
Efficient Algorithms for k-Disjoint Paths
Problems on DAGs ?

Rudolf Fleischer, Qi Ge, Jian Li, and Hong Zhu??

Shanghai Key Laboratory of Intelligent Information Processing,
Department of Computer Science and Engineering,

Fudan University, China
{rudolf,qge,lijian83,hzhu}@fudan.edu.cn

Abstract. Given an acyclic directed graph and two distinct nodes s
and t, we consider the problem of finding k disjoint paths from s to t
satisfying some objective. We consider four objectives, MinMax, Balanced,
MinSum-MinMin, and MinSum-MinMax. We use the algorithm by Perl-Shiloach
and labelling and scaling techniques to devise an FPTAS for the first
three objectives. For the fourth one, we propose a general and efficient
polynomial-time algorithm.

1 Introduction

In communication networks, one way of providing reliable communication is to
find several disjoint paths, either node disjoint or edge disjoint. The advantage
is that, if some links are broken, there are still other routing paths.

Different objectives may be used to measure the quality (or usefulness) of the
disjoint paths. For example, we may require that the total weight of the disjoint
paths to be minimized, the so-called MinSum objective. This problem can be
solved in polynomial time by standard network flow methods [1, 8]. However, for
many other objectives, the problems are hard to solve. Li et al. [6] proposed the
MinMax objective and showed that the problem is strong NP-complete. Yang
et al. [10] proposed the MinMin objective and proved that the problem is also
strong NP-complete.

For acyclic directed graphs (DAGs), the problem seems to be easier. In
this paper, we focus on finding disjoint paths on DAGs. We propose efficient
algorithms for four different objectives that are practically motivated. They
are MinMax k-DP, Balanced k-DP, MinSum-MinMax k-DP and MinSum-MinMin
k-DP.

? This work is supported by National Natural Science Fund (grants #60573025,
#60496321, #60373021) and Shanghai Science and Technology Development Fund
(grant #03JC14014).

?? The order of authors follows the international standard of alphabetic order of the last
name. In China, where first-authorship is the only important aspect of a publication,
the order of authors should be Qi Ge, Jian Li, Rudolf Fleischer, and Hong Zhu.

Definition 1 MinMax k-DP Problem. Given a graph G = (V, E), two distinct
nodes s, t ∈ V , and a positive integral weight function F : E 7→ N, we want
to find k disjoint paths P1, . . . , Pk from s to t such that the cost of the most
expensive path is minimized, i.e., max1≤i≤k F(Pi) is minimized, where F(Pi) =∑

e∈Pi
F(e) is the weight of Pi. ut

This problem was proposed by Li et al. [6]. They proved that the prob-
lem is strong NP-complete, for directed and undirected graphs, and for edge-
disjoint and node-disjoint paths. On DAGs, the problem is NP-complete but has
a pseudo-polynomial-time algorithm. We will give an FPTAS for this problem
on DAGs.

Definition 2 Balanced k-DP Problem. Given a graph G = (V, E), two dis-
tinct nodes s, t ∈ V , and a positive integral weight function F : E 7→ N, we want
to find k disjoint paths P1, . . . , Pk from s to t such that the costs of the cheapest
and most expensive path are close together, i.e., max1≤i≤k F(Pi)/ min1≤i≤k F(Pi)
is minimized. ut

Note that we can show by reduction from the Hamiltonian Path problem that
this problem is strong NP-complete for directed and undirected graphs, and for
edge-disjoint and node-disjoint paths. For DAGs, the problem is NP-complete by
reduction from the Partition problem. We will give an FPTAS for this problem
on DAGs.

Definition 3 MinSum-MinMax k-DP Problem. Given a graph G = (V, E), two
distinct nodes s, t ∈ V , and a positive integral weight function F : E 7→ N, let
P denote the set of all sets of k disjoint paths P1, . . . , Pk from s to t such that∑

1≤i≤k F(Pi) is minimized. We want to find a set of k disjoint paths P1, . . . , Pk

in P minimizing max1≤i≤k F(Pi). ut
Note that we can show by reduction from the Disjoint Paths problem (see [2])

that this problem is strong NP-complete for directed graphs, and for edge-disjoint
and node-disjoint paths. For undirected graphs and DAGs, the problem is NP-
complete by reduction from the Partition problem. We will give an FPTAS for
this problem on DAGs.

Definition 4 MinSum-MinMin k-DP Problem. Given a graph G = (V, E), two
distinct nodes s, t ∈ V , and a positive integral weight function F : E 7→ N, let
P denote the set of all sets of k disjoint paths P1, . . . , Pk from s to t such that∑

1≤i≤k F(Pi) is minimized. We want to find a set of k disjoint paths P1, . . . , Pk

in P minimizing min1≤i≤k F(Pi). ut
This problem was proposed by Yang et al. [11]. They showed that, for k = 2,

the problem is strong NP-complete for directed graphs and has a polynomial-
time algorithm for DAGs. The latter algorithm reduces the MinSum-MinMin 2DP
problem to the Normalized α+-MinSum 2DP problem [12] which can be solved
in polynomial time. However, the algorithm uses many expensive arithmetic op-
erations like multiplications and divisions, and it is not very intuitive. Moreover,

2

it cannot be generalized to arbitrary constants k. We will propose a more efficient
algorithm for arbitrary constants k.

This paper is organized as follows. In Section 2, we introduce the Perl-
Shiloach algorithm. In Sections 3-5, we give FPTAS for the MinMax 2DP problem,
the Balanced 2DP problem, and the MinSum-MinMax 2DP problem. In Section 6,
we propose an efficient polynomial-time algorithm for the MinSum-MinMin 2DP
problem.

2 Preliminaries

2.1 The Perl-Shiloach Algorithm

In this subsection, we introduce the algorithm PSA to find k node-disjoint paths
on a DAG by Perl-Shiloach [7], which is a key subroutine in our algorithms.

In the Disjoint Paths Problem (DPP) we are given a directed graph G = (V, E)
and k pairs of distinct nodes (s1, t1), . . . , (sk, tk). We want to find k node- or
edge-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti, for 1 ≤ i ≤ k.
The decision version of this problem, for node-disjoint and edge-disjoint paths,
was shown to be NP-complete by Fortune et al. [2], even if k = 2. For DAGs,
Perl and Shiloach gave a polynomial time algorithm, PSA [7].

PSA is actually a reduction from DPP to the Connectivity problem. Given a
DAG G = (V, E) and k pairs of distinct nodes (s1, t1), . . . , (sk, tk), let v1, v2, . . . , vn

be a topological order of V , i.e., there are only edges from nodes with lower in-
dices to nodes with higher indices. We construct a graph Gk = (Vk, Ek) as
follows.

Vk = {〈j1, . . . , jk〉 | 1 ≤ ji ≤ n for 1 ≤ i ≤ k, and ji 6= jl for 1 ≤ i 6= l ≤ k},
(1)

Ek =
k⋃

d=1

{(〈j1, . . . , jd−1, jd, jd+1, . . . , jk〉, 〈j1, . . . , jd−1, j
′
d, jd+1, . . . , jk〉)

| (vjd
, vj′d) ∈ E and jd = min

1≤l≤k
jl}. (2)

For simplicity, we will only describe the algorithms for the case of k = 2. It
should be clear that they can easily be generalized to arbitrary constants k. If
we want to find two disjoint paths from s = v1 to t = vn, we have to add two
nodes 〈1, 1〉 and 〈n, n〉 to V2. We write 〈s, s〉 for 〈1, 1〉 and 〈t, t〉 for 〈n, n〉. The
graph G′2 is thus defined by

V ′
2 = {〈i, j〉 | 1 ≤ i, j ≤ n and i 6= j} ∪ {〈s, s〉, 〈t, t〉}, (3)

E′
2 = {(〈i, j〉, 〈i, k〉) | (vj , vk) ∈ E, j ≤ i}

∪ {(〈i, j〉, 〈k, j〉) | (vi, vk) ∈ E, i ≤ j}. (4)

3

We call the edges in the first set of Eq. (4) horizontal edges and the edges
in the second set vertical edges. We will frequently use the following lemma to
prove the correctness of our algorithms.

Lemma 5 [7]. There are two node disjoint paths P1, P2 from s to t in G if and
only if there is a directed path P from 〈s, s〉 to 〈t, t〉 in G′2, and P1 (P2) consists
of the horizontal (vertical) edges of P . ut

2.2 Edge Disjoint versus Node Disjoint Paths

We can transform the acyclic edge disjoint case to the acyclic node disjoint
case using the method by Li et al. [6]. Given a DAG G and two distinct nodes
s, t, add new nodes u, v and edges (u, s), (t, v). Form the directed line graph
(see [3]), and let s′, t′ denote the nodes corresponding to (u, s), (t, v) respectively.
Replace each node w (except s′, t′) in the line graph with two nodes w1, w2 and
an edge (w1, w2) such that all edges into (out of) w are now into w1 (out of
w2). The weight of (w1, w2) is the weight of the edge in G corresponding to
w. Other edges have weight 0. This weight-preserving transformation gives a
one-to-one correspondence between edge disjoint paths in the original graph and
node disjoint paths in the new graph. Thus, for all the problems investigated in
this paper, we only give algorithms for the node disjoint case.

3 The MinMax 2DP Problem

In this section, we present an FPTAS for the MinMax 2DP problem on DAGs.
Our algorithm is based on the pseudo-polynomial-time algorithm by Li et al. [6]
and the weight scaling technique (cf. [4, 5, 9]).

First, we use PSA to construct the graph G′2 as in Eqs. (3) and (4). Then
MinMax 2DP is equivalent to finding a directed path P from 〈s, s〉 to 〈t, t〉 in G′2
minimizing max{F(PH),F(PV)}, where PH (PV) denotes the horizontal (verti-
cal) edges of P .

The pseudo-polynomial-time algorithm uses a standard labeling method. If
there is a directed path P from 〈s, s〉 to a node 〈i, j〉 ∈ V ′

2 , we label it by
(X, Y, Pred), where X (Y) is a positive integer denoting the total weight of all
horizontal (vertical) edges in P and Pred is the index of the predecessor of 〈i, j〉
in P . We compute for each node in topological order a set of labels for all the
paths from 〈s, s〉 to that node. When the algorithm terminates, the label in the
label set of 〈t, t〉 minimizing max{X, Y } is the solution.

Unfortunately, the number of labels lab2 for one node may be exponentially
large, where lab = (n− 1) ·maxe∈E F(e). In order to obtain a polynomial-time
algorithm, we must somehow compress the label set. We use the scaling technique
known from the Subset Sum FPTAS.

For each node 〈i, j〉, we store its labels in a 2-dimensional array Li,j [1 . . . `, 1 . . . `],
where ` = blog1+δ labc+ 1. Label (X, Y, Pred) will be stored in L[blog1+δ Xc+
1, blog1+δ Y c+1]. Each cell of Li,j will store at most one label. We use a set Ii,j

4

to keep track of all the entries of Li,j that actually store a label. Then, for each
node in the topological order, we compute the label set of the node. If a new
label should be stored in an array cell which already contains another label, then
we discard the new label. We let Fi,j denote the cost of edge (vi, vj) in E. The
third component Pred of the label (X, Y, Pred) is now of the form (〈i′, j′〉, (a, b))
and is used to reconstruct the path P corresponding to the label, where 〈i′, j′〉
is the index of the predecessor of 〈i, j〉 in P and (a, b) is the index of the cell of
Li′,j′ from which (X, Y, Pred) is computed.

The subroutine LABELSCALING computes for each node a scaled set of la-
bels, while the main algorithm FPTAS-DAG-MinMax-2DP returns the approx-
imate solution.

LABELSCALING(G = (V, E), s, t,F , δ)

1 Construct G′2 = (V ′
2 , E′

2) as in Eqs. (3) and (4);
2 Initialize matrices Li,j [k, l] = NULL, for 1 ≤ i, j ≤ n and

1 ≤ k, l ≤ blog1+δ labc+ 1;
3 Ii,j = ∅, for 1 ≤ i, j ≤ n;
4 Is,s = {(1, 1)};
5 Ls,s[1, 1] = (0, 0, NULL);
6 for i ← 1 to n do
7 for j ← 1 to n do
8 for each (〈i, k〉, 〈i, j〉) ∈ E′

2

9 for each (a, b) ∈ Ii,k

10 let (X, Y, Pred) be the label in Li,k[a, b];
11 let c = blog1+δ(X + Fk,j)c+ 1;
12 if Li,j [c, b] == NULL
13 then Li,j [c, b] = (X + Fk,j , Y, (〈i, k〉, (a, b)));
14 Ii,j = Ii,j ∪ {(c, b)};
15 for each (〈k, j〉, 〈i, j〉) ∈ E′

2

16 for each (a, b) ∈ Ik,j

17 let (X, Y, Pred) be the label in Lk,j [a, b];
18 let d = blog1+δ(Y + Fk,i)c+ 1;
19 if Li,j [a, d] == NULL
20 then Li,j [a, d] = (X, Y + Fk,i, (〈k, j〉, (a, b)));
21 Ii,j = Ii,j ∪ {(a, d)};

FPTAS-DAG-MinMax-2DP(G = (V, E), s, t,F , ε)

1 δ = (1 + ε)
1

2n−2 − 1;
2 LABELSCALING(G = (V, E), s, t,F , δ)
3 for each index (a, b) in It,t

4 let Lt,t[a, b] = (X, Y, Pred);
5 find the (a∗, b∗) minimizing max{X, Y };
6 Reconstruct the two disjoint paths from the third components of the labels;

Lemma 6. Let 〈i, j〉 be a node in V ′
2 such that there is a directed path P

from 〈s, s〉 to 〈i, j〉. Let X = F(PH) and Y = F(PV). When the algorithm
LABELSCALING terminates, then there exists an index pair (a, b) such that the

5

label (X̃, Ỹ , P red) in Li,j [a, b] satisfies X/(1 + δ)i+j−2 ≤ X̃ ≤ (1 + δ)i+j−2X

and Y/(1 + δ)i+j−2 ≤ Ỹ ≤ (1 + δ)i+j−2Y .

Proof. By induction on i + j. If i + j = 2, the node is 〈1, 1〉 = 〈s, s〉, and
Ls,s[1, 1] = (0, 0, NULL) is the correct result.

Let i + j = l and 3 ≤ l ≤ 2n. Suppose there is a path P from 〈s, s〉 to
〈i, j〉 with total weight of the horizontal (vertical) edges X (Y). Without loss of
generality, assume the predecessor of 〈i, j〉 in P is 〈i, j′〉; the vertical case has a
similar proof. Let the path from 〈s, s〉 to 〈i, j′〉 in P be P+, and let X+ (Y +) be
the total weight of the horizontal (vertical) edges of P+. Then, X = X+ +Fj′,j
and Y = Y +. Since j′ < j, i+j′ < i+j, by the induction assumption there exists
a label (X̃+, Ỹ +, P red) such that X+/(1+δ)i+j′−2 ≤ X̃+ ≤ (1+δ)i+j′−2X+ and
Y +/(1+δ)i+j′−2 ≤ Ỹ + ≤ (1+δ)i+j′−2Y +. So, when LABELSCALING computes
the label set of the node 〈i, j〉 and enters steps 8 and 9, it will compute a new
label (X̃+ + Fj′,j , Ỹ

+, (〈i, j′〉, (a, b))).
If the algorithm enters steps 12 to 14, then the label (X̃++Fj′,j , Ỹ

+, (〈i, j′〉, (a, b)))
will be stored. Let X̃ = X̃+ + F+j′,j , Ỹ = Ỹ +. Then,

X̃ = X̃+ + Fj′,j

≤ (1 + δ)i+j′−2X+ + Fj′,j

≤ (1 + δ)i+j′−2(X+ + Fj′,j)

≤ (1 + δ)i+j′−2X

≤ (1 + δ)i+j−2X ,

and Ỹ = Ỹ + ≤ (1 + δ)i+j′−2Y + ≤ (1 + δ)i+j−2Y . Similarly, we have X̃ ≥
X/(1 + δ)i+j−2 and Ỹ ≥ Y/(1 + δ)i+j−2.

If the algorithm skips steps 12 to 14, then there exists a label (X̃, Ỹ , P red).
By the fact that

blog1+δ X̃c+ 1 = blog1+δ(X̃
+ + Fj′,j)c+ 1 and

blog1+δ Ỹ c+ 1 = blog1+δ Ỹ +c+ 1 ,

we have

X̃ < (1 + δ)(X̃+ + Fj′,j) ≤ (1 + δ)((1 + δ)i+j′−2X+ + Fj′,j)
≤ (1 + δ)i+j−2(X+ + Fj′,j) ≤ (1 + δ)i+j−2X,

and Ỹ ≤ (1 + δ)Ỹ + ≤ (1 + δ)i+j−2Y + = (1 + δ)i+j−2Y . Similarly, we have
X̃ ≥ X/(1 + δ)i+j−2 and Ỹ ≥ Y/(1 + δ)i+j−2. ut
Theorem 7. The algorithm FPTAS-DAG-MinMax-2DP is an FPTAS for the
MinMax 2DP problem on DAGs.

Proof. First, it is easy to verify that the time complexity of the algorithm is
O(n3(log1+δ lab)2) = O(n5ε−2(ln lab)2), where lab = O(n ·maxe∈E F(e)).

6

Second, we will show that the approximation ratio is 1 + ε. Suppose the
optimum solution is P1, P2. By Lemma 5, there is a path P in G′2 corresponding
to P1, P2. Let X = F(PH) = F(P1) and Y = F(PV) = F(P2). By Lemma 6,
there is a label (X̃, Ỹ , P red) in Lt,t such that X̃ ≤ (1+ δ)2n−2X = (1+ ε)X and
Ỹ ≤ (1 + δ)2n−2Y = (1 + ε)Y . Let (X ′, Y ′, P red′) be the solution returned by
the algorithm and Opt = max{X, Y }. Then,

max{X ′, Y ′} ≤ max{X̃, Ỹ } ≤ max{(1 + ε)X, (1 + ε)Y }
= (1 + ε) ·max{X, Y } = (1 + ε)OPT .

Thus, FPTAS-DAG-MinMax-2DP is an FPTAS for the MinMax 2DP problem on
DAGs. ut

4 The Balanced 2DP Problem

In this section, we present an FPTAS for the Balanced 2DP problem on DAGs.
The algorithm is similar to the one described in section 3 and will also use
LABELSCALING as a subroutine.

FPTAS-DAG-Balanced-2DP(G = (V, E), s, t,F , ε)

1 δ = (1 + ε)
1

4n−4 − 1;
2 LABELSCALING(G = (V, E), s, t,F , δ)
3 for each index (a, b) in It,t

4 let Lt,t[a, b] = (X, Y, Pred);
5 find (a∗, b∗) minimizing max{X, Y }/ min{X, Y };
6 Reconstruct the 2 disjoint paths from the third entry of the labels ;

Theorem 8. FPTAS-DAG-Balanced-2DP is an FPTAS for the Balanced 2DP
problem on DAGs.

Proof. First, it can easily be seen that the time complexity of FPTAS-DAG-
Balanced-2DP is O(n3(log1+δ lab)2) = O(n5ε−2(ln lab)2), where lab = O(n ·
maxe∈E F(e)).

Next, we prove that the approximation ratio is 1 + ε. Suppose the optimum
solution is P1, P2. By Lemma 5, there is a path P in G′2 corresponding to P1, P2.
Let X = F(PH) = F(P1) and Y = F(PV) = F(P2). By Lemma 6, there
is a label (X̃, Ỹ , P red) in Lt,t such that X/

√
1 + ε = X/(1 + δ)2n−2X ≤ X̃ ≤

(1+δ)2n−2X = X
√

1 + ε and Y/
√

1 + ε = Y/(1+δ)2n−2Y ≤ Ỹ ≤ (1+δ)2n−2Y =
Y
√

1 + ε. Let (X ′, Y ′, P red′) be the solution returned by the algorithm and
Opt = max{X, Y }/ min{X, Y } = max{X/Y, Y/X}. Then,

max{X ′/Y ′, Y ′/X ′} ≤ max{X̃/Ỹ , Ỹ /X̃} ≤ max{(1 + ε)X/Y, (1 + ε)Y/X}
= (1 + ε) ·max{X/Y, Y/X} = (1 + ε)OPT .

Thus, FPTAS-DAG-Balanced-2DP is an FPTAS for the Balanced 2DP problem
on DAGs. ut

7

5 The MinSum-MinMax 2DP Problem

In this section, we present an FPTAS for the MinSum-MinMax 2DP problem on
DAGs. The difference between this problem and the MinMax 2DP problem is that
in this problem we should find two disjoint paths with MinMax objective among
the set of two disjoint paths whose total weight is minimized.

In the pseudo-polynomial-time algorithm for the MinMax 2DP problem on
DAGs, for each node 〈i, j〉 in G′2, if there is a path from 〈s, s〉 to 〈i, j〉, then
we will compute a label to store the information of this path. Now, for the
MinSum-MinMax 2DP problem, instead of keeping information for all paths, we
only store the information of the shortest paths. This can be done by scanning
each node in topological order, and then computing for each node a set of labels
corresponding to the shortest paths. We then can use the scaling method to
convert the pseudo-polynomial-time algorithm to an FPTAS.

SHORTESTLABELSCALING(G = (V, E), s, t,F , δ)

1 Construct G′2 = (V ′
2 , E′

2) as in Eqs. (3) and (4);
2 Initialize matrices Li,j [k, l] = NULL, for 1 ≤ i, j ≤ n and

1 ≤ k, l ≤ blog1+δ labc+ 1;
3 Ii,j = ∅, for 1 ≤ i, j ≤ n;
4 Is,s = {(1, 1)};
5 Ls,s[1, 1] = (0, 0, NULL);
6 for i ← 1 to n do
7 for j ← 1 to n do
8 currentmin = +∞;
9 for each (〈i, k〉, 〈i, j〉) ∈ E′

2

10 for each (a, b) ∈ Ii,k

11 let (X, Y, Pred) be the label in Li,k[a, b];
12 if X + Fk,j + Y < currentmin
13 then Ii,j = ∅;
14 set all entries of Li,j to NULL;
15 currentmin = X + Fk,j + Y ;
16 if X + Fk,j + Y == currentmin
17 let c = blog1+δ(X + Fk,j)c+ 1;
18 if Li,j [c, b] == NULL
19 then Li,j [c, b] = (X + Fk,j , Y, (〈i, k〉, (a, b)));
20 Ii,j = Ii,j ∪ {(c, b)};
21 for each (〈k, j〉, 〈i, j〉) ∈ E′

2

22 for each (a, b) ∈ Ik,j

23 let (X, Y, Pred) be the label in Lk,j [a, b];
24 if X + Y + Fk,i < currentmin
25 then Ii,j = ∅;
26 set all entries of Li,j to NULL;
27 currentmin = X + Y + Fk,i;
28 if X + Y + Fk,i == currentmin
29 let d = blog1+δ(Y + Fk,i)c+ 1;
30 if Li,j [a, d] == NULL
31 then Li,j [a, d] = (X, Y + Fk,i, (〈k, j〉, (a, b)));

8

32 Ii,j = Ii,j ∪ {(a, d)};

FPTAS-DAG-MinSum-MinMax-2DP(G = (V, E), s, t,F , ε)

1 δ = (1 + ε)
1

2n−2 − 1;
2 SHORTESTLABELSCALING(G = (V, E), s, t,F , δ);
3 for each index (a, b) in It,t

4 let Lt,t[a, b] = (X, Y, Pred);
5 find (a∗, b∗) minimizing max{X, Y };
6 Reconstruct the two disjoint paths from the third entry of the labels ;

Lemma 9. Let 〈i, j〉 be a node in V ′
2 and P a shortest path from 〈s, s〉 to 〈i, j〉.

Let X = F(PH) and Y = F(PV). When the algorithm SHORTEST LABELSCALING

terminates, then there exists an index pair (a, b) such that the label (X̃, Ỹ , P red)
in Li,j [a, b] satisfies X/(1+ δ)i+j−2 ≤ X̃ ≤ (1+ δ)i+j−2X and Y/(1+ δ)i+j−2 ≤
Ỹ ≤ (1 + δ)i+j−2Y .

Proof. First, a simple induction on the topological order of the nodes shows
that when SHORTESTLABELSCALING terminates, the labels of each node cor-
respond to shortest paths to the nodes.

Second, similar to the proof of Lemma 6, we can show there is a label
(X̃, Ỹ , P red) satisfying X/(1 + δ)i+j−2 ≤ X̃ ≤ (1 + δ)i+j−2X and Y/(1 +
δ)i+j−2 ≤ Ỹ ≤ (1 + δ)i+j−2Y . ut

From Lemma 9 and an analysis similar to the proof of Theorem 7, we obtain
the following result.

Theorem 10. FPTAS-DAG-MinSum-MinMax-2DP is an FPTAS for the MinSum-MinMax
2DP problem on DAGs. ut

6 The MinSum-MinMin 2DP Problem

In this section, we present an efficient polynomial-time algorithm for the MinSum-MinMin
2DP problem on DAGs.

We introduce some notions. Let Z2 = {(X, Y) | X, Y ∈ Z} be the set of
all pairs of positive integers. We define the relationship ‘<’ on Z2 as: (X, Y) <
(X ′, Y ′) if and only if X < X ′ or (X = X ′ and Y < Y ′). The operation ‘+’ on
two elements of Z2 is defined as (X, Y) + (X ′, Y ′) = (X + X ′, Y + Y ′).

We first use PSA to transform the given graph G into G′2, but with different
edge weights than before. We let the weight of an edge in G′2 be an element
of Z2. Let F ′ : E′

2 7→ Z2 be the new weight function on G′2. For a horizontal
edge (〈i, j〉, 〈i, j′〉), F ′((〈vi, vj〉, 〈vi, vj′〉)) = (Fj,j′ ,Fj,j′), and for a vertical edge
(〈i, j〉, 〈i′, j〉), F ′((〈i, j〉, 〈i′, j〉)) = (Fi,i′ , 0). For G′2 and weight function F ′, we
compute the shortest path P from 〈s, s〉 to 〈t, t〉. It can be shown that the two
disjoint paths from s to t in G corresponding to P in G′ are an optimum solution
to the MinSum-MinMin 2DP problem.

DAG-MinSum-MinMin-2DP(G = (V, E), s, t,F)

9

1 Construct G′2 = (V ′
2 , E′

2) as in Eq. (3) and (4);
2 for each 〈i, j〉 ∈ V ′

2

3 let di,j = (+∞, +∞);
4 pi,j = NULL;
5 ds,s = (0, 0);
6 for i ← 1 to n do
7 for j ← 1 to n do
8 for each (〈i, k〉, 〈i, j〉) ∈ E′

2

9 if di,k + (Fk,j ,Fk,j) < di,j

10 then di,j = di,k + (Fk,j ,Fk,j);
11 pi,j = 〈i, k〉;
12 for each (〈k, j〉, 〈i, j〉) ∈ E′

2

13 if dk,j + (Fk,i, 0) < di,j

14 then di,j = dk,j + (Fk,i, 0);
15 pi,j = 〈k, j〉;
16 Reconstruct the two disjoint paths from pt,t;

From the way to compute di,j for each node 〈i, j〉, it can easily be shown
that di,j is the value of the shortest path from 〈s, s〉 to 〈i, j〉 with respect to the
weight function F ′.

When the algorithm DAG-MinSum-MinMin-2DP terminates, for any node
〈i, j〉 in G′2, let P be the path from 〈s, s〉 to 〈i, j〉 constructed by tracing back-
wards from pi,j to 〈s, s〉. Let F ′(P) = (X, Y), then by the definition of F ′, we
have F(P) = X and F(PH) = Y . Since (X, Y) is minimized, X is also mini-
mized, and for any path P ′ from 〈s, s〉 to 〈i, j〉 such that F(P ′) = X, we have
F(PH) ≤ F(P ′H). We also have Y ≤ X − Y , that is, F(PH) ≤ F(PV). Suppose
for contradiction, F(PH) > F(PV), then by the symmetry of the construction
of G′2, there is another path P ′ that PH = P ′V and PV = P ′H . Thus, F(P ′) = X
and F(P ′V) = F(PH) = Y > PV = F(P ′H), contradicting the fact that (X, Y) is
minimal.

The above result is also true for 〈t, t〉. This proves the correctness of the
algorithm. The running time of the algorithm is O(|E′|) = O(n3).

We note that our algorithm can easily be generalized to the case of k > 2,
in contrast to the algorithm by Yang et al. [11]. When k > 2, we construct G′k
as in Eqs. (1) and (2), and again set the weight of each edge in G′k to be an
element of Z2. The first integer of the weight is the sum of the weights of all k
paths, and the second integer is the weight of the minimum weight path. Then,
we use a standard shortest path algorithm to compute the shortest path in G′

under the new weight function.

7 Concluding Remarks

In this paper, we studied the problem of finding k disjoint paths from a source
node to a sink node on acyclic directed graphs. We considered four important
objectives: MinMax, Balanced, MinSum-MinMax, and MinSum-MinMin. For the first
three objectives we used PSA and some labelling and scaling techniques to
obtain FPTAS for the corresponding problems. We think that these methods can

10

be applied to solve many other objectives. For the forth objective, we proposed
a more general and efficient polynomial-time algorithm.

References

1. P. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows, Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, 1993.

2. S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homemorphism
problem. Theoretical Computer Science, 10:111–121, 1980.

3. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.
4. R. Hassin. Approximation schemes for the restricted shortest path problem. Math-

ematics of Operations Research, 17:237–260, 1992.
5. O. H. Ibarra and C. E. Kim. Fast approximation for the knapsack and sum of

subset problems. JACM, 22:463–468, 1975.
6. C. L. Li, S. T. McCormick, and D. Simchi-Levi. The complexity of finding two

disjoint paths with Min-Max objective function. Discrete Applied Mathematics,
26(1):105–115, 1990.

7. Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs of vertices
in a graph. J. ACM, 25(1):1–9, 1978.

8. J. W. Suurballe and R. Tarjan. A quick method for finding shortest pairs of disjoint
paths. Networks, 14:325–336, 1984.

9. G. Tsaggouris and C. Zaroliagis. Improved FPTAS for Multiobjective Shortest
Paths with Applications. CTI Technical Report TR 2005/07/03, July 2005.

10. B. Yang, S. Q. Zheng, and S. Katukam. Finding two disjoint paths in a network
with Min-Min objective function. In Proc. 15th IASTED International Conference
on Parallel and Distributed Computing and Systems, pp. 75–80, 2003.

11. B. Yang, S. Q. Zheng, and E. Lu. Finding two disjoint paths in a network with
MinSum-MinMin objective function. Technical Report, Dept. of Computer Science,
Univ. of Texas at Dallas, April, 2005.

12. B. Yang, S. Q. Zheng, and E. Lu. Finding two disjoint paths in a network with
normalized α+ − MIN − SUM objective function. In Proc. 16th International
Symp. on Algorithms and Computation, pp. 954–963, 2005.

11

