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ABSTRACT
We address the problem of finding a “best” deterministic query an-
swer to a query over a probabilistic database. For this purpose,
we propose the notion of a consensus world (or a consensus an-
swer) which is a deterministic world (answer) that minimizes the
expected distance to the possible worlds (answers). This problem
can be seen as a generalization of the well-studied inconsistent in-
formation aggregation problems (e.g. rank aggregation) toproba-
bilistic databases. We consider this problem for various types of
queries including SPJ queries, Top-k ranking queries, group-by ag-
gregate queries, and clustering. For different distance metrics, we
obtain polynomial time optimal or approximation algorithms for
computing the consensus answers (or prove NP-hardness). Most
of our results are for a general probabilistic database model, called
and/xor tree model, which significantly generalizes previous prob-
abilistic database models like x-tuples and block-independent dis-
joint models, and is of independent interest.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing

General Terms
Theory, Algorithms

Keywords
Consensus answers, rank aggregation, probabilistic databases, query
processing, probabilistic and/xor tree

1. INTRODUCTION
There is an increasing interest in uncertain and probabilistic data-

bases arising in application domains like information retrieval [14,
38], recommendation systems [34, 36], mobile object data man-
agement [8], information extraction [23], data integration [3] and
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sensor networks [15]. Supporting complex queries and decision-
making on probabilistic databases is significantly more difficult
than on deterministic databases, and the key challenges include
defining proper and intuitive semantics for queries over them, and
developing efficient query processing algorithms.

The common semantics in probabilistic databases are thepossi-
ble worlds semantics, where a probabilistic database is considered
to correspond to a probability distribution over a set of determin-
istic databases called possible worlds. Therefore, posingqueries
over such a probabilistic database generates a probabilitydistribu-
tion over a set of deterministic results which we call “possible an-
swers”. However, a full list of possible answers together with their
probabilities is not desirable in most cases since the size of the list
could be exponentially large, and the probability associated with
each single answer is extremely small. One approach to addressing
this issue is to “combine” the possible answers somehow to obtain
a more compact representation of the result. For select-project-
join queries, for instance, one proposed approach is to union all
the possible answers, and compute the probability of each result
tuple by adding the probabilities of all the possible answers it be-
longs to [14]. This approach, however, can not be easily extended
to other types of queries like ranking or aggregate queries.

Furthermore, from the user or application perspective, despite
the probabilistic nature of the data, a single, deterministic query re-
sult may be desirable, on which further analysis or decision-making
could be based. For SPJ queries, this is often achieved by “thresh-
olding”, i.e., returning only the result tuples with a sufficiently high
probability of being true. For aggregate queries, often expected
values are returned instead [28]. For ranking queries, on the other
hand, a range of different approaches have been proposed to find
the true ranking of the tuples. These include UTop-k [40], URank-
k [40], probabilistic threshold Top-k [26], global Top-k [46], ex-
pected rank [10], and so on. Although these definitions seem to
reason about the ranking over probabilistic databases in some “nat-
ural” ways, there is a lack of a unified and systematic analysis
framework to justify their semantics and to discriminate the use-
fulness of one from another.

In this paper, we consider the problem of combining the results
for all possible worlds in a systematic way by putting it in the con-
text of inconsistent information aggregationwhich has been stud-
ied extensively in numerous contexts over the last half century. In
our context, the set of different query answers returned from pos-
sible worlds can be thought as inconsistent information which we
need to aggregate to obtain a single representative answer.To the
best of our knowledge, this connection between query processing
in probabilistic databases and inconsistent information aggregation,
though natural, has never been realized before in any formaland
mathematical way. Concretely, we propose the notion ofthe con-



sensus answer. Roughly speaking, the consensus answer is a an-
swer that isclosest in expectationto the answers of the possible
worlds. To measure the closeness of two answersτ1 andτ2, we
need to define suitable distance functiond(τ1, τ2) over the answer
space. For example, if an answer is a vector, we can simply usethe
L2 norm; whereas in other cases, for instance, Top-k queries, the
definition ofd is more involved. If the most consensus answer can
be taken from any point in the answer space, we refer it as themean
answer. A median answer, on the other hand, must be the answer
for some possible world with non-zero probability.

From a mathematical perspective, if the distance function is prop-
erly defined to reflect the closeness of the answers, the most con-
sensus answer is perhaps the best deterministic representative of the
set of all possible answers, since it can be thought as the centroid
of the set of points corresponding to the possible answers.

Our key contributions can be summarized as follows:
• (Probabilistic And/Xor Tree) We propose a new model for mod-

eling correlations, called theprobabilistic and/xor treemodel,
that can capture two types of correlations, mutual exclusion and
coexistence. This model generalizes the previous models such
as x-tuples, and block-independent disjoint tuples model.More
important, this model admits an elegant generating functions
based framework for many types of probability computations.
We note that it is possible to represent the correlations captured
by such a tree using probabilistic c-tables [22] and provenance
semirings [21]. However, that does not directly imply efficient
algorithms for the problems we consider in this paper.

• (Set Distance Metrics) We show that the mean and the median
world can be found in polynomial time for thesymmetric dif-
ferencemetric for and/xor tree model. For the Jaccard distance
metric, we present a polynomial time algorithm to compute the
mean and median world for a tuple independent database.

• (Top-k ranking Queries) The problem of aggregating inconsis-
tent rankings has been well-studied under the name ofrank ag-
gregation[16]. We develop polynomial time algorithms for com-
puting mean and median top-k answers under the symmetric dif-
ference metric, and the mean answers underintersection met-
ric andgeneralized Spearman’s footrule distance[18], for the
and/xor tree model.

• (Groupby Aggregates) For group by count queries, we present
a 4-approximation to the problem of finding a median answer
(finding mean answers is trivial).

• (Consensus Clustering) We also consider the consensus cluster-
ing problem for the and/xor tree model and get a constant ap-
proximation by extending a previous result [2].

Outline: We begin with a discussion of the related work (Section
2). We then define the probabilistic and/xor tree model (Section 3),
and present a generating functions-based method to do probability
computations on them (Section 3.3). The bulk of our key results
are presented in Sections 4 and 5 where we address the problemof
finding consensus worlds for different set distance metricsand for
top-k ranking queries respectively. We then briefly discussfinding
consensus worlds for group-bycountaggregate queries and clus-
tering queries in Section 6.

2. RELATED WORK
There has been much work on managing probabilistic, uncer-

tain, incomplete, and/or fuzzy data in database systems andthis
area has received renewed attention in the last few years (see e.g.
[27, 5, 30, 19, 20, 8, 14, 37, 44, 4, 43]). This work has spanned
a range of issues from theoretical development of data models and

data languages, to practical implementation issues such asindexing
techniques. In terms of representation power, most of this work has
either assumed independence between the tuples [19, 14], orhas
restricted the correlations that can be modeled [5, 30, 3, 37]. Sev-
eral approaches for modeling complex correlations in probabilistic
databases have also been proposed [38, 4, 39, 43].

For efficient query evaluation over probabilistic databases, one of
the key results is the dichotomy of conjunctive query evaluation on
tuple-independent probabilistic databases by Dalvi and Suciu [14,
13]. Briefly the result states that the complexity of evaluating a
conjunctive query over tuple-independent probabilistic databases
is either PTIME or #P-complete. For the former case, Dalvi and
Suciu [14] also present an algorithm to find what are calledsafe
query plans, that permit correctextensionalevaluation of the query.
Unfortunately the problem of finding consensus answers appears to
be much harder; this is because even if a query has a safe plan,the
result tuples may still be arbitrarily correlated.

In recent years, there has also been much work on efficiently an-
swering different types of queries over probabilistic databases, in-
cluding aggregates [28], summarization [12], clustering [11], near-
est neighbors [6] and so on. Soliman et al. [40] first considered
the problem of top-k query evaluation over probabilistic databases,
and proposed two ranking functions to combine the tuple scores
and probabilities. This problem is particularly interesting for our
purposes, since the semantics of the query (what it should return)
are not quite clear. This has led to much recent work (Zhang et
al. [46], Hua et al. [25, 26], Cormode et al. [10] etc.) that has pro-
posed different ways to compute the top-k answers; as we observe
in our recent work, the answers under different semantics can be
wildly different from each other [31].

The problem of aggregating inconsistent information from dif-
ferent sources arises in numerous disciplines and has been stud-
ied in different contexts over decades. Specifically, the RANK-
AGGREGATION problem aims at combiningk different complete
ranked listsτ1, . . . , τk on the same set of objects into a single
ranking, which is the best description of the combined preferences
in the given lists. This problem was considered as early as the
18th century when Condorcet and Borda proposed a voting system
for elections [9, 7]. In the late 50’s, Kemeny proposed the first
mathematical criterion for choosing the best ranking [29].Namely,
the Kemeny optimal aggregationτ is the ranking that minimizesPk

i=1 d(τ, τi), whered(τi, τj) is the number of pairs of elements
that are ranked in different order inτi andτj (also called Kendall’s
tau distance). While computing the Kemeny optimal is shown to be
NP-hard [17], 2-approximation can be easily achieved by picking
the best ranking fromk given ranking lists. The other well-known
2-approximation is from the fact the Spearman footrule distance,
defined to bedF (τi, τj) =

P
t |τi(t) − τj(t)|, is within twice the

Kendall’s tau distance and the footrule aggregation can be done
optimally in polynomial time [16]. Ailon et al. [2] improve the ap-
proximation ratio to4/3. We refer the readers to [24] for a survey
on this problem. For aggregating top-k answers, Ailon [1] recently
obtained an3/2-approximation. Quite recently, Soliman et al. [41]
also observed the relationship between ranking in uncertain data-
bases and the RANK-AGGREGATION problem and proposed a
polynomial time algorithm under Spearman’s footrule distance for
full rankings in probabilistic databases.

The CONSENSUS-CLUSTERINGproblem asks for the best clus-
tering of a set of elements which minimizes the number of pairwise
disagreements with the givenk clusterings. It is known to be NP-
hard [42] and a 2-approximation can also be obtained by picking
the best one from the givenk clusterings. The best known approx-
imation ratio is4/3 [2].



3. PRELIMINARIES
We begin with reviewing the possible worlds semantics, and in-

troduce the probabilistic and/xor tree model.

3.1 Possible World Semantics
We consider probabilistic databases with both tuple-levelun-

certainty (the existence of a tuple is uncertain) and attribute-level
uncertainty (a tuple attribute value is uncertain). Specifically, we
denote a probabilistic relation byRP (K; A), whereK is thekey
attribute, andA is the value attribute1. For a particular tuple in
RP , its key attribute is certain and is sometimes called the possible
worlds key. RP is assumed to correspond to a probability space
(PW,Pr) where the set of outcomes is a set of deterministic rela-
tions, which we callpossible worlds, PW = {pw1, pw2, ...., pwN}.
Note that two tuples can not have the same value for the key at-
tribute in a single possible world. Because of the typicallyexpo-
nential size ofPW , an explicit possible worlds representation is
not feasible, and hence the semantics are usually captured implic-
itly by probabilistic models with polynomial size specification.

Let T denote the set of tuples in all possible worlds. For ease of
notation, we will uset ∈ pw in place of “t appears in the possible
world pw”, Pr(t) to denotePr(t is present) andPr(¬t) to denote
Pr(t is not present).

Further, for a tupletP ∈ RP , we call the certain tuples corre-
sponding to it (with the same key value) in the union of the possible
worlds, itsalternatives.

Block-Independent Disjoint (BID) Scheme: BID is one of the
more popular models for probabilistic databases, and assumes that
different probabilistic tuples (with different key values) are inde-
pendent of each other [14, 37, 13, 35]. Formally, a BID scheme
has the relational schema of the fromR(K; A;Pr) whereK is the
possible worlds key,A is the value attribute, andPr captures the
probability of the corresponding tuple alternative.

3.2 Probabilistic And/Xor Tree
We generalize the block-independent disjoint tuples model, which

can capturemutual exclusionbetween tuples, by adding support for
mutual co-existence, and allowing these to be specified in a hierar-
chical manner. Two events satisfy the mutual co-existence correla-
tion if in any possible world, either both happen or neither occurs.
We model such correlations using aprobabilistic and/xor tree(or
and/xor tree for short), which also generalizes the notionsof x-
tuples[37, 45],p-or-sets [13] and tuple independent databases. We
first considered this model for tuple-level uncertainty in an earlier
paper [31], and generalize it here to handle attribute-level uncer-
tainty.

We use∨© (or) to denote mutual exclusion and∧© (and) for co-
existence. Figure 1 shows two examples of probabilistic and/xor
trees. Briefly, the leaves of the tree correspond to the tuplealter-
natives (we abuse the notation somewhat and useti to denote both
the tuple, and its key value). The first tree captures a relation with
four independent tuples,t1, t2, t3, t4, each with two alternatives,
whereas the second tree shows how we can capture arbitrary pos-
sible worlds using an and/xor tree (Figure 1(ii) shows the possible
worlds corresponding to that tree).

Now, let us formally define a probabilistic and/xor tree. In tree
T , we denote the set of children of nodev by ChT (v) and the
least common ancestor of two leavesl1 and l2 by LCAT (l1, l2).
We omit the subscript if the context is clear.

DEFINITION 1. A probabilistic and/xor treeT represents the
mutual exclusion and co-existence correlations in a probabilistic
1For clarity, we assume singleton key and value attributes.

relation RP (K; A), whereK is the possible worlds key, andA is
the value attribute. InT , each leaf is a key-attribute pair (a tuple
alternative), and each inner node has a mark,∨© or ∧©. For each
∨© nodeu and each of its childrenv ∈ Ch(u), there is a nonneg-
ative valuePr(u, v) associated with the edge(u, v). Moreover, we
require

• (Probability Constraint)
P

v:v∈Ch(u) Pr(u, v) ≤ 1.

• (Key Constraint) For any two different leavesl1, l2 holding
the same key,LCA(l1, l2) is a ∨© node2.

LetTv be the subtree rooted atv andCh(v) = {v1, . . . , vℓ}. The
subtreeTv inductively defines a random subsetSv of its leaves by
the following independent process:

• If v is a leaf,Sv = {v}.

• If Tv roots at a∨© node, then

Sv =

�
Svi

with probPr(v, vi)

∅ with prob1 −Pℓ
i=1 Pr(v, vi)

• If Tv roots at a∧© node, thenSv = ∪ℓ
i=1Svi

Probabilistic and/xor trees can capture more complicated correla-
tions than the prior models such as the BID model or x-tuples.We
remark that Markov or Bayesian network models are able to cap-
ture more general correlations [38], however, the structure of the
model is more complex and probability computations on them (in-
ference) is typically exponential in the treewidth of the model. The
treewidth of an and/xor tree (viewing it as a Markov network)is
not bounded, and hence the techniques developed for those models
can not be used to obtain a polynomial time algorithms for and/xor
trees.

3.3 Computing Probabilities on And/Xor Trees
Aside from the representational power of the and/xor tree model,

perhaps its best feature is that many types of probability computa-
tions can be done efficiently and elegantly on them usinggenerat-
ing functions. In our prior work [31], we used a similar technique
for computing ranking functions for tuple-level uncertainty model.
Here we generalize the idea to a broader range of probabilitycom-
putations.

We denote the and/xor tree byT . SupposeX = {x1, x2, . . .} is
a set of variables. Define a mappings which associates each leaf
l ∈ T with a variables(l) ∈ X . Let Tv denote the subtree rooted
at v and letv1, . . . , vl be v’s children. For each nodev ∈ T , we
define a generating functionFv recursively:

• If v is a leaf,F i
v(X ) = s(v).

• If v is a ∨© node,

Fv(X ) = (1 −Pl
h=1 p(v, vh)) +

Pl
h=1 Fvh

(X ) · p(v, vh)

• If v is a ∧© node,F i
v(X ) =

Ql
h=1 Fvh

(X ).

The generating functionF(X ) for tree T is the one defined
above for the root. It is easy to see, if we have a constant num-
ber of variables, the polynomial can be expanded in the form ofP

i1,i2,... ci1,i2...x
i1
1 xi2

2 . . . in polynomial time.
Now recall that each possible worldpw contains a subset of the

leaves ofT (as dictated by the∨© and ∧© nodes). The following
theorem characterizes the relationship between the coefficients of
F and the probabilities we are interested in.

2The key constraint is imposed to avoid two leaves with the same
key but different attribute values coexisting in a possibleworld.
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Figure 1: (i) The and/xor tree representation of a set of block-independent disjoint tuples; the generating function obtained by
assigning the same variablex to all leaves gives us the distribution over the sizes of the possible worlds. (ii) Example of a highly
correlated probabilistic database with3 possible worlds and (iii) the and/xor tree that captures thecorrelation; the coefficient of y
(0.3) isPr(r(t3, 6) = 1) (i.e., prob. that that alternative of t3 is ranked at position1).

THEOREM 1. The coefficient of the term
Q

j x
ij

j in F(X ) is the
total probability of the possible worlds for which, for allj, there are
exactlyij leaves associated with variablexj .

The proof is by induction on the tree structure and is omitted.

EXAMPLE 1. If we associate all leaves with the same variable
x, the coefficient ofxi is equal toPr(|pw| = i).

The above can be used to obtain a distribution on the possibleworld
sizes (Figure 1(i)).

EXAMPLE 2. If we associate a subsetS of the leaves with vari-
able x, and other leaves with constant1, the coefficient ofxi is
equal toPr(|pw ∩ S| = i).

EXAMPLE 3. Next we show how to computePr(r(t) = i) (i.e.,
the probabilityt is ranked at positioni), wherer(t) denote therank
of the tuple in a possible world by somescoremetric. Assumet
only has one alternative,(t, a), and hence only one possible value
of score,s. Then, in the and/xor treeT , we associate all leaves
with key other thant and score value larger thans with variablex,
and the leaf(t, a) with variabley, and the rest of leaves with con-
stant1. Then, the coefficient ofxj−1y in the generating function
is exactlyPr(r(t) = i). If the tuple has multiple alternatives, we
can computePr(r(t) = i) for it by summing up the probabilities
for the alternatives.

See Figure 1(iii) for an example.

3.4 Problem Definition
We denote the domain of answers for a query byΩ and the dis-

tance function between two answers byd(). Formally, we define
the most consensus answerτ to be a feasible answer to the query
such that the expected distance betweenτ and the answerτpw of
the (random) worldpw is minimized, i.e,

τ = arg min
τ ′∈Ω

{E[d(τ ′, τpw)]}.

We call the most consensus answer inΩ the mean answerwhen
Ω is the set of all feasible answers. IfΩ is restricted to be the set of
possible answers (answers of some possible worlds with non-zero
probability), we call the most consensus answer inΩ the median
answer. Taking the example of the top-k queries, the median an-
swer must be the top-k answer of some possible world while the
mean answer can be any sorted list of sizek.

4. SET DISTANCE MEASURES
We first consider the problem of finding the consensus world for

a probabilistic relation under two set distance measures: symmetric
difference, and Jaccard distance; the probabilistic relation may be
an existing relation in the database, or the result of executing a
conjunctive query over it.

4.1 Symmetric Difference
The symmetric difference distance between two setsS1, S2 is

defined to be

d∆(S1, S2) = |S1∆S2| = |(S1 \ S2) ∪ (S2 \ S1)|.
Note that two different alternatives of a tuple are treated as different
tuples here.

THEOREM 2. The mean world under the symmetric difference
distance is the set of all tuples with probability> 0.5.

PROOF. SupposeS is a fixed set of tuples and̄S = T − S. Let

δ(p) =

�
1, if p = true
0, if p = false

be the indicator function. We write

Epw∈PW [d∆(S, pw)] as follows:

E[d∆(S, pw)] = E[
X
t∈S

δ(t /∈ pw) +
X
t∈S̄

δ(t ∈ pw)]

=
X
t∈S

E[δ(t /∈ pw)] +
X
t∈S̄

E[δ(t ∈ pw)]

=
X
t∈S

Pr(¬t) +
X
t∈S̄

Pr(t)

Thus, each tuplet contributesPr(¬t) to the expected distance if
t ∈ S andPr(t) otherwise, and hence the minimum is achieved by
the set of tuples with probability> 0.5.

Thus, finding the mean answer for a conjunctive query is easy if
we can decide which result tuples have probability> 0.5.

Finding the consensus median world is somewhat trickier, with
the main concern being that the world that contains all tuples with
probability> 0.5 may not be a possible world.

COROLLARY 1. If the correlations can be modeled using a prob-
abilistic and/xor tree, the median world is the set containing all
tuples with probability greater than0.5.

The proof is by induction on the height of the tree, and is omit-
ted for space constraints. This however does not hold for arbitrary
correlations. Next we show that finding a median answer for a



conjunctive query is NP-Hard even if result tuple probability com-
putation is easy (i.e., even if the query has a safe plan) because of
the correlations between the result tuples.

THEOREM 3. For conjunctive queries over databases with ar-
bitrary correlations, finding a median answer under the symmetric
difference distance is NP-Hard.

PROOF. Consider the query:

Q(C) := πC(R 1 S)

whereR = R(C,x, b) areS = S(x, b) are two relations inde-
pendent with each other. We show finding a median world for this
query is NP-Hard by showing a reduction from the MAX-2-SAT
problem. Recall that in a MAX-2-SAT instance, we are given a
conjunctive normal form expression with 2 literals per clause and
the task is to determine the maximum number of clauses that can
be simultaneously satisfied by an assignment. Let the MAX-2-
SAT instance consist ofn variables,x1, . . . , xn, andk clauses.
Let S(x, b) = {(x1, 0), (x1, 1), (x2, 0), (x2, 1), . . . } contain two
mutually exclusive tuples each forn variables; all tuples are equi-
probable with probability 0.5.R(C,x, b) is a deterministic table,
and contains two tuples for each clause: Supposexj (or x̄j) is a
literal in clauseci, R contains tuple(ci, xj , 1) (or (ci, xj , 0)). We
can see thatR 1 S has the same set of tuples asR and each tu-
ple has probability0.5. Moreover, two tuples with the sameC
value are independent. Therefore, the result ofπC(R 1 S) con-
tains one tuple for each clause, associated with a probability of
1 − 0.5 × 0.5 = 0.75.

Now, consider the possible deterministic answer which is gener-
ated by a deterministic instancẽS of S. It is easy to see the answer
contain clauseci if and only if ci is satisfied by the assignment
defined byS̃. According to the proof of Theorem 2, the median
answer is the possible deterministic answer containing maximum
number of tuples, which corresponds to finding the assignment that
maximizes the number of satisfied clauses.

4.2 Jaccard Distance
The Jaccard distance between two setsS1, S2 is defined to be

dJ(S1, S2) =
|S1∆S2|
|S1 ∪ S2|

.

Jaccard distance always lies in[0, 1] and is a real metric, i.e, sat-
isfies triangle inequality. Next we present polynomial timealgo-
rithms for finding the mean and median worlds for tuple indepen-
dent databases, and median world for the BID model.

LEMMA 1. Given an and/xor tree,T and a possible world for
it, W (corresponding to a set of leaves ofT ), we can compute
E[d(W, pw)] in polynomial time.

PROOF. A generating functionFT is constructed with the vari-
ables associated with leaves as follows: fort ∈ W (t /∈ W ), the
associated variable isx (y). For example, in a tuple independent
database, the generating function is:

F(x, y) =
Y
t∈W

(Pr(¬t) + Pr(t)x)
Y
t/∈W

(Pr(¬t) + Pr(t)y)

From Theorem 1, the coefficientci,j of term xiyj in generating
functionF is equal to the total probability of the worlds such that
the Jaccard distance between those worlds andW is exactly|W |−i+j

|W |+j
.

Thus, the distance is
P

i,j ci,j
|W |−i+j
|W |+j

.

LEMMA 2. For tuple independent databases, if the mean world
contains tuplet1 but not tuplet2, thenPr(t1) ≥ Pr(t2).

PROOF. SayW1 is the mean world and the lemma is not true,
i.e, ∃t1 ∈ W1, t2 /∈ W1 s.t. Pr(t1) < Pr(t2). Let W = W1 −
{t1}, W2 = W + {t2} andW ′ = T −W −{t1}−{t2}. We will
proveW2 has a smaller expected Jaccard distance, thus rendering
contradiction. Suppose|W1| = |W2| = k. We let matrixM =
[mi,j ]i,j wheremi,j = k−i+j

k+j
. We construct generating functions

as we did in Lemma 1. SupposeF1 andF2 are the generating
functions forW1 andW2, respectively. We write||A|| =

P
i,j ai,j

for any matrixA and letA ⊗ B the Hadamard product ofA and
B (take product entrywise). We denote:

F ′(x, y) =
Q

t∈W (Pr(¬t) + Pr(t)x)
Q

t∈W ′ (Pr(¬t) + Pr(t)y)

We can easily see that:
F1(x, y) = F ′(x, y) (Pr(¬t1) + Pr(t1)x) (Pr(¬t2) + Pr(t2)y)

F2(x, y) = F ′(x, y) (Pr(¬t1) + Pr(t1)y) (Pr(¬t2) + Pr(t2)x)

Then, taking the difference, we get̄F = F1(x, y) − F2(x, y) is
equal to:

F ′(x, y) (Pr(¬t1)Pr(t2) − Pr(t1)Pr(¬t2)) (y − x) (1)

Let CF = [ci,j ] be the coefficient matrix ofF whereci,j is the
coefficient of termxiyj . Using the proof of Lemma 1:

E[d(W1, pw)] − E[d(W2, pw)] = ||CF1
⊗ M|| − ||CF2

⊗ M||
= ||CF̄ ⊗ M||

Letc′i,j andc̄i,j be the coefficient ofxiyj inF ′ andF̄ , respectively.
It is not hard to seēci,j = (c′i,j−1 − c′i−1,j)p from (1) where
p = (Pr(¬t1)Pr(t2) − Pr(t1)Pr(¬t2)) > 0.

Then we have:

||CF̄ ⊗M|| = p
X
i,j

�
(c′i,j−1 − c′i−1,j)mi,j

�
= p

X
i,j

c′i,j(mi,j+1 − mi+1,j)

= p
X
i,j

c′i,j

�
k − i + j + 1

k + j + 1
− k − i − 1 + j

k + j

�
The proof follows because, for anyi, j ≥ 0, we have that:

k−i+j+1
k+j+1

− k−i−1+j
k+j

> 0

The above two lemmas can be used to efficiently find the mean
world for tuple-independent databases, by sorting the tuples in the
decreasing order by probabilities, and computing the expected dis-
tance for every prefix of the sorted order.

A similar algorithm can be used to find the median world for the
BID model (by only considering the highest probability alternative
for each tuple). Finding mean worlds or median worlds under more
general correlation models remains an open problem.

5. TOP-K QUERIES
In this section, we consider top-k queries in probabilisticdata-

bases. Each tupleti has a scores(ti). In the tuple-level uncer-
tainty model,s(ti) is fixed for eachti, while in the attribute-level
uncertainty model, it is an random variable. In the and/xor tree
model, we assume that the attribute field is the score (uncertain
attributes that don’t contribute to the score can be ignored). We
further assume no two tuples can take the same score for avoiding
ties. We user(t) to denote the random variable indicating the rank
of t andrpw(t) to denote the rank oft in possible worldpw. If t
does not appear in the possible worldpw, thenrpw(t) = ∞. So,



Pr(r(t) > i) includes the probability thatt’s rank is larger thani
and thatt doesn’t exist. We sayt1 ranks higherthant2 in possible
world pw if rpw(t1) < rpw(t2).

Finally, we use the symbolτ to denote a top-k ranked list, and
τ i to denote the restriction ofτ to the firsti items. We useτ (i) to
denote theith item in the listτ for positive integeri, andτ (t) to
denote the position oft ∈ T in τ .

5.1 Distance between Two Top-k Answers
Fagin et al. [18] provide a comprehensive analysis of the prob-

lem of comparing two top-k lists. They present extensions ofthe
Kendall’s tau and Spearman footrule metrics (defined on fullrank-
ings) to top-k lists and propose several other natural metrics, such
as the intersection metric and Goodman and Kruskal’s gamma func-
tion. In our paper, we consider three of the metrics discussed in
that paper: the symmetric difference metric, the intersection met-
ric and one particular extension to Spearman’s footrule distance.
We briefly recall some definitions here. For more details and the
relation between different definitions, please refer to [18].

Given two top-k lists,τ1 andτ2, the normalized symmetric dif-
ference metric is defined as:

d∆(τ1, τ2) = 1
2k
|τ1∆τ2| = 1

2k
|(τ1\τ2) ∪ (τ2\τ1)|.

While d∆ focuses only on the membership, the intersection met-
ric dI also takes the order of tuples into consideration. It is defined
to be:

dI(τ1, τ2) = 1
k

Pk
i=1 d∆(τ i

1, τ
i
2)

Bothd∆() anddI() values are always between0 and1.

The original Spearman’s Footrule metric is defined as theL1 dis-
tance between two permutationsσ1 andσ2. Formally,F (σ1, σ2) =P

t∈T |σ1(t) − σ2(t)|. Let ℓ be a integer greater thank. The

footrule distance with location parameterℓ, denotedF (ℓ) general-
izes the original footrule metric. It is obtained by placingall miss-
ing elements in each list at positionℓ and then computing the usual
footrule distance between them. A natural choice ofℓ is k + 1 and
we denoteF (k+1) by dF . It is also proven thatdF is a real metric
and a member of a big and important equivalence class3 [18].

It is shown in [18] that:

dF (τ1, τ2) = (k + 1)|τ1∆τ2|
+

X
t∈τ1∩τ2

|τ1(t) − τ2(t)| −
X

t∈τ1\τ2

τ1(t) −
X

t∈τ2\τ1

τ2(t).

Next we consider the problem of evaluating consensus answers
for these distance metrics.

5.2 Symmetric Difference and PT-k Ranking
Function

In this section, we show how to find mean and median top-k an-
swers under symmetric difference metric in the and/xor treemodel.
The probabilistic threshold top-k (PT-k) query [26] has been pro-
posed for evaluating ranking queries over probabilistic databases,
and essentially returns all tuplest for whichPr(r(t) ≤ k) is greater
than a given threshold. If we set the threshold carefully so that the
PT-k query returns exactlyk tuples, we can show that the answer
returned is the mean answer under symmetric difference metric.

THEOREM 4. If τ = {τ (1), τ (2), . . . , τ (k)} is the set ofk tu-
ples with the largestPr(r(t) ≤ k), thenτ is the mean top-k answer
under metricd∆, i.e, the answer minimizesE[d∆(τ, τpw)].
3All distance functions in one equivalence class are boundedby
each other within a constant factor. This class includes several ex-
tensions of Spearman’s footrule and Kendall’s tau metrics.

PROOF. Supposeτ is fixed. We writeE[d∆(τ, τpw)] as follows:

E[d∆(τ, τpw)] = E[
X
t∈T

δ(t ∈ τ ∧ t /∈ τpw) + δ(t ∈ τpw ∧ t /∈ τ )]

=
X

t∈T\τ

E[δ(t ∈ τpw)] +
X
t∈τ

E[δ(t /∈ τpw)]

=
X

t∈T\τ

Pr(r(t) ≤ k) +
X
t∈τ

Pr(r(t) > k)

= k +
X
t∈T

Pr(r(t) ≤ k) − 2
X
t∈τ

Pr(r(t) ≤ k)

The first two terms are invariant with respect toτ . Therefore,
it is clear that the set ofk tuples with the largestPr(r(t) ≤ k)
minimizes the expectation.

To find a median answer, we essentially need to find the top-k an-
swer τ of some possible world such that

P
t∈τ Pr(r(t) ≤ k) is

maximum. Next we show how to do this given an and/xor tree in
polynomial time.

We writeP (t) = Pr(r(t) ≤ k) for ease of notation. We can’t
simply pick k tuples with the highestP (t) values since some of
them may be mutually exclusive. We use dynamic programming
over the tree structure. For each possible attribute valuea ∈ A (A
value is used to rank the tuples in the deterministic setting), let T a

be the tree which contains all leaves with attribute value atleasta.
We recursively compute the set of tuplespwa(v, i), which maxi-
mizes the value

P
t∈pwa(v,i) P (t) among all possible worlds gen-

erated by the subtreeT a
v rooted atv and is of sizei, for each node

v in T a and1 ≤ i ≤ k. We compute this for all differenta values,
and the optimal solution can be chosen to bemaxa(pwa(r,k)).

Supposev1, v2, . . . , vl arev’s children. The recursion formula
is:

1. If v is a ∨© node,

pwa(v, i) = arg max
pw∈PW (T a

vi
)

X
t∈pw

P (t) = arg max
1≤j≤l

pwa(vj , i).

2. If v is a ∧© node,pwa(v, i) = ∪1≤j≤lpwj such thatpwj ∈
PW (T a

vj
),
P

j |pwj | = i and
P

t∈∪jpwj
P (t) is maximized.

In the latter case, the maximum value can be computed by dynamic
programming again as follows.

We denote bypwa([v1 . . . vh], i) the set∪h
j=1pwj such thatpwj ∈

PW (T a
vj

),
Ph

j=1 |pwj | = i and
P

t∈∪h
j=1

pwj
P (t) is maximized.

pwa([v1, . . . vh], i) can also be computed recursively. Let

p = arg max
0≤p≤i

X
t∈pwa([v1...vh−1],p)∪pwa(vh,i−p)

P (t).

Then, we have

pwa([v1 . . . vh], i) = pwa([v1 . . . vh−1], p) ∪ pwa(vh, 1 − p).

Finally, it is easy to seepwa(v, i) is simplypwa([v1, . . . , vl], i).

THEOREM 5. The median top-k answer under symmetric dif-
ference metric can be found in polynomial time for a probabilistic
and/xor tree.

5.3 Intersection Metric
Note that the intersection metricdI is a linear combination of

the normalized symmetric difference metricd∆. Using a similar



approach used in the proof of Theorem 4, we can show that:

E[dI(τ, τpw)] =
1

k

kX
i=1

E[d∆(τ i, τ i
pw)]

=
1

k

kX
i=1

1

i

0�k +
X
t∈T

Pr(r(t) ≤ k) − 2
X
t∈τi

Pr(r(t) ≤ i)

1A
Thus we need to findτ which maximizes the last term,A(τ ) =Pk
i=1

�
1
i

P
t∈τi Pr(r(t) ≤ i)

�
. We first rewrite the objective as

follows, using the indicator (δ) function:

A(τ ) =

kX
i=1

 
1

i

X
t∈T

Pr(r(t) ≤ i))δ(t ∈ τ i)

!
=

X
t∈T

 
kX

i=1

1

i
Pr(r(t) ≤ i)

iX
j=1

δ(t = τ (j))

!
=

X
t∈T

kX
j=1

 
δ(t = τ (j))

kX
i=j

1

i
Pr(r(t) ≤ i)

!
The last equality holds since

Pk
i=1

Pi
j=1 aij =

Pk
j=1

Pk
i=j aij .

The optimization task can thus be written as anassignment prob-
lem, with each tuplet acting as an agent and each of the top-k po-
sitions j as a task. Assigning taskj to agentt gains a profit ofPk

i=j
1
i
Pr(r(t) ≤ i) and the goal is to find an assignment such

that each task is assigned to at most one agent, and the profit is
maximized. The best known algorithm for computing the opti-
mal assignment runs inO(nk

√
n) time, via computing a maximum

weight matching on the bipartite graph [33].

5.4 Approximating the Intersection Metric
We define the following ranking function, whereHk =

Pk
i=1 1/i

denotes thekth Harmonic number:

ΥH(t) =

kX
i=1

(Hk − Hi−1)Pr(r(t) = i) =

kX
i=1

Pr(r(t) ≤ i)

i
.

This is a special case of the parameterized ranking functionpro-
posed in [31] and can be computed inO(nk log2 n) time for all tu-
ples in the and/xor tree. We claim that the top-k answerτH returned
by ΥH function, i.e., thek tuples with the highestΥH values, is a
good approximation of the mean answer with respect to the inter-
section metric by arguing thatτH = {t1, t2, . . . , tk} is actually an
approximated maximizer ofA(τ ). Indeed, we prove the fact that
A(τH) ≥ 1

Hk

A(τ∗) whereτ∗ is the optimal mean top-k answer.
Let B(τ ) =

P
t∈τ ΥH(t) for any top-k answerτ . It is easy

to seeA(τ∗) ≤ B(τ∗) ≤ B(τH) sinceτH maximizes theB()
function. Then, we can get:

A(τH) =

kX
j=1

kX
i=j

1

i
Pr(r(tj) ≤ i)

≥
kX

j=1

(
Hk − Hj−1

Hk
)

kX
i=1

1

i
Pr(r(tj) ≤ i)

=

kX
j=1

(
Hk − Hj−1

Hk
)ΥH(tj) ≥ 1

k

kX
i=1

(
Hk − Hi−1

Hk
)

kX
i=1

ΥH(ti)

=
1

Hk
B(τH) ≥ 1

Hk
A(τ∗).

The second inequality holds because for non-decreasing sequences
ai(1 ≤ i ≤ n) andci(1 ≤ i ≤ n),Pn

i=1 aici ≥ 1
n
(
Pn

i=1 ai)(
Pn

i=1 ci)

5.5 Spearman’s Footrule
For a top-k answerτ = {τ (1), τ (2), . . . , τ (k)}, we define:

• Υ1(t) =
Pk

i=1 Pr(r(t) = i)

• Υ2(t) =
Pk

i=1 Pr(r(t) = i) · i

• Υ3(t, i) =
Pk

j=1 Pr(r(t) = j))|i − j| + iPr(r(t) > k).

It is easy to seeΥ1(t), Υ2(t), Υ3(t) can be computed in polyno-
mial time for a probabilistic and/xor tree using our generating func-
tions method.

A careful and non-trivial rewriting ofE[F ∗(τ, τpw)] shows that
it also has the form (Figure 2):

E[F ∗(τ, τpw)] = C +
X
t∈T

kX
i=1

δ(t = τ (i))f(t, i)

whereC is a constant independent ofτ , andf(t, i) is a function of
t andi that is polynomially computable. More specifically,

f(t, i) = Υ3(t, i) + Υ2(t) − 2(k + 1)Υ1(t)

Figure 2 shows the exact derivation. Thus, we only need to min-
imize the second term, which can be modeled as the assignment
problem and can be solved in polynomial time.

5.6 Kendall’s Tau Distance
ThenKendall’s taudistance (also called Kemeny distance)dK

between two top-k listsτ1 andτ2 is defined to be the number of
unordered pairs(ti, tj) such that that the order ofi andj disagree
in any full rankings extended fromτ1 and τ2, respectively. It is
shown thatdF anddK and a few other generalizations of Spear-
man’s footrule and Kendall’s tau metrics form a big equivalence
class, i.e., they are within a constant factor of each other [18].
Therefore, the optimal solution fordF implies constant approxi-
mations for all metrics in this class (the constant fordK is 2).

However, we can also easily obtain a3/2-approximation fordK

by extending the3/2-approximation for partial rank aggregation
problem due to Ailon [1]. The only information used in their algo-
rithm is the proportion of lists whereti is ranked higher thantj for
all i, j. In our case, this corresponds toPr(r(ti) < r(tj)). This
can be easily computed in polynomial time using the generating
functions method.

We also note that the problem of optimally computing the mean
answer is NP-hard for probabilistic and/xor trees. This follows
from the fact that probabilistic and/xor trees can simulatearbitrary
possible worlds, and previous work has shown that aggregating
even 4 rankings under this distance metric is NP-Hard [16].

6. OTHER TYPES OF QUERIES
We briefly extend the notion of consensus answers to two other

types of queries and present some initial results.

6.1 Aggregate Queries
Consider a query of the type:

SELECT groupname, count(*)
FROM R
GROUP BY groupname



E[F ∗(τ, τpw)] = E

24(k + 1)|τ∆τpw| +
X

t∈τ∩τpw

|τ(t) − τpw(t)| −
X

t∈τ\τpw

τ(t) −
X

t∈τpw\τ

τpw(t)

35
= (k + 1)E[|τ∆τpw|] +

X
t∈T

E [δ(t ∈ τ ∩ τpw)|τ(t) − τpw(t)|] −
X
t∈T

E [δ(t ∈ τ \ τpw)τ(t)] − E

24 X
t∈τpw\τ

τpw(t)

35
= (k + 1)E[|τ∆τpw|] +

X
t∈T

kX
i=1

kX
j=1

E [δ(t ∈ τ ∩ τpw)δ(t = τpw(i))δ(t = τ(j))|i − j|]

−
X
t∈T

kX
i=1

E [δ(t ∈ τ \ τpw)δ(t = τ(i))i] −
X

t∈T\τ

Υ2(t)

= (k + 1)E[|τ∆τpw|] +
X
t∈T

kX
i=1

0�δ(t = τ(i))
kX

j=1

Pr(r(t) = j)|i − j|

1A−
X
t∈T

kX
i=1

(δ(t = τ(i))iPr(r(t) > k)) −
X

t∈T\τ

Υ2(t)

= (k + 1)(k +
X
t∈T

Υ1(t) − 2
X
t∈τ

Υ1(t)) +
X
t∈T

kX
i=1

δ(t = τ(i))Υ3(t, i) −
X

t∈T\τ

Υ2(t)

= (k + 1)k +
X
t∈T

((k + 1)Υ1(t) − Υ2(t)) +
X
t∈T

kX
i=1

δ(t = τ(i))(Υ3(t, i) + Υ2(t) − 2(k + 1)Υ1(t))

Figure 2: Derivation for Spearman’s Footrule Distance

We assume the dataset is represented by the BID model in which
there arem potential groups (indexed by groupname) andn inde-
pendent tuples with attribute uncertainty. The probabilistic data-
base can be specified by the matrixP = [pi,j ]n×m wherepi,j is
the probability that tuplei takes groupnamej and

Pm
j=1 pi,j = 1

for any 1 ≤ i ≤ n. A query result (on a deterministic relation)
is am-dimensional vectorr where theith entry is the number of
tuples having groupnamei. The natural distance metric to use is
the squared vector distance.

Computing the mean answer is easy in this case, because of lin-
earity of expectation: we simply take the mean for each aggregate
separately, i.e.,̄r = 1P where1 = (1, 1, . . . , 1). We note the
mean answer minimizes the expected squared vector distanceto
any possible answer.

The median world requires that the returned answer be a possi-
ble answer. It is not clear how to solve this problem optimally in
polynomial time. To enumerate all worlds is obviously not com-
putationally feasible. Rounding entries ofr̄ to the nearest integers
may not result in a possible answer.

Next we present a polynomial time algorithm to find a closest
possible answer to the mean worldr̄. This yields a4-approximation
for finding the median answer. We can model the problem as fol-
lows: Consider the bipartite graphB(U, V, E) where each node
in U is a tuple, each node inV is a groupname, and an edge
(u, v), u ∈ U, v ∈ V indicates that tupleu takes groupnamev with
non-zero probability. We call a subgraphG′ such thatdegG′(u) =
1 for all u ∈ U anddegG′(v) = r[v], an r-matchingof B for
somem-dimensional integral vectorr. Given this, our objective is
to find anr-matching ofB such that||r− r̄||22 is minimized. Before
presenting the main algorithm, we need the following lemma.

LEMMA 3. The possible worldr∗ that is closest tōr is of the
following form:r∗[i] is either⌊r̄[i]⌋ or ⌈r̄[i]⌉ for each1 ≤ i ≤ m.

PROOF. Let M∗ be the correspondingr∗-matching. Suppose
the lemma is not true, and there existsi such that|r∗[i]− r̄[i]| > 1.
W.l.o.g, we assumer∗[i] > r̄[i]. The other case can be proved the
same way. Consider the connected componentK = {U ′, V ′, E(U ′, V ′)}

containingi. We claim that there existsj ∈ V ′ such thatr∗[j] <
r̄[j] and there is analternating pathP with respect toM∗ connect-
ing i andj 4. Therefore,M ′ = M∗∆P = (M∗ \ P )∪ (P \ M∗)
is also a valid matching. SupposeM ′ is ar

′-matching. But:

||r′ − r̄||22 =

mX
v=1

(r′[v] − r̄[v])2

=

mX
v=1

(r∗[v] − r̄[v])2 − (r∗[i] − r̄[i])2 −

(r∗[j] − r̄[j])2 + (r′[i] − r̄[i])2 + (r′[j] − r̄[j])2

= ||r∗ − r̄||22 − (r∗[i] − r̄[i])2 − (r∗[j] − r̄[j])2

+(r∗[i] − 1 − r̄[i])2 + (r∗[j] + 1 − r̄[j])2

= ||r∗ − r̄||22 + 2 − 2r∗[i] + 2r̄[i] + 2r∗[j] − 2r̄[j]

< ||r∗ − r̄||22.
This contradicts the assumptionr∗ is the vector closest tōr.

Now, we prove the claim. We grow aalternating path tree(w.r.t.
M∗) rooted ati in a Bread-First-Search (BFS) manner5. LetOdd ⊆
V be the set of nodes at odd depth (the root is at depth1) and
Even ⊆ U the set of nodes at even depth. For any subsetS of
vertices, letNB(S) denote the set of neighbors ofS in graphB.
It is easy to seeNB(Even) = Odd, Even ⊆ NB(Odd) andP

v∈Odd r
∗[v] = |Even|. Supposer∗[v] ≥ r̄[v] for all v and

r
∗[i] > r̄[i]. However, the contradiction follows since:

|Even| =
X

v∈Odd

r
∗[v] >

X
v∈Odd

r̄[v] =
X

v∈Odd

X
u∈NB(Odd)

P[u, v]

=
X

v∈Odd

X
u∈Even

P[u, v] = |Even|.

4An alternating path is a path with alternating unmatched and
matched edges [32].
5An alternating path tree is a tree in which each path from the root
to another node is an alternating path with its first edge being a
matched edge[32].



Therefore, there must be a vertexj such thatr∗[j] < r̄[j] in the
alternating path tree.

With Lemma 3 at hand, we can construct the following min-cost
network flow instance to compute the vectorr

∗ closest tōr. Add
to B a sources and a sinkt. Add edges(s, u) with capacity upper
bound1 for all u ∈ U . For eachv ∈ V andr̄[v] is not integer, add
two edgese1(v, t) ande2(v, t). e1(v, t) has both lower and upper
bound of capacity⌊r̄[v]⌋ ande2(v, t) has capacity upper bound1
and cost(⌈r̄[v]⌉ − r̄[v])2 − (⌊r̄[v]⌋ − r̄[v])2. If r̄[v] is a integer,
we only adde1(v, t). We find a min-cost integral flow of valuen
on this network. For anyv such thate2(v, t) is saturated, we set
r
∗[v] to be⌈r̄⌉ and⌊r̄⌋ otherwise. Such a flow with minimum cost

suggests the optimality of the vectorr
∗ due to Lemma 3.

THEOREM 6. There is a polynomial time algorithm for finding
the vectorr∗ to r̄ such thatr∗ corresponds to some possible answer
with non-zero probability.

Finally, we can prove that:

COROLLARY 2. There is a polynomial time deterministic 4-
approximation for finding the median aggregate answer.

PROOF. Supposer∗ is the possible answer closest to the mean
answer̄r andr

m is the optimal median answer. Letr be the vector
corresponding to the random answer. Then:

E[d(r∗, r)] ≤ E[2(d(r∗, r̄) + d(r̄, r))]

= 2 (d(r∗, r̄) + E[d(r̄, r)])

≤ 4E[d(r̄, r)] ≤ 4E[d(rm, r)].

6.2 Clustering
The CONSENSUS-CLUSTERING problem is defined as fol-

lows: givenk clusteringsC1, . . . , Ck of V , find a clusteringC that
minimizes

Pk
i=1 d(C, Ci). In the setting of probabilistic databases,

the given clusterings are the clusterings in the possible worlds,
weighted by the existence probability. The main problem with ex-
tending the notion of consensus answers to clustering is that the in-
put clusterings are not well-defined (unlike ranking where the score
function defines the ranking in any world). We consider a some-
what simplified version of the problem, where we assume that two
tuplesti and tj are clustered together in a possible world, if and
only if they take the same value for the value attributeA (which
is uncertain). Thus, a possible worldpw uniquely determines a
clusteringCpw. We define the distance between two clusteringC1

andC2 to be the number of unordered pairs of tuples that are clus-
tered together inC1, but separated in the other (the CONSENSUS-
CLUSTERING metric). To deal with nonexistent keys in a possible
world, we artifically create a cluster containing all of those.

Our task is to find a mean clusteringC such thatE[d(C,Cpw)].
Approximation with factor of4/3 is known for CONSENSUS-
CLUSTERING [2], and can be adapted to our problem in a straight-
forward manner. In fact, that approximation algorithm simply needs
wti,tj

for all ti, tj , wherewti,tj
is the fraction of input clusters

that clusterti andtj together, and can be computed as:wti,tj
=P

a∈A Pr(i.A = a ∧ j.A = a).

To compute these quantities given an and/xor tree, we associate a
variablex with all leaves with value(i, a) and(j, a), and constant
1 with the other leaves. From Theorem 1,Pr(i.A = a ∧ j.A =
a) is simply the coefficient ofx2 in the corresponding generating
function.

7. CONCLUSION
We addressed the problem of finding a single representative an-

swer to a query over probabilistic databases by generalizing the
notion of inconsistent information aggregation. We believe this
approach provides a systematic and formal way to reason about
the semantics of probabilistic query answers, especially for top-k
queries. Our initial work has opened up many interesting avenues
for future work. These include design of efficient exact and approx-
imate algorithms for finding consensus answers for other types of
queries, exploring connections to safe plans, and understanding the
semantics of the other previously proposed ranking functions using
this framework.
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