constant), the models are unstable and easy to overfit during the training. We refer to
the model with non-differentiate X, as BRITS-cut. Fig. 4.4 shows the validation errors
of BRITS and BRITS-cut during training for the health-care data imputation. At the
first 20 iterations, the validation error of BRITS-cut decreases fast. However, it soon

fails due to the overfitting.

45 Related Work

There is a large body of literature on the imputation of missing values in time
series. We only mention a few closely related ones. The interpolate method tries to fit
a ”smooth curve” to the observations and thus reconstruct the missing values by the lo-
cal interpolations'*11. Such method discards any relationships between the variables
over time. The autoregressive method, including ARIMA, SARIMA etc., eliminates
the non-stationary parts in the time series data and fit a parametrized stationary model.
The state space model further combines the ARIMA and the Kalman Filter!'®!, which
provides more accurate results. These methods usually apply to the univariate time

series imputations. For multivariate time series imputation, Multivariate Imputation by
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Chained Equations (MICE)!'7! first initialize the missing values arbitrarily and then es-
timates each missing variable by Gibbs sampling. The graphical model®!! introduces
a latent variable for each missing value, and finds the latent variables by learning their
transition matrix. There are also some data-driven methods for missing value impu-
tation. Yi et al.[”?) imputes the missing values in air quality data with geographical
features. Wang et al.!'>! imputes the missing values in recommendation system with

collaborative filtering.

Recently, some researchers attempted to impute the missing value with recurrent

neural networks!!377.78]

. The recurrent components are trained together with the clas-
sification/regression component, which significantly boosts the accuracy. However,
they assumed that the missing values can be represented as the combination of global
mean and the most recent observations. They used RNN to impute the missing data
in a smooth fashion but ignores the relationships in the recurrent dynamics. To the
best of our knowledge, all of the existing methods treated the imputed values as static
constants and have limited utilization of future information. Differ from the existing

methods, our model directly approximates the recurrent dynamical system and demon-

strates superior results.

4.6 Conclusion

In this chapter, we proposed BRITS, a novel method to use recurrent dynamics
to effectively impute the missing values in multivariate time series. Instead of impos-
ing assumptions over the data-generating process, our model learns the representations
of data correlation in a bidirectional recurrent dynamical system, and imputes missing
values based on the learned representations directly. Our model treats missing values
as variables of the bidirectional RNN graph. Thus, we get the delayed gradients for
missing values in both forward and backward directions, which makes the imputation
of missing values more accurate. We performed the missing value imputation and clas-
sification/regression simultaneously within a joint neural network. Experiment results

show that our model demonstrates more accurate results for both imputation and clas-
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sification/regression than state-of-the-art methods.
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% 5 & Handling Massiveness in User Identification

We further study the representation learning for extremely massive spatio-
temporal data in this chapter. Specifically, we use the user identification problem as
an example. In this problem, we investigate efficient ways of identifying users across
heterogeneous data sources, such as different GPS-embedded devices, mobile apps or
location-based service providers. We present a MapReduce-based framework called
Automatic User Identification (AUI) which is easy to deploy and can scale to a very
large data set. Our framework is based on a novel similarity measure called the sig-
nal based similarity (SIG) which measures the similarity of users’ trajectories gathered
from different data sources, typically with very different sampling rates and noise pat-
terns. In signal based similarity, we adopt a co-occurrence representation of users’
trajectories in multiple resolutions, and calculate the similarity scores based on the
obtained representations. Such similarity measure is very robust for the massive mo-
bility datasets. We conduct extensive experimental evaluations, which show that our

framework outperforms the existing methods significantly.

5.1 Introduction

Ubiquitous location based services and applications have enabled people to use
GPS-embedded devices for navigation, travel planning and geolocation information
sharing in their daily life. Such mobility data is now collected routinely at a very large
scale. The large volume of mobility data gives rise to new opportunities for discovering
patterns and characteristics of human mobility behaviors. An increasing number of
researches empowered by mobility data has emerged recently. Meanwhile, mining of
such mobility data also shows great potentials in various industrial and commercial

31 travel recommendation*782-81 Jocation-

applications, including traffic analysis!!~
based social network®13!, geographical searching #6371 etc.

In real applications, mobility data is usually generated from heterogeneous data
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sources, such as different GPS-embedded devices, mobile apps, or LBS providers etc.
In this chapter, we aim to study the efficient approach of identifying users from mobility
datasets collected from heterogeneous sources. A closely related topic is user similar-
ity search where the goal is to retrieve a subset of users with similar spatio-temporal
patterns. Essentially, we can think of the user identification problem as a special case
of user similarity search problem. For each trajectory, we retrieve the most similar ones

from another data source and identify whether they belong to the same person.

Despite the fact that the user similarity search has been studied quite extensive-
1y 8388911 "ot much work has investigated the mobility data collected from hetero-
geneous data sources, which is much more complicated. In our experiments, the da-
ta is collected from various mobile apps, including the navigation data, map queries,
geo-tagged records in social platforms etc (see Section 5.6 for details). To make our
exposition more concrete, we first illustrate some distinct features of our data and our

objective.

e The most distinctive feature we have found about the trajectories is the sheer
variety of the sampling rates among different sources. For example, trajectories
of GPS navigation data are usually sampled at a very high rate whereas the geo-
tags or map queries are sampled with an extremely low rate. Even in the same
data source, the utilization frequencies could vary drastically during different
time intervals. On the other hand, most prior work uses approximately uniformly
(and often densely) sampled data (833889921,

e For some sparse trajectories, it is almost impossible to infer any information of
user movement. For example, for the geo-tagged check-in data in our data set,
each user only generated one GPS record every 2.63 days on average. Most of
prior work measures the trajectory similarities based on the movement behav-
iors of the users such as the speed, move direction, spatial-temporal closeness
(i.e., two trajectories are similar only if they appeared in approximately the same

)[88.92-961 " However, such features are not

place at approximately the same time
available in our data due to the extreme sparsity.

e The trajecotries of the users with close relationship usually have a significant

50



%% 5 % Handling Massiveness in User Identification

Home
N
MY il
o o

0 Hotel
Restaurant
—

City A
gifia
%

City C
City B

afs ol

(a) Trajectories of
the

which are sampled

same  person

(b) Trajectories of

the same person

which co-occurred

City B

M st
2/

(c) Trajectories of

the same person

which are disjoint in

Dormitory

OOO i\.\\
Lode
Teaching
Building

TN
RGD)

(d) Trajectories of
two school mates

which have signifi-

at very different in several places several cities. cant overlap.
rates. far apart from each
other.
Figure 5.1 Four typical cases observed in the real dataset

overlap. For example, we investigate the mobility data of several students who
study in University T. Most of their trajectories lie on their department buildings
and dormitories. Such overlap renders it difficult to distinguish them. However,
few prior work investigates user identification problem under such case.

e For different data sources, the trajectories can be temporally disjoint. For exam-
ple, two data sets of the same group of anonymized users with inconsisten user
id, one is collected at January and another is collected at February. Especially,
for the businessmen, they may go to several different cities during several months
which makes it difficult to measure their similarities.

To provide some intuitions for the readers and to illustrate the challenges, we show

an example in Example 2.

Example 2: In Figure 5.1, we show four typical cases observed in the real datasets
(there are many other cases or combinations of those cases, that are impossible to list

exhaustively).
Each of (a)(b)(c) represents two trajectories (from different data sources) that be-
long to the same person and (d) shows the trajectories that belong to two schoolmates.
e [n(a), the white trajectory is sampled at a much lower rate than the red trajectory

but they both occurred in several fixed places frequently. Such co-occurrences
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are significant for identifying the same person, especially when they take place
far apart from each other, such as several different cities, as shown in (b).

e However, in (c), we observed from the data that the trajectories of the same
person can be also disjoint in several cities. Such case often happens when
the trajectories are temporally disjoint as well. However, as they co-occurred
significantly in one city (city A), we can still identify that they belong to the same
person.

e [n (d), as the trajectories in the same campus have significant overlap, it is hard
to distinguish the users from their schoolmates. Nevertheless, the red trajectories
occurred more in the laboratory building while the white trajectory tends to go
to the teaching building more. Such pattern enables us to identify them uniquely.

O

The above features make our user identification problem very different from the
previous trajectory similarity problems!33:88-90.9295-91 i that the trajectories we deal
with are sampled at very different rates, and extremely noisy. To address the chal-
lenge, we propose a MapReduce-based framework, called Automatic User Identifica-
tion (AUI), which is based on a novel trajectory similarity measure. AUI is easy to
deploy and can scale to very large data set. We summarize our technical contributions
below:

e We formulate the user identification problem over large scale heterogeneous mo-
bility datasets and we present a MapReduce-based frame called AUIL

e We design an effective filtering strategy based on the MapReduce-based frame-
work. With the filtering strategy, for each trajectory we only need to compare
it with a small number of candidates. The filtering strategy is the foundation of
that AUI can scale to very large data sets.

e We design a novel similarity measure called the signal based similarity (SIG) by
considering the frequencies of the co-occurrences and the locations where they
took place. Since our data is collected from many different data sources, we do
not assume any property of the mobility data (e.g., sample rate, time span). We

show that compared with the existing measures, our measure can handle the ex-
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tremely noisy cases effectively. The experiment result shows that our measure is
more robust and accurate for our user identification problem with heterogeneous
data sources.

e We adopt a rejection strategy in order to reduce the mis-identification cases.
Many application scenarios are highly sensitive to misidentification, i.e. a few
erroneous cases could lead to serious consequences. Our strategy enhances the
accuracy of the framework significantly.

e We evaluate our framework by 6 experiments of different cases. For the easiest
case (31511 users in China), we achieve an accuracy of 99.94%. For the hardest
case (14115 college students who study in the same campus), we achieve an
accuracy of 90.09% whereas the best existing method only achieves an accuracy
of 61.38% in this case.

5.2 Formulation and Overview

The problem studies the user identification across heterogeneous data sources. We

first present several useful definitions.

Definition 5 (Trajectory): A trajectory T = {py, p2,..., pir} is a temporally ordered
sequence of spatio-temporal points. Each point p; is associated with three attributes
x,y, t where the pair (x,y) © indicates the coordinate of p; and ¢ indicates the timestamp

when p; was recorded.

Here we stress that the trajectories in our data could be extremely sparse, i.e., there

may be less than one spatio-temporal point per day in average.

Definition 6 (Mobility data set): A mobility data set D is defined as a collection of

trajectories. Each trajectory 7' € D is associated with an id 7.id.

Definition 7 (Matching trajectory): Suppose two trajectories T4, Tp are collected
from different mobility data sets. If T4 and Tp are generated from the same user,

then we call T a matching trajectory of T4.

@O We use the mercator coordinate in our experiment.
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Our problem is defined as follow. Given two mobility data sets D4 and Dp (usually
collected from two different data sources), for each 74 € Dy, our goal is to identify
whether there exists 75 € Dp which is the matching trajectory of 74. We do not assume
any property of the mobility data set. Thus, the sampling rates of the trajectories could
be very high or extremely low. Furthermore, D4 and Dp could be temporally disjoint,

i.e., they are collected at different time intervals.

We explain the reason why we can achieve user identification across heteroge-
neous mobility data sources. Montjoye et al.[*®! showed that the human mobilities are
highly unique. Each individual has her/his own mobility pattern. People tend to vis-
it the places where they often visited in the past. Even for the users with very close
relationship, they still have noticeable different mobility patterns as we illustrated in
Fig 5.1(d). Such uniqueness of human mobility allows us to identify trajectories that

belong to the same user from different sources.

To handle the extremely sparse trajectories (which makes it hard to infer any mo-
bility pattern from the daily data), we accumulate the trajectories during a long time
interval (for example, the trajectories during 3 months). Thus, by accumulating the
historical mobility data, it is possible to infer the mobility pattern of a user such as the
places he/she tends to visit. Fig. 5.2 shows an example in our data set where the trajec-
tory is collected from February to May in 2015 with 5 points per day in average. By
accumulating all these points, we can clearly see that this user usually stay at home and
the workplace. Moreover, he/she had visited Wangfujing and Beijing Botanical Gar-
den one day in the past 3 months. Motivated by this, we consider both the frequency of

Workplace

Botanical Garden *
$ o8
L * mo
.o Home:

Wangfujing
°

Figure 5.2 A trajectory in our data.
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spatial co-occurrences (i.e., two trajectories co-occurred at approximately the same lo-
cation) under different granularities and the locations where they took place. We define
our trajectory similarity mainly based on these factors.

We first present an overview of AUI. Our framework consists of three stages: the
pre-processing stage, the multi-resolution filtering stage and the verification stage. All
of the stages are implemented on the MapReduce frame. In the pre-processing stage,
we first perform data compression by transforming each trajectory into consecutive
transitions between a set of stay points, i.e., the locations where the user stays for a
while rather than just passing by. Since for large scale data sets, pairwise comparison
is rather expensive, in the multi-resolution filtering stage, we partition the map into
multiple grids with multi-resolution. For each trajectory 74 € Dj4, we select a small
subset of trajectories in Dp which co-occurred frequently in multiple cells with 74 as
the candidate set of 74. Finally, as the trajectories we deal with are sampled at very d-
ifferent rates and extremely noisy, in the verification stage, we evaluate each candidate
with the signal based similarity which can handle such cases effectively and we careful-
ly select the matching trajectory. We further extend our similarity measure and adopt
an effective rejection strategy in the verification stage to reduce the misidentification

cases (Section 5.5).

5.3 Pre-Processing

The pre-processing stage transforms each trajectory into a set of stay points, i.e.,
the location points that the user stay for a while rather than passing by. Thus stay points
usually carry the particular semantic meanings such as the building they live or the park
they went!®”!. The pre-processing stage consists of map-only jobs. For each trajectory
T € D4/Dg, the map function takes 7'.id as the key and T as the value. We use a similar
method as in!®! to pre-process the trajectories. For each trajectory in a mobility data
set, we split it into consecutive segments. A segment is defined as a series of continuous
location points sharing the same mobility status, such as stay, move and pass-by. For
example, a user drove for 2 hours to a shopping mall and spent 3 hours in the mall, then

drove to another place. Such trajectory can be split into 3 segments: driving to the mall,
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Algorithm 1: Pre-Processing
1 Map((T.id, T))

2§ < {L, P {p}h
sfori=2...|T|do

4 | pp< P1];

5 I < pi.t — pp.t;

6 | d < Dis(pi, pp);

7 ifd > Ay ort> A then

8 if z > A! then

9 sp.loc < MeanCoordinate(P) ; // stay point
10 sp.cnt < |P|; // number of around points
11 S.add(sp);// add the stay point into S
12 P« {p;};// start a new segment

13 else

14 Padd(p;); // add p; into current segment

15 emit({(T.id, S))

staying at the mall and driving to another place. For each segment under stay status, we
use the geometric center of the segment as the corresponding stay point. We then use
a series of stay points as the compressed trajectory. A location point is considered as
under stay status if the user spent more than A/ minutes but less than A* minutes around
this point within a distance of A; meters. Comparing with the method proposed by Li
et al'®!, we set an additional upper bound A¥ here (typically 12 hours). The reason is
that in some sparse trajectories the time gap between two consecutive location points
can exceed several days, which renders it difficult to infer the user’s mobility status
during the gap. For such cases, we regard the latter location point as the start point
of a new segment. Furthermore, we stress that the pre-processing stage mainly effect
on the non-sparse trajectories. For the extremely sparse trajectories, almost a single

spatio-temporal point can represent a stay point. See Algorithm 1 for the pseudo-code.
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Algorithm 2: Multi Resolution Filtering
// first phase

1 Map((T.id, S))

2fori=1...Ndo

3 sz « the cell size of G;;

4 for sp € S do

5 cx, cy < the cell coordinate that sp lies in G;;
6 c « (cx,cy, s2);

7 emit({c, (T.id, sp.cnt)));

8 Reduce({c, list({T.id, T.cnt))))

9 if len(list({T.id, T .cnt))) < m. then

10 Iy « items of list({T.id, T .cnt)) where T.id € Dy;
11 lp « items of list({T.id, T .cnt)) where T.id € Dg;
12 for (Ty.id, Ty.cnt) € 4 do

13 for (T'g.id, Tg.cnt) € Ig do

14 o « min{T4.cnt, Tg.cnt} ; // co-occurrences
15 L output(7'4.id, (T'p.id, c, 0));
16

// second phase
17 Map((T's.id, list({(Tg.id, c, 0))))
18 for (T'p.id, c,0) € list({Tg.id, c, 0)) do
19 sz « the size of c;
20 Increase the ranking score of Tz.id by (ry; - 0);

|

21 I « top Q trajectory ids with largest ranking scores;
22 for Tg.id € 1 do

23 Merge the items of T'z.id into one key-value pair
(Ty.id,(Tp.id, list({c, 0))));

24 output({T4.id,{T.id, list({c, 0)))));

1 " . L e T ey
i {{1,2,20) , (idp, 3)) i ! Key (1,2,20) I
1 ! ey
! ! 15) N
i ((1,2,20), {idy, 5) (1,4,20), (idp,2)) 1 (idp, 3) 7| Second
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Figure 5.3 Running example of the multi-processing stage

5.4 Multi-Resolution Filtering

Since the pair-wise comparison is expensive, especially for the large data sets, in

the multi-resolution filtering stage, for each T4 € D4, we only select a small subset
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from Dp as its candidates. The multi-resolution filtering stage contains two phases. In
the first phase, for each T4 € D4, we gather the “significant” co-occurrences with 7'4.
In the second phase, we evaluate the gathered co-occurrences and select a small subset

of trajectories as the candidate set of T4.

Formally, in the first phase, we partition the map into N grids with different gran-
ularities, i.e., the side length of cells in the grid. We use Gy,...,Gy to denote these
grids. The map function takes the trajectory id 7'.id as the key and the corresponding
stay points S as the value. For each G;, we enumerate the stay point sp € S and emit
the key-value pairs (c, (T.id, sp.cnt)), which indicates that 7'.id occurred in a cell ¢ for
sp.cnt times. Here ¢ represents a tuple {cx, cy, sz) where {(cx, cy) is the coordinate of
the cell in the grid and sz is the corresponding side length. Note that since different
grids are partitioned into different granularities, the tuple {cx, cy, sz) indicates a specif-
ic cell uniquely. The trajectory ids occurred in the same cell thus must be shuffled into

the same reduce task.

In the reduce stage, each reduce function takes a key value pair
(c, list({T.id, T.cnt))) as input. If the length of list({T.id, T.cnt)) exceeds m., we simply
drop the cell ¢. Here m, is a parameter to be specified (see Section 5.6 for details). Such
cells usually correspond to the “common places” of the users such as the subway sta-
tions, which are not significant for the identification. Dropping such cells on one hand
accelerates the algorithm. On the other hand, in Section 5.6, we show that it enhances
the performance of our algorithm. For the rest of the cells, the reduce function splits
list(T.id) into two groups, the ids from D4 and the ids from Dg, denoting as list(T 4.id)
and list(T'g.id) (to ensure the source of trajectory id is distinguishable, we add different
special marks to the trajectory ids in different data sources.) Each pair (T'4.id, Tg.id)
from the two lists is a candidate pair. For each candidate pair, we emit a key-value pair
(T4.id,{T'g.id, c, 0)) which indicates that 74.id and T'g.id co-occurred in the cell ¢ for

o times. Here the co-occurred frequency o is obtained by min{74.cnt, Tz.cnt}.

In the second phase, the map function simply emits its input (7'4.id, (T'g.id, c, 0)).
Thus, the key-value pairs with the same T4.id are shuffled into the same reduce task

and each reduce task takes the key-value pair (T'4.id, list ({(Tp.id, c,0))) as the input.
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We evaluate each T'g.id in list ({(Tp.id, c, 0)) with a ranking score. Formally, for each
co-occurrence with T'g.id in a cell with side length sz, we increase the ranking score
of Tp.id by a parameter r,. The finer granularity they co-occurred, the larger ranking
score we increase. We select the top Q ids with the largest ranking scores as the candi-
date set of T4. For each candidate Ts.id, we merge the related co-occurrences into one
key-value pair (T4.id, (T'p.id, list({c, 0)))). See Algorithm 2 for the pseudo code.

We show a running example in Fig. 5.3. The grid in Fig. 5.3 is partitioned into
small cells. The side length of each cell is 20 meters. The circle points are the stay
points of user id, and the triangle points are the stay points of user idg. In the map
stage of the first phase, for each cell we emit the users who occurred in this cell with
corresponding frequency. By shuffling and grouping the keys, in the reduce stage we
output the co-occurrences of id4. Finally, in the second phase of the multi-resolution

stage, we select the candidates of id4 and merge the related co-occurrences.

5.5 Verification Stage

In the verification stage, we evaluate each candidate of T4 and carefully select the
matching trajectory. We first present the signal based similarity in Section 5.5.1 which
is the foundation of the verification. Next, we present the algorithm of verification in

Section 5.5.2.

5.5.1 Signal Based Similarity

Intuitively, the signal based similarity takes a pair of trajectories as input and
observes the co-occurrences sequentially. Each co-occurrence is regarded as a ““signal”
which indicates that two trajectories might belong to the same user. The similarity is the
final signal when the whole sequence is processed. The stronger the final signal is, the
more similar the two trajectories are. We distinguish two kinds of signals, the observed
signal and the stimulus signal. The observed signal is directly calculated by the co-
occurrences in each cell. The strength of the observed signal increases as the frequency

of co-occurrences increases. However, such co-occurrences may be affected by some
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“kernel places”. For example, in Figure 5.4, the two trajectories co-occurred frequently
at the company, as a result, they are also frequently observed co-occurring at the nearby
bus station. We refer to the company in this example as a kernel place. To capture such
spatial correlation feature, we introduce the stimulus signal. We assume that there exist
several kernel cells initially. Each kernel cell emits a positive stimulus signal. Each
stimulus signal spreads out spatially from the kernel cell with an attenuation factor
a < 1. We consider the observed signal as the superposition of the decaying stimulus
signals. The signal based similarity extracts the kernel cells and recovers the strengths
of the stimulus signals from the observed signals. The final signal is calculated by
considering both the strength of stimulus signals and the distances between the kernel

cells.

Company Station

Figure 5.4 The company and the home represent two kernel places.

Formally, suppose we are given two trajectories T4 € Dy and T € Dg. We con-
sider each grid G; separately. We use (cy, 01), ..., (Cm, 0p) to denote the observed co-
occurrences in G;. Here ¢, represents the k-th co-occurred cell and o represents its cor-
responding frequency. For simplicity, we do not require a specific order here. We first
calculate the observed signal in each cell. Note that the frequency of co-occurrences
has the following diminishing marginal utility property: when many co-occurrences
at a specific cell have been observed, further co-occurrences at the same cell can only

contribute limited information. To capture such property, we use a sigmoid function
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fs(ox;n,7y) to calculate the observed signal in ci:

ob(cy) = f(ox) = %

e Yok

n
-7 (5-1)

where 77,y are two parameters to be specified (see Section 5.6 for details).

To recover the stimulus signals efficiently, we simply process the observed signals
sequentially to approximate the stimulus signals. For the cell ¢;, we assume that it is
only affected by the cells cy, ..., cr—1. Note that the stimulus signals we obtained may
be different under different orders of cells. However, in the experiments, we find a
specific order rarely affects the accuracy for user identification. Specifically, we use
st(cy) to denote the stimulus signal in cell ¢;. Initially, we have that st(c;) = ob(cy).

For any k > 1, we have

ob(c,) — st(cy) - @Piseialerscr)
St(ck) = max ( k) Zl<k ( l) . (5_2)
0

where Disgiq is the distance metric defined on the grid. In our algorithm, we use
Euclidean distance of cell centers scaled by the side length of the cell as Disgig. Thus,
the kernel cells are the cells with non zero stimulus signal. We use K to denote the
indices of kernel cells, i.e., K = {k : st(c;) > 0}.

Next, we take the distances between the kernel cells into consideration. We use
md(cy) to denote the minimum distance from cell ¢ to the previous kernel cells, i.e.,

md(cy) = min DiSgq(ck, ¢)).
( k) (1<lon(IEK) grld( k l)

Similarly, we define a sigmoid function f;(md(c); A, i) which has the same form as f;

with parameters A and u to be specified. Then, the signal in the grid G; is:

sig; = st(c1) + Z st(ci) - (1 + fa(md(cp))) (5-3)

keK\{1}

The equation 5-3 essentially captures the feature that we showed in Fig. A.4(c),

1.e., it is significant to observe the co-occurrences taking far apart from each other.
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Algorithm 3: Signal Based Similarity for 74 and T

1
2

4 (TN B 7 I SN

-

12

13

fori=1...Ndo
K < {};
fork=1...mdo
o « co-occurrences in cell ¢, € C;
ob(cx) = f(0);
if kK == 1 then
| st(cy) < ob(cy);
else .
| st(c) < max{0, ob(cp) — Fiex stler) - P},
if st(cy) > 0 then
| K.add(k);

| sig; = st(c1) + Xrer\q1y Stler) - (1 + fa(md(cx)));
SIG = Zﬁlﬁi - sig;;

Algorithm 4: Verification

N AW N =

N-TN- - )

Map((Ts.id,{Tp.id, list({c, 0)))))
calculate the signal based similarity SIG;
calculate the weighted jaccard similarity WJS;
if SIG > Og,g and WJS > 0Oy,s then

| emit((Ty.id, (Tp.id, SIG, WJS)));

Reduce((T 4.id, list({T'g.id, , SIG, WJS))))
if AT ;.id € list(Tp.id) dominate all the others then

t output((TA.id, T;.id>);

G;.
the

Finally, we sum the signals of all the grids. We set a weight parameter §; for the
Again, the finer granularity G; is, the larger weight parameter 8; becomes. Thus,

signal based similarity is defined as:

SIG = Z,B,- - sig; (5-4)

See Algorithm 3 for the pseudo code.
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5.5.2 \Verification

In the verification stage, each map function takes a key-value pair
(T4.id,{Tp.id, list({c, 0)))). Note that [ist({c, 0)) contains all the co-occurrences in all
grids. Thus, we can directly calculate the signal based similarity from list({c, 0)).

To verify the candidates, a feasible way is to measure each candidate of 74 with
the signal based similarity and select the most similar one as the matching trajectory.
In the experiment section, we show that such strategy achieves a reasonable perfor-
mance. However, many application scenarios are highly sensitive to misidentification,
i.e. a few erroneous cases could cause serious consequence. It is necessary to adopt a
rejection strategy, i.e., to refuse to identify the trajectories that may lead to mistakes.
In Section 5.6, we show that it is difficult and inaccuracy to obtain a rejection strategy
with only the signal based similarity. Motived by this, we adopt an effective rejection
strategy with another similarity measure called the weighted Jaccard similarity which
is applied in combination with the signal based similarity. The weighted Jaccard sim-

ilarity was first proposed by Ioffe et al.[1%]

. It measures the similarity between two
weighted set. For our problem, we regard each trajectory as a set of cells it has visited.
The weight of each cell is the corresponding visiting frequency. Thus, for a given pair
of trajectories, it measures the similarity of the places they visited and the correspond-
ing frequencies. For a specific grid G; , we use v} (vB resp.) to denote the frequency
of T4 (T'p resp.) being observed at cell c. The similarity of T4 and 7 on grid G; is
defined as:

_ Y. min{v}, v}

¥ max{v4, vB}

Wijs;

1

(5-5)

We show an example in Fig. 5.5. The points in the same shape (circle or triangle)
indicate a specific id. We use the red color to indicate that the user occurred in this
cell for 5 times. Similarly, we use yellow color to represent the frequency of 3 and the
white color to represent the frequency of 1. Thus, the weighted Jaccard similarity in
the left figure is 17/27 = 0.63 and the weighted Jaccard similarity in the right figure is
17/49 = 0.35.

Note that the term min{y}, v} is exactly the frequency of co-occurrence of T, and
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Figure 5.5 Example of the weighted Jaccard similarity.

T in cell ¢ which is already contained in list({c, 0)), all we need to do is calculate the
term max{v?,v8}. Re-writing the denominator as Y, v + ¥ v8 — ¥ min{v2,vB}, we
find that the first two terms are exactly the accumulated frequency of all the stay points
which can be obtained easily at the beginning. Thus, the weighted Jaccard similarity
on G; also can be calculated from /list({c, 0)). Similarly, we use WJS = }’;8; - wjs; as
the weighted Jaccard similarity of 74 and T'.

We first calculate the signal based similarity and the weighted Jaccard similarity
for all the candidates. Next, we set two small thresholds fg,g and 6yys to filter out
the dissimilar candidates. If a candidate T's.id has its signal based similarity smaller
than fgg or its weighted Jaccard similarity smaller than 6yys, we filter it out from
the candidate set. After the filtering, if there exists a unique maxima in the candidate
set, we return it as the matching trajectory. Otherwise, we reject the identification.
A candidate is called a maxima if there do not exist another candidate with both of
the two similarities greater than it. For example, suppose we have 3 candidates with
(SIG, WJS) equal to (12.7,0.4),(13.1,0.3), (10, 0.35) respectively. Then the first two
candidates are both maxima. See Algorithm 4 for the pseudo code.

We stress that when the mobility data sets are sampled in very different rates, the
weighted Jaccard similarity becomes very low which leads to a great error. However,
in the experiment section, we show that by combining with the signal based similarity

and setting an extremely small threshold 6w s, AUI achieves a great performance.

5.6 Experiment Evaluation

In this section, we conduct extensive experiments on real mobility data sets to
demonstrate the performance of the proposed algorithm. We first describe our experi-

ment setting in Section 5.6.1 then we continue by presenting the effects of the param-
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Table 5.1 Description of the data sets

Average points

Data set | #Trajectories Averagf.: points | per trajectory Time span
per trajectory after (Year-Month-Day)

compression
CN-Sparse 6396 81.31 20.47 14-08-01 to 15-02-28
CN-Dense 31511 2303.12 196.65 14-08-01 to 15-02-28
CN-Part1 27019 1063.70 92.78 14-08-01 to 14-11-30
CN-Part2 30853 1441.28 117.65 14-12-01 to 15-02-28
CB-Sparse 888 101.11 29.09 15-03-01 to 15-05-31
CB-Dense 4323 1012.71 170.07 15-03-01 to 15-05-31
CB-Partl 3014 512.58 84.02 15-03-01 to 15-04-15
CB-Part2 3770 714.07 120.37 15-04-16 to 15-05-31
UT-Sparse 1992 101.61 27.06 15-03-01 to 15-05-31
UT-Dense 14115 776.04 166.52 15-03-01 to 15-05-31
UT-Part1 9695 374.66 79.53 15-03-01 to 15-04-15
UT-Part2 12497 544.49 116.10 15-04-16 to 15-05-31

eters in Section 5.6.2. We further compare our algorithm with the existing methods
in Section 5.6.3. Finally, in Section 5.6.4 we give a discussion of our experimental

results.

5.6.1 Experiment Setting

Our data set is collected from users who shared location data using different mo-
bile apps of Baidu Inc. The data sources include the navigation data, map queries,
geo-tagged records in social platforms etc. During our experiment, all the user id were
anonymized by hashing. The trajectories of the same user have the consistent hashing
id which we use it as the ground truth.

We distinguish two kinds of data sets, the dense mobility data set and the sparse
mobility data set. The sources of dense mobility data sets contains the navigation data
and the GPS location data. The sources of sparse mobility data sets contains map

queries, geo-tagged check-in data etc. Thus, the trajectories in the dense mobility data
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are sampled at a very high rates whereas the trajectories in the sparse mobility data are

sampled at a low rates.

We randomly select 31511 users in China and extract the corresponding mobility
data from the dense mobility data set, denoting as CN-Dense. The time span of CN-
Dense is from August, 2014 to February 2015. Among these users, 6396 users can
be found in the sparse mobility set. We extract the mobility data of these 6396 users
from the sparse mobility set, denoting as CN-Sparse. For the first experiment, we use

CN-Sparse and CN-Dense as D4 and Dp respectively as we described in Section 5.2.

Next, to evaluate our algorithm in the case that the trajectories are temporally
disjoint, we split CN-Dense into two parts. The first part is from August 2014 to
November 2014, denoting as CN-Part]l and the second part is from December 2014
to February 2015, denoting as CN-Part2. Note that some trajectories only appeared
during one of the time intervals. Thus, after splitting, the number of trajectories of
each data set can be less than 31511. Furthermore, only part of the trajectories in Dy

have the matching trajectories.

We further select 4323 company employees who work in Company B and 14115
college students who study in University T. We design another 4 experiments with the

same method we used in our first two experiment settings.

To pre-process the data, we set A; = 100m and [Ai, A}] = [0.5h, 12h] (Algorithm
1). Thus, a location point is considered as a stay point if the user stays around the
point within 100 meters for more than half an hour but less than 12 hours. We compare
the average number of location points each trajectory contains before and after the
pre-processing. The details as shown in Table 5.1.

We stress that the first two experiments (CN-Sparse vs. CN-Dense and CN-Partl
vs. CN-Part2) form the easiest two cases, since these users are randomly chosen from a
large population distributed on a vast spatial domain, which renders it easy to uniquely
identify them even under coarse granularity. The last two experiments (UT-Sparse vs.
UT-Dense and UT-Part1 vs. UT-Part2), form the hardest two cases since these students
all study and live in the same campus and it is difficult to distinguish any of them from

their schoolmates.
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All the algorithms are implemented in Python and ran under streaming mode of
Hadoop system (Release 2.6.0). All the experiments are conducted on a Hadoop Clus-
ter with 10 nodes. Each node corresponds to a computer with a Intel Xeon E312 CPU

of 2 cores (2.1GHz for each core) and a 8G memory.

5.6.2 Effects of Parameters

Before we show the experiment results, we first give two useful definitions.

Definition 8 (hitting rate): Given a specific trajectory 74 € D4 and its candidate set,
if the matching trajectory of T4 is contained in its candidate set, we say we “hit” T4.
Suppose there are H trajectories in D4 which is hit. Then the hitting rate of D, is
defined as H/|Dy]|.

Definition 9 (coverage, accuracy): Suppose we use a single similarity measure S to

identify the users. For each T4 € D4, denote its candidate set as C. If

max S(T4,Tg) <0
TB.idEC

where 6 is a given threshold, then we refuse to identify 74. Otherwise, we select
the candidate with the largest similarity as the matching trajectory. Suppose there are

Rej trajectories which we refuse to identify and there are Cor trajectories which are

correctly identified. Then the coverage is defined as 1 — % and the accuracy is defined

Cor
IDal-Rej"

as

Note that Definition 9 defines the coverage of a single similarity measure. For
AUI, since it utilizes a pair of similarity measures and selects the matching trajectory
only if it is the unique maxima. The coverage of AUI is essentially associated with
the “cohesion” of the data sets and can be determined automatically, i.e., the coverage
would be much lower if users within the data sets are spatially correlated or exhibit a
high degree of social homophily.

Our default parameter setting is presented in Table 5.2. To illustrate the effects
of different parameters, each time we only change one parameter and keep the others

unchanged.
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Table 5.2 Default Parameter Setting

’ variable ‘ value source
N o 2 Algorithm 2
(with side lengths = {20m, 200m})

720, 1200 0.625, 0.375 Algorithm 2
me 2000 Algorithm 2
0 20 Algorithm 2
n 16 Equ. (5-1)
0% 0.2 Equ. (5-1)
@ 0.4 Equ. (5-2)
A 50 Equ. (5-3)
u 1/4000 Equ. (5-3)

B1,B2 0.8,0.2 Equ (5-3)

5.6.2.1 Effects of O

Recall that in the multi-resolution filtering stage, for each 74 € Dy, we select a
candidate set of size Q (Algorithm 2). If Q is too small, it is easy to miss the matching
trajectories in their candidate set. However, the results show that only choosing Q = 20
is enough to achieve the hitting rates from 91.61% to 99.66%. A higher hitting rate can
be obtained by choosing larger value of Q, which would increase the time cost of the

verification stage at the same time, as shown in Table 5.3.

5.6.2.2 Effects of N

In the multi-resolution filtering stage, we partition the map into N grids with dif-
ferent granularities (Algorithm 2). To illustrate the effects of N, we use 3 experiments
with different parameter settings. In Setting A, we only have one grid. The side length
of each cell is 20m. In Setting B, we use the default setting as shown in Table 5.2.
In Setting C, we partition the map into 4 grids. The side lengths equal to 20m, 50m,
100m, 200m respectively and we set the weight parameters S as {0.6,0.4,0.2,0.1} from
the finest granularity to the coarsest granularity. The results are shown in Table 5.4.
Each item in Table 5.4 corresponds to a pair (coverage, accuracy).

From the experimental results, it is easy to see that with multiple granularities,
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Table 5.3 Hitting rate of each experiment

’ Experiment ‘ 0=3 ‘QzZO‘QzSO

CN-Sparse
96.17% | 97.62% | 97.62%
vs. CN-Dense
CN-Partl
98.0% | 98.82% | 98.74%
vs. CN-Part2
CB-S
PAE 1 90.50% | 99.66% | 99.66%
vs. CB-Dense
CB-Part1
83.14% | 91.61% | 93.50%
vs. CB-Part2
UT-Sparse
85.14% | 99.10% | 99.10%
vs. UT-Dense
UT-Part1
78.01% | 91.88% | 94.22%
vs. UT-Part2
Table 5.4 Effects of N
. Setting A Setting B Setting C
Experiment
(20m) (20m, 200m) | (20m, 50m, 100m, 200m)
CN-Sparse vs. CN-Dense | (28.92,100.00) | (59.72,99.94) (92.01,99.74)
CN-Part1 vs. CN-Part2 (59.46,99.95) | (88.35,99.80) (92.01,99.78)
CB-Sparse vs. CB-Dense | (52.70,99.78) | (73.31,97.39) (81.98,95.60)
CB-Part1 vs. CB-Part2 (57.84,89.32) | (70.66,91.36) (70.22,92.01)
UT-Sparse vs. UT-Dense | (56.32,97.77) | (71.18,90.20) (62.60,94.47)
UT-Partl vs. UT-Part2 (49.88,88.25) | (60.81,90.09) (58.40,92.51)

our algorithm achieves a much better performance. The reason is that the finer gran-
ularity only captures the significant co-occurrences of two trajectories, such as the
co-occurrences in the same building. However, due to the noise of the mobility data
and the location error of GPS devices, it is hard to identify the users with such lim-
ited information. As we can see, in Setting A, the algorithm rejects the most of the
identifications for all of the experiments. Especially, for the experiment CN-Sparse
vs. CN-Dense, the coverage is only 28.92%. However, by utilizing multiple granulari-
ties with proper weight parameters, we successfully identify 92.01% of the trajectories

with the accuracy of 99.74% for the experiment CN-Sparse vs. CN-Dense in Setting
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Table 5.5 Effects of m,

’ me ‘ coverage (%) | accuracy (%) ‘ time (s) ‘

50 47.08 88.45 33
200 56.48 88.27 66
800 57.75 88.19 164

2000 60.81 90.09 521

C, which is much better than the other settings.

5.6.2.3 Effects of m,

As we explained in Section 5.4, the cells with a large population usually cor-
respond to some “common places”. Eliminating such cells (more than m,. users being
observed in this cell) on one hand accelerates the algorithm, on the other hand enhances

the performance of the algorithm.

We evaluate the effects of m, on the hardest experiment UT-Part]l vs. UT-Part2
(the other experiments are not sensitive to m, since the trajectories are distributed on
a vast spatial domain). We compare the coverage, the corresponding accuracy and the

running time under different values of m.. The results are shown in Table. 5.5.

From Table 5.5 we can see that, the coverage increases with the increase of m,.
If m, is too small (e.g. m. = 50 in our experiment), the algorithm drops the most of
the cells and only retain the sparsely-populated cells. Of course, observing the co-
occurrences in those sparsely-populated cells is very significant for user identification.
However, the coverage in such case is extremely low. Furthermore, we find that the
accuracy of each experiment does not vary much when m, varies. Such property echoes
that AUI determines the coverage automatically according to the cohesion of the data

set.

It is notable that the complexity of the reduce stage in the first phase of the multi-
resolution filtering is O(min{m,, |T.|}*) where T, is the trajectories ids occurred in the

current cell. Thus, a large value of m, leads to a high time complexity as well.
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5.6.2.4 Effects of «

As we presented in Section 5.5.1, in the signal based similarity, each kernel cell
emits a stimulus signal which spreads out spatially with an attenuation factor «. Since &
is only related with the signal based similarity, to show the effects of @, we evaluate the
algorithm performance by only utilizing the signal based similarity under the coverage
equal to 90%. We set a to be 0 and 1 — 107" respectively. Such two values correspond
to that the stimulus signal does not spread out at all and the stimulus signal does not
decrease almost respectively. The results are shown in Table 5.7.

Such results essentially reflect the effects of the “kernel cells”. When a = 0, the
cells are independent (we do not distinguish the kernel cells in such case). As we can
see by taking the relations of the cells into consideration (setting a proper a > 0), the
accuracy increases a lot in the hard experiments (UT-Sparse vs. UT-Dense, UT-Partl

vs. UT-Part2).

5.6.2.5 Effects of Distance Values between Kernel Cells

As we mentioned in Section 5.5, the distance values between the kernel cells
play an important role in the signal based similarity. To illustrate the effects of taking
the distance into consideration, we evaluate our algorithm with 3 experiments with

different settings. Recall that the signal based similarity in Equ.(5-3) is calculated by

sig; = st(ci) + ) st(c) - (1 + fu(md(co)).
keK\{1}

In Setting A, we set f;(x) = 0, i.e., the signal based similarity is unrelated with the
distance values between the cells. We use the default setting as in Table 5.2 as Setting
B. In Setting C, we replace the sigmoid function with a linear function f;(x) = x to
eliminate the diminishing marginal utility property. Again, we compare the accuracies
under the coverage equal to 90%. The results are shown in Table 5.7

From Table 5.7, we can see that for the two easiest experiments, the distances

between the cells do not effect on the accuracy much. However, for the hardest two
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Table 5.6 Effects of «

) accuracy(%) | accuracy(%) | accuracy(%)
Experiment
a=0 a=04 ax1
CN-Sparse
98.66 98.64 69.43
vs. CN-Dense
CN-Part1
99.58 99.59 98.68
vs. CN-Part2
CB-Sparse
94.25 94.37 76.50
vs. CB-Dense
CB-Part1
79.63 80.08 73.00
vs. CB-Part2
UT-S
Parse 87.06 93.15 69.47
vs. UT-Dense
UT-Partl
69.18 72.34 47.50
vs. UT-Part2

Table 5.7 Effects of Distances

Experiment | Setting A | Setting B | Setting C

CN-Sparse
98.32 98.64 98.52
vs. CN-Dense
CN-Partl
99.48 99.59 98.86
vs. CN-Part2
CB-Sparse
87.23 94.37 86.36
vs. CB-Dense
CB-Partl
79.94 80.08 63.05
vs. CB-Part2
T
UL-Sparse | 2000 | 0315 | s6.14
vs. UT-Dense
UT-Part1
ar 68.53 7234 | 5779
vs. UT-Part2

experiments, the accuracy increases dramatically when the distance values and the di-

minishing marginal utility property is taking into consideration.
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Figure 5.6  Error rates of different similarity measures under the same coverage
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5.6.3 Comparisons with Other Algorithms

In this section, we use the default setting as shown in Section 5.6.2 and compare

our algorithm with the other existing methods.

We first compare the performance of the signal based similarity with the existing
measures. As we mentioned in Section 5.1, since our trajectories we deal with are
sampled at very different rate, the sparse trajectories may contain less than one point

per day. Even the time span of the trajectories can be disjoint. Most prior work is
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Table 5.8 Performance comparison for AUI

Experiment | AUl | SIG | WIS | &BCT | MHD |
CN-Sparse vs. CN-Dense
(coverage = 59.72%)
CN-Partl vs. CN-Part2
(coverage = 88.35%)
CB-Sparse vs. CB-Dense
(coverage = 73.31%)
CB-Partl vs. CB-Part2
(coverage = 70.66%)
UT-Sparse vs. UT-Dense
(coverage = 72.84%)
UT-Partl vs. UT-Part2
(coverage = 60.81%)

99.94% | 99.84% | 99.08% | 98.80% | 78.13%

99.80% | 99.57% | 99.41% | 98.20% | 70.39%

97.39% | 97.53% | 70.87% | 91.59% | 87.37%

91.36% | 81.67% | 80.43% | 65.93% | 62.40%

95.63% | 95.20% | 76.02% | 71.48% | 87.32%

90.09% | 80.96% | 74.97% | 61.38% | 50.89%

not available for our problem setting. Here we compare with two feasible existing
similarity measures. ©

Adelfio et al."! extended HausdorfF distance and proposed the modified Haus-
dorff distance (MHD). For two trajectories T4 and 75, MHD is defined as:

prTB
A

1
MHD(T), T5) = = > min Dis(pa. py)
Tal
Pa€
Chen et al.”’! present a similarity measure called k Best Connected Trajectories
(k-BCT). Specifically, for two trajectories 74 and T, k-BCT is defined as:
k-BCT(Ty, Tp) = Z e~ Minp,ery Dis(papy)
paETA
To make a fair comparison, we adjust the threshold value for each measure and
compare the error rates under the same coverage. The results are shown in Figure 5.6.
We then show the performance evaluation of AUI. We set the thresholds g, = 12
and an extremely small threshold 6yys = 0.005. In Table 5.8, we label the coverage

of AUI and compare the performance for the other similarity measures under the same

coverage.

@® These methods are available but not designed for our setting.

74



%% 5 % Handling Massiveness in User Identification

5.6.4 Discussions

Based on the experiment results, we can easily see the advantages of the signal
based similarity and AUI in our problem.

For all the 6 experiments, the signal based similarity outperforms other measures
significantly. As we can see, the weighted Jaccard similarity performs well when the
trajectories are sampled at similar rates (Figure 5.6(b), Figure 5.6(d), Figure 5.6(f)).
However, it causes high error rate when the trajectories are sampled at very different
rates (Figure 5.6(a), Figure 5.6(c), Figure 5.6(e)). The reason is that the weighted
Jaccard similarity essentially measures the similarity of the spatio-temporal point sets.
When the trajectories are sample at very different rates, the point sets of the same
user can become totally distinct. On the other hand, MHD and k-BCT capture the
geometrical distance features between the trajectories. These two measures are not
too sensitive to the sample rates. Nevertheless, when the trajectories have significant
overlaps, it is hard to identify the users by only using the distance features (Figure
5.6(d), Figure 5.6(e), Figure 5.6(f)). Furthermore, we stress that for the trajectories
distributed on a vast spatial domain, there usually exist several points which are far
from each other (e.g., the spatio-temporal points in city B and city C in Figure A.4(c)).
For such case, the modified Hausdorff distance can be very large which is easy to lead
to mistakes (Figure 5.6(a) and Figure 5.6(b)).

Despite the signal based similarity out performs the other measures for all the
experiments. For real applications, it is hard to assign a proper threshold value or
determine the coverage in advance. For example, by setting fs;g = 0.95, it is enough
to achieve an accuracy of 97.90% under the coverage of 90% for the experiment CN-
Sparse vs. CN-Dense. However, for the experiment UT-Part] vs. UT-Part2, we need to
set the threshold 6g; equal to 10.95 to achieve the same coverage and the accuracy is
only 71.40%. AUI could determine the coverage according to the cohesion of the data
set. As show in Table 4, for the easiest case (CN-Part 1 vs. CN-Part 2), AUI achieves
the coverage of 88.35% and the corresponding accuracy of 99.80%. For the hardest
cases (UT-Sparse vs. UT-Dense and UT-Part1 vs. UT-Part2), AUI covers only 72.84%
and 60.81% of the trajectories but much higher accuracies (95.63% and 90.09%) than

75



%% 5 % Handling Massiveness in User Identification

the other measures under the same coverage.

5.7 Related Work

The studies of user identification focus on the concept of uniqueness in human
mobility. It has been shown that people tend to visit places where they visited regularly

in the past, which we refer to as “significant places”[%-9%:102.103] t[103]

. Zang and Bolo
showed that given each individual’s top n significant places with highest visiting fre-
quencies, we can uniquely identify a small subset of users from a very large-scale
anonymized dataset. Montjoye et al.[®”! showed that the human mobility retain highly
unique even if we coarsen the location points. We stress that these work investigat-
ed the uniqueness or the user identification problem in a single mobility data set, i.e.,
given several historical location points which are already contained in the data set and

1.981 presented a tech-

retrieve the trajectories that match the given points. Rossi et a
nique for identifying users with previously unseen data, i.e., the location points that are
not included in the original data set used for model training. We point out that in their
method®®, the unseen data in their experiment is sampled without replacement from
the original data set which differs from our problem. As we showed in Section 5.6,
their method does not handle the user identification across heterogeneous data sources
effectively. Furthermore, in a related work, Crandall et al.!! used sparse geo-tags in
social platforms to infer the social ties between different users. They showed that the
strength of social ties is highly correlated with geographical co-occurrences of the users
under various spatial granularities.

The user similarity search problem aims to retrieve similar user items from the
entire database, based on the personal traits extracted from their past behaviors, in
our case, their spatio-temporal mobility patterns. As we claimed in Section 5.1, user
identification can be regarded as a special case of user similarity search. An essential
ingredient in most methods is to define the similarity measure between a pair of user
trajectories. Considerable amount of definitions have been proposed in the past. Most
of them are extensions or variants of traditional methods, including Dynamic Time

Warping (DTW)®*, Longest Common Subsequence (LCSS)#%!, Edit Distance on Real
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Penalty (ERP)[®¥, Edit Distance on Real Sequences (EDR)?!, etc. In addition, Li
et at.[¥ proposed a hierarchical graph based similarity measurement (HGSM) which
takes into account both sequential and hierarchical property of geographic locations
in user trajectories. These measures utilized the temporal closeness of trajectories,
1.e., two trajectories are similar if they co-occurred in approximately the same place at
approximately the time. Chen et al.[°’! defined a trajectory similarity measure called
k Best Connected Trajectories (k-BCT) based on the spatial distance and the order
constraint in trajectory. Since k-BCT aims to search trajectories from a database using a
small set of locations as queries, directly deploying it could lead to high error rate when
the trajectories have a significant overlap as we showed in Section 5.6. We refer the
interested readers to a recent survey!!%4 for more details about user similarity search.
In the recent research!®, Ranu et al. studied the similarity measure of trajectories
under inconsistent sampling rates. They formulated a robust distance function called
Edit Distance with Projections (EDwP) to match trajectories under inconsistent and
variable sampling rates. However, their method needs to infer the movement of users

such as the speed which is not available in our problem.

There are several improved algorithms for user identification problem. Chen et
al.!!%! presented a novel formulation for user behavior representation, called STUL. In

their recent work [106

1, they further proposed another kernel density estimation function,
and an entropy-based weight scheme to calculate the identification confidence in each
cell. Their methods achieved remarkable performances, especially for the location
based social network data. We stress that these methods are following studies of our

proposed model in this chapter.

5.8 Conclusion

In this chapter, we study the method of identifying users from heterogeneous data
sources. In our problem, the trajectories in mobility data that we deal with are sampled
at very different rates and extremely noisy. To address this challenge, we formulate

the user identification problem over large scale heterogeneous mobility data sets and
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present a MapReduce-based framework called Automatic User Identification (AUI).
AUI is based on a novel similarity measure called the signal based similarity. The
signal based similarity utilizes the co-occurrence representations of users’ trajectories
and calculates the similarity scores in multi-resolutions. We conduct extensive experi-
ments and show that the signal based similarity significantly outperforms the existing
similarity measures for user identification problem. Furthermore, we adopt a rejection
strategy to reduce misidentification when the application scenarios are sensitive to er-
ror cases. The experimental results show that our rejection strategy can further improve

the accuracy of our framework.
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¥ 6 E Conclusions and Future Work

6.1 Conclusions

The ubiquity of GPS-embedded devices such as the smart phones, loop sensors,
has resulted in an explosion of spatio-temporal data. As we claimed in Chapter 1, min-
ing the underneath wealth of spatio-temporal data is of great importance in various of
industrial and commercial applications. However, in many real scenarios, such as traf-
fic recommendation and location based social network, spatio-temporal data is usually
massive, noisy and in very large scales. The underlying patterns in spatio-temporal are
affected by complex spatial correlations, temporal dependencies, and many external
factors. In order to achieve meaningful and accurate results in mining spatio-temporal
data, it is important to extract effective feature representations from data. In this thesis,
we study learning representations of spatio-temporal data. We present the challenges
in learning spatio-temporal data representations and we use three concrete examples
to illustrate how to learn the representations while addressing the corresponding chal-
lenges.

In Chapter 3, we study capturing complex correlations in spatio-temporal data
representations. We use the travel time estimation problem as a concrete example. We
propose an end-to-end framework based on deep neural networks called DeepTTE. Our
model contains a geo-convolutional component which learns the spatial correlations in
a fine granularity, a recurrent component which captures the temporal dependencies
between different roads, and an attribute component which models the external factors.
Such architecture automatically learns the feature representations of road segments data
effectively. A multi-task learning component is further given on the top of DeepTTE
which predicts the travel time by combining the collective estimation and individual
estimation.

In Chapter 4, we study handling missing values while learning representations of
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spatio-temporal data. We propose BRITS, a novel method to use recurrent dynamics
to learn the representations of complex data correlations, and impute the missing val-
ues according to the learned representation. Our model does not impose assumptions
over the data-generating process. Alternatively, we use a bi-directional recurrent neural
network to learn the representations of captured correlations, and predict the missing
values directly. Our model treats the missing values as variables of RNN graph. The
imputation errors for missing values in both forward and backward directions can be
fully backpropagated, which makes the imputation results more accurate. The missing
value imputations are jointly trained with the classification/regression tasks. Experi-
ment results show that our model demonstrates more accurate results for both imputa-

tion and classification/regression than state-of-the-art methods.

In Chapter 5, we further study the representation learning of extremely massive
spatio-temporal data. Specifically, we consider the user identification problem as an
example. In this problem, we consider the method of identifying users across hetero-
geneous data sources. The mobility datasets in this problem are very noisy and sam-
pled at very different rates, which leads to extremely complex scenarios in identifying
users. We propose the signal based similarity for measuring trajectory similarities in
massive mobility datasets. In signal based similarity, we use the co-occurrence repre-
sentations of users’ trajectories, and we calculate the similarity scores based on such
representations in multiple resolutions. We present a MapReduce-based framework
called Automatic User Identification (AUI) which enables us to calculate signal based
similarities at very large scales. We conduct extensive experiments. The experimental

results show that our model significantly outperforms the existing methods.

The frameworks and models we used in this thesis provide a guidance in principle
on learning representations of spatio-temporal data. Especially, the proposed meth-
ods in this thesis are able to effectively capture the complex correlations, impute the

missing values and handle the massiveness in spatio-temporal data.
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6.2 Future Directions

Learning representations of massive spatio-temporal data is very important yet
challenging. It is still a hot topic in both academic and industrial areas. In this section,
we present two future directions of spatio-temporal data representation learning.

First, for some extremely complex scenarios, learning effective feature represen-
tations still rely on manually designed rules. For example, for the user identification
problem in Chapter 5, we design the signal based similarity in an ad-hoc way. In recent
studies, some researchers used graph embedding to identify the users from mobility
datasets with no hand-crafted features!!%7191 However, their methods apply to rela-
tively regular mobility data with nearly the same sampling rates. To the best of our
knowledge, there is still no effective method which solves user identification problem
in very massive cases without hand-crafted features. In practice, learning feature rep-
resentations from raw data with carefully devised deep architectures enables us to dis-
cover useful hierarchical features automatically. However, devising such architectures
is highly non-trivial and the running time is less efficient for very large scale datasets.
Alternatively, the hand-crafted features are usually robust and highly scalable but re-
quire much human-effort. The trade-off between two types of feature representations
is an intriguing direction for future work.

Another interesting avenue is knowledge transfer for representation learning of
spatio-temporal data. Many tasks in mining spatio-temporal data share similar patterns.
For example, suppose that we have collected the congestion level of each road in a city
in a past period. We aim to predict the congestion level of each road in the next few
minutes. Such problem is highly related to the travel time estimation problem as we
presented in Chapter 3. The travel time and congestion level are both affected by the
spatial correlations and temporal dependencies of adjacent road segments. Thus, it
helps better predict the congestion levels if we can transfer such knowledge in travel
time estimation into the congestion level prediction problem. A related research topic
is transfer learning where we focus on storing the knowledge learned from a source
domain and applying it to a related target domain''%. However, most of existing

transfer learning methods focus on the vision tasks, such as the image classification,
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object detection. Few work considers knowledge transfer for spatio-temporal data.
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________________________________________________________
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