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Abstract

Stochastic optimization has established itself as a major method to handle uncertainty in
various optimization problems, by modeling the uncertainty by a probability distribution over
possible realizations. Traditionally, the main focus in stochastic optimization has been various
stochastic mathematical programming (such as linear programming, convex programming). In
recent years, there has been a surge of interest in stochastic combinatorial optimization prob-
lems from the theoretical computer science community. In this article, we survey some of the
recent results on various stochastic versions of classical combinatorial optimization problems.
Since most problems in this domain are NP-hard (or #P-hard, or even PSPACE-hard), we focus
on the results which provide polynomial time approximation algorithms, with provable approx-
imation guarantees. Our discussions are centered around a few representative problems, such
as stochastic knapsack, stochastic matching, multi-armed bandit etc. We use these examples
to introduce several popular stochastic models, such as the fixed set model, 2-stage stochastic
optimization model, stochastic adaptive probing model etc, as well as some useful techniques for
designing approximation algorithms for stochastic combinatorial optimization problems, includ-
ing the linear programming relaxation approach, boosted sampling, content resolution schemes,
Poisson approximation etc. We also provide some open research questions along the way. Our
purpose is to provide the readers a quick glimpse to the models, problems and techniques in
this area, and hopefully inspire new contributions.
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1 Introduction

Uncertainty is an inevitable facet of almost all important decision problems. It is present in a variety
of forms and caused by many reasons, such as the errors and/or noises in data measurements, the
model parameters, or the predictions made by probabilistic predictive algorithms. Various types of
problems of handling uncertainty have been a subject of extensive research in many areas, including
computer science, operation research, economics, management science and social science. Stochastic
optimization is a major method for dealing with uncertainty for optimization problems, by modeling
the uncertainty using probability distributions of the input instances. The field originated from the
work of Dantzig [38], and has been studied extensively and found numerous applications in many
areas. A central theme in the field is to solve stochastic versions of mathematical programming
problems (the study of such problems is often referred to as stochastic programming as well). We
refer interested readers to the books [22, 124].

Recent years have witnessed a surge of interest in solving combinatorial optimization problems
under uncertainty from the theoretical computer science community. This is in part due to the dra-
matic increase in the number of application domains, such as information extraction systems, data
integration systems, sensor networks, and predictive machine learning algorithms, that produces a
huge amount of uncertain data. At the same time, applications (including the above) that require
solving certain combinatorial optimization problems, when fed with such data, have to take the un-
certainty into account. This gives rise to a variety of stochastic models and optimization problems.
In this article, we review some recent work on various stochastic versions of classical combinato-
rial optimization problems. It is well known that many combinatorial optimization problems are
NP-hard. So we can imagine that the added stochasticity often makes the problems even harder,
(NP-hard, #P-hard, or even PSPACE-hard). Therefore, it is very unlikely that these stochastic
problems admit efficient algorithms that can solve them exactly. One principled way to deal with
the computational intractability is to settle for polynomial time approximation algorithms. We
refer interested readers to the books on this field of approximation algorithms [131, 133]. A major
focus in this field is to obtain polynomial time algorithms with provable approximation ratio. For
maximization problems, the ratio is defined to be the ratio between the optimal cost and the cost
of our solution (or expected cost, if any stochasticity or/and randomization 1 ). For minimization
problems, it is the ratio between the cost of our solution and the optimal cost. Obviously, the ratio
is at least 1 and we want it to be as close to 1 as possible.

In this article, we present a selection of recent results in polynomial time approximation al-
gorithms for stochastic combinatorial optimization problems. We have not attempted to be com-
prehensive and our selection of problems may be idiosyncratic. We also include the details of the
algorithms and the analysis of approximation ratios for some problems. None of these results are
really new. The expositions for some of them are simplifications of known results (possibly with
slightly worse approximation ratios sometimes in favor of expositional simplicity). The purpose of
doing this is to give the readers a flavor of the models, ideas and techniques in this new exciting
and fast growing area.

1We usually use “stochastic/probabilistic” to indicate that the input instance follows certain probability distribu-
tion, while “randomization” to refer to the randomness produced by the randomized algorithms.
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1.1 A Few Representative Problems

There are diverse ways in which uncertainty can interact with and influence the decision process.
So, there are several natural corresponding stochastic models. Instead of introducing these abstract
models, we choose to be concrete, by providing a few representative problems. We also highlight
some interesting motivating applications for those problems.
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{
1 w.p.0.5
2 w.p.0.5

`cd =

{
2 w.p.0.7
3 w.p.0.3

`sa = 3

`sc = 2

`ad = 2

`cd = 3

`bt =

{

`dt = 2

1 w.p.0.1
3 w.p.0.9

Realizations `ab `cd `bt Prob
r1 1 2 1 .035
r2 1 2 3 .315
r3 1 3 1 .015
r4 1 3 3 .135
r5 2 2 1 .035
r6 2 2 3 .315
r7 2 3 1 .015
r8 2 3 3 .135

Figure 1: A stochastic graph. There are three edges with uncertain lengths. There are 23 = 8
possible realizations in total.

Problem 1.1. (Fixed Set Stochastic Shortest Path): We are given a stochastic graph where the
length µe of each edge e is an independent random variable. 2 See Figure 1 for an example. The
objective is to find an s-t path P connecting s and t such that the probability that the length of P
is at most a given threshold C, i.e., Pr[

∑
e∈P µe ≤ C], is maximized. 3

We can also think µe as the travel time of the edge e (the probability distribution of µe may be
obtained from historic data, or traffic prediction algorithms). We need to arrive the airport before
a specific time, in order to catch a flight . The above problem asks for a path that maximizes the
probability that we can arrive on time.

The problem and its variants have been studied in a number of papers since 1980s (see e.g.,
[109, 14, 119, 118, 106, 108]). Besides the shortest path problem, one can easily formulate similar
problems for other combinatorial optimization problems. We will discuss this problem and its
generalizations in more details in Section 8.

Note that the solution path P is chosen before the trip, and once chosen, is a fixed set of edges.
We call such problems fixed set problems. Next, we introduce a problem in which the decision has
to be made in an adaptive manner.

Problem 1.2. (Adaptive Stochastic Knapsack) We are given a knapsack with fixed capacity C
and a set of items. The size and the profit of each item are uncertain and only their probability
distributions are known to us in advance. We only know the actual size and profit of an item when
we insert it into the knapsack. Our goal is to design an adaptive policy that maximizes the expected

2For simplicity, we assume the distribution of each random variable is discrete with a finite support. The complete
description of the distribution is given as input.

3Another natural problem would be to minimize the expected length of the path. However, a moment reflec-
tion shows that the problem can be trivially reduced to deterministic shortest path problem, using the linearity of
expectation.
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total profit of items that can be put into the knapsack. More specifically, the adaptive policy should
determine which item to insert next based on the remaining capacity and the set of available items.

The above problem has a very natural motivating example in stochastic scheduling. Suppose
we want to schedule a subset of n jobs on a single machine. We have a fixed deadline and we want
to gain as much profit as possible before the deadline. The precise processing time and profit of
each job are random variables, and the true values are only revealed until the job is completed.

The problem is a classical problem in stochastic combinatorial optimization. It was studied
back in 70s in the stochastic control and operation research literature, and some interesting special
cases were identified and solved optimally (see e.g., [42, 43, 9, 8]). The problem has a very different
nature from the fixed set problems, in that a solution to it is an adaptive policy, instead of a set.
Even to specify the optimal policy may need exponential space (see Section 3 for details). The
problem is likely to be PSPACE-hard (a variant of the problem has been shown to be PSPACE-
hard [16]). Designing good approximation algorithms for this problem and its generalizations has
received considerable attention in recent years, which we review in more details in Section 3.

In the fixed set stochastic shortest path problem, we make our final decision in one shot, while
in the stochastic knapsack problem, we make decisions in an adaptive fashion. Another popular
model that interpolates the above two models is the two-stage stochastic model with recourse. We
provide an example below.

Problem 1.3. (Two-stage Stochastic Set Cover) We are given a set U of ground elements and the
weighted family F of subsets of U . We would like to choose some subsets S ⊆ F of minimum total
weight to cover all elements in U (i.e., each element of U is contained in some subset of S). This
is the classical deterministic set cover problem. In the two-stage stochastic model, there are two
stages (by its name). In the first stage, we do not know the actual demand (i.e., the set of elements
we need to cover), but only a distribution D of it. 4 We can select a few subsets SI ⊆ F at the
first stage. In the second stage, the actual demand set U ′ (U ′ ⊆ U) is revealed. However, our first
stage decision SI may not be able to cover U ′, and we can select some extra subsets SII ⊆ F to
cover the remaining elements of U ′. The catch is that the weight of each subset in F in the second
stage is λ times more expensive than in the first stage (λ > 1 is called the inflation factor). 5 The
goal is to minimize the expected cost over both stages.

The above 2-stage model naturally captures the applications in which the decision has to be
made before knowing the demand, and some more expensive recourse action can be taken after-
wards. For example, suppose there is a company which needs to set up its facilities. Before building
the facilities, they only know the partial knowledge about the demands. After setting up the facil-
ities, they receives the real demand. If the demand exceeds the capability of the current facilities,
the company can set up more facilities, which is usually more expensive, to meet the extra demand.

The two-stage stochastic optimization model has been a major topic in both the stochastic
programming literature (see e.g., [22]), and in the stochastic combinatorial optimization literature,
which we discuss in more details in Section 6 and 7.

4We may assume that each element e ∈ U is associated with a probability pe ∈ [0, 1], which means e is present in
the demand set with probability pe independently. The current technique can handle more general distributions. See
Section 6.

5It is easy to see that if λ ≤ 1, the first stage is meaningless and we only need to make the decision in the second
stage.
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All the above three problems assume the stochastic information is given as the input. However,
in many real life problems, there is no readily available stochastic information. All we have are some
presumed probabilistic 6 models with unknown parameters (e.g., the cost is distributed normally,
with unknown mean and variance). We are allowed to take samples (or we may already have
some historical samples) to obtain the distributional information (e.g., to learn the parameters
of the probabilistic model). The learning step has traditionally concerned the statistical learning
community, and was separated from the optimization stage in many cases. However, there have
been several interesting recent research problems that attempt to bring the learning step and the
optimization step together. We provide an example below. More can be found in Section 9.

Problem 1.4. (Combinatorial Bandit Arm Selection) We have a bandit with n arms, where the
i-th arm is associated with an unknown reward distribution supported on [0, 1] with mean θi. Upon
each sample (or “pull”) of a particular arm, we receive a reward, which is an i.i.d. sample from the
underlying reward distribution. We sequentially decide which arm to be pulled next and then collect
the reward by sampling that arm. The top-k arm identification problem is to identify a subset of k
arms with the maximum total mean, using as few samples as possible.

Instead of the simple cardinality constraints, we can consider other combinatorial constraints
over the arms as well. For example, suppose there is a matroid constraint over the set of arms and
we need to select a basis of the matroid. The model was proposed recently by Chen at al. [36].

We highlight an interesting motivating application of the top-k arm identification in crowd-
sourcing. In recent years, crowdsourcing services become increasingly popular for providing labeled
data for many machine learning tasks. In such a service (e.g., Amazon Mechanical Turk 7 ), the
requester submits a batch of microtasks (e.g., unlabeled data) and the workers from the crowd
are asked to complete the tasks. Upon each task completion, a worker receives a small monetary
reward. Since some workers from the crowd are noisy and unreliable, it is important to choose
more reliable workers. We can model the reliability of a worker by a Bernoulli distribution. One
way to choose reliable workers is to test each worker by a few golden samples (i.e., data with the
known correct labels). One such test corresponds to a pull of the arm. Clearly, it is desirable to
select the best K workers using as few samples as possible.

The reader may have already noticed the deterministic versions of the above problems are mostly
classical combinatorial optimization problems, which are quite well understood. However, the
stochasticity has drastically changed the nature of these problems. The study of the approximability
for many of stochastic combinatorial problems is still an active research area and there are many
open problems. We attempt to list some of them along the way.

We note that the body of literature on the topic is already large and has been growing quite
fast. There are certainly other important stochastic combinatorial optimization problems that do
not belong to any of the above four classes. Depending on how the stochasticity interacts with the
decision process in new applications, it is possible to formulate new classes of meaningful models
and problems. We mention some of them in Section 9.

Outline: We first review some standard terminologies in Section 2. In the next few sections, we
discuss a few problems and techniques in details. In particular, we discuss the stochastic knapsack

6We use “probabilistic” and “stochastic” interchangeably, except when there is a convention to follow (e.g., “s-
tochastic process”,“stochastic optimization”, “probabilistic graphical model” etc.).

7https://www.mturk.com
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problem (Problem 1.2) in Section 3, the stochastic matching problem in Section 4, and the con-
tention resolution scheme with its applications to stochastic probing in Section 5. The above three
sections are about adaptive stochastic problems. In the next two sections, we discuss two important
techniques, the LP technique (Section 6) and the boosted sampling technique (Section 7) for two
stage stochastic optimization with recourse. In Section 8, we introduce the Poisson approximation
technique, which can be used to deal with the sum of random variables in both fixed set problems
and stochastic knapsack. In Section 9, we briefly discuss a few other important models in the
literature.

2 Preliminaries

We first review some standard terminologies. For a minimization problem, we say an algorithm
achieves an approximation factor of α (α ≥ 1), if

E[SOL]/OPT ≤ α,

where SOL denotes the cost of the solution found by the algorithm, OPT denotes the optimal cost,
and the expectation is over the randomness of the problem instance and the algorithm (if it is
randomized). For a maximization problem, an algorithm achieves an approximation factor of α
(α ≥ 1), if OPT/E[SOL] ≤ α.

A polynomial time approximation scheme (PTAS) is an algorithm which takes an instance of a
maximization problem and a parameter ε and produces a solution whose cost is at least (1−ε)OPT,
and the running time, for any fixed ε, is polynomial in the size of the input. If ε appears as an
additive factor in the above definition, namely the cost of the solution is at least OPT− ε, we say
the algorithm is an additive PTAS. In many cases, a PTAS (such as an O(n1/ε

2
) time algorithm)

is not efficient in practice. However, obtaining a PTAS for a problem is of significant theoretical
interest and importance, as it is the best approximation ratio we can achieve in polynomial time for
NP-hard (or harder) problems. We say a PTAS is a fully polynomial time approximation scheme
(FPTAS) if the running time is polynomial in the size of the input and 1

ε . FPTAS can be quite
efficient in practice.

For a deterministic combinatorial optimization problem A, the exact version of a problem A
asks for a feasible solution of A with weight exactly equal to a given number K. An algorithm runs
in pseudopolynomial time for the exact version if the running time of the algorithm is bounded by
a polynomial of n and K.

The following standard Markov inequality will be used frequently.

Proposition 2.1. (Markov inequality) Let X be a random variable and E[X] be its expectation.
For any α > 1, it holds that

Pr[X ≥ αE[X]] ≤ 1/α.

A finite matroid M is a pair (V, I), where V is a finite set (called the ground set) and I is a
collection of subsets of V . Each element in I is called an independent set. A maximal independent
set is called a basis. Moreover, M = (V, I) satisfies the following three properties:

1. ∅ ∈ I;

2. if A ⊆ B and B ∈ I, then A ∈ I;
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Figure 2: A decision tree corresponding to an adaptive policy.

3. for all A,B ∈ I with |A| > |B|, there exists an element e ∈ A \B such that B ∪ {e} ∈ I.

Matroids generalize several important combinatorial objects, such as all subsets of a set with
cardinality at most k, all forests in a graph, all linear independent subsets of a set of vectors. For
more information about the theory of matroids, see, e.g., [123].

3 Adaptive Stochastic Knapsack

In this section, we consider Problem 1.2 the adaptive stochastic knapsack problem. First, we recall
in the deterministic knapsack problem, we have a set of n item I. The ith item has a value vi
and size si. Our objective is to choose a maximum-value set of items that fits into a knapsack of
capacity C.

In the stochastic knapsack problem, the values {vi} and sizes {si} of items are non-negative
independent random variables, with known distributions. For simplicity, we assume the distribu-
tions are discrete. One needs to insert the items one by one. Once one item is inserted, its value
and size are revealed (drawn from the distribution), and we procure its value. If the realization
of an item causes the overflow of the knapsack, we stop and the overflowing item contributes zero
value. Our goal is to design a policy to insert items and maximize the expected total value of items
successfully placed in the knapsack. Without loss of generality, we can assume that the values {vi}
are deterministic, and the capacity of the knapsack is C = 1.

We need to explain what is a policy. A non-adaptive policy is simply an ordering of items to
insert. We also consider adaptive policies, which are more general. An adaptive policy is formally
defined by a mapping P : 2I × R+ → I specifying which item to insert next, given the subset of
items still available and the total remaining capacity. We can think about a policy as a decision
tree. At every node of the tree, the policy specifies which item to insert next, and the directed
edges leaving this node correspond to the different possible realizations of the size of this item. See
Figure 2 for an example. We can see the decision tree corresponding to an adaptive policy may
have a linear height, and thus an exponential size. This means that we may not be able to represent
the optimal policy in polynomial space. So, it is not even clear if the problem is in NP. In fact,
Dean et al. [40] showed that a close variant of the above problem is PSPACE-hard.

Now, we present a constant factor approximation algorithm, due to [16]. Before stating the
algorithm, we first need some definitions and simple observations. For each item, it is convenient
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to consider the mean truncated size

µi = E[min{s1, 1}].

For a set of item, we define size(S) =
∑

i∈S si, µ(S) =
∑

i∈S µi and val(S) =
∑

i∈S vi. We make
the following simple claim.

Claim 3.1. For any fixed set S of items, Pr[size(S) < 1] ≥ 1− µ(S).

Proof. By the definition of mean truncated size and Markov inequality, we can see that Pr[size(S) ≥
1] = Pr[min{size(S), 1} ≥ 1] ≤ E[min{size(S), 1}] ≤ E[

∑
i∈S min{si, 1}] = µ(S). �

Lemma 3.2. For any adaptive policy P, let S be the (random) set of all items that P tries to
insert. We have E[µ(S)] ≤ 2, where the expectation is taken over the executions of the policy.

Proof. (sketch) Denote the truncated item size by s̃i = min{si, 1}. For any policy P, let St denote
the first t items chosen by P. We define Xt =

∑
i∈St(s̃i − µi). It is easy to verify Xt is a

martingale. 8 Since X0 = 0, we get E[Xt] = E[X0] = 0 due to the martingale property. Thus,
E[Xt] = E[

∑
i∈St s̃i] − E[µ(St)] = 0. Moreover, the process stops once size(St) > 1 or there is no

item left. Hence,
∑

i∈St s̃i ≤ 2 is always true. Taking the expectation, we can see E[µ(St)] ≤ 2. �

3.1 The Greedy Algorithm

We divide the items I into two sets: light items L with µi ≤ σ and heavy items H with µi > σ,
where σ is a constant to be specified later. Assume L = {1, 2, 3, . . .} such that v1

µ1
≥ v2

µ2
≥ . . ..

Denote by Mk =
∑k

i=1 µi. Let n∗ be the maximum number such that Mn∗ ≤ 1. We define two
important quantities

mG =
n∗∑

i=1

vi(1−Mi) and m1 = max
i∈I
{vi Pr[si ≤ 1]}.

The algorithm is the following:

Algorithm 1: Greedy Algorithm

1 Calculate m1,mG;
2 if m1 ≥ mG then
3 Insert the item which yields m1 = vi Pr[si ≤ 1];
4 else
5 for i = 1→ n∗ do
6 Insert item i;
7 If the knapsack overflows, break;

8{Xt} is a martingale if E[Xt+1 | Xt] = Xt.
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3.2 Analysis

Now, we analyze the approximation ratio of the greedy algorithm. First, we show the expected
value of the algorithm can be lower bounded by mG and m1.

Lemma 3.3. Let GRD be the expected value obtained by Algorithm 1. It holds that GRD ≥ m1 and
GRD ≥ mG.

Proof. If m1 ≥ mG, the expected value of the algorithm is exactly m1. Otherwise, we can see

GRD =
∑

k≥1
vk Pr

[
k∑

i=1

si ≤ 1

]
=
∑

k≥1
vk Pr

[
k∑

i=1

s̃i ≤ 1

]
.

By Markov inequality, Pr[
∑k

i=1 s̃i > 1] ≤
∑k

i=1 µi = Mk, for any k ≤ n∗. Hence, GRD ≥∑n∗

k=1 vk(1−Mk) = mG. �

The remaining task is to lower bound m1 and mG by the optimal value OPT. We handle light
items and heavy items separately. We first deal with light items L. We define a function Φ(c) as
follows:

Φ(c) =

{
max

∑

i∈L
vixi : 0 ≤ xi ≤ 1,

∑

i∈L
µixi ≤ c

}
. (1)

We can see Φ(c) is the best fractional relaxation of the knapsack problem with capacity c, using
only light items. A crucial observation is the following lemma, which places an upper bound for
any adaptive policy.

Lemma 3.4. Let OPTL be the expected value obtained by the optimal policy for the problem where
we only have light items. Then, we have OPTL ≤ Φ(2).

Proof. (sketch) Let us fix an arbitrary adaptive policy. We should interpret xi as the probability
that item i is successful placed in the knapsack by the policy. So,

∑
i∈L vixi is the expected total

value obtained by the policy. According to Lemma 3.2, it holds that
∑

i∈L µixi = E[µ(S)] ≤ 2,
where S is the set of items successfully placed in the knapsack. This constraint holds for any policy,
including the optimal one. Hence, the optimal policy has expected value at most Φ(2). �

It is well known that the optimal fractional solution Φ(c) for the knapsack problem: we simply
pack items in the decreasing order of vi

µi
, with only the last item possibly packed fractionally. In

particular, Φ(c) is a piecewise linear and concave function, with the following explicit form:

∀k ∈ L, ∀δ ∈ [0, µk),Φ(Mk−1 + δ) =

k−1∑

i=1

vi +
vk
µk
δ.

Lemma 3.5. mG ≥ 1−σ
2 Φ(1) ≥ 1−σ

4 Φ(2) ≥ 1−σ
4 OPTL.

Proof. We prove the lemma by picture. mG corresponds to the area under the staircase. Φ(1) is
twice of the area of the dark shaded triangle ABC. Compare them in the Figure 3.2. The part of
the triangle which is not covered by mG consists of small triangles whose heights sum up to at most
Φ(1), and the base of each triangle is µi ≤ σ. Therefore mG ≥ 1−σ

2 Φ(1). The second inequality is
due to the concavity of Φ and the last follows from Lemma 3.4. �
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Figure 3: The fractional knapsack solution Φ(c). The light shaded area corresponds to mG. As
Φ(c) is concave, the curve Φ(c) is above the segment AC.

Lemma 3.6. For any policy P, we use H ⊂ H to denote the subset of heavy items that are
successfully placed in the knapsack. Note that H is a random set. Then E[val(H)] ≤ 2

σm1.

Proof. Whenever the policy P attempts to insert an element, it succeeds with probability at most
Pr[si ≤ 1]. Let S be the set of heavy item that P attempts to insert. Thus we have Pr[i ∈
H] ≤ Pr[P attempts to insert i] Pr[si ≤ 1] = Pr[i ∈ S] Pr[si ≤ 1]. From Lemma 3.2, we know
E[µ(S)] ≤ 2. Finally, we can see that

E[val(H)] =
∑

i

vi Pr[i ∈ H] ≤
∑

i

vi Pr[i ∈ S] Pr[si ≤ 1]

≤ m1

∑

i

Pr[i ∈ S] = E[|S|]m1 ≤
2

σ
m1.

The last inequality follows from by the definition of heavy element, µi ≥ σ for each i ∈ S. �

Theorem 3.7. For σ = 1/3, OPT ≤ 12GRD. So, Algorithm 1 is a 12-approximation.

Proof. Consider the optimal adaptive policy, and denote the set of items successfully inserted
as S = L ∪ H. Therefore, by Lemma 3.5, E[val(L)] ≤ OPTL ≤ 4

1−σmG, and by Lemma 3.6,

E[val(H)] ≤ 3
σm1. Combining with Lemma 3.3, we obtain that

OPT = E[val(L)] + E[val(H)] ≤ 4

1− σ
mG +

2

σ
m1 ≤ 12GRD.

�

3.3 Historical Notes, Variants, and Generalizations

The adaptive stochastic knapsack was first studied by Dean, Goemans and Vondrak [16]. The
above greedy algorithm and the analysis are essentially due to them. With some extra effort, one
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can in fact show the greedy algorithm achieves an approximation factor of 7. Note that the greedy
algorithm is in fact a non-adaptive policy, and we compare it against the optimal adaptive policy
(which may not have a polynomial size representation). The crux of the analysis, that allows us to
upper bound the optimal value, is Lemma 3.4. Although the approach is very similar to the linear
programming relaxation technique used to approximate deterministic NP-hard problems, they have
essential difference. In the deterministic case, we have the integer constraints on the variables, and
we relax them. In our case, the variables should be interpreted as certain probabilities, which can
be fractional. But we only have some necessary (but not sufficient) constraints on the probabilities
(in the above problem, the constraint is

∑
i∈L µixi ≤ 2). In Section 4, we will see another example

of this idea.
In the journal version of their paper [41], they presented a randomized variant of the greedy

algorithm which can achieve a factor of 32/7. In the same paper, they proposed another useful
idea that can further improve the approximation factor. Note that in expectation, the number of
heavy items that can be inserted successfully is bounded by a small constant. Hence, it is possible
to enumerate all possible ways to insert heavy items (by enumerating the decision tree). Using this
idea, they managed to improve the approximation factor to 3.

The idea of enumerating the decision trees was carried further by Bhalgat, Goel and Khan-
na [20]. They showed that there exists a special class of policies called block adaptive policies
which, combined with their discretization technique, allows one to enumerate all possible decision
trees for such policies in polynomial time. They used this idea to obtained a bi-criterion PTAS:
their policy can achieve an expected value of (1 − ε)OPT, and the knapsack capacity may be vio-
lated by at most ε, for any constant ε > 0. Typically, such a result can not be achieved by the LP
technique. Using this result, Bhalgat [19] obtained a (2 + ε)-approximation, which is currently the
best known approximation factor for the adaptive stochastic knapsack problem. Their approach is
further simplified and generalized in [108], using the Poisson approximation technique, which we
will detail in Section 8.

Stochastic Knapsack with Correlations and Cancellations: Gupta et al. [74] considered a
generalization, in which the value and the size of a job can be correlated (described by a joint
distribution), and we can cancel a job in the middle. They provided an approximation algorithm
with an approximation factor of 8, base on a new time-indexed LP relaxation. They also considered
a further generalization, called the non-martingale bandit problem, and provided a constant factor
approximation algorithm. Using the Poisson approximation technique, Li and Yuan [108] obtained
a bi-criterion PTAS for the stochastic problem with correlations and cancellations. They also show
that the bi-criterion PTAS can be easily converted into polynomial time (2 + ε)-approximation
if we only allow cancellations. Ma [110] again used the LP technique, but with a different LP
which corresponds to a dynamic program, and obtained a polynomial time algorithm that finds a
(2+ ε)-approximate adaptive policy for stochastic knapsack with correlations or cancellations, if all
the possible sizes of any item are integers. We conclude the discussion of the stochastic knapsack
problem with the following obvious open questions:

Open Question 1. Is there a PTAS for the adaptive stochastic knapsack problem (without violating
the capacity constraint)?

Note that it is known that certain variants of stochastic knapsack are PSPACE-hard to approx-
imate within some constant factors [16, 40]. However, these results do not preclude an affirmative
answer of the above question. Obtaining a better-than-2 approximation ratio is also a very inter-
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esting open question, which seems to require new ideas. In fact, even for the basic version of the
adaptive stochastic knapsack, where the sizes are random but the values are deterministic, whether
the problem is PSPACE-hard is still open.

Stochastic Orienteering Problem: Stochastic orienteering is a generalization of stochastic k-
napsack. It is defined as follows:

Problem 3.8. (Stochastic Orienteering) We first introduce the deterministic version. We are given
a metric (V, d), where V is the set of vertices and d is the distance metric, a budget B and an initial
vertex r ∈ V . Each vertex has a job associated with a reward and processing time. We assume
that the travel time between two vertices u and v is proportional to d(u, v). The goal is to compute
a path starting from r that visits a subset of vertices and run the jobs on these vertices, so as to
maximize the total reward, subject to the constraint that the travel time plus the job processing time
do not exceed the budget B.

In the stochastic version, the reward and the processing time of each job are random variables.
The distributions are also given as input. The goal now is to compute an adaptive policy that
maximizes the expected total reward.

We can easily see that if all the distances are 0, the problem reduces to the stochastic knapsack
problem. The problem is introduced in Gupta et al. [74]. They also showed that when the rewards
are deterministic, there is a policy which is an O(1)-approximation to the best non-adaptive policy
(that is to visit the vertices in a fixed order), while it is an O(log logB)-approximation to the best
adaptive policy. It was attempting to believe that there is a non-adaptive policy which is a constant
approximation of the best adaptive policy. Somewhat surprisingly, Bansal and Nagarajan [13]
showed the gap between the best adaptive policy and the best non-adaptive policy is at least
Ω((log logB)1/2), if the rewards are deterministic.

4 Stochastic Matching

In this section, we consider the following adaptive stochastic matching problems. We will provide
a simple constant factor approximation algorithm using the LP-rounding technique. In Section 5,
we will present a significant extension of this technique, called the contention resolution scheme,
which can be used to handle several other combinatorial constraints as well.

4.1 Problem Definition

Problem 4.1. (Adaptive Stochastic Matching) We are given a probabilistic graph G(V,E) on n
nodes. We would like to find a maximum weighted matching in this graph. For each edge (u, v), we
are given a probability value puv, a weight wuv. Each vertex u is associated with a positive integer
tu (the patience level). To find out whether the edge (u, v) is present in G or not, we can “probe”
the pair (u, v) (assuming that u and v are still unmatched). If the edge (u, v) indeed exists (which
happens with probability puv, independent of other edges), it gets irrevocably added to our matching
M . Moreover, we can probe at most tu edges incident to vertex u (tu can be thought as the patience
level of vertex u). Our goal is to design an adaptive probing policy that maximizes the expected total
weight of the matching M .
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The problem is motivated by the kidney exchange program, which we now briefly describe.
The problem and some of its variants also find important applications in the popular online dating
application and online advertisement assignment (see [12] for more details).

A motivating example: Kidney Exchange:: The United Network for Organ Sharing (UNOS)
launched in year 2000 the famous kidney exchange program, which has saved thousands of lives [122].
9 We briefly describe the program and how it can be modeled as the stochastic matching problem.
Suppose a family member of the patient would like to donate a kidney to the patient but the kidney
is incompatible with the patient’s body. The idea is to identify two incompatible patient/donor
pairs such that each donor is compatible with the other pair’s patient, and then perform the kidney
exchange between the two pairs. We can think each patient/donor pair as a vertex, and there is
an edge between two vertices if the compatibility allows for an exchange. Of course, our goal is
to find a large matching. To decide compatibility, three main tests must be performed. The first
two tests, the blood-type test and the antibody screen, are fairly easy to perform, while the third,
called crossmatching, is the most critical one, yet very expensive and time-consuming. However,
the compatibility can only be determined by this test. Therefore, if the crossmatch test is passed
for a pair, the transplant should be performed immediately. Thus, we can estimate the probability
that two pairs are compatible based on the initial two tests, model it by a probabilistic edge. A
crossmatch test corresponds to a probe on an edge. If the probe is successful, we should include this
edge in our matching (i.e., the exchange should be performed). The patience level for each vertex is
also very natural: it models the fact that a patient will eventually die without a successful match.

4.2 Algorithm

Similar as the stochastic knapsack problem, we use a linear program to upper bound the optimal
profit, and to guide our algorithm. Consider the following LP: for any vertex v ∈ V , ∂(v) denotes
the edges incident to v. Variable ye denotes the probability that edge e = (u, v) gets probed in the
adaptive strategy, and xe = pe ·ye denotes the probability that u and v get matched in the strategy.

maximize
∑

e∈E
we · xe (2)

subject to
∑

e∈∂(v)

xe ≤ 1 ∀v ∈ V (3)

∑

e∈∂(v)

ye ≤ tv ∀v ∈ V (4)

xe = pe · ye ∀e ∈ E (5)

0 ≤ ye ≤ 1 ∀e ∈ E (6)

Claim 4.2. The optimal solution of the above LP is an upper bound of the optimal expected profit
of any adaptive policy, which we denote as OPT.

We first solve the LP to the optimal and let {y∗e}e∈E denote an optimal solution to this linear
program. Let x∗e = pe · y∗e .

9The founder of the program, Alvin E. Roth, won the Nobel Prize in Economics in 2012, partly due to the
implementation of the program.
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Our rounding algorithm proceeds as follows. Fix a constant α ≥ 1, to be specified later. The
algorithm picks a uniformly random permutation π : E → E on all edges. Then, it inspects the
edges in the order of π. We say an edge e = (u, v) is safe if both u and v are unmatched and both
tu and tv are larger than zero. Whenever it is safe to probe the next edge e ∈ E, the algorithm
does so with probability y∗e

α . If edge e indeed exists, we include e in the matching. Otherwise, we
decrease the patience levels of both endpoints of e by 1. Note that the algorithm skips all unsafe
edges at the time they appear in π. See Algorithm 2 for the pseudocode.

Algorithm 2: Stochastic Matching

1 Pick a permutation π on edges E uniformly at random;
2 for For each edge e in the ordering π do
3 If e = (u, v) is not safe then do not probe it;
4 If e is safe then probe it with probability ye/α, else do not probe it;

4.3 Analysis

The approximation guarantee is summarized in the following theorem.

Theorem 4.3. For α = 4, Algorithm 2 achieves an approximation factor of 8 against any adaptive
policy for the stochastic matching problem.

We start with a simple lemma, which bounds the probability of the safeness of an edge when it
is considered by the algorithm.

Lemma 4.4. For any edge (u, v) ∈ E, at the point when (u, v) is considered under π,

(a) the probability that vertex u loses its patience is at most 1
2α , and

(b) the probability that vertex u is matched is at most 1
2α .

Proof. We begin with the proof of part (a). Let random variable U denote the number of probes
incident to vertex u by the time edge (u, v) is considered in π.

E[U ] =
∑

e∈∂(u)

Pr[edge e appears before (u, v) in π and e is probed]

≤
∑

e∈∂(u)

Pr[edge e appears before (u, v) in π] · y
∗
e

α
=
∑

e∈∂(u)

y∗e
2α

≤ tu
2α
.

The first inequality above follows from the fact that the probability that edge e is probed (con-
ditioned on π) is at most y∗e/α. Since π is a uniformly chosen random permutation on E, edge e
appears before (u, v) with probability 1/2. Hence the second equality follows. The last inequality
is by the LP constraint (4).

By Markov inequality, the probability that vertex u has timed out when (u, v) is considered
equals

Pr[U ≥ tu] ≤ E[U ]

tu
≤ 1

2α
.

This proves part (a). The proof of part (b) is almost identical: we consider the event that an edge
is matched and replace y∗e and tu by x∗e and 1 respectively and use the LP constraint (3)). �
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Having Lemma 4.4, the proof of Theorem 4.3 is quite simple now.

Proof of Theorem 4.3. Given that an edge e ∈ E is safe when considered, the expected profit from
e is

wepey
∗
e/α = wex

∗
e/α.

Consider the point when e = (u, v) is considered. By a union bound, we can see that

Pr[e is safe] ≥ 1− Pr[u loses patience]− Pr[v loses patience]− Pr[u is matched]− Pr[v is matched]

≥ 1− 1/2α− 1/2α− 1/2α− 1/2α = 1− 2/α.

Hence, the total expected profit is

∑

e

we
x∗e
α

Pr[e is safe] ≥
∑

e

wex
∗
e

1− 2/α

α
≥ 1− 2/α

α
OPT.

Plugging in α = 4 gives an approximation ratio of 8, as desired. �

4.4 Related Results and Variants

The problem was first formulated by Chen at al. [35]. They provided a 4-approximation for the
unweighted version of the problem (we = 1 for all edges e). In fact, they showed that the greedy
policy of choosing the edge e with highest pe to probe achieves an approximation factor of 4. Their
analysis is directly on the relations between the decision trees of the optimal policy and that of the
greedy policy. Adamczyk [1] improved their analysis and showed that the greedy algorithm is in
fact a 2-approximation for unweighted stochastic matching. Note that this is tight since the greedy
algorithm is a 2-approximation even in the deterministic setting. However, this greedy algorithm
(and other simple greedy schemes) can be seen to be arbitrarily bad for the weighted version. The
above algorithm is from Bansal et al. [12]. They also provided a more nuanced 4-approximation (3-
approximation for bipartite graphs) based on the dependent rounding technique [61]. Very recently,
Adamczyk et al. [2] improved the ratio to 2.845 for bipartite graphs and Baveja et al. [15] obtained
a 3.224-approximation for general graphs.

Open Question 2. Is there a polynomial time approximation algorithm for the adaptive (un-
weighted or weighted) stochastic matching problem that can achieve an approximation ratio α with
α < 2?

Online Stochastic Matching In an influential paper, Karp, Vazirani and Varirani [95] proposed
the following online matching problem: There is a bipartite graph G(U, V ;E), where the vertices
in U are given, and the vertices in V arrive one by one in an online fashion. When a new vertex
v ∈ V arrives, the edges incident on v are also revealed. We need to match v to an available vertex
in U irrevocably, or leave v unmatched (in this case, we cannot match v later). Karp et al. gave a
very simple and elegant randomized algorithm that achieves a competitive ratio of 1− 1/e, which
is optimal if the order of arrivals of vertices in V are chosen by an adversary. An major motivation
application of the online matching problem is online advertising. Here, each node in U represents
an advertiser/bidder and each node in v represents an ad slot/keyword.

The online stochastic matching problem is a stochastic variant of the online matching problem,
which was initially studied by Feldman et al. [53]. In this model, the bipartite graph is known,
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but the sequence of arrivals are i.i.d. samples from a given distribution (instead of chosen by an
adversary). Under some technical assumption, they gave a 0.67-competitive algorithm, beating the
optimal 1−1/e-competitiveness known for adversarial arrivals [95]. Some improved bounds on this
model were obtained [11, 113, 87]. The current best competitive ratio is 0.706, due to Jaillet and
Lu [87]. and the best upper bound of competitive ratio of any online algorithm is 0.832, due to
Manshadi et al. [113]. Goel and Mehta [64] considered a slight different model in which the arrival
sequence is a random permutation (known as random permutation model). They showed a greedy
algorithm achieves a (1 − 1/e) competitive ratio. The ratio was improved to 0.653 by Karande et
al. [92] and 0.696 by Mahdian and Yan [111]. The origin of the random permutation model is the
popular secretary problem, which we review briefly in Section 9.

Mehta and Panigrahi [114] considered another related model where even the distribution is not
given in advance, rather it arrives online. More precisely, when a new vertex v in V comes, we
know a set of {puv}u∈U values. We have to assign v to an available vertex u in U , and then with
probability puv the assignment is successful. If the assignment is not successful, we cannot assign
v again, but u is still available for later arrivals. It is easy to see a simple greedy algorithm can
achieve a competitive ratio of 1/2. Mehta and Panigrahi improved the ratio to 0.567 for equal and
vanishing probabilities (i.e., puv = p for all (u, v) ∈ E and p→ 0). They also showed that there is
even no (1 − 1/e) competitive algorithm for the problem. Recently, Mehta et al. [116] considered
the more general case for unequal and vanishing probabilities, and presented a 0.534-competitive
online algorithm, beating the trivial 1/2 factor.

The Adword Problem and Online Stochastic LP: A closely related problem is the Adwords
problem, which has important applications to sponsored search auctions. The problem is defined
as follows. There are n advertisers and m keyword queries. The advertiser i has a budget Bi. In
each time slot, a query j comes and we need to allocate query j to some advertiser i ∈ [n]. Let
bij be the bid by advertiser i for query j. We use indicator variable xij to denote whether j is
allocated to i. The revenue generated by the algorithm is

∑
i min(Bi,

∑
j bijxij).

We can see that the problem reduces to the online matching problem if Bi = 1 and bij = 0 or 1.
The seminal paper by Mehta el al. [115] started the investigation of the problem and presented an
optimal (1−1/e) competitive algorithm in the worse case setting. Various stochastic settings (i.i.d.
arrivals, random permutation models) have been studied extensively. The problem has been referred
to as online stochastic packing LP in the literature (one can think the variables of an LP comes
online, and the value of each new coming variable has to be determined immediately). An important
quantity in the problem is the so-called budget-to-bid ratio γ = miniBi/maxij bij . The ratio is
usually very large in the online advertising applications, and hence it would be interesting to see if
we can achieve better competitive ratios in this case. In fact, it is possible to achieve a competitive
ratio of (1 − ε) provided that γ is large enough (in terms of ε, n,m). Agrawal, Wang and Ye [5]
proved that γ should be at least Ω(ε−2 logm) in the random permutation model. After a series of
papers [44, 52, 5], Kesselheim et al. [98] presented an optimal algorithm which achieves the condition
established by Agrawal at al. In a recent elegant work, Agrawal and Devanur [4] generalized the
result to a broader class of online stochastic convex optimization, using Fenchel duality and the
online mirror descent algorithm developed in online learning. Gupta and Molinaro [77] considered
a different generalization to both packing and covering constraints. They also made extensive use
of the results from online learning.
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5 Adaptive Stochastic Probing Problem

In this section, we consider the following general problem defined by Gupta and Nagarajan [78]. V
is a set of elements and I is a family of subsets of V . We say (V, I) is a downwards-closed set systems
if for any I ∈ I, if I ′ ⊆ I, then I ′ ∈ I. Many combinatorial constraints are downwards-closed, such
as matroid, knapsack, matching and any intersection of them.

Problem 5.1. (Stochastic Probing) The stochastic probing problem is defined over a universe V
of elements with weights we for each e ∈ V . For each element e ∈ V , there is a probability
pe, indicating the probability that e is active. Each element is independent of all other elements.
We are also given two downwards-closed set systems (V, Iout) and (V, Iin), which are called the
outer packing constraint and the inner packing constraint respectively. We can adaptively probe the
elements. If element e is probed and happens to be active (with probability pe), we should choose e
into our solution irrevocably. We require that the set Q of elements we can probe must be in Iout
and the set of chosen active elements must be in Iin. Our goal is to design an adaptive policy which
can choose a (random) set S ⊂ V of active elements, the expected weight of S is maximized.

The above problem naturally generalizes the stochastic matching problem: We can encode the
patience level constraint by the outer packing constraint (I is the set of all subgraphs which satisfies
deg(v) ≤ tv). The inner packing constraints dictates that the chosen set of edges form a matching
(I is the set of all matchings). The result in [78] applies to several important combinatorial packing
constraints, such as matroid constraints, k-systems, k-column sparse packing integer programs. A
key tool used here is an elegant abstraction of a class of LP rounding schemes, called contention-
resolution schemes, introduced by Chekuri, Vondrák and Zenklusen [33].

5.1 Contention Resolution Schemes

A very popular and powerful methodology for designing approximation algorithms is to solve a
linear programming (LP) relaxation first, and then round the fractional LP solution to an integral
one. In the context of submodular maximization, Chekuri et al. [33] proposed a class of round-
ing schemes called Contention-Resolution schemes (CR schemes), which can be used to obtained
constant approximations for the submodular maximization problem under several combinatorial
constraints.

Now, we define what is a CR scheme. There are a set N of n elements and the set of feasible
solutions can be captured by a downwards-closed set system I ⊂ 2N . Let P(I) be the polytope of
the LP relaxation of the problem (so I ⊆ P(I)). We solve the LP to obtain a fractional optimal
LP solution x ∈ P(I). We would like to round x to an integral near-optimal solution π(x) ∈ I via
the following process π. For 0 ≤ b ≤ 1 and x ∈ P(I), we use R(bx) ⊆ N to denote the random set
obtained by choosing each element e ∈ N with probability bxe.

Definition 5.2. (CR Scheme) A (b, c)-balanced CR scheme π for a downwards-closed set system I
is a scheme such that for any x ∈ PI , the scheme returns a set π(I) ⊆ I = R(bx) with the following
property:

1. π(I) ∈ I;

2. Pr[i ∈ π(I) | i ∈ I] ≥ c for every element i.
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A scheme is said to be monotone if Pr[i ∈ π(R1)] ≥ Pr[i ∈ π(R2)] whenever i ∈ R1 ⊆ R2. A
scheme is said to be ordered if there is a permutation σ on N so that for any I = R(bx) ⊆ N , the
output of the scheme π(I) is the maximal independent subset of I obtained by considering elements
in the order of σ.

From the above definition, we can see that each element e is selected by the CR scheme with
probability at least bcxe. Hence, if we want to maximize a linear function

∑
ewexe subject to x ∈ I,

we can immediately obtain a bc-approximation from a (b, c)-balanced CR scheme for I. Monotone
and ordered CR schemes will be particular useful to the stochastic probing problem.

We know efficient CR schemes for several important combinatorial constraints. For example,
for any 0 < b ≤ 1, there is a (b, (1 − e−b/b)) CR-schemes for matroids, a (b, 1 − kb) ordered CR
scheme for k-systems. 10 See many more examples in [33].

Moreover, CR schemes have a very nice property that they can be combined for different
constraints if they are all monotone. For example, if there is a monotone (b, c1)-CR scheme π1 for
PI1 and a monotone (b, c2)-CR scheme π2 for PI2 , one can combine them to obtain a monotone
(b, c1c2)-CR scheme π for PI1∩I2 , where π(x) = π1(x) ∩ π2(x). We can easily extend it to the
intersection of more constraints as well.

5.2 Algorithm and Analysis for Stochastic Probing

Now, we show how a CR scheme enters the picture of the stochastic probing problem. In particular,
we show the following theorem.

Theorem 5.3. Consider an instance of the stochastic probing problem. Suppose the following hold:

1. There is a (b, cout)-CR scheme πout for P(Iout);

2. There is a monotone (b, cin) ordered CR scheme πin for P(Iin);

Then, there is a polynomial time approximation algorithm which can achieve an approximation
factor of b(cout + cin − 1).

Given an instance of the stochastic probing problem with inner constraint (V, Iin) and outer
constraint (V, Iout), we consider the following LP relaxation:

Maximize
∑

e∈V
wexe

s.t. xe = peye, ∀e ∈ V
x ∈ P(Iin)

y ∈ P(Iout)

We assume that the above LP relaxation can be solved efficiently. First, we can easily obtain an
analogue of Claim 4.2.

10In a k-system (V, I), for any S ⊆ V , every maximal independent set of S has size at least 1/k times the size of
the maximum independent subset of S. Matroids are 1 systems, matchings on bipartite graphs are 2-systems, and
the intersection of k-matroids are k-systems.
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Claim 5.4. The optimal value of LP is at least the optimal value OPT of the stochastic probing
problem.

Now, we present the algorithm here.

Algorithm 3: Stochastic Probing

1 Solve the LP relaxation and obtain the optimal LP solution (xe, ye);
2 Pick I ⊂ 2V by choosing each e ∈ V independently with probability bye;
3 Let P = πout(I);
4 Order elements in P according to the permutation given by the ordered CR scheme πin;
5 for i = 1→ |P | do
6 if S ∪ {ei} ∈ Iin then
7 Probe ei ;
8 If ei is active, let S ← S ∪ {ei} ;

Now, we analyze the performance of the algorithm. We want to show the expected value of our
solution E[w(S)] is large compared to the optimal LP value

∑
ewexe Let J ⊂ V be the (random)

set of active elements. Let I ⊂ 2V be the (random) set we picked in step 2, and P be the set we
selected using πout in step 3. From the algorithm, we can easily see that our solution S = πin(P ∩J)

Lemma 5.5.

Pr
I,J,πout,πin

[e ∈ S] = Pr
I,J,πout,πin

[e ∈ πin(πout(I) ∩ J)] ≥ b(cout + cin − 1)xe.

Proof. (sketch) First, we can see that Pr[e ∈ I ∩ J ] = bye · pe = bxe by the definition of I. By the
definition of CR schemes, we have Pr[e ∈ P = πout(I) | e ∈ I ∩ J ] ≥ cout. As P ⊂ I, thus

Pr[e ∈ πin(P ∩ J)] = Pr[e ∈ πin(P ∩ J) ∧ e ∈ I ∩ P ∩ J ]

= Pr[e ∈ I ∩ P ∩ J ]− Pr[e /∈ πin(P ∩ J) ∧ e ∈ I ∩ P ∩ J ]

= Pr
π

[e ∈ P |e ∈ I ∩ J ] Pr
I,J

[e ∈ I ∩ J ]− Pr[e /∈ πin(P ∩ J) ∧ e ∈ I ∩ P ∩ J ]

≥ bxe · cout − Pr[e /∈ πin(P ∩ J) ∧ e ∈ I ∩ P ∩ J ].

The remaining part is to show K = Pr[e /∈ πin(P ∩ J) ∧ e ∈ I ∩ P ∩ J ] ≤ (1 − cin) · bxe. It is not
hard to see that

K ≤ Pr[e /∈ πin(I ∩ J) ∧ e ∈ I ∩ J ] = Pr[e /∈ πin(I ∩ J) | e ∈ I ∩ J ] Pr[e ∈ I ∩ J ] ≤ (1− cin) · bxe,

where the first inequality is due to the monotonicity of πin and the final inequality is by the definition
of the CR-schemes. �

Now, it is straightforward to show Theorem 5.3. Indeed, we can see that

E[w(S)] =
∑

e

we Pr[e ∈ S] ≥ b(cout + cin − 1)
∑

e

wexe ≥ b(cout + cin − 1)OPT.
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5.3 Related Problems and Results

Bayesian online selection: A closely related model is the Bayesian online selection problem
(BOSP), defined as follows. We are given a set of elements V . Each element e is associated with
a non-negative random variable Xe, with known distributions. The family of feasible solutions
I ⊆ 2V (encoded by some combinatorial constraint). We can adaptively choose to observe the
elements one by one. Once we see the true value of Xe, we have to decide irrevocably whether
to choose the element. 11 The goal is design a policy which chooses a feasible subset S ∈ I,
and maximizes the expected total value E[

∑
e∈S Xe]. In some setting, the order is chosen by an

adversary, instead of the policy. Chawla et al. [32] proposed a simple mechanism, called sequential
posted pricing mechanism (SPM), for Bayesian single-parameter auctions. SPMs are closely related
to, and in fact serve as important motivations for the stochastic probing problem and BOSP. See
[83, 32, 6, 101, 108, 78, 55].

Prophet Inequality: In fact, the special case of BOSP where we can only choose one element
was studied by Krengel et al. back in 70s [103]. They provided a selection algorithm which returns
a single element of expected value at least half of E[maxe∈V Xe], i.e., half of the expected value
obtained by an offline algorithm which knows the realization upfront. More precisely, let e be the
element that their algorithm returns. It holds that

E[Xe] ≥
1

2
E[max

e∈V
Xe].

Such equalities are often called the prophet inequalities. Recently, Kleinberg and Weinberg [101]
significantly generalized the above result for the general matroid constraints (the constraint of
choosing one element is just a uniform matroid of rank 1).

Online CR-schemes: Recently, Feldman et al. [55] introduced an extension of CR schemes,
called online contention resolution schemes (OCRS). An OCRS is almost the same as the original
CR scheme, except that the adversary chooses the order of the elements in I, and the OCRS
needs to decide irrevocably whether to choose the element. They provide OCRS for a number
of combinatorial constraints, such as matroids, matchings, knapsacks and their intersections, and
applied to BOSP, stochastic probing and SPM. See their paper for more details.

6 Two Stage Stochastic Optimization - LP Approach

In this section, we consider two stage stochastic optimization models. In particular, we study the
two stage recourse models: In the first stage, only distributional information is available, and one
commits on some initial actions. In the second stage, the actual data is revealed and we can take
additional actions (called recourse actions) to augment the initial solution to a feasible solution.
The cost for the recourse action can be more expensive than the initial action. The stochastic set
cover problem (Problem 1.3) is a typical example in this model.

Let us recall the notations. Let U be the set of ground elements and S the weighted family of
subsets of U . The actual demand (i.e., the set of elements we need to cover) follows a distribution
D. We can select SI ⊆ S as the first stage action. In the second stage, the actual demand set

11We observe the true value of Xe before we make the decision. This is a key difference from the stochastic probing
problem.
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A ⊆ U (A ∼ D) is revealed. We can select some extra subsets SIIA ⊆ S as the recourse to cover the
remaining elements of A. The inflation factor is λ > 1, that is a set in the second stage is λ times
more expensive than in the first stage. We call a possible demand set A ⊆ U a scenario. Let pA
be the probability of scenario A. The goal is to minimize w(SI) + EA[w(SIIA )].

We use the following LP relaxation. xS denotes whether the set S is chosen in the first-stage,
and yA,S denotes whether the set S is chosen in scenario A.

Minimize
∑

S∈S
wSxS + λ

∑

A,S∈S
pAwSyA,S

s.t.
∑

S:e∈S
xS +

∑

S:e∈S
yA,S ≥ 1 ∀A, e ∈ A

xS , yA,S ≥ 0 ∀S,A

The above LP is usually called a stochastic LP. The first constraint indicates that the first and
second stage actions combined is a set cover for any scenario A. If there are only a polynomial
number of scenarios and all {pA} are given explicitly, we can solve the stochastic LP in polynomial
time. However, in most applications, there can be an exponential number of scenarios, given in
an implicit manner. For example, each element is in A with certain probability independent of
others. A more general and more challenging model is the so-called black-box model, in which we
are only given a procedure from which we can sample the scenarios from D. We can not even write
down the stochastic LP explicitly for the black-box model. Nevertheless, Shmoys and Swamy [125]
showed that there is a polynomial time approximation scheme for solving the LP by taking at most
polynomial number of samples from the black-box, if λ is bounded by a polynomial of the input
size. Their algorithm is an adaptation of the ellipsoid algorithm. Later, they presented another
approximation schemes based on the sample average approximation (SAA) method. SAA is a very
natural approach for stochastic optimization. We simply sample N scenarios from the black-box.
Then, we solve sample-average problem, which is a deterministic problem. Shmoys and Swamy [130]
showed that we only need a polynomial number of samples, under some mild conditions. Charikar
et al. [31] provided an alternative and somewhat simpler proof for the same result. In fact, their
approach is more general: it does not only hold for stochastic LP, it can also be used for the
computational intractable problems, where only an approximation algorithm for the deterministic
sample-average problem is known.

Now, we come back to the stochastic set cover problem. We assume the polynomial-scenario
model. For the black-box model, we only pay an extra factor of (1+ ε) for any constant ε > 0 based
on the above discussion.

Theorem 6.1. There is a 2(lnn + 1) factor approximation algorithm, where n is the number of
elements.

Proof. We first consider the standard LP relaxation for set cover with universe U .

minimize
∑

S∈S
wSxS subject to

∑

S:e∈S
xS ≥ 1 ∀e ∈ U ; xS ≥ 0 ∀S ∈ S.

Let the optimal LP value be LP(U). It is long known that a standard independent rounding
algorithm can find an integral set cover with cost at most O(log nLP(U)) with high probability.
Using the exponential clock algorithm by Buchbinder et al. [25], one can get an integral set cover
with cost at most (lnn+1)LP(U), with probability 1. Denote this algorithm by A. Let α = lnn+1.
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For any element e and scenario A, we can see that either
∑

S:e∈S xS ≥ 1/2 or
∑

S:e∈S yA,S ≥ 1/2.
Consider E = {e :

∑
S:e∈S xS ≥ 1/2}. {2xS} is a feasible fractional solution for the set cover

instance with universe E. Running algorithm A, we get an integral solution covering E with cost
at most αLP(E) ≤ α

∑
S 2xSwS . In the second stage, suppose the scenario is A. {2yA,S} is a

feasible fractional solution covering all elements in A \ E. Hence, we can get an integral solution
covering A \ E with cost at most αLP(A \ E) ≤ αλ

∑
S 2yA,SwS . So, the overall expected cost

is at most α
∑

S 2xSwS + αλ
∑

A pA
∑

S 2yA,SwS . Thus we have a 2α-approximation algorithm for
stochastic 2-stage set cover problem. �

7 Two Stage Stochastic Optimization- Boosted Sampling

In this section, we introduce another classical technique for dealing with two stage stochastic models,
called boosted sampling, introduced by Gupta et al. [80]. We use the minimum rooted Steiner tree
problem as an example to illustrate the technique.

Problem 7.1. (Two Stage Stochastic Rooted Steiner Tree) In the deterministic rooted Steiner tree
problem, we are given an edge-weighted graph G(V,E) with edge weight w : E → R+ satisfying
triangle inequality and a root r ∈ V . We are also given a set of terminals S ⊆ V , and we want
to choose a tree of the minimum total weight to connect all terminals and the root r. In the two
stage stochastic model, there is a probability distribution D on the set of terminals. A set of edge
E0 may be bought in the first stage, under cost {we}e∈E. In the second stage, the real set S ∼ D
of terminals is revealed and we may need to buy some extra edges ES so that E0 ∪ES is a feasible
solution. However, we need to pay σwe for edge e in the second stage, where σ > 1 is the inflation
factor (which is also an input). The goal again is to minimize the expected cost of the solution, that
is w(E0) + ES [σw(ES)].

7.1 Cost Sharing Functions

We will make a crucial use of cost-sharing functions in the analysis of the algorithm. Consider
the deterministic Steiner tree problem. There is a client in each terminal. We would like to figure
out a way to divide the cost of the Steiner tree among the client set S. Now, we formally define
what is a cost-sharing function. Suppose there is an α-approximation algorithm A that solves the
Steiner tree problem. Moreover, we require existence of a polynomial time algorithm AugA (called
augmentation algorithm) that can augment a solution A(S) to a feasible solution for S′ for S ⊂ S′.

Definition 7.2. The function ξ : 2V × V → R is a β-strict cost sharing function if the following
properties hold:

1. (Positivity) For a set S ⊂ V , ξ(S, j) > 0 only for j ∈ S.

2. (Fairness) For a set S ⊂ V ,
∑

j∈S ξ(S, j) ≤ w(OPT(S)).

3. (Strictness) If S′ = S ∪ T for S ∩ T = ∅, then
∑

j∈T ξ(S
′, j) ≥ 1

β × cost of augmenting the

solution A(S) to a solution of S′ using AugA.

Define ξ(S,A) =
∑

j∈A ξ(S, j).
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In some cases, AugA can be obtained by zeroing out the costs of elements picked in A(S) and
run A again. In this case, we typically have β = α. In general case, β is usually larger because it
is usually easier to find a better approximation algorithm than to find a better augment algorithm.
Now, we provide a cost sharing function for the Steiner problem, which will be useful later.

Theorem 7.3. There is a 2-approximation algorithm A with a 2-strict cost sharing function ξ for
the rooted minimum Steiner tree problem.

Proof. Given a set of terminals S, A compute a minimum spanning tree on S ∪ {r}. It is well
known that the cost of A(S) is within 2 times the cost of the optimal minimum Steiner tree of S.

With A, now we determine the value of ξ(S, j) according to A. For any set S and vertex j,
if j ∈ S, set ξ(S, j) = w(pj ,j)/2 where pj is the parent of j in the spanning tree A(S); if j 6∈ S,
set ξ(S, j) = 0. Clearly,

∑
j∈S ξ(S, j) =

∑
j∈S w(pj ,j)/2 = w(A(S))/2 ≤ w(OPT(S)). So we have

shown the fairness.
To show the strictness, we first define AugA. Let S′ = S ∪ T . AugA first zeros out the edges

in A(S) and then run Prim’s algorithm. The solution obviously include A(S). For each terminal
j ∈ T , let pj be its parent in A(S∪T ). Consider the execution of Prim, edge (j, pj) is added by AugA
as well. So the cost of augmenting the solution A(S) to a solution for S′ is exactly

∑
j∈T w(j,pj).

We can also see that
∑

j∈T ξ(S
′, j) = 1/2

∑
j∈T w(j,pj), which shows β = 2. �

We can in fact use the approximation algorithm proposed in [26] and the same cost sharing
function as above.

Theorem 7.4. There is a 1.39-approximation algorithm, along with a 2-strict cost sharing function
for the rooted minimum Steiner tree problem.

If the problem is that you are given two sets S, T separately and required to obtain a solution
for S ∪ T , you can first compute an α-approximation solution φ(S) for S, then augment it to a
solution of S ∪ T , φ(S ∪ T ), using AugA. As

w(φ(S ∪ T ))− w(φ(S)) ≤ βξ(S ∪ T, T ) ≤ βξ(S ∪ T, S ∪ T ) ≤ βw(OPT (S ∪ T ))

and
w(φ(S)) ≤ αw(OPT (S)) ≤ αw(OPT (S ∪ T )),

φ(S ∪ T ) is a (α+ β)-approximation solution for S ∪ T .

7.2 Stochastic Steiner Trees

Now, let us come back to the two stage stochastic Steiner tree problem. Consider the following
algorithm.

Algorithm 4: Boost-and-Sample

1 Draw bσc independent sample scenarios D1, . . . , Dbσc from the distribution D. Let

D = ∪iDi;
2 Run the algorithm A to construct an α-approximation F0 for terminals D as the first stage

solution;
3 In second stage, when S is realized, run AugA to compute FS such that F0 ∪ FS is a feasible

Steiner tree for S;

Now, we analyze the performance of the above algorithm.
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Theorem 7.5. Let A be an α-approximation algorithm for minimum rooted Steiner tree problem
that admits a β-strict cost-sharing function. Then Boost-and-Sample is an (α+ β)-approximation
algorithm for the 2-stage stochastic Steiner tree problem.

Proof. Let F ∗0 be the first-stage component of the optimal solution, and F ∗S be the second-stage
component for scenario S. Hence the optimal cost is

Z∗ = w(F ∗0 ) + σES [w(F ∗S)].

Now consider the cost of Boost-and-Sample. Without loss of generality, assume σ is an integer. We
use Sols(S) to denote the set of feasible solutions for terminal set S.

Consider the first stage. Define F̂1 = F ∗0 ∪ F ∗D1
∪ . . . ∪ F ∗Dσ . Thus F̂1 ∈ Sols(D). Moreover, we

can see that

ED[w(F̂1)] ≤ w(F ∗0 ) +
∑

i

ED[w(F ∗Di)] = w(F ∗0 ) + σEDi [w(F ∗Di)] = Z∗.

Since A is an α-approximation algorithm, the expected cost of our first stage solution satisfies
ED[w(F0)] ≤ αED[w(F̂1)] ≤ αZ∗.

Next consider the second stage, which is slightly more trickier. Note that S follows the same
distribution as any Di. The key is to consider an alternate process to generate the sets Di and S:
Draw σ + 1 scenarios D̂1, . . . , D̂σ+1 from the distribution D, choose a random K uniformly from
{1, 2, . . . , σ + 1}, and set S = D̂K and D = ∪i 6=KD̂i. Now let D̂ = ∪σ+1

i=1 D̂i and D̂−i = ∪l 6=iD̂l.

Intuitively, D has σ copies of Di, but D̂ has σ + 1 copies. So ED̂[w(OPT(D̂))] is not much larger
than ED̂[w(OPT(D))]. Moreover, S is simply one of the σ + 1 copies. The cost for connecting S

should be only 1/(σ + 1) of w(OPT(D̂)). We provide the details below.
Recall FS is the set of edges we add in the second stage. According to the β-strictness, we can

see w(FS) ≤ βξ(D∪S, S \D). By the fairness, we can see that
∑σ+1

i=1 ξ(D̂, D̂i \D̂−i) ≤ w(OPT(D̂)).
From the process, we can see ξ(D ∪ S, S \ D) is just a random term on the left hand size of the
above inequality. Hence, we obtain that

ED,S [ξ(D ∪ S, S \D)] ≤ 1

σ + 1
ED̂[w(OPT(D̂))].

Moreover, by the sub-additivity, it holds that

ED̂[w(OPT(D̂))] ≤ w(F ∗0 ) +
σ+1∑

i=1

E[w(F ∗
D̂i

)] ≤ σ + 1

σ
Z∗.

Combining the above inequalities, we get ES [σw(FS)] ≤ βZ∗. Overall, the total expected cost is
at most (α+ β)Z∗. �

7.3 Related Results

Using the boosted sampling technique, Gupta et al. [80] provided constant factor approximation
algorithms for several two stage stochastic optimization problems, including Steiner tree, vertex
cover, facility location and Steiner network. Note that their framework works even if D is given
by the black-box model. However, if we assume the nodes are independent, they showed that it is
possible to obtain improved approximation algorithms.
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problem black-box model independence model

Steiner Tree (rooted, CU) 3.55 [81] 3.55 [81]

Steiner Tree (unrooted, CU) 6 [81, 57] 5[81, 57]

Steiner Tree (unrooted, N) O(log6 n log logn) [73] O(log6 n log logn) [73]

Steiner Forest (CU) 2976 [81, 76] 5 [81, 57]

Vertex Cover (Ar) 2 + ε [127] 2 + ε [127]

Facility Location (Ar) 2.369 + ε [127] 2.369 + ε [127]

Set Cover (Ar) (1 + o(1)) lnn [127] (1 + o(1)) lnn [127]

Table 1: Best known approximation ratios for two stage stochastic optimization problems with
recourse. The objective function is the total expected cost. Correlated Uniform (CU): All the
elements share a common inflation factor λA in each scenario A. Nonuniform (N): Each element
e may have its own inflation factor λe, independent of different scenarios. Arbitrary (Ar): The
inflation factor λe,A of element e may depend on both e and scenario A. In all settings, the
maximum inflation factor is at most a polynomial.

The work has generated a number of followups. We mention a very small subset here. Gupta
and Pál [81] studied the unrooted version of the two stage stochastic Steiner tree problem, and
provided the first constant factor approximation algorithm. The problem is exactly the same as we
defined before, except that there is no root r. This case is technically more challenging since the
problem is not sub-additive any more.

Gupta and Kumar [75] generalized the above result by providing the first constant factor ap-
proximation algorithm for the two stage stochastic Steiner forest problem, 12 using a primal-dual
LP approach. In fact, the cost sharing function in the last section is closely related to the dual
variable. In a very recent work, Gupta and Kumar [76] showed a simple greedy algorithm for
Steiner Forest problem with an approximation ratio of 96 with 2880-strict cost sharing function,
which implies an 2976 approximation for the two stage stochastic Steiner forest problem.

In another generalization, Gupta et al. [72] consider the two stage stochastic Steiner tree problem
with non-uniform inflation factors, i.e., the cost of each edge in the second stage may be inflated
by a different factor. They provided the first poly-logarithmic approximation factor and showed an
approximation hardness of Ω(log log n).

7.4 Other Two Stage or Multi-Stage Models

Ravi and Sinha [121] and Immorlica et al. [86] initiated the study on approximation algorithms for
two stage stochastic combinatorial optimization with recourse. They provided approximation algo-
rithms for several problems for the polynomial scenario and independent-activation settings. Later,
various techniques, such as boosted sampling, stochastic LP, SAA, were developed for handling the
black box model. We refer interested reader to [129] for an early survey. In Table 1, we list the
current best known approximation ratios for the two stage stochastic models of several other classic
combinatorial problems. Note that here the objective is to minimize the expected overall cost.

Many of the above results have been generalized to k stages for arbitrary constant k. See e.g.,

12In a Steiner forest instance, we are given an edge weighted undirected graph G and a set of vertex pairs
{(si, ti)}i∈[m]. We need to choose a subset T of edges such that si and ti are connected for all i ∈ [m].
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[130, 81, 127]. There are also several closely related models proposed in the literature. We review
some of them here.

Two Stage Robust Optimization: Robust optimization takes a more conservative viewpoint in
decision making under uncertainty. The goal in robust optimization is to minimize the worst case
cost over all possible scenarios, instead of minimizing the average cost over scenarios, as done in
stochastic optimization problems. The setting of a two stage robust optimization problem is almost
the same as the two stage stochastic optimization counterpart, except that there is no probability
distribution over the scenarios, and the objective is to minimize w(x) + maxA fA(x, yA). Here x is
the first stage action and yA is the recourse action for scenario A. Such model and its variations
have also been studied extensively in the last decade. We refer interested readers to the following
papers and the references therein [45, 65, 51, 7, 99, 79].

Two Stage Risk-Averse Stochastic Optimization: The problem setting is exactly the same
as Section 6, except that the goal is to minimize the expected total cost subject to the constraint

Pr
A

[ 2nd stage cost for scenario A > θ] ≤ ρ.

Here, θ and ρ are input parameters as well. Such constraints are called threshold probability con-
straints, or chance constraints, and used to model risk averse behaviors of the decision maker.

Such chance constraints can be captured using similar LP-relaxation as well. For the black-box
model, Swamy [128] proposed an FPTAS for solving such LP and showed how to round the LP for
several combinatorial problems.

8 Fixed Set Problems and Stochastic Knapsack - Poisson Approx-
imation

In this section, we introduce the Poisson approximation technique and apply it the fixed set s-
tochastic optimization problems, and the adaptive stochastic knapsack problems. The technique is
very useful to handle the distribution of the sum of independent random variables (not necessarily
identical), which appears quite frequently in various stochastic optimization problems.

We first illustrate the technique by considering the fixed set stochastic shortest path problem
(Problem 1.1). The result can be generalized to a wide class of fixed set problems (see [108]).

Recall each edge e has a non-negative random length µe. The objective is to find an s-t path
P such that Pr[

∑
e∈P µe ≤ C], is maximized. Without loss of generality, we can assume C = 1 and

all µes take values from [0, 1]. For ease of notation, for a set S of edges, we write µ(S) =
∑

e∈S µe.
Let S∗ denote the optimal feasible set and OPT = Pr[µ(S∗) ≤ 1] the optimal value.

Theorem 8.1. For any ε > 0, there is a polynomial time approximation algorithm for finds an s-t
path S such that

Pr[µ(S) ≤ 1 + ε] ≥ Pr[µ(S∗) ≤ 1]− ε,

where S∗ is the optimal path.

We start by a lemma saying that if the Pr[µ(S) ≤ 1] is not negligible, E [µ(S)] can not be very
large.

Lemma 8.2. Suppose each edge e has a non-negative random weight µe taking values from [0, 1].
Then, for any set S of edges, and 1

2 > ε > 0, if Pr[µ(S) ≤ 1] ≥ ε, then E [µ(S)] ≤ 3/ε.
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Intuitively, if E [µ(S)] is very large, µ(S) should be large with high probability (hence Pr[µ(S) ≤
1] should be very small). The proof is not difficult and can be found in [108].

If OPT ≤ ε, then there is nothing to do since any feasible solution achieves the desired approx-
imation guarantee. Hence, we focus on the other case where OPT > ε. We call an edge e heavy
edge if E[µe] > ε10. Otherwise we call it light. By Lemma 8.2, we can see that the number of heavy
edges in S∗ is at most 3

ε11
.

Enumerating Heavy Elements: We enumerate all possible set of heavy edges with size at most
3/ε11. There are at most n3/ε

11
such possibilities. Suppose we successfully guess the set of heavy

edges in S∗. In the following parts, we mainly consider the question that given a set H of heavy
edges, how to choose a set L of light edges such that their union S is a feasible solution, and
Pr[µ(S) ≤ 1 + ε] is close to optimal.

Dealing with Light Elements: Unlike heavy edges, there could be many light edges in S∗.
Handling such edges involves two technique. The first is the discretization, which transforms each
distribution to one with a constant size support in [0, 1].

The second key ingredient is the Poisson approximation technique. We apply a theorem of Le
Cam [105], which shows that the distribution of the sum of the discretized weights of light edges is
very close to a compound Poisson distribution, which can be completely determined by a constant
dimensional vector (which we call the signature of L).

Then, we enumerate all possible signatures (there are only polynomial number of them), and
checking whether there is an s-t path S = L∪H (where H is the set of heavy edges we enumerate,
and L is the set of light edges in S), such that the signature of L is the enumerated signature.

8.1 Discretization

We discuss how to discretize the size distributions for edges, using parameter ε.
We say that edge e realizes to a “large” size if µe > ε4. Otherwise we say that e realizes

to a “small” size. We use µ̃e to denote the size after discretization and π̃e its distribution. The
discretization consists of following two steps.

1. Small size region: In the small size region, µ̃e follows a Bernoulli distribution, taking only
values 0 and ε4. The probability values Pr[µ̃e = 0] and Pr[µ̃e = ε4] are set such that E[µ̃e |
µe ≤ ε4] = E[µe | µe ≤ ε4].

2. Large size region: If µe realizes to a large size, we simply discretize it as follows: Let µ̃e =
bµe
ε5
cε5 (i.e., we round a large size down to a multiple of ε5).

We denote the set of the discretized sizes by S = {s0, s1, . . . , sz−1} where s0 = 0, s1 = ε5, s2 =
2ε5, s3 = 3ε5, . . . , sz−1. Note that s1 = ε5, . . . , s1/ε−1 = ε4 − ε5 are also included in S, even
though their probability is 0. It is straightforward to see that |S| = z = O(1/ε5). This finishes
the description of the discretization.

It is not difficult to show the behavior of the sum of their discretized distributions is very close
to that of their original distributions. 13 The proof of the following lemma is completely standard
and omitted here.

13As ε→ 0, the discretizated distribution clearly converges to the original distribution in the weak topology (e.g.,
in Lévy-Prokhorov metric or transportation metric, see [48]).
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Lemma 8.3. Let S be a set of edges such that E [µ(S)] ≤ 3/ε. We have that

1. Pr[µ(S) ≤ 1] ≤ Pr[µ̃(S) ≤ 1 + ε] +O(ε);

2. Pr[µ̃(S) ≤ 1] ≤ Pr[µ(S) ≤ 1 + ε] +O(ε).

8.2 Poisson Approximation

We use π̃e to denote the distribution of the discretized edge weight µ̃e, i.e., π̃e(si) = Pr[µ̃e = si].
For an edge e, we define its signature to be the vector

Sg(e) =
(
πe(s1), πe(s2), πe(s3), . . . , πe(sz−1)

)
,

where πe(s) =
⌊
π̃e(s) · nε6

⌋
· ε6n for all nonzero discretized size s ∈ S \ {0} = {s1, s2, . . . , sz−1}. For a

set S of edges, its signature is defined to be the sum of the signatures of all edges in S, i.e.,

Sg(S) =
∑

e∈S
Sg(e).

We use Sg(S)k to denote the kth coordinate of Sg(S). By Lemma 8.2,
∑z−1

k=1 Sg(S)k · sk =∑z−1
k=1/ε Sg(S)k · sk ≤ 3/ε. Thus Sg(S)k ≤ 3/ε5 for all k. Therefore, the number of possible

signatures is bounded by
(
3n/ε11

)|S|−1
, which is polynomial in n.

We will show shortly that it suffices to enumerate all possible signatures for light edges. For
this purpose, we need a notation to measure the difference between two distributions, called the
total variation distance (also call statistical distance), defined as follows (for discrete distributions):

∆
(
X,Y

)
=
∑

k

∣∣∣Pr[X = k]− Pr[Y = k]
∣∣∣.

Obviously, if ∆(X,Y ) = 0, two distributions are identical. The following lemma shows that if the
signatures of two sets are the same, the total variation distance between their distributions is very
small.

Lemma 8.4. Let S1, S2 be two sets of light edges such that Sg(S1) = Sg(S2) and E
[
X̃(S1)

]
≤

3/ε,E
[
X̃(S2)

]
≤ 3/ε. Then, the total variation distance between X(S1) and X(S2) satisfies

∆
(
X̃(S1), X̃(S2)

)
=
∑

s

∣∣∣Pr
[
X̃(S1) = s

]
− Pr

[
X̃(S2) = s

] ∣∣∣ = O(ε).

The following Poisson approximation theorem by Le Cam [105], rephrased in our language, is
essential for proving Lemma 8.4. Suppose we are given a K-dimensional vector V = (V1, . . . , VK).
Let λ =

∑K
i=1 Vi. we say a random variable Y follows the compound Poisson distribution cor-

responding to V if it is distributed as Y =
∑N

j=1 Yj where N follows Poisson distribution with
expected value λ:

Pr(N=k) =
λke−λ

k!
, for k ≥ 0,

(denoted as N ∼ Pois(λ) ) and Y1, . . . , YN are i.i.d. random variables with Pr[Yj = 0] = 0 and
Pr[Yj = k] = Vk/λ for k ∈ {1, . . . ,K} and j ∈ {1, . . . , N}.
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Lemma 8.5. [105] Let X1, X2, . . . be independent random variables taking integer values in {0, 1, ...,K},
let X =

∑
Xi. Let πi = Pr[Xi 6= 0] and V = (V1, . . . , VK) where Vk =

∑
i Pr[Xi = k]. Suppose

λ =
∑

i πi =
∑

k Vk <∞. Let Y be the compound Poisson distribution corresponding to vector V .
Then, the total variation distance between X and Y can be bounded as follows:

∆
(
X,Y

)
=
∑

k≥0

∣∣∣Pr[X = k]− Pr[Y = k]
∣∣∣ ≤ 2

∑

i

π2i .

Proof of Lemma 8.4. For an edge b, we let µe be the random variable that Pr [µe = s] = πe(s) for
s = s1, s2, . . . , sz−1, and µe = 0 with the rest of the probability mass. Similarly, we use µ(S) to
denote

∑
b∈S µe for a set S of edges. By definition of µe, we have that ∆ (µe, µ̃e) ≤ ε/n for any

edge b. Since S1 and S2 contains at most n edges, we can show that

∆
(
X(S1), X̃(S1)

)
≤ ε and ∆

(
X(S2), X̃(S2)

)
≤ ε.

First, for any S such that E
[
X̃(S)

]
≤ 3/ε, we can see that

∑
b∈S Pr

[
µ̃e 6= 0

]
≤ E

[
µ̃(S)

]
/ε4 ≤ 3/ε5.

If we apply Lemma 8.5 to both X(S1) and X(S2), we can see they both correspond to the same
compound Poisson distribution, say Y , since their signatures are the same. Moreover, since the
total variation distance is a metric, we have that

∆
(
µ̃(S1), µ̃(S2)

)
≤ ∆

(
µ̃(S1), µ(S1)

)
+ ∆

(
µ(S1), Y

)
+ ∆

(
Y, µ(S2)

)
+ ∆

(
µ(S2), µ̃(S2)

)

≤ 2ε+ 2
∑

b∈S1

(
Pr
[
µe 6= 0

])2
+ 2

∑

b∈S2

(
Pr
[
µe 6= 0

])2
+ ε = O(ε).

This finishes the proof of the lemma. �

8.3 Algorithm for Fixed Set Problems

Now, we present our approximation algorithm for the fixed set stochastic shortest path problem.

Algorithm 5: Fixed Set Stochastic Shortest Path

1 Discretize the size distributions of for all light edges;

2 Enumerate all possible heavy edge sets H with E
[
X̃(H)

]
< 3/ε;

3 for each such H do
4 Enumerate all possible signatures Sg;
5 for each such Sg do
6 Try to find an s-t path S = H ∪ L, such that Sg(L) = Sg;

7 Pick the path S with the largest Pr[µ(S) ≤ 1 + ε];

In step (a), we can use the pseudopolynomial time algorithm for the exact version of the
shortest path problem to find a set L with the signature exact equal to Sg. This can be done by
standard dynamic programming. 14 Since Sg is a vector with O(ε−5) coordinates and the value of
each coordinate is bounded by O(n), it can be encoded by an integer which is at most npoly(1/ε).
Thus the pseudopolynomial time algorithm actually runs in poly(n, npoly(1/ε)) time, which is a

14We allow non-simple paths. The exact version of simple path is NP-hard, since it generalizes the Hamiltonian
path problem.
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polynomial. We also need to compute the value Pr[µ(S) ≤ 1 + ε]. The problem is in fact #P-
hard [100]. However, we can use the FPTAS developed in [107] to obtain an (1± ε)-approximated
estimation, which suffices for our purpose. There are a polynomial number of combinations of
heavy edges. So it is not hard to see the algorithm runs in npoly(1/ε) time overall.

It is fairly straightforward to show that the algorithm achieves the guarantee stated in Theo-
rem 8.1. Suppose we have guessed the heavy edges H∗ of the optimal solution S∗, and the signature
of the light edges of S∗ = H∗ ∪ L∗. Suppose the path we found is S = H∗ ∪ L. Using 8.3, we can
see that the original distribution µ(L) (µ(L∗) resp.) is close to the discretized distribution µ̃(L)
(µ̃(L) resp.). By Lemma 8.4, µ̃(L) is close to the µ̃(L∗). Hence, we can see that the distribution of
µ(L) is close to that µ(L∗). Hence, S behaves very similar to S∗.

Astute readers may have realized that we did not use much special properties about the com-
binatorics of the shortest path problem except a pseudopolynomial time algorithm that solves the
exact version. In fact, we can generalize the above result to all combinatorial optimization prob-
lems which admit a pseudopolynomial time algorithm for the exact version, including spanning
tree, k-median on trees, knapsack. Moreover, instead of maximizing Pr[µ(S) ≤ 1], we can consider
the more general expected utility maximization problem. See the detailed results in [108, 106].

8.4 Poisson Approximation For Adaptive Stochastic Knapsack

The Poisson approximation technique can also be used to obtain bi-criterion PTAS for the adaptive
stochastic knapsack problem and its generalizations. This is somewhat surprising since it is not
even clear at first sight where to apply the Poisson approximation technique, which can only handle
the sum of a fixed set of random variables.

We need an important notion, called block-adaptive policies, introduced by Bhalgat et al. [20]. In
a block-adaptive policy, instead of inserting the items one at a time, we insert a subset (a.k.a., block)
of items at a time. In terms of the decision tree of a policy, each node in the tree corresponding to
the insertion of a block of items.

A remarkable property proved in [20] is that there exists a block-adaptive policy, which corre-
sponds to a decision tree with only O(1) nodes, that can approximate the optimal policy, modulo
an ε fraction of profit and an ε fraction of knapsack capacity. The result is further generalized to
stochastic knapsack with arbitrary subset constraints [108], which allows us to handle cancellation
of jobs 15 and precedence constraints. Hence, it suffices to consider only block-adaptive policies.
Since there are only constant number of nodes in the decision tree, we can enumerate all different
topologies of the decision tree. Now, for each node of the tree (which corresponds to a block of
items), we can use Poisson approximation technique to approximation the distribution of the sum
of random variables in the block. More concretely, after fixing the topology of the decision tree, we
can enumerate the signatures of all blocks in polynomial time. Then, we can use a dynamic pro-
gram to search a block-adaptive policy, which matches the enumerated signature. In the analysis,
we need to show that if two block-adaptive policies have the same tree topology and same signature
for every node of the tree, two policies must behave similarly (in particular, obtain almost the same
expected profit).

Using the above idea, we can obtain a policy which can produce a profit at least (1 − ε)OPT
using (1 + ε)C capacity (i.e., a bi-criterion PTAS), for the adaptive stochastic knapsack problem,

15In this generalization, called stochastic knapsack with cancellations, we can think each item as a job and its
(random) size and as the length of the job. We can cancel the job before it is finished. We do not get any profit from
the canceled job.
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even when job cancellation is allowed. Even though the above idea is clean, the details are quite
technical, and we refer interested readers to [108].

8.5 Related Work

Expected Utility Maximization and Threshold Probability Maximization:
In Section 8, we considered the fixed set stochastic shortest path problem, where our goal is to

maximize the threshold probability Pr[µ(S) ≤ 1]. This is a very special case of the following more
general expected utility maximization problem.

Problem 8.6. (Expected Utility Maximization) Suppose we have n elements, each having a non-
negative random weight µe. We would like to choose a subset S, subject to some combinatorial
constraint. Consider a utility function U : R+ → R+. If the cost of the solution is x, we obtain a
utility value U(x). The goal is to find a solution S which maximizes the expected utility E[U(µ(S))],
where µ(S) is the (random) cost of the solution S, i.e., µ(S) =

∑
e∈S µe.

Consider the utility function: U(x) = 1 for x ∈ [0, 1] and U(x) = 0 for x > 1. It is easy to see that
E[U(µ(S))] = Pr[µ(S) ≤ 1]. Hence, maximizing the expected utility is equivalent to maximizing
the threshold probability. The expected utility is known to be very versatile in expressing diverse
risk-averse or risk-prone behaviors. For example, we can use a increasing concave utility function to
capture the risk-averse behaviors. The theory was axiomatized by von Neumann and Morgenstern
in 1940s [132, 56] (known as von Neumann- Morgenstern expected utility theory in the economics
literature).

Li and Deshpande [106] first studied the expected utility maximization problem in the context
of stochastic combinatorial optimization. They considered general combinatorial constraints and
utility functions. Specifically, they can handle the class of combinatorial constraints, which ad-
mit pseudopolynomial time algorithms. Examples include spanning tree, matching, simple path,
matroid, knapsack. We can also obtain Theorem 8.1 as a corollary.

Their approach is very different. The high level idea is very simple. We first observe that for
the exponential utility function U(x) = αx for any α ∈ C, the problem essentially reduces to a
deterministic optimization problem. Indeed, fix an arbitrary solution S and a number α. Due
to the independence of the elements, we can see that E[U(µ(S))] = E[αµ(S)] = E[α

∑
e∈S µe ] =

E[
∏
e∈S α

µe ] =
∏
e∈S E[αµe ]. Now, we consider a more general utility function U . For simplicity,

we assume U is essentially supported in a bounded interval. Then, for utility function U , we try
to use a short exponential sum to approximate U . More concretely, we want an exponential sum

C(x) =
∑L

i=1 ciφ
x
i with L being a constant, which satisfies

∣∣∣U(x)−C(x)
∣∣∣ ≤ ε, ∀x ≥ 0. If we can do

so, instead of directly optimizing E[U(µ(S))], we can optimize E[C(µ(S))], which can be done using
dynamic programming. The remaining thing is to approximate a function by a short exponential
sum. In general, this is not possible for an arbitrary function over the entire R. However, we only
need to do it for a bounded interval. Then, we can utilize a theorem by Jackson in approximation
theory, combined with some other tricks, to find such an approximation. See [106] for the details.

For increasing concave utility functions, Bhalgat and Khanna [21] obtained the first PTAS, if
the exact version of the deterministic counterpart can be solved in pseudopolynomial time. They
proved a utility equivalence theorem and showed that it suffices to enumerate only a polynomial
number of “configurations”. In full version of [106], the authors reproduced the same result for
increasing concave utility functions, using the function approximation paradigm we just described.
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Fixed Set Stochastic Shortest Path: Nikolova et al. [119] studied the fixed set stochastic
shortest path for Gaussian, Poisson and exponential distributions. For Gaussian distributed edges,
it is easy to see that the length of a path is also Gaussian distributed, with the mean/variance
being the sum of the means/variances of individual edges. Now, we can view the problem as a
two-dimensional optimization problem, one for the mean, and the other for the variance. Imagine
the mean-variance plane. Each point in the plane correspond to the (mean, variance) pair of a
path. Consider the convex hull H of these points (they call it the path polytope). It is not hard to
show that maximizing the threshold probability is equivalent to maximizing

(1−
∑

i∈S
E[µi])/

√∑

i∈S
Var[µi],

which is quasi-convex on the path polytope. As a consequence, the quantity, thus the threshold
probability, is maximized at a vertex of the path polytope (under certain technical condition). The
vertices of H can be enumerated in O(nlogn) time due to a result in parametric shortest path by
Carstensen [28]. Hence, by enumerating the vertices of H, they obtained an exact O(nlogn) time
algorithm for maximizing the probability that the length of the path is at most 1, i.e., Pr(w(S) ≤
1), assuming all edges are normally distributed and there is a path with its mean at most 1.
Later, Nikolova [118] extended the result to an FPTAS for any problem under the same Gaussian
assumptions, if the deterministic version of the problem can be solved in polynomial time.

Fixed Set Stochastic Knapsack: In the fixed set stochastic knapsack problem, we are given a
knapsack of capacity 1, and a set of items, each with a random size si and a deterministic profit
vi, and an overflow probability γ. We are asked to pick a subset S of items such that

Pr

(∑

i∈S
si ≥ 1

)
≤ γ

and the total profit
∑

i∈S vi is maximized.
Kleinberg et al. [100] first considered the fixed set stochastic knapsack problem with Bernoulli-

type distributions and provided a polynomial-time O(log 1/γ) approximation. For item sizes with
exponential distributions, Goel and Indyk [63] provided a bi-criterion PTAS, and for Bernoulli-
distributed items they gave a quasi-polynomial approximation scheme. Goyal and Ravi [66] showed
a PTAS for Gaussian distributed sizes. Bhalgat et al.[20] applied the discretizaton technique to
both adaptive stochastic knapsack and fixed set stochastic knapsack. For the later, they provide
a bi-criterion PTAS: for any constant ε > 0, there is a polynomial time algorithm that can find
a solution S with the profit as least the optimum and Pr(

∑
i∈S xi ≥ 1 + ε) ≤ γ + ε. Using the

result for expected utility maximization, the same result can be also obtained by the utility function
approximation approach [106] or the Poisson approximation approach [108], with somewhat simpler
proofs and better running times.

For both fixed set stochastic shortest path and fixed set stochastic knapsack, the current best
approximations are bi-criterion additive PTASes. So we have the following obvious open questions.

Open Question 3. S∗ is the optimal solution for the fixed set stochastic shortest path problem.
For any ε > 0, whether there is a polynomial time approximation algorithm that finds an s-t path
S, such that Pr[µ(S) ≤ 1] ≥ Pr[µ(S∗) ≤ 1]− ε,
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Open Question 4. S∗ is the optimal solution for the fixed set stochastic knapsack problem. For
any ε > 0, whether there is a polynomial time approximation algorithm that finds a set of item S
with the profit as least the optimum and Pr(

∑
i∈S xi ≥ 1) ≤ γ + ε.

We finally note that a recent result by Daskalakis et al. [39] is closely related to the above
problems. Their problem can be stated in the following abstract form: Given a random vector X
generated by a known product distribution over {0, 1}n and a threshold value 0 ≤ θ ≤ 1, output
a non-negative vector w ∈ Rn, with ‖w‖1 = 1, which maximizes Pr[w ·X ≥ θ]. They provided an
additive PTAS under certain technical condition. Their technique borrows ideas from the study
of linear threshold functions in complexity theory and makes use of the Berry-Esseen theorem (a
quantitative version of the central limit theorem). Removing their technical condition is also an
interesting open problem.

9 Other Stochastic Models

9.1 Stochastic Universal Approximation

Suppose we want to distribute a file from the source s to a set T of nodes in a network G. If we
know T , then we can just compute a steiner tree connecting T ∪ {s}. Karger and Minkoff [93]
considered the maybecast problem which is another stochastic version of the Steiner tree problem,

Problem 9.1. (Maybecast Problem) Each node i chooses to contact the source (we say i is active)
with probability pi independently. We need to fix a path Pi to s for each node i. If the node i is
active, all edges in Pi become active. Our goal is to minimize the expected total number of active
edges. 16

Karger and Minkoff [93] showed that the shortest path tree heuristic can be very bad (Ω(
√
n)

factor worse than the optimum) and also obtained a constant factor approximation algorithm for
the problem by reducing the problem to the r-gathering problem, which is a variant of facility
location problem with capacity lower bound for each open facility.

The maybecast problem is closely related to the notion of the universal approximation intro-
duced in [89]. We take the universal steiner tree problem for example. In this problem, we still
need to fix a path Pi to s for each node i. However, we do not assume each node becomes active
in a probabilistic manner, Instead, we take a worst case (or robust approximation) perspective, by
bounding the approximation ratio for any subset of S. More precisely, we want to minimize

max
S⊆V

cost(∪i∈SPi)
cost(OPT(S))

,

where OPT(S) is the optimal Steiner connecting S∪{s}. Since the line of research does not involve
any stochasticity, we do not go into the details and refer interested readers to [89, 82] and the
references therein.

16If we use multicast to distribute the file to all active nodes, the number of active edges is proportional to the
total transmission cost.
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9.2 Secretary Problem

The secretary problem is a classical stochastic sequential decision problem, introduced by Dynkin
in 1960s [49]. The basic version is a very simple to state, yet the result is stunning at first glance,
which makes the problem quite popular even in public media. Suppose we would like to hire the best
secretary out of n applicants. The applicants are interviewed one by one in random order. After
the interview of each applicant, a decision whether to hire the applicant must be made immediately
and irrevocably. During the interview, we know the rank of the applicant among all applicants
interviewed so far. The goal is to maximize the chance that we hire the best one. There is very
simple strategy that can guarantee the probability is at least 1/e, irrespective of how large n is. It
works as follows: It first interviews the first n/e applicants without hiring any of them. Then, it
hires the first one who is the best one among the applicants interviewed so far. The ratio 1/e is
tight for large n.

Kleinberg [102] studied a generalization of the problem, in which we want to select k candidates
and maximize their sum. He provided an algorithm that can achieve a competitive ratio of 1 −
O(
√

1/k), which is asymptotically optimal. Babaioff et al. [10] studied a significant generalization,
called the matroid secretrary problem, in which the selected set must be an independent set in a
given matroid. The problem has attracted a lot of attentions (see e.g., [85, 126, 30, 47, 104, 54]).
For several special types of matroids, constant approximations are known. However, for a general
matroid, the current best approximation is O(log log r) [104, 54], where r is the rank of the given
matroid.

Open Question 5. Is there a constant factor approximation algorithm for the matroid secretary
problem?

The secretary problem has important applications in mechanism design, and played a similar
role as the prophet inequalities we mentioned in Section 5.3. However, they are very different
from the technical perspective. For example, the aforementioned matroid prophet inequality has a
2-approximation [101].

9.3 Stochastic Multi-armed Bandit

Multi-armed Bandit problems nowadays refer to many different variants which are too large to
survey. They are mostly sequential decision making problem featured with an exploration and
exploitation trade-off. The most basic version is the following problem: We are given n arms. The
i-th arm is associated with an unknown reward distribution supported on [0, 1] with mean θi. If we
pull the arm, we get an i.i.d. sample from the distribution. There are T rounds. In each round, we
can choose one arm to pull. Our goal is to minimize the regret, which is defined to be the difference
between the total reward obtained by our algorithm over the T round, and the reward we can
obtain if we keep playing the best arm. For this basic problem and its numerous extensions, we
can obtain an o(T ) regret. 17 Instead of playing one arm, we may play a combinatorial set of arms
in each round. This is the combinatorial bandit problem. There are numerous other extensions and
variations. We refer interested readers to [29, 23] for more comprehensive treatments.

17There are several variations of the definition of regret. For the basic version we mention here, we can achieve
an O(

√
T ) regret. For some other variant (such as pseudo-regret), it is possible to achieve better guarantee (such as

logarithmic regret).
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Markovian bandit: Another extremely important class of stochastic multi-armed bandit problems
we have not mentioned yet is the Markovian bandit problems. Here, the reward distribution of each
arm follows from a Markov chain. Suppose the chains and the transition probabilities are known.
Upon a play of an arm, the state of the arm changes according to the transition probabilities of
the corresponding Markov chain. We would like to design an adaptive policy to play the arms and
maximize the expected reward. A celebrated result in this domain is Gittin’s index [62], due to John
Gittins, who obtained a polynomial time solution for maximizing the expected discounted reward.
In fact, Gittins’s solution is a very simple-looking greedy solution, which assigns each state of the
Markov chain a fixed number (the Gittin’s index), and always play the arm with the current largest
index. Several simpler proofs of the result are discovered later (see e.g., [58]) and covered in several
text books. Bertsimas and Niño-Mora [18] provided a unified view of several problems that admit
similar efficient greedy-like algorithms, via the notion of extended polymatroid. However, many
variants are PSPACE-hard, shown by Papadimitriou and Tsitsiklis [120]. There is also a body of
work studying approximation algorithms with provable approximation factors for these problems.
See [68, 70, 67, 71, 110] and the references therein. In fact, some bandit models generalizes the
stochastic knapsack we considered in the beginning (see e.g., [71, 110]).

Bandit Arm Selection: Now, we briefly review some problems and results related to Problem 1.4
we introduced in Section 1. Such problems are also called pure exploration multi-armed bandit
problems. The most basic version is the best arm identification problem, in which the goal is to
select the single best arm. Bechhofer [17] first formulated the problem for Gaussian arms in 1954.
There has been a resurgence of interest for the problem in the last decade [50, 112, 59, 91, 94, 88, 34].
Mannor and Tsitsiklis [112] showed that for any algorithm that returns the correct answer with
probability at least 1− δ, it requires Ω

(∑n
i=2 ∆−2i ln δ−1

)
samples in expectation for any instance,

where ∆i is the difference between the mean of the best arm and that of the ith arm. Chen and
Li [34] obtained the current best upper bound

O
(

∆−22 ln ln ∆−12 +
n∑

i=2

∆−2i ln δ−1 +
n∑

i=2

∆−2i ln ln min(n,∆−1i )
)
.

The above bound is worst case optimal, since there is a matching worst-case lower bound for each
of the three terms. In fact, the first term is nearly instance optimal 18 (see [34] for the details),
hence not improvable. The second term is instance optimal due to the lower bound in [112]. Only
the third term is worst-case optimal.

Open Question 6. Obtain a nearly instance optimal algorithm for the best arm identification
problem. We conjecture that the optimal bound is of the form ∆−22 ln ln ∆−12 + L(I), where L(I) is
an instance-wise lower bound.

The worst case sample complexity in the PAC (Probably Approximately Correct) setting is
also well studied. In the PAC setting, the algorithm should return an arm whose mean is at most
ε worse than the optimal one, with probability at least 1 − δ. There is a matching (worst case)
lower and upper bound Ω(n ln δ−1/ε2) [112, 50]. The generalization to selecting the top-k arms has
also been studied extensively for the last few years (see e.g., [59, 60, 134, 91, 90, 24, 97, 96, 27]).
Recently, Chen et al. [36] initiated the study of the combinatorial pure exploration problem, which
generalizes the cardinality constraint to more general combinatorial constraints (e.g., matroid).

18Instance optimality means that the upper and lower bounds match for every instance. Worst-case optimality
means that the upper and lower bounds match for an infinite class of instances.
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9.4 Clustering Stochastic Points

There are two popular models for stochastic points in a metric space. In the existential uncertainty
model, each node v is presented at a fixed point with probability pv, independent of other point. In
the locational uncertainty model, the location of a node follows some given distribution. Cormode
and McGregor [37] considered the k-center clustering problem 19 for the locational model in a
finite metric graph, and gave a bi-criterion constant approximation. The result was improved later
to a true constant factor approximation by Guha and Munagala [69]. Munteanu [117] studied
the 1-center problem (a.k.a. the minimum enclosing ball problem) for stochastic points in fixed
dimensional Euclidean space and provided a PTAS. Recently, Huang et al. [84] obtained a PTAS
for the more general j-flat center problem (i.e., the center is a j-flat, i.e., a j-dimensional affine
subspace) for stochastic point, using an extension of the powerful geometric notation ε-kernel
coreset, introduced by Agarwal et al. [3], to the stochastic setting. In the (k, j)-projective clustering
problem, we are asked to choose k j-flat, such that the maximum distance for any point to its closest
j-flat is minimized. Extending the above results to other clustering problems (e.g., the k-center
problem Rd with k = O(1), d = O(1)) is an interesting future direction.
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dual on online packing lps in the random-order model. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, pages 303–312. ACM, 2014.

[99] Rohit Khandekar, Guy Kortsarz, Vahab Mirrokni, and Mohammad R Salavatipour. Two-
stage robust network design with exponential scenarios. Algorithmica, 65(2):391–408, 2013.
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