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ABSTRACT

We address the problem of finding a “best” deterministic yaer-
swer to a query over a probabilistic database. For this [@a;po

we propose the notion of a consensus world (or a consensus an

swer) which is a deterministic world (answer) that mininsizbe
expected distance to the possible worlds (answers). Thislgm
can be seen as a generalization of the well-studied indensii-
formation aggregation problems (e.g. rank aggregatiompydba-
bilistic databases. We consider this problem for varioyses$yof
queries including SPJ queries, Top-k ranking queries,gtouag-
gregate queries, and clustering. For different distanceicsewe
obtain polynomial time optimal or approximation algoritbrfor

computing the consensus answers (or prove NP-hardness3t Mo

of our results are for a general probabilistic database modked
and/xor tree modelhich significantly generalizes previous prob-
abilistic database models like x-tuples and block-indepen dis-
joint models, and is of independent interest.

Categories and Subject Descriptors
H.2.4 [Database Managemerit Query Processing

General Terms
Theory, Algorithms

Keywords

Consensus answers, rank aggregation, probabilisticalseabquery
processing, probabilistic and/xor tree

1. INTRODUCTION

There is an increasing interest in uncertain and probébitiata-
bases arising in application domains like informationiestal [14,
38], recommendation systems [34, 36], mobile object data-ma
agement [8], information extraction [23], data integrat{8] and

sensor networks [15]. Supporting complex queries and ibecis
making on probabilistic databases is significantly mordiaift
than on deterministic databases, and the key challengasdénc

defining proper and intuitive semantics for queries oventhand

developing efficient query processing algorithms.

The common semantics in probabilistic databases arpdbsi-
ble worlds semanti¢svhere a probabilistic database is considered
to correspond to a probability distribution over a set ofedeiin-
istic databases called possible worlds. Therefore, pogirgies
over such a probabilistic database generates a probadiiitybu-
tion over a set of deterministic results which we call “pbtssian-
swers”. However, a full list of possible answers togethahwheir
probabilities is not desirable in most cases since the didgedist
could be exponentially large, and the probability asseciatith
each single answer is extremely small. One approach to s&ldge
this issue is to “combine” the possible answers somehow taimmb
a more compact representation of the result. For selegdqiro
join queries, for instance, one proposed approach is tonuallo
the possible answers, and compute the probability of easlitre
tuple by adding the probabilities of all the possible answebe-
longs to [14]. This approach, however, can not be easilyneidée
to other types of queries like ranking or aggregate queries.

Furthermore, from the user or application perspectivepitkes
the probabilistic nature of the data, a single, determimegiery re-
sult may be desirable, on which further analysis or decisiaking
could be based. For SPJ queries, this is often achieved bgstih
olding”, i.e., returning only the result tuples with a suffiatly high
probability of being true. For aggregate queries, ofteneetgad
values are returned instead [28]. For ranking queries, emther
hand, a range of different approaches have been proposeutlto fi
the true ranking of the tuples. These include UTop-k [40]ddiR
k [40], probabilistic threshold Top-k [26], global Top-kg# ex-
pected rank [10], and so on. Although these definitions seem t
reason about the ranking over probabilistic databaseame Spat-
ural” ways, there is a lack of a unified and systematic analysi
framework to justify their semantics and to discriminate trse-
fulness of one from another.

1This research was supported by NSF under grants CCF-0728839 I this paper, we consider the problem of combining the tesul

and 11S-0546136.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODS’09,June 29-July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

for all possible worlds in a systematic way by putting it i tton-
text of inconsistent information aggregatiomhich has been stud-
ied extensively in numerous contexts over the last halfuogntn
our context, the set of different query answers returneoh fpos-
sible worlds can be thought as inconsistent informationctvhwe
need to aggregate to obtain a single representative an3wéhe
best of our knowledge, this connection between query psings
in probabilistic databases and inconsistent informatgaregation,
though natural, has never been realized before in any foamal
mathematical way. Concretely, we propose the notiothefcon-



sensus answerRoughly speaking, the consensus answer is a an- data languages, to practical implementation issues suckl@sing
swer that isclosest in expectatioto the answers of the possible techniques. In terms of representation power, most of tbik\vas
worlds. To measure the closeness of two answerand 7, we either assumed independence between the tuples [19, 1W§sor
need to define suitable distance functitfn;, 72) over the answer restricted the correlations that can be modeled [5, 30, B, S&v-
space. For example, if an answer is a vector, we can simplthese  eral approaches for modeling complex correlations in dvdistic
L» norm; whereas in other cases, for instance, Top-k quehies, t databases have also been proposed [38, 4, 39, 43].

definition ofd is more involved. If the most consensus answer can  For efficient query evaluation over probabilistic datalsasee of

be taken from any point in the answer space, we refer it asdan the key results is the dichotomy of conjunctive query eviabmeon
answer A median answeron the other hand, must be the answer tuple-independent probabilistic databases by Dalvi ardugd 4,
for some possible world with non-zero probability. 13]. Briefly the result states that the complexity of evahmta
From a mathematical perspective, if the distance functqmop- conjunctive query over tuple-independent probabilisétathases
erly defined to reflect the closeness of the answers, the maost ¢ is either PTIME or #P-complete. For the former case, Dald an
sensus answer is perhaps the best deterministic reprégenfahe Suciu [14] also present an algorithm to find what are caflafit
set of all possible answers, since it can be thought as theotgn query plansthat permit correatxtensionaévaluation of the query.
of the set of points corresponding to the possible answers. Unfortunately the problem of finding consensus answersapye
Our key contributions can be summarized as follows: be much harder; this is because even if a query has a safelptan,
e (Probabilistic And/Xor Tree) We propose a new model for mod- result tuples may still be arbitrarily correlated.
eling correlations, called thprobabilistic and/xor treemodel, In recent years, there has also been much work on efficiently a
that can capture two types of correlations, mutual exchuaiod swering different types of queries over probabilistic 8atses, in-
coexistence. This model generalizes the previous modets su  cluding aggregates [28], summarization [12], clusteribtj[near-
as x-tuples, and block-independent disjoint tuples modelre est neighbors [6] and so on. Soliman et al. [40] first congider

important, this model admits an elegant generating funstio  the problem of top-k query evaluation over probabilistitati@ses,
based framework for many types of probability computations and proposed two ranking functions to combine the tupleescor

We note that it is possible to represent the correlationtucag and probabilities. This problem is particularly interagtifor our
by such a tree using probabilistic c-tables [22] and promesa  Purposes, since the semantics of the query (what it shotudnje
semirings [21]. However, that does not directly imply effict are not quite clear. This has led to much recent work (Zhang et
algorithms for the problems we consider in this paper. al. [46], Hua et al. [25, 26], Cormode et al. [10] etc.) thas pao-

posed different ways to compute the top-k answers; as waabse
in our recent work, the answers under different semantiosbea
wildly different from each other [31].

The problem of aggregating inconsistent information froifa d
ferent sources arises in numerous disciplines and has beén s
ied in different contexts over decades. Specifically, theNRA
e (Top-k ranking Queries) The problem of aggregating incensi  AGGREGATION problem aims at combinirfigdifferent complete

tent rankings has been well-studied under the nanrardf ag- ranked listst,..., 7 on the same set of objects into a single

gregation[16]. We develop polynomial time algorithms for com-  ranking, which is the best description of the combined pezfees
puting mean and median top-k answers under the symmetric dif in the given lists. This problem was considered as early as th

e (Set Distance Metrics) We show that the mean and the median
world can be found in polynomial time for treymmetric dif-
ferencemetric for and/xor tree model. For the Jaccard distance
metric, we present a polynomial time algorithm to compute th
mean and median world for a tuple independent database.

ference metric, and the mean answers und&rsection met- 18th century when Condorcet and Borda proposed a votingrsyst
ric andgeneralized Spearman’s footrule distar{dé8], for the for elections [9, 7]. In the late 50’s, Kemeny proposed thst fir
and/xor tree model. mathematical criterion for choosing the best ranking [28dmely,

the Kemeny optimal aggregatianis the ranking that minimizes
¥ d(7,7), whered(;, 7;) is the number of pairs of elements
that are ranked in different order in andr; (also called Kendall’s
tau distance). While computing the Kemeny optimal is shawinet
e (Consensus Clustering) We also consider the consensusrelus  NP-hard [17], 2-approximation can be easily achieved byipis

ing problem for the and/xor tree model and get a constant ap- the best ranking front given ranking lists. The other well-known

e (Groupby Aggregates) For group by count queries, we present
a 4-approximation to the problem of finding a median answer
(finding mean answers is trivial).

proximation by extending a previous result [2]. 2-approximation is from the fact the Spearman footruleatise,
Outline: We begin with a discussion of the related work (Section defined to b&lr (7, 7;) = >, |7:(t) — 7;(¢)], is within twice the
2). We then define the probabilistic and/xor tree model (B &), Kendall's tau distance and the footrule aggregation candree d

and present a generating functions-based method to dolplibpa optimally in polynomial time [16]. Ailon et al. [2] improvene ap-
computations on them (Section 3.3). The bulk of our key tesul proximation ratio tot/3. We refer the readers to [24] for a survey
are presented in Sections 4 and 5 where we address the problem on this problem. For aggregating top-k answers, Ailon [terely

finding consensus worlds for different set distance metius for obtained ar8 /2-approximation. Quite recently, Soliman et al. [41]
top-k ranking queries respectively. We then briefly disdirsding also observed the relationship between ranking in uncedafa-
consensus worlds for group-lmpuntaggregate queries and clus- bases and the RANK-AGGREGATION problem and proposed a
tering queries in Section 6. polynomial time algorithm under Spearman’s footrule dis&for

full rankings in probabilistic databases.
2. RELATED WORK The CONSENSUS-CLUSTERING problem asks for the best clus-

tering of a set of elements which minimizes the number ofpag
disagreements with the givénclusterings. It is known to be NP-
hard [42] and a 2-approximation can also be obtained by ipicki
the best one from the givenclusterings. The best known approx-
imation ratio is4/3 [2].

There has been much work on managing probabilistic, uncer-
tain, incomplete, and/or fuzzy data in database systemshasd
area has received renewed attention in the last few yeagse(ge
[27, 5, 30, 19, 20, 8, 14, 37, 44, 4, 43]). This work has spanned
a range of issues from theoretical development of data rmedel



3. PRELIMINARIES

We begin with reviewing the possible worlds semantics, and i
troduce the probabilistic and/xor tree model.

3.1 Possible World Semantics

We consider probabilistic databases with both tuple-lewel
certainty (the existence of a tuple is uncertain) and aittedevel
uncertainty (a tuple attribute value is uncertain). Speaify, we
denote a probabilistic relation bg” (K; A), whereK is thekey
attribute, andA is the value attributé. For a particular tuple in
R, its key attribute is certain and is sometimes called theiptes
worlds key. R is assumed to correspond to a probability space
(PW, Pr) where the set of outcomes is a set of deterministic rela-
tions, which we calpossible worldsPW = {pw1, pw2, ...., pwn }.

Note that two tuples can not have the same value for the key at-

tribute in a single possible world. Because of the typicakpo-
nential size of PW, an explicit possible worlds representation is
not feasible, and hence the semantics are usually captonaiti
itly by probabilistic models with polynomial size specifiican.

Let T denote the set of tuples in all possible worlds. For ease of
notation, we will use¢ € pw in place of ‘t appears in the possible
world pw”, Pr(t) to denotePr(t is present andPr(—t) to denote
Pr(tis not present

Further, for a tuple” € RT, we call the certain tuples corre-
sponding to it (with the same key value) in the union of thesjine
worlds, itsalternatives

Block-Independent Disjoint (BID) Scheme: BID is one of the
more popular models for probabilistic databases, and asstinat
different probabilistic tuples (with different key valyesre inde-
pendent of each other [14, 37, 13, 35]. Formally, a BID scheme
has the relational schema of the frdd{ K; A; Pr) whereK is the
possible worlds keyA is the value attribute, anBr captures the
probability of the corresponding tuple alternative.

3.2 Probabilistic And/Xor Tree

We generalize the block-independent disjoint tuples madeich
can capturenutual exclusiometween tuples, by adding support for
mutual co-existen¢end allowing these to be specified in a hierar-
chical manner. Two events satisfy the mutual co-existencela-
tion if in any possible world, either both happen or neithecws.
We model such correlations usingoeobabilistic and/xor tregor
and/xor tree for short), which also generalizes the notioins-
tuples[37, 45],p-or-sets [13] and tuple independent databases.
first considered this model for tuple-level uncertainty mesarlier
paper [31], and generalize it here to handle attributetleneer-
tainty.

We use®) (or) to denote mutual exclusion ag (and) for co-
existence. Figure 1 shows two examples of probabilistidxamd
trees. Briefly, the leaves of the tree correspond to the talpée-
natives (we abuse the notation somewhat and usedenote both
the tuple, and its key value). The first tree captures a oglatiith
four independent tuples;, to, t3, t4, €ach with two alternatives,
whereas the second tree shows how we can capture arbitrsry po
sible worlds using an and/xor tree (Figure 1(ii) shows thesfide
worlds corresponding to that tree).

Now, let us formally define a probabilistic and/xor tree. eet
7T, we denote the set of children of nodeby Chz(v) and the
least common ancestor of two leavgsandlz by LC A7 (11, 12).

We omit the subscript if the context is clear.

We

DEFINITION 1. A probabilistic and/xor tree7 represents the
mutual exclusion and co-existence correlations in a pralistic

For clarity, we assume singleton key and value attributes.

relation R” (K; A), whereK is the possible worlds key, antl is
the value attribute. I, each leaf is a key-attribute pair (a tuple
alternative), and each inner node has a magk,or ®. For each
& nodewu and each of its childrem € Ch(u), there is a nonneg-
ative valuePr(u, v) associated with the edde:, v). Moreover, we
require

e (Probability Constraint)y ., o,y Pru,v) < 1.

e (Key Constraint) For any two different leavés [> holding
the same key,C A(ly, l2) is a@ nodé.

Let7, be the subtree rooted atand Ch(v) = {v1,...,v¢}. The
subtree7,, inductively defines a random subsgt of its leaves by
the following independent process:

e Ifvisaleaf,S, = {v}.

e If 7, roots at a®) node, then
g Sy,  with probPr(v, v;)
YT 0 withprobl — 3¢ Pr(v,v;)

e If 7, roots at a@® node, therS, = Uf_,S,,

Probabilistic and/xor trees can capture more complicateceta-
tions than the prior models such as the BID model or x-tuplés.
remark that Markov or Bayesian network models are able te cap
ture more general correlations [38], however, the strectfrthe
model is more complex and probability computations on thiem (
ference) is typically exponential in the treewidth of thedab The
treewidth of an and/xor tree (viewing it as a Markov netwask)
not bounded, and hence the techniques developed for thadelsno
can not be used to obtain a polynomial time algorithms forxard
trees.

3.3 Computing Probabilities on And/Xor Trees

Aside from the representational power of the and/xor tredeho
perhaps its best feature is that many types of probabilitymda-
tions can be done efficiently and elegantly on them ugiergerat-
ing functions In our prior work [31], we used a similar technique
for computing ranking functions for tuple-level uncertgimodel.
Here we generalize the idea to a broader range of probabdity-
putations.

We denote the and/xor tree By. SupposeY = {z1,x2,...}is
a set of variables. Define a mappiagvhich associates each leaf
[ € T with a variables(l) € X. Let7, denote the subtree rooted
atv and letvy, ..., v; bewv’s children. For each node € 7, we
define a generating functiaf, recursively:

o If visaleaf F}(X) = s(v).
e If visa® node,
Fo(X) = (1= 34— P(0,08)) + Xj—y Fop (X) - p(v,v5)

e If visa@® node,Fi(X) = [T\ _, Fu, (X).

The generating functioF(X) for tree 7 is the one defined
above for the root. It is easy to see, if we have a constant hum-
ber of variables, the polynomial can be expanded in the foim o

irig.... Cit.io.. @1 37 ... in polynomial time.

Now recall that each possible worldv contains a subset of the
leaves of7 (as dictated by thé) and ® nodes). The following
theorem characterizes the relationship between the ceeffscof
F and the probabilities we are interested in.

2The key constraint is imposed to avoid two leaves with theesam
key but different attribute values coexisting in a possibteld.
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Figure 1: (i) The and/xor tree representation of a set of blok-independent disjoint tuples; the generating function oltained by
assigning the same variabler to all leaves gives us the distribution over the sizes of thegssible worlds. (i) Example of a highly
correlated probabilistic database with 3 possible worlds and (jii) the and/xor tree that captures thecorrelation; the coefficient of y
(0.3) isPr(r(ts,6) = 1) (i.e., prob. that that alternative of ¢ is ranked at position 1).

THEOREM 1. The coefficient of the terf :p;f in F(X) is the
total probability of the possible worlds for which, for gllthere are
exactlyi; leaves associated with variabig .

The proof is by induction on the tree structure and is omitted

ExampPLE 1. If we associate all leaves with the same variable
z, the coefficient of* is equal toPr(|pw| = 7).

The above can be used to obtain a distribution on the possdsle
sizes (Figure 1(i)).

EXAMPLE 2. If we associate a subsstof the leaves with vari-
able z, and other leaves with constaif the coefficient of* is
equal toPr(|jpw N S| = i).

ExampPLE 3. Nextwe show how to compule(r(t) = 9) (i.e.,
the probabilityt is ranked at positior), wherer(t) denote theank
of the tuple in a possible world by sorseoremetric. Assume
only has one alternativef, a), and hence only one possible value
of score,s. Then, in the and/xor treg, we associate all leaves
with key other than and score value larger thanwith variablex,
and the leaf(t, a) with variabley, and the rest of leaves with con-
stant1. Then, the coefficient af’ ~!y in the generating function
is exactlyPr(r(t) = 4). If the tuple has multiple alternatives, we
can computePr(r(t) = 4) for it by summing up the probabilities
for the alternatives.

See Figure 1(iii) for an example.

3.4 Problem Definition

We denote the domain of answers for a querybgnd the dis-
tance function between two answersdy). Formally, we define
the most consensus answeto be a feasible answer to the query
such that the expected distance betweend the answer,,, of
the (random) worlghbw is minimized, i.e,

7 = arg min {E[d(7", Tpw )]}
T'eQ

We call the most consensus answeflithe mean answerhen
Q is the set of all feasible answers £1fis restricted to be the set of
possible answers (answers of some possible worlds wittzeom-
probability), we call the most consensus answeflithe median
answer Taking the example of the top-k queries, the median an-
swer must be the top-k answer of some possible world while the
mean answer can be any sorted list of d&ize

4. SET DISTANCE MEASURES

We first consider the problem of finding the consensus world fo
a probabilistic relation under two set distance measusesntric
difference, and Jaccard distance; the probabilisticicglanay be
an existing relation in the database, or the result of exegLa
conjunctive query over it.

4.1 Symmetric Difference

The symmetric difference distance between two $8tsS- is
defined to be

da(S1,52) = [S1A8:2] = [(S1\ 52) U (52 \ S1)].

Note that two different alternatives of a tuple are treateditierent
tuples here.

THEOREM 2. The mean world under the symmetric difference
distance is the set of all tuples with probability0.5.

PROOF. Supposes is a fixed set of tuples anfl = 7' — S. Let

é(p) = { (1)’ :;gz ?{;ﬁe be the indicator function. We write
Epwepw[da(S, pw)] as follows:
Elda(S,pw)] = E[Y_d(t¢pw)+ Y 8(t € pw)]
tes tesS
= ) E[6(t ¢ pw)|+ Y _E[6(t € pw)]
tes tes
= Z Pr(—t) + Z Pr(t)
tes tesS

Thus, each tuple contributesPr(—t) to the expected distance if
t € S andPr(t) otherwise, and hence the minimum is achieved by
the set of tuples with probability 0.5. O

Thus, finding the mean answer for a conjunctive query is €asy i
we can decide which result tuples have probabitity.5.

Finding the consensus median world is somewhat trickieh wi
the main concern being that the world that contains all sipligh
probability > 0.5 may not be a possible world.

COROLLARY 1. Ifthe correlations can be modeled using a prob-
abilistic and/xor tree, the median world is the set contagiall
tuples with probability greater thaf.5.

The proof is by induction on the height of the tree, and is emit
ted for space constraints. This however does not hold fatrarp
correlations. Next we show that finding a median answer for a



conjunctive query is NP-Hard even if result tuple probapitiom-
putation is easy (i.e., even if the query has a safe plan)usecaf
the correlations between the result tuples.

THEOREM 3. For conjunctive queries over databases with ar-
bitrary correlations, finding a median answer under the syt
difference distance is NP-Hard.

PrROOF. Consider the query:
Q(C) = mc(R ™ S)

whereR = R(C,z,b) areS = S(x,b) are two relations inde-
pendent with each other. We show finding a median world far thi
query is NP-Hard by showing a reduction from the MAX-2-SAT
problem. Recall that in a MAX-2-SAT instance, we are given a
conjunctive normal form expression with 2 literals per sawand
the task is to determine the maximum number of clauses tmat ca
be simultaneously satisfied by an assignment. Let the MAX-2-
SAT instance consist of. variables,z1,...,z,, andk clauses.
Let S(z,b) = {(z1,0), (z1,1), (z2,0), (z2,1),... } contain two
mutually exclusive tuples each farvariables; all tuples are equi-
probable with probability 0.5.R(C, z, b) is a deterministic table,
and contains two tuples for each clause: Supposéor z;) is a
literal in clausec;, R contains tupl€c;, z;, 1) (or (c;, z;,0)). We

can see thaRk X S has the same set of tuples Bsand each tu-
ple has probability0.5. Moreover, two tuples with the sam@&
value are independent. Therefore, the resultefR X S) con-
tains one tuple for each clause, associated with a probalbili
1—-0.5x%x0.5=0.75.

Now, consider the possible deterministic answer which iege
ated by a deterministic instanéeof S. It is easy to see the answer
contain clause; if and only if ¢; is satisfied by the assignment
defined byS. According to the proof of Theorem 2, the median
answer is the possible deterministic answer containingimax
number of tuples, which corresponds to finding the assighthain
maximizes the number of satisfied clauseEl

4.2 Jaccard Distance
The Jaccard distance between two $8tsS; is defined to be

[S1AS,]

- [S1USa|”

Jaccard distance always lies[in 1] and is a real metric, i.e, sat-
isfies triangle inequality. Next we present polynomial tiaigo-
rithms for finding the mean and median worlds for tuple indepe
dent databases, and median world for the BID model.

ds(S1,52)

LEMMA 1. Given an and/xor tree7” and a possible world for
it, W (corresponding to a set of leaves %), we can compute
E[d(W, pw)] in polynomial time.

PROOF A generating functiorf7 is constructed with the vari-
ables associated with leaves as follows: far W (¢ ¢ W), the
associated variable is (y). For example, in a tuple independent
database, the generating function is:

F(z,y) = [] (Pr(=t) + Pr(t)z) ] (Pr(=t) + Pr(t)y)

tew tgw
From Theorem 1, the coefficient ; of term z'y’ in generating

function F is equal to the total probability of the worlds such that
the Jaccard distance between those worldg&nd exactly‘W"Z“

| (Wi+5 -~
. W=t
Thus, the distance 5, ; ¢i.j e O

LEMMA 2. For tuple independent databases, if the mean world
contains tuple; but not tupletz, thenPr(t1) > Pr(t2).

PROOF SayW; is the mean world and the lemma is not true,
i.e, dt, € W17t2 ¢ Wi s.t. Pl’(tl) < Pr(tz). LetW = W; —
{tl}, Wo =W + {tz} andW’' =T —-W — {t1} — {tz}. We will
prove W> has a smaller expected Jaccard distance, thus rendering
contradiction. SupposgVi| = |Wa2| = k. We let matrixM =
[mi;]i,; Wherem,, ; = =2, We construct generating functions
as we did in Lemma 1. éuppos@l and F> are the generating
functions foriW; andWs, respectively. We writ§A || = >, - ai,;
for any matrixA and letA ® B the Hadamard product 0&7 and
B (take product entrywise). We denote:

F'(x,y) = iew (Pr(=t) + Pr(t)z) Tl (Pr(=t) + Pr(t)y)
We can easily see that:
Fi(z,y) = F'(z,y) (Pr(=t1) + Pr(ta)z) (Pr(=t2) + Pr(t2)y)
Fa(x,y) = F'(z,y) (Pr(=t1) + Pr(t1)y) (Pr(=t2) + Pr(t2)z)
Then, taking the difference, we g& = Fi(z,y) — F2(z,y) is
equal to:

F(,y) (Pr(-t)Pr(tz) = Pr(tn)Pr(-t2)) (y =) (1)

Let Cr = [ci;] be the coefficient matrix o wherec;,; is the
coefficient of termz*y’. Using the proof of Lemma 1:

E[d(W1,pw)] — E[d(W2, pw)] = [|Cx @ M|| - ||Cx, © M|

ICz @ M|

Letc ; ande;,; be the coefficient af'y; in 7’ andF, respectively.
It is not hard to see; ; = (c¢;;_1 — c;_1;)p from (1) where
p = (Pr(=t1)Pr(t2) — Pr(t1)Pr(—t2)) > 0.

Then we have:

ICz @ M|

PZ ((C/li,jfl - C;—l,j)mi,j)
%)

Py cii(Mijin —mit1)

i
, (k—ititl k—i-14j
pizj%( eSS kT

The proof follows because, for ay; > 0, we have that:
k—itj+1l  k—i—1+j >0
ki1 E+j

O

The above two lemmas can be used to efficiently find the mean
world for tuple-independent databases, by sorting theetujpl the
decreasing order by probabilities, and computing the drpledis-
tance for every prefix of the sorted order.

A similar algorithm can be used to find the median world for the
BID model (by only considering the highest probability atiztive
for each tuple). Finding mean worlds or median worlds undamem
general correlation models remains an open problem.

5. TOP-K QUERIES

In this section, we consider top-k queries in probabilistéta-
bases. Each tuplg has a score(¢;). In the tuple-level uncer-
tainty model,s(¢;) is fixed for each;, while in the attribute-level
uncertainty model, it is an random variable. In the and/xeet
model, we assume that the attribute field is the score (uaioert
attributes that don’t contribute to the score can be ignorétle
further assume no two tuples can take the same score foriagoid
ties. We user(¢) to denote the random variable indicating the rank
of t andr,.(t) to denote the rank of in possible worldpw. If ¢
does not appear in the possible wopld, thenr,.,(t) = co. So,



Pr(r(t) > 1) includes the probability thats rank is larger thari
and thatt doesn’t exist. We saw ranks higherthant. in possible
world pw if 7pw (1) < rpw(t2).

Finally, we use the symbat to denote a top-k ranked list, and
7' to denote the restriction of to the firsti items. We use-(4) to
denote the'" item in the listr for positive integer, andr(t) to

denote the position df€ T'in 7.

5.1 Distance between Two Top-k Answers

Fagin et al. [18] provide a comprehensive analysis of thé-pro
lem of comparing two top-k lists. They present extensionthef
Kendall’s tau and Spearman footrule metrics (defined orréuk-
ings) to top-k lists and propose several other natural g®tsuch
as the intersection metric and Goodman and Kruskal's gamnia f
tion. In our paper, we consider three of the metrics disaligse
that paper: the symmetric difference metric, the inteieaanet-
ric and one particular extension to Spearman’s footruléadise.
We briefly recall some definitions here. For more details dmed t
relation between different definitions, please refer td.[18

Given two top-k lists;; and 7z, the normalized symmetric dif-
ference metric is defined as:

da(ri, 1) = 5| AT| = g [(11\72) U (12\ ).
While da focuses only on the membership, the intersection met-
ric d; also takes the order of tuples into consideration. It is @efin
to be:

di(r1,m2) = £ 30 da(r, )
Bothda () andd;() values are always betweérand1.

The original Spearman’s Footrule metric is defined adthdis-
tance between two permutatiomsando.. Formally,F' (o1, 02) =
Y ierloi(t) — o2(t)]. Let £ be a integer greater thadn The
footrule distance with location parametérdenotedr'(*) general-
izes the original footrule metric. It is obtained by placalgmiss-
ing elements in each list at positidrand then computing the usual
footrule distance between them. A natural choicé isfk 4+ 1 and
we denoteF **tV) by d . Itis also proven thadx is a real metric
and a member of a big and important equivalence dl§%8].

Itis shown in [18] that:

dr(71,72) = (k+ 1) |11 A

+ Y InW-—n®l- > nE - . ).

teTiNTY teT\ T2 teTo\ 71

Next we consider the problem of evaluating consensus asswer
for these distance metrics.

5.2 Symmetric Difference and PT-k Ranking
Function

In this section, we show how to find mean and median top-k an-
swers under symmetric difference metric in the and/xorrmedel.
The probabilistic threshold top-k (PT-k) query [26] has bg@eo-
posed for evaluating ranking queries over probabilistimbases,
and essentially returns all tuplefor which Pr(r(t) < k) is greater
than a given threshold. If we set the threshold carefullyhso the
PT-k query returns exactly tuples, we can show that the answer
returned is the mean answer under symmetric differenceanetr

THEOREM 4. If 7 = {7(1),7(2),...,7(k)} is the set ok tu-
ples with the largesPr(r(t) < k), thenr is the mean top-k answer
under metriada, i.e, the answer minimizégda (7, Tpw)].

3All distance functions in one equivalence class are bourmjed
each other within a constant factor. This class includesrséex-
tensions of Spearman’s footrule and Kendall's tau metrics.

PROOF. Suppose is fixed. We writeE[da (T, Tpw )] @s follows:

Elda(r, 7pw)] = E[> _6(t € T AL & Tpu) + 0(t € Tpu At & 7T)]

teT

Z E[0(t € Tpw)] + Z E[0(t ¢ Tpw)]

teT\7 teT

> Pr(r(t) <k)+ Y Pr(r(t) > k)

teT\ ter

=k+ ) Pr(r(t) <k)—2) Pr(r(t) <k)

teT ter

The first two terms are invariant with respect7#o Therefore,
it is clear that the set ok tuples with the largesPr(r(t) < k)
minimizes the expectation.[]

To find a median answer, we essentially need to find the top-k an
swer T of some possible world such thag,._Pr(r(t) < k) is
maximum. Next we show how to do this given an and/xor tree in
polynomial time.

We write P(t) = Pr(r(t) < k) for ease of notation. We can't
simply pick k tuples with the highesP(¢) values since some of
them may be mutually exclusive. We use dynamic programming
over the tree structure. For each possible attribute walgeA (A
value is used to rank the tuples in the deterministic séfttietyZ *
be the tree which contains all leaves with attribute valueasta.

We recursively compute the set of tuples® (v, ), which maxi-
mizes the valug_, . .4, ;) () among all possible worlds gen-
erated by the subtreg; rooted atw and is of size, for each node
vin 7% andl < ¢ < k. We compute this for all different values,
and the optimal solution can be chosen tantex,, (pw®(r, k)).

Supposevs, vs, . .., v; arev’s children. The recursion formula
is:

1. Ifvisa® node,

Bty 5 0= s s

Vi’ tepw

pw®(v,i) = arg

2. Ifvis a@® node,pw®(v,1) = Ui<;j<ipw; such thapw; €
PW(T}), >, lpws| = iandzteujpwj P(t)is maximized.

In the latter case, the maximum value can be computed by dgnam
programming again as follows.
We denote byw® ([v: . .. vs], 7) the setU;_; pw; such thapw; €
a h . . -
PWA(T), 32 -, lpw;| =i andzteuyzlpwj P(t) is maximized.
pw?([v1,...vs],) can also be computed recursively. Let

>

tepw?([vy...vp—1],p)Upw® (vy,,i—p)

p = arg max P(t).

0<p<i

Then, we have
pw”([v1 ... vx] 1) = pw([v1 ... vp—1],p) Upw”(vs, 1 — p).

Finally, it is easy to sepw® (v, 1) is simply pw®([v1, ..., vi], ).

THEOREM 5. The median top-k answer under symmetric dif-
ference metric can be found in polynomial time for a prokiabd
and/xor tree.

5.3 Intersection Metric

Note that the intersection metrity is a linear combination of
the normalized symmetric difference metdg. Using a similar



approach used in the proof of Theorem 4, we can show that:

Eld7 (T, Tpw)] = ZE[dA i)
— iz % (k + Z Pr(r(t) <k)—2 Z Pr(r(t) < z))

Thus we need to fing which maximizes the last term(7) =

S (33,0, Pr(r(t) < i)). We first rewrite the objective as
follows, using the indicators function:
k
A0 = Y (% S Pe(r(t) < it e T ))
D> (_Z Pr(t) <)Y ot = r(j»)
k R kJ_l
- >y (6(t = ()Y P < i))

The last equality holds SinGE;_, 3", aiy = 3.5, S0, aij.

The optimization task can thus be written asaasignment prob-
lem, with each tuple acting as an agent and each of the top-k po-
SItIOI’lS] as a task. Assigning taskto agentt gains a profit of
Z._] 1Pr(r(t) < i) and the goal is to find an assignment such
that each task is assigned to at most one agent, and the profit i
maximized. The best known algorithm for computing the opti-
mal assignment runs 0 (nk+/n) time, via computing a maximum
weight matching on the bipartite graph [33].

5.4 Approximating the Intersection Metric
We define the following ranking function, whefg, = Zle 1/4
denotes thé&'" Harmonic number:
k

k
S (Hy — Hioa)Pr(r Zpr

i=1 i=1

TH(t) =

This is a special case of the parameterized ranking fungiion
posed in [31] and can be computeddtnk log? n) time for all tu-
ples in the and/xor tree. We claim that the top-k answyereturned
by Tz function, i.e., thek tuples with the highest i values, is a
good approximation of the mean answer with respect to the-int
section metric by arguing that; = {¢1, ¢, ..., ¢} is actually an
approximated maximizer ofi(7). Indeed, we prove the fact that
Alth) > + 7 A(7") wherer™ is the optimal mean top-k answer.
Let B(r ) > e, Yr(t) for any top-k answer-. It is easy

to seeA(r*) < B(7*) < B(tm) sinceTyz maximizes theB|()
function. Then, we can get:

Jj=11i=j
k
Hy—Hj;_ 1 .
> Y (T ) Yo Prlr(ty) <)
j=1 i=1
k
Hy —Hj 1 1 Hy — H; 1
= > —
j;( )2 (T )Y Ta()
1 1 «
= _ >—
o Br) > - A()

The second inequality holds because for non-decreasingeegs
ai(1 <i<mn)ande(l <i<n),

Do aici > %(Z?:l ai)(3o0, ¢i)

5.5 Spearman’s Footrule

For a top-k answer = {7(1),7(2),...,7(k)}, we define:
o Ti(t) =X, Pr(r(t) = 4)
o Yo(t) =35 Pr(r(t) =4) i

o Ya(t,i) = 35, Pr(r(t) = j))li — j| + iPr(r(t) > k).
It is easy to se@1(t), Y2(t), Ys(¢) can be computed in polyno-
mial time for a probabilistic and/xor tree using our geneafunc-
tions method.

A careful and non-trivial rewriting oE[F™* (7, 7. )] Shows that
it also has the form (Figure 2):

c+ZZa t,4)

teT i=1

E[F

(7, Tpw)]

whereC' is a constant independentofandf (¢, ¢) is a function of
t ands that is polynomially computable. More specifically,

Ft,) =Ts(t i) + Ta(t) —2(k+ 1) Y1 (¢)

Figure 2 shows the exact derivation. Thus, we only need te min
imize the second term, which can be modeled as the assignment
problem and can be solved in polynomial time.

5.6 Kendall's Tau Distance

ThenKendall's taudistance (also called Kemeny distande)
between two top-k lists; and» is defined to be the number of
unordered pair$t;, ¢t;) such that that the order efand; disagree
in any full rankings extended from; and -, respectively. It is
shown thatdr anddx and a few other generalizations of Spear-
man’s footrule and Kendall’s tau metrics form a big equinake
class, i.e., they are within a constant factor of each othHg]. [
Therefore, the optimal solution fatz implies constant approxi-
mations for all metrics in this class (the constantdaris 2).

However, we can also easily obtairs &2-approximation ford x
by extending the3/2-approximation for partial rank aggregation
problem due to Ailon [1]. The only information used in thelige:
rithm is the proportion of lists wherg is ranked higher thaty for
all i, 5. In our case, this correspondsRe(r(t;) < r(t;)). This
can be easily computed in polynomial time using the gensgati
functions method.

We also note that the problem of optimally computing the mean
answer is NP-hard for probabilistic and/xor trees. Thidofes
from the fact that probabilistic and/xor trees can simuéat@trary
possible worlds, and previous work has shown that aggregati
even 4 rankings under this distance metric is NP-Hard [16].

6. OTHER TYPES OF QUERIES
We briefly extend the notion of consensus answers to two other
types of queries and present some initial results.
6.1 Aggregate Queries
Consider a query of the type:
SELECT groupname, count(*)

FROM R
GROUP BY groupname



E[F* (7, Tpw)] (k+DlTAmw|+ Y

teTNTpw

I7(t) = Tpw (t)] —

teT

teT i=1j=1

k
—ZZE [0(t € 7\ Tpw)d(t = 7()

)i] — Z To(t

>, ) -

tET\Tpw

(k+ DE[rApo[] + > E[5(t € 7N 7pw)|7() — Tpu (t

Z Tpw (t):|

tETPpw \T
GIENAS ter\rpwr(tn—E[ > pr(t)}
teT tETpw \ T

k k
(k+ DE[TATpw[] + > > D ES(t € 7N 1pw)d(t = mpuw(i))3(t = 7(j))li — jl]

teT i=1 teT\r
k k k
= (k+ DE[|[TATpw]|] + Z Z (5(t =7(7)) Z Pr(r(t) = j)|i — y) Z Z (6(t = 7(2))iPr(r(t) > k)) Z Yot
teT i=1 Jj=1 teT i=1 teT\7
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teT ter teT i=1 teT\7

(k+Dk+ > ((k+1)Yi(t) —

teT teT i=1

Ta(t)) +ZZ5(t—T

)(T3(t,3) +To(t) — 2(k + 1)T1(t))

Figure 2: Derivation for Spearman’s Footrule Distance

We assume the dataset is represented by the BID model in whichcontaining:. We claim that there exists € V' such thatr*[j] <

there aren potential groups (indexed by groupname) anthde-
pendent tuples with attribute uncertainty. The probatidlidata-
base can be specified by the matfix=[p;_ j]nxm Wherep; ; is
the probability that tuple takes groupnamg andZ"i1 pij =
foranyl < i < n. A query result (on a determlnlstlc relation)
is am-dimensional vector where thei’” entry is the number of
tuples having groupname The natural distance metric to use is
the squared vector distance.

Computing the mean answer is easy in this case, because of lin
earity of expectation: we simply take the mean for each aggee
separately, i.ex = 1P wherel = (1,1,...,1). We note the
mean answer minimizes the expected squared vector distance
any possible answer.

The median world requires that the returned answer be a-possi
ble answer. It is not clear how to solve this problem optignail
polynomial time. To enumerate all worlds is obviously notrzo
putationally feasible. Rounding entries®fo the nearest integers
may not result in a possible answer.

Next we present a polynomial time algorithm to find a closest
possible answer to the mean worldT his yields at-approximation
for finding the median answer. We can model the problem as fol-
lows: Consider the bipartite grapB(U, V, E') where each node
in U is a tuple, each node iv is a groupname, and an edge
(u,v),u € U,v € V indicates that tuple takes groupname with
non-zero probability. We call a subgraph such thatdege: (u)
1 for all w € U anddegg/(v) = r[v], anr-matchingof B for
somem-dimensional integral vectar. Given this, our objective is
to find anr-matching ofB such that|r — |3 is minimized. Before
presenting the main algorithm, we need the following lemma.

LEMMA 3. The possible worla* that is closest ta: is of the
following form: r*[¢] is either|F[i] | or [T[i]] for eachl < i < m.

PROOF. Let M* be the corresponding”-matching. Suppose
the lemmais not true, and there exisich thafr™[i] — £[¢]| > 1.
W.l.o.g, we assume*[i] > r[i]. The other case can be proved the
same way. Consider the connected componént {U’, V', E(U’

r[j] and there is aalternating pathP with respect ta\/* connect-
ingi andj *. Therefore M’ = M*AP = (M*\ P)U (P\ M™)
is also a valid matching. Suppoaé’ is ar’-matching. But:

I — I3

v [j] = i) + (li] - £[i])* + (L] - £ [])?
lle* —F[3 = (" [i] = Fl])* — (e"[5] - £[5])°
(i) = 1= £[i])” + (e [j] + 1 — £[j))*

|lr* —E|[5 + 2 — 2r™ [i] + 2¢[i] + 2r" [j] — 2¢(j]
[

This contradicts the assumptiofi is the vector closest to.

Now, we prove the claim. We growaternating path tregw.r.t.
M*) rooted at in a Bread-First-Search (BFS) manfetetOdd C
V' be the set of nodes at odd depth (the root is at déptand
Even C U the set of nodes at even depth. For any sulsset
vertices, letVg(S) denote the set of neighbors Sfin graph B.
It is easy to sedVg(Even) = Odd, Even C Np(Odd) and
ZUECddr [v] = |Even|. Supposer®[v] > F[v] for all v and

r*[i] > r[i]. However, the contradiction follows since:

Z rv] > Z r[v] = Z Z

| Even| Plu, v]

veodd ve0dd vEOdd uE N (Odd)
= E E Plu,v] = |Even|.
veOddu€ Even

4An alternating path is a path with alternating unmatched and
matched edges [32].

SAn alternating path tree is a tree in which each path from g r

to another node is an alternating path with its first edge ghain

")} matched edge[32].



Therefore, there must be a vertgsuch thate*[j] < £[j] in the 7. CONCLUSION

alternating path tree. [ We addressed the problem of finding a single representative a
swer to a query over probabilistic databases by generglitie
notion of inconsistent information aggregation. We bedigkis
approach provides a systematic and formal way to reasont abou
the semantics of probabilistic query answers, especialydp-k
queries. Our initial work has opened up many interestinghage
for future work. These include design of efficient exact aprax-
imate algorithms for finding consensus answers for othezstygd
queries, exploring connections to safe plans, and undelisig.the
semantics of the other previously proposed ranking funstigsing
this framework.

With Lemma 3 at hand, we can construct the following min-cost
network flow instance to compute the vectdrclosest tor. Add
to B a sources and a sink. Add edgeqs, ) with capacity upper
bound]1 for all u € U. For eachv € V andr[v] is not integer, add
two edges: (v, t) andez (v, t). e1(v,t) has both lower and upper
bound of capacityr[v]] andez (v, t) has capacity upper bourid
and cost([F[v]] — £[v])? — (|[F[v]] — £[v])?. If £[v] is a integer,
we only adde; (v,t). We find a min-cost integral flow of value
on this network. For any such thatez(v, t) is saturated, we set
r*[v] to be[r| and || otherwise. Such a flow with minimum cost
suggests the optimality of the vectst due to Lemma 3.
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