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Abstract We study core stability and some related properties of flow games
defined on simple networks (all edge capacities are equal) from an algorithmic
point of view. We first present a sufficient and necessary condition that can
be tested efficiently for a simple flow game to have a stable core. We also
prove the equivalence of the properties of core largeness, extendability, and
exactness of simple flow games and provide an equivalent graph theoretic
characterization which allows us to decide these properties in polynomial
time.
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1 Introduction

Originating with the pioneering work of Ford and Fulkerson [10], network
flow models have been thoroughly investigated and found applications in
various fields. In cooperative game theory, flow games were first discussed
by Kalai and Zemel [13,14]. They arise from the profit distribution problem
related to the maximum flow in a network. Afterwards, many results have
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been obtained on flow games, most of them focusing on the core, the most
important solution concept in cooperative game theory. Basically, the core
of a game is a set of profit allocations such that no subset of the players
could obtain a bigger profit by leaving the grand coalition of all players. The
characterization of the core of flow games is due to Kalai and Zemel [13,14]
and Deng et al. [3]. They showed that flow games are totally balanced (which
means that every subgame has a non-empty core) and the profit allocations
corresponding to minimum cuts in the network always belong to the core.
On the other hand, for flow games with general edge capacities it is co-NP -
complete to check whether an allocation belongs to the core [9].

Von Neumann and Morgenstern proposed stable sets as an important
solution concept of cooperative games [16], which turned out to be very
useful in the analysis of bargaining situations. A stable set is a set of profit
allocations not dominating each other, and any other profit allocation is
dominated by some element in this set. Unfortunately, stable sets may
not always exist [15], and it seems difficult to characterize its fundamental
properties.

Although, in general, the core and the stable set are different, Shapley [18]
proved that for convex games, the core is the unique stable set. Hence, the
question arises: when do the core and the stable set coincide, and how can
we decide core stability? Several sufficient conditions for core stability have
been discussed in the literature. Subconvexity of the game and largeness
of the core were introduced by Sharkey [19] who showed that subconvexity
implies largeness of the core, which in turn implies core stability. In an
unpublished paper1), Kikuta and Shapley investigated another concept, later
called extendability of the game by Gellekom et al. [11], and proved that it is
necessary for core largeness and sufficient for core stability.

Only a few results are known about the core stability of concrete
cooperative game models. Solymosi and Raghavan [20] studied assignment
games, and Bietenhader and Okamoto [1] studied minimum coloring games
defined on perfect graphs. Jain and Vohra2) recently showed that there
exist algorithms for testing the existence of a stable set and core stability
for general cooperative games, solving an open problem by Deng and
Papadimitriou [5]. However, it is unlikely that these algorithms will be
efficient.

The main purpose of this paper is to identify those flow games whose
cores are stable and to investigate the algorithmic issues on core stability
and related properties. We restrict our attention to flow games defined on
simple networks, called simple flow games, where all edge capacities are equal.
Our key contributions can be summarized as follows:

(1) We show that a simple flow game has a stable core if and only if
the network is a pseudo balanced directed acyclic graph (see Section 3.2 for

1) Kikuta K, Shapley L S. Core stability in n-person games. Manuscript, 1986
2) Jain K, Vohra R V. On stability of the core. Manuscript, 2006,

http://www.kellogg.northwestern.edu/faculty/vohra/ftp/newcore.pdf
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definitions), which can easily be tested in O(min(n3/2, m1/2)m + nm) time,
where n is the number of nodes and m is the number of edges in the network.

(2) We show that core largeness, extendability, and exactness are
equivalent for simple flow games. These properties are further equivalent
to the graph theoretic property that the flow network is cut-normal, i.e.,
every minimal (s, t)-cut is already a minimum (s, t)-cut. We show how to
test this property in O(m2α(m, n)) time, where α(m, n) is the inverse of the
Ackermann function.

This paper is organized as follows. In Section 2, we give the definitions
and review some known results on the cores of flow games. In Section 3,
we characterize those flow games with stable cores. In Section 4, we discuss
the equivalence of core largeness, extendability, and exactness of simple flow
games, and propose an efficient algorithm for testing these properties. We
conclude with some open problems in Section 5.

2 Definitions and preliminaries

2.1 Graphs

A flow network is a directed graph G = (V, E; ω; s, t), where V is the node
set, E is the edge set, ω : E → R

+ is the edge capacity function, and s, t ∈ V
are the source and the sink of the network, respectively. Without loss of
generality, we may assume that every node lies on some (s, t)-path. G is a
simple flow network if all edge capacities are equal (we may assume they are
all equal to one). Throughout this paper, we denote a simple flow network
by G = (V, E; s, t).

For F ⊆ E, G[F ] denotes the subgraph of G with node set V and edge
set F, and G \ F the subgraph of G with node set V and edge set E \ F. For
v ∈ V, out (v) (in (v)) is the set of outgoing (incoming) edges at v.

If node sets S and T partition the node set V into two parts such that
s ∈ S and t ∈ T, then the set F of edges going from a node in S to a node
in T is an (s, t)-cut. We denote the indicator vector of F by 1F ∈ {0, 1}|E|,
where 1F (e) = 1 if e ∈ F, and 0 otherwise. The capacity of F is the sum
of its edge capacities. F is a minimal cut if no proper subset of F is also
an (s, t)-cut; it is a minimum cut if it has the smallest capacity among all
(s, t)-cuts. A simple flow network G is cut-normal if every minimal (s, t)-cut
is already a minimum (s, t)-cut, or equivalently, if every (s, t)-cut contains a
minimum (s, t)-cut.

A directed graph is a directed acyclic graph (DAG) if it does not contain
a directed cycle. A 2-terminal DAG is a DAG with two distinguished nodes
(called terminals), say s and t, such that in (s) = out (t) = ∅ and every other
node of G appears in at least one simple (s, t)-path (a simple path is a path
where no node appears more than once). A 2-terminal DAG is balanced if
|in (v)| = |out (v)| for each v ∈ V \ {s, t}.

A 2-terminal directed series-parallel graph (2-DSPG) is a directed graph
with two nodes (terminals) s and t that is obtained inductively as follows:
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(1) A basic 2-DSPG consists of two terminals s and t, connected by an
edge (s, t).

(2) If G1 and G2 are 2-DSPGs with terminals si and ti for i = 1, 2, then
we can combine them in series by identifying t1 with s2 to obtain a 2-DSPG
network with terminals s1 and t2, or in parallel by identifying s1 with s2,
called s, and t1 with t2, called t, to obtain a 2-DSPG network with terminals
s and t.

2.2 Cooperative games and core stability

A cooperative (profit) game Γ = (N, v) consists of a player set N = {1, 2, . . . ,
n} and a profit function p : 2N → R with p(∅) = 0. A coalition S is a
nonempty subset of N, and p(S) represents the profit that can be achieved
by the players in S without help of other players. The induced subgame
(S, pS) on S has profit function pS(T ) = p(T ) for all T ⊆ S.

The central problem in cooperative game theory is how to allocate the
total profit p(N) among the individual players in a ‘fair’ way. An allocation
is a vector x ∈ R

n with x(N) = p(N), where x(S) =
∑

i∈S xi for any S ⊆ N.
Different requirements for fairness and rationality lead to different sets of
allocations which are generally referred to as solution concepts.

An allocation x ∈ R
n is called an imputation if it satisfies the individual

rationality, i.e., xi � p({i}) for each player i ∈ N. That is, each player gains
more from cooperating than acting alone. We denote by I (Γ) the set of
imputations of Γ. The core C (Γ) of Γ is the set of imputations satisfying
coalition rationality, i.e.,

C (Γ) = {x ∈ R
n | x(N) = p(N), x(S) � p(S), ∀ S ⊆ N}.

That is, no coalition S can increase their profit by splitting off from the
grand coalition N and going their own way. The game is called balanced, if
C (Γ) �= ∅. It is called totally balanced if all its subgames are balanced, i.e.,
all its subgames have non-empty cores.

In their classical work on game theory, von Neumann and Morgenstern [16]
introduced the concept of a stable set. Let Γ = (N, p) be a cooperative game
with n players, and let x and y be imputations. We say that x dominates y
if there is a nonempty coalition S such that x(S) � p(S), and xi > yi for all
i ∈ S. A set I of imputations is stable if no two imputations in I dominate
each other (internal stability), and any imputation not in I is dominated
by some imputation in I (external stability). In particular, the core C (Γ)
is stable if for any y ∈ I (Γ) \ C (Γ), there is an x ∈ C (Γ) and a nonempty
coalition S ⊂ N such that x(S) = p(S) and xi > yi for all i ∈ S. That is, Γ
has a stable core if any imputation not in C (Γ) is dominated by some core
imputation.

There are three other concepts closely related to core stability. The core
C (Γ) is large if for any y ∈ R

n with y(S) � p(S) for all S ⊆ N, there exists
an x ∈ C (Γ) such that x � y. Γ is extendable if, for every nonempty S ⊂ N
and every core element y of the induced subgame (S, pS), there exists an
x ∈ C (Γ) such that xi = yi for all i ∈ S. Γ is exact if, for every S ⊂ N, there



Algorithms for flow games 51

exists an x ∈ C (Γ) such that x(S) = p(S).
Kikuta and Shapley1) showed that a balanced game with a large core

is extendable, and an extendable balanced game must have a stable core.
Sharkey [19] proved that a totally balanced game with a large core is
exact. Biswas et al. [2] pointed out that extendability also implies exact-
ness. Note that the flow games discussed in this paper are totally balanced.
We summarize these results in the following theorem.

Theorem 11) [2,19] Let Γ = (N, p) be a totally balanced game. Then core
largeness implies extendability, and extendability implies exactness and core
stability.

2.3 Flow games

Flow games were introduced by Kalai and Zemel [13,14]. They arise from
the profit distribution problem related to the maximum flow in a network.
Consider a flow network G = (V, E; ω; s, t). We assume that each player
controls one edge, i.e., we can identify the set of edges with the set of players.
Then the associated flow game Γ = (E, p) is defined as

(1) The player set is E.

(2) For all S ⊆ E, p(S) is the value of a maximum (s, t)-flow that only
uses edges in S.

A flow game is simple if the underlying network is a simple flow network.
In this paper, we focus on simple flow games. These games belong to the
class of packing/covering games introduced by Deng et al. [3].

Theorem 2 [3,14] Let Γ = (E, p) be the flow game defined on G = (V, E; ω;
s, t). Then Γ is totally balanced. If G is a simple flow network, the core C (Γ)
is exactly the convex hull of the indicator vectors of the minimum (s, t)-cuts
of G.

Corollary 3 [3] Let Γ = (E, p) be a simple flow game. Then x ∈ C (Γ) if
and only if x(e) � 0 for all e ∈ E, and x(P ) � 1 for all (s, t)-paths P.

3 Core stability of flow games

In this section, we discuss the core stability of simple flow games. We first
introduce the notion of dummy edges which is crucial for characterizing the
stable core of a flow game. We note that dummy edges were introduced in
Ref. [4] where they play an important role in the efficient computation of the
nucleolus of flow games.

3.1 Dummy edges

Let G = (V, E; s, t) be a simple network and Γ = (E, p) be the corresponding
flow game. We assume that each edge is contained in some (s, t)-path. An
edge e ∈ E is called a dummy edge (player) of G if p(E \ {e}) = p(E),

1) Kikuta K, Shapley L S. See footnote 1) on p. 48
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i.e., the profit does not change if we exclude e. The following lemma follows
immediately from the max-flow min-cut theorem in Ref. [10] and Theorem 2.

Lemma 4 Let e ∈ E be an edge. The following three conditions are
equivalent :

(1) e is a dummy edge of G;
(2) e is not contained in any minimum (s, t)-cut of G;
(3) x(e) = 0 for all core imputations x of Γ.

Theorem 5 G = (V, E; s, t) is a balanced 2-terminal DAG if and only if it
contains no dummy edges.

Proof Suppose that G is a balanced 2-terminal DAG. Let f be a maximum
0-1 (s, t)-flow in G (which is also a maximum (s, t)-flow). Consider the sub-
graph H of G induced by the set F = {e ∈ E | f(e) = 0} of edges not used
by flow f. Since G is a balanced DAG and f satisfies the flow conservation
property in every node except s and t, H is also acyclic and balanced. Thus,
if F is not empty, there must be a simple (s, t)-path in H. But then we can
push one more unit of flow along this path, contradicting the maximality of
f. Hence, F = ∅, i.e., G contains no dummy edges.

Now assume that G has no dummy edges. The flow conservation property
and the fact that all edges have capacity one imply that for each maximum
0-1 (s, t)-flow f, at least one edge incident to an unbalanced node is not used
by f. Thus, G is balanced, otherwise it would contain dummy edges. If G
contains a directed cycle C, we can assume that f does not use edges on C
(we could cancel one unit of flow around the cycle without violating the flow
conservation), i.e., G contains dummy edges. Thus, G is a balanced DAG. �
3.2 Core stability

Let G = (V, E; s, t) be a simple flow network. Let f be a maximum integral
flow from s to t. Without loss of generality, we may assume that f does not
contain any directed cycles. In this section, all flows are integral and cycle-
free. Since all edge capacities are 1, an edge is either saturated or not used
by f. Let F denote the set of saturated edges and F the set of unused edges.
Clearly, F defines a DAG with source s and sink t and a partial order <f

on the nodes (edge (u, v) ∈ F implies u <f v). Note that the edges in F are
not involved in defining the partial order. For any node without f passing
through, its order is not defined.

We call a flow network G a pseudo balanced directed acyclic graph
(PBDAG) if v <f u for all (u, v)-paths P ⊂ F, where u and v are nodes
used by f. Intuitively, the edges in F cannot be used to push flow closer to t,
they can only push flow back along a path on which the flow is flowing from
s to t. We show next that being a PBDAG does not depend on the particular
choice of f.

Lemma 6 If G is a PBDAG, then G has a unique maximum (s, t)-flow.

Proof Remember that we only consider integral flows, so an edge is either
used at full capacity 1, or it is not used at all by the flow. Assume that G
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has two different maximum (s, t)-flows f and f ′. Let u be a minimal node
with respect to <f such that there is a (u, v)-path P ⊂ F to a node v used
by f which is used by f ′ but not by f. Since G is a PBDAG, v <f u, i.e., P
closes a directed cycle in f ′, contradicting the assumption that the flows are
cycle-free. Note that in the last argument we implicitly used the fact that f
is a maximum flow, because v <f u is only guaranteed for maximum flows in
a PBDAG. �

Note that the unique maximum (s, t)-flow in Lemma 6 defines a set of p(E)
edge-disjoint paths. We can now state the main theorem in this section.

Theorem 7 Let G = (V, E; s, t) be a simple flow network. Then the
associated flow game Γ = (E, p) has a stable core if and only if G is a
PBDAG.

Corollary 8 In time O(min(n3/2, m1/2)m + nm), we can decide core
stability of a simple flow game, where n and m are the numbers of nodes
and edges in the underlying network, respectively.

Proof By Theorem 7, we only need to test whether the given network is a
PBDAG. We first compute in time O(min(n3/2, m1/2)m) a maximum integral
cycle-free (s, t)-flow f using Even and Tarjan’s maximum flow algorithm [7].
Then we delete all edges used by f and run an all-pairs shortest path
algorithm for unit length graphs on the remaining graph. If there exists
a (u, v)-path such that v �<f u for two nodes u and v used by f, then we
conclude that the network is not a PBDAG. Note that all-pairs shortest
paths in unit length graphs only takes O(nm) time, for example, by doing n
BFS explorations from different starting nodes. �

To prove Theorem 7, we need several lemmas.

Lemma 9 If G is a PBDAG, then the set of dummy edges is exactly F ,
where F is the set of edges used by the unique maximum (s, t)-flow f in G.

Proof All edges in F are dummy edges because they are not used by f.
It remains to show that F contains no dummy edges. We can think of F
as a union of p(E) edge-disjoint (s, t)-paths. For an edge e ∈ F, let Pe be
the (s, t)-path containing e. Let the flow f ′ be the flow obtained from f by
subtracting one unit of flow along Pe. Consider the residual graph of G with
respect to f ′. It is easy to see that Pe is the only (s, t)-path in the residual
graph, otherwise f would not have been a maximum flow in G. Here, we use
the fact that G is a PBDAG, because the edges of Pe are the only edges
that can bring us from smaller (with respect to the order <f ) nodes to larger
nodes. Hence, f ′ is a maximum flow in G \ {e}, which means that e is not a
dummy edge. �

Note that the proof of Lemma 9 also implies Lemma 6, but we stated
Lemma 6 earlier for clarity. The following lemma strengthens Corollary 3 for
PBDAGs.
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Lemma 10 If G is a PBDAG, then an imputation x ∈ I (Γ) is in the core
C (Γ) if and only if x(e) � 0 for all e ∈ E, and x(P ) � 1 for all (s, t)-paths
P ⊆ F.

Proof If x is in the core, then x(P ) � 1 for all (s, t)-paths P ⊆ F by
Corollary 3. To show the opposite direction, let x be an arbitrary imputation
such that x(P ) � 1 for all (s, t)-paths P ⊆ F. Since x(E) = p(E) and F
consists of p(E) edge-disjoint (s, t)-paths, we must have x(P ) = 1 for these
paths P, and x(e) = 0 for all e ∈ F . Further, x(P1) = x(P2) for any two
paths P1, P2 ⊆ F from s to some node u. Now, assume that there exists an
(s, t)-path P in G such that x(P ) < 1. Let P be such a path minimizing
x(P ), and among all such paths minimizing the number of edges in F . P
must contain an edge in F ; let e = (u, v′) be the first such edge in P. Note
that u is used by f. Let v be the first node after u on P which is also used
by f. Since G is a PBDAG, we know that v <f u. Let P1 be a path from s
to v in F, and let P2 be the first part of P from s to v. Since v <f u, there is
a path in F from v to u, and there is at least one node w on that path which
also belongs to P2. Let P3 be the path from s to w. Then,

x(P1) � x(P3) � x(P2).

If we replace P2 in P by P1, the x-weight does not increase but the number
of edges in F in P decreases, contradicting the minimal choice of P. Thus,
every (s, t) path P in G has x(P ) � 1. �

The next lemma follows directly from the complementary slackness
condition of linear programming for the maximum flow problem. It states
that any (s, t)-path without dummy edges must cross any minimum (s, t)-cut
exactly once.

Lemma 11 Let P be an (s, t)-path without dummy edges. Then |P ∩C| = 1
for any minimum (s, t)-cut C in G.

The next lemma states that non-core elements in a simple flow game can
be dominated by some core element via some (s, t)-path.

Lemma 12 Let Γ = (E, p) be a simple flow game. Then, C (Γ) is stable if
and only if for any x ∈ I (Γ) \ C (Γ), there exists a core element z ∈ C (Γ)
and an (s, t)-path P such that z(P ) = 1 and z(e) > x(e) for all e ∈ P.

Proof The sufficiency is obvious. To see the necessity, suppose that C (Γ) is
stable. If x ∈ I (Γ) \ C (Γ) is an imputation outside the core, then stability
of the core implies the existence of a core element z ∈ C (Γ) and a nonempty
coalition S such that z(S) = p(S) and z(e) > x(e) for all e ∈ S. Since

p(S) = z(S) > x(S) � 0,

there are p(S) edge-disjoint (s, t)-paths in G[S], denoted by P1, P2, . . . , Pp(S).
Let

S′ = P1 ∪ P2 ∪ · · · ∪ Pp(S)
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be the edge set of all these paths. Then,

z(S′) = p(S) = p(S′),

thus there must be a path Pk such that z(Pk) � 1 for some 1 � k � p(S).
Since z ∈ C (Γ), we actually have z(Pk) = 1. Since z(e) > x(e) for all e ∈ S
and Pk ⊆ S′ ⊆ S, we have z(e) > x(e) for all e ∈ Pk. �

Note that the path P in Lemma 12 does not contain dummy edges (a
dummy edge e must have z(e) = 0 by Lemma 4). We are now ready to prove
the main theorem.

Proof of Theorem 7 We first prove the sufficiency. Suppose that G is a
PBDAG. For any x ∈ I (Γ) \C (Γ), Lemma 10 implies that there is an (s, t)-
path P = {e1, . . . , ek} ⊆ F such that x(P ) < 1 and x(ej) � 0 for j = 1, . . . , k.
By Lemma 9, P does not contain the dummy edges. By Lemma 4, each edge
ej of P is contained in some minimum (s, t)-cut Cj . By Lemma 11, each Cj

does not contain other edges in P except for ej. Thus, Ci �= Cj if i �= j for
i, j = 1, . . . , k. Let

λj = x(ej) +
1 − x(P )

k

for j = 1, . . . , k, and

z =
k∑

j=1

λj1Cj .

Obviously,

λj > 0,
k∑

j=1

λj = 1.

By Theorem 1, we know that z ∈ C (Γ). Moreover, we have

z(P ) =
k∑

j=1

(
x(ej) +

1 − x(P )
k

)
1Cj (P ) = x(P ) + k · 1 − x(P )

k
= 1

and z(ej) > x(ej) for j = 1, . . . , k. Hence, by Lemma 12, C (Γ) is stable.
It remains to show the necessity. Suppose that G is not a PBDAG, and let

f be some maximum (s, t)-flow using edge set F. Then there is a (u, v)-path
P̃ ⊆ F with v �<f u and u and v used by f. By definition, all edges in P̃ are
dummy edges. We will now construct an imputation x ∈ I (Γ) \ C (Γ) such
that x(P ) � 1 for any (s, t)-path P without dummy edges. By Lemma 12,
this implies that C (Γ) is not stable.

Since v �<f u, adding P̃ to F does not create a directed cycle. Let <̃f

be the partial order induced by P̃ ∪ F. We now construct a total order
s = v1, . . . , vn = t consistent with <̃f , i.e., vi<̃fvj if and only if i < j.

Suppose that e = (vi, vj) is an edge in P̃ with i < j. Consider the (s, t)-cut C
consisting of all edges from {v1, . . . , vi} to {vi+1, . . . , vn}. C contains exactly
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p(E) edges of F. Denote the set of these edges by C′. C − C′ contains only
dummy edges, and it is not empty because e ∈ C. Let the imputation x = 1C′

be the indicator vector of C′. If x ∈ C (Γ), then Lemma 4 implies that the set
of edges e with x(e) > 0 must contain an (s, t)-cut. But C′ is not an (s, t)-cut
of G (we can reach t from vi via (vi, vj)), therefore, x ∈ I (Γ) \ C (Γ). Since
C is an (s, t)-cut, each (s, t)-path P must cross C; if P has no edges in P̃ , it
must contain at least one edge of C′, which means x(P ) � 1. �

4 Exactness, extendability and core largeness

4.1 Equivalence of exactness, extendability, and core largeness

In this subsection, we prove that the properties of exactness, extendability,
and core largeness are equivalent for simple flow games. Since flow games are
totally balanced, this equivalence strictly implies the stability of the core of
a flow game.

Theorem 13 Let G = (V, E; s, t) be a simple flow network, and Γ = (E, p)
be the associated flow game. Then the following statements are equivalent :

(a) The game Γ is exact ;
(b) The game Γ is extendable ;
(c) The core C (Γ) is large ;
(d) The network G is cut-normal.

To prove Theorem 13, we need a few more lemmas. The first one is due
to van Gellekom et al. [11]. For a cooperative game Γ = (N, p), the set of
upper vectors is defined as

L(Γ) = {y ∈ R
|N | | y(S) � p(S), ∀ S ⊆ N}.

Lemma 14 [11] Let Γ = (N, p) be a balanced game. Then, Γ has a large
core if and only if y(N) � p(N) for all extreme points y of L(Γ).

In order to characterize the extreme points of L(Γ) of the flow game
Γ = (E, p), we define another polyhedron (which turns out to be identical to
L(Γ)). Let P be the set of (s, t)-paths in G. Define the polyhedron L′(Γ) as

L′(Γ) = {y ∈ R
|E| | y(P ) � 1, ∀ P ∈ P, y(e) � 0, ∀ e ∈ E}.

Lemma 15 For any simple flow game Γ, L(Γ) = L′(Γ).

Proof Clearly, L(Γ) ⊆ L′(Γ). The other inclusion follows from the fact that
S contains p(S) edge-disjoint (s, t)-paths for any S ⊆ E. �

In particular, L(Γ) has the same extreme points as L′(Γ). In fact, the
polyhedron L′(Γ) is exactly the dominant of the (s, t)-cut polytope (Chapter
13 in Ref. [17]), which immediately implies the following lemma.

Lemma 16 Let Γ be a simple flow game. Then each extreme point of L′(Γ)
is an indicator vector of some minimal (s, t)-cut of G.
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Proof of Theorem 13 Since flow games are totally balanced by Theorem 2,
the implications ‘(c) ⇒ (b) ⇒ (a)’ follow from Theorem 1.

‘(a) ⇒ (d)’. A 2-terminal DAG with terminals s and t is cut-normal if
and only if every (s, t)-cut contains a minimum (s, t)-cut. Suppose that Γ is
exact. Let S be an (s, t)-cut of G and S = E \ S. Then, by the definition of
exactness, there exists an x ∈ C (Γ) such that

x(S) = p(S) = 0.

This implies

x(S) = x(E) − x(S) = p(E) − x(S) = p(E).

Let M denote the set of minimum (s, t)-cuts of G. We know from Theorem
2 that x can be written as

x =
∑

C∈M

λC1C ,

where λC � 0 for each C ∈ M and
∑

C∈M λC = 1. It follows that

p(E) = x(S) =
∑

C∈M

λC1C(S) =
∑

C∈M

λC |S ∩ C| �
∑

C∈M

λC |C| = |C|.

Since C is a minimum (s, t)-cut, we have p(E) = |C|. Thus, in the inequality
above, we actually have equality and therefore, S ∩ C = C for all C ∈ M
with λC > 0. That is, S contains at least one minimum (s, t)-cut of G.

‘(d) ⇒ (c)’. Suppose that G is cut-normal. Let y be some extreme point
of L(Γ). By Lemmas 15 and 16, y is the indicator vector of some minimal
(s, t)-cut of G, say C, which is also a minimum (s, t)-cut. Thus,

1C(E) = |C| = p(E).

Lemma 14 now implies that the core of Γ is large. �
4.2 An efficient algorithm

In this subsection, we give a polynomial time algorithm to decide exactness,
extendability, and core largeness for simple flow games. Since these properties
imply core stability, in view of Theorem 7, we can therefore without loss of
generality assume that the flow networks in this subsection are PBDAGs. We
distinguish two types of dummy edges in a PBDAG.

Type I: Dummy edges that lie on some simple (s, t)-path;
Type II: Other dummy edges.
We can now state our main theorem. We will prove it in Subsection 4.3.

Theorem 17 Let G = (V, E; s, t) be a PBDAG. Let G′ be obtained from G
by deleting all dummy edges. Then, G is cut-normal if and only if G only
contains Type II dummy edges and G′ is a balanced 2-DSPG.
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Corollary 18 We can decide the properties of exactness, extendability, and
core largeness of a simple flow game in O(m2α(m, n)) time, where n and m
are the numbers of nodes and edges in the underlying network, respectively,
and α(m, n) is the inverse of the Ackermann function.

Proof For each edge (u, v) ∈ E, we test whether it is a Type II dummy
edge. We can do this in time O(n + mα(m, n)) by computing two node-
disjoint paths, one from s to u and the other one from v to t, using Tholey’s
Algorithm [22]. If we find two such paths, (u, v) is a Type I edge. After
deleting all Type II edges, we only need to test whether the remaining graph
is a balanced DAG which can be done in linear time. If this is the case, then
we test whether the DAG is a 2-DSPG, which also takes linear time [23]. The
correctness follows from Theorems 13 and 17. �
4.3 Proof of Theorem 17

Let G = (V, E; s, t) be a PBDAG. First, we need some lemmas. The following
lemma is trivial.

Lemma 19 Let W be the set of Type II dummy edges of G. Then no
minimal (s, t)-cut contains any edge in W. Moreover, any (s, t)-cut of G \W
is also an (s, t)-cut of G.

Lemma 20 If G is cut-normal, then it does not contain any Type I dummy
edges.

Proof Suppose that e = (u, v) is a Type I dummy edge and P is a simple
(s, t)-path containing e. Let Psu and Pvt denote the subpaths of P from s to
u and from v to t, respectively.

Let U be the set of nodes in Psu, and C be the (s, t)-cut induced by the
partition U and V \ U. Since C contains the dummy edge e = (u, v), by
Lemma 4, it is not a minimum (s, t)-cut. On the other hand, C \ {(u, v)} is
not an (s, t)-cut because (C \ {(u, v)}) ∩ P = ∅. Hence, (u, v) occurs in any
minimal (s, t)-cut C′ contained in C, and thus C′ is not a minimum (s, t)-cut
either, contradicting the assumption that G is cut-normal. �

Two graphs are homeomorphic if they can be made isomorphic by insert-
ing new nodes of degree two into edges, i.e., substituting edges by directed
paths (which does not change the topology of the graph). Let H denote the
graph shown in Fig. 1, which is the forbidden subgraph for 2-DSPGs.

Theorem 21 [6,12,23] A 2-terminal DAG is a 2-DSPG if and only if it
does not contain a subgraph homeomorphic to H.

We can now characterize balanced 2-DSPGs.

Theorem 22 Let G = (V, E; s, t) be a balanced 2-terminal DAG with
terminals s and t. Then G is cut-normal if and only if it is a 2-DSPG.

Proof Sufficiency. It is easy to see that any balanced 2-DSPG can be
generated inductively with the additional constraint that the combination
in series step (where we identify the two terminals t1 and s2) requires that
the indegree of t1 is equal to the outdegree of s2.



Algorithms for flow games 59

h1
h2

h3 h4

Fig. 1 Forbidden network H

We now prove the sufficiency by induction on |E|. When |E| = 1, the
graph is obviously cut-normal. Suppose that all balanced 2-DSPGs with fewer
than |E| edges are cut-normal. If G is generated from G1 = (V1, E1; s1, t1)
and G2 = (V2, E2; s2, t2) by combination in parallel (with s = s1 = s2 and
t = t1 = t2), then any minimal (s, t)-cut C in G consists of a minimal
(s1, t1)-cut C1 = C ∩E1 in G1 and a minimal (s2, t2)-cut C2 = C ∩E2 in G2.
By induction hypothesis, C1 and C2 are minimum (s, t)-cuts in G1 and G2,
respectively. Thus, C is a minimum (s, t)-cut in G.

If G is generated from G1 and G2 by combination in series (with s = s1

and t = t2), then a minimal (s, t)-cut C in G is either a minimal (and thus
minimum) (s1, t1)-cut in G1 or a minimal (and thus minimum) (s2, t2)-cut in
G2. Note that in (t1) and out (s2) are a minimal (and thus minimum) (s1, t1)-
cut in G1 and (s2, t2)-cut in G2, respectively. Since |in (t1)| = |out (s2)| in G,
a minimum (s1, t1)-cut in G1 has the same capacity as a minimum (s2, t2)-cut
in G2. Thus, C is a minimum (s, t)-cut in G.

Necessity. Since G is a balanced 2-terminal DAG, there exists a
topological ordering of G, say V = {s = v1, . . . , vn = t}. Let k = |out (s)|.

Suppose that G is not a 2-DSPG. Then we can construct a minimal (s, t)-
cut of size larger than k, contradicting the assumption that G is cut-normal.
By Theorem 21, G contains a subgraph homeomorphic to H (see Fig. 1)
which we denote by H [a, b, c, d, Pab, Pbc, Pcd, Pac, Pbd], where va, vb, vc and
vd are the nodes corresponding to h1, h2, h3 and h4 in H, respectively, and
the node-disjoint (except at their endpoints) paths Pab, Pbc, Pcd, Pac and
Pbd correspond to the edges (h1, h2), (h2, h3), (h3, h4), (h1, h3), and (h2, h4)
in H, respectively. Among all subgraphs homeomorphic to H we choose one,
denoted by GH , with largest index b.

Obviously, GH is not balanced. But G is balanced, so we can find six pair-
wise edge-disjoint paths in G (they are also edge-disjoint with GH), namely,
Psa1, Psa2, Psb, Pct, Pdt1, and Pdt2 that can be added to GH to obtain a
balanced subgraph G̃ (see Fig. 2). Note that G̃ is the union of three edge-
disjoint (s, t)-paths Psa1 + Pab + Pbd + Pdt1, Psa2 + Pac + Pcd + Pdt2, and
Psb + Pbc + Pct (we use P1 + P2 to denote the concatenation of paths P1 and
P2).

Consider the (s, t)-cut Cb in G induced by the partition of V into {v1, . . . ,
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Fig. 2 Network G̃

vb−1} and {vb, . . . , vn}. Since G is acyclic and all nodes lie on some (s, t)-
path, Cb is a minimal (s, t)-cut. If |Cb| > k, we have a minimal (s, t)-cut that
is not a minimum cut. So we may assume that |Cb| = k. We partition the
edges of Cb into two classes, namely, C1

b and C2
b . An edge e belongs to C1

b if
every (s, t)-path containing e passes through vc, otherwise, it belongs to C2

b .
We first show two properties of C1

b .

Claim 1 C1
b �= ∅. In particular, C1

b contains the edge e = Pac ∩ Cb.

Proof Assume that there is an (s, t)-path Pe containing e but not vc. Let vr

be the node in Pac ∩ Pe with the largest subscript, vq be the first node in G̃
that we encounter on Pe when starting walking at vr. Note that such a node
exists because Pe ends at t ∈ G̃. Let Prq be the path from vr to vq.

Since e ∈ Cb, we have r � b. Actually, r > b because vb is not on Pac. On
the other hand, r < c because vr ∈ Pac and vc �∈ Pe. But then we can find
another subgraph H [a, r, vc′ , . . .] in G, a contradiction because r > b. To see
this, we distinguish five cases, depending on the location of vq (see Figs. 3
and 4).

Let Pxy(i, j) denote the subpath of Pxy from vi to vj , where x, y ∈
{a, b, c, d}.

(1) vq ∈ Pbc : H [a, r, q, c, Pac(a, r), Prq , Pbc(q, c), Pab +Pbc(b, q), Pac(r, c)];
(2) vq ∈ Pcd : H [a, r, c, q, Pac(a, r), Pac(r, c), Pcd(c, q), Pab + Pbc, Prq];
(3) vq ∈ Pbd : H [a, r, q, d, Pac(a, r), Prq, Pbd(q, d), Pab+Pbd(b, q), Pac(r, c)+

Pcd];
(4) vq ∈ Pct : H [a, r, c, q, Pac(a, r), Pac(r, c), Pct(c, q), Pab + Pbc, Prq];
(5) vq ∈ Pdt1 or vq ∈ Pdt2 : H [a, r, d, q, Pac(a, r), Pac(r, c)+Pcd, Pdq, Pab+

Pbd, Prq].
This finishes the proof of Claim 1. �

Claim 2 |C1
b | < cout, where cout is the outdegree of vc in G.

Proof of Claim 2 Let U be a maximal set of edge-disjoint (s, t)-paths
containing vc that includes the path Psa1 + Pab + Pbc + Pcd + Pdt1. Note
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case (1)

case (2)

Fig. 3 Cases (1) and (2) in proof of Theorem 22

that |U | � cout. Clearly, C1
b is a subset of U ∩ Cb by the definition of C1

b .
Since the last edge of Pab belongs to (U ∩Cb) \C1

b , C1
b is a proper subset of

U ∩ Cb, and thus |C1
b | < cout. This completes the proof of Claim 2. �

Let C� be the set of edges in C2
b plus all outgoing edges at vc. Then C�

is an (s, t)-cut because every (s, t)-path contains either an edge in C2
b or the

node vc. Since C1
b �= ∅, each edge in out (vc) is necessarily in C�. Since each

edge in C2
b is necessary, C� is a minimal (s, t)-cut. The size of C� is

|C�| = |C2
b | + cout > |C2

b | + |C1
b | = |Cb| = k.

Thus, C� is not a minimum (s, t)-cut, a contradiction. Therefore, the
assumption that G is not a 2-DSPG must be wrong. This concludes the
proof of Theorem 22. �

Theorem 17 follows directly from Lemmas 19 and 20, and Theorem 22.

5 Further discussion

In this paper, we propose the structural characterizations of exact game,
extendable game, large core and stable core for simple flow games and obtain
the polynomial time algorithms to test these properties. Currently, little
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case (3)

s ta

b

q
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c

vd
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case (4)
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d q

Pdt2
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Psb
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Pdt1
  

Pct
  

case (5)

Fig. 4 Cases (3)–(5) in proof of Theorem 22

is known about the core stability of flow games on networks with arbitrary
capacities. Although it is co-NP-complete to decide whether an imputation
belongs to the core, this does not rule out the possibility that core stability
can be decided efficiently. We leave it as an open problem.
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