
Egalitarian Pairwise Kidney Exchange: Fast Algorithms via
Linear Programming and Parametric Flow∗

Jian Li
Tsinghua University

Beijing, China
lijian83@mail.tsinghua.edu.cn

Yicheng Liu
Tsinghua University

Beijing, China
liuyicheng1991@hotmail.com

Lingxiao Huang
Tsinghua University

Beijing, China
huanglx12@mails.tsinghua.edu.cn

Pingzhong Tang
Tsinghua University

Beijing, China
kenshinping@gmail.com

ABSTRACT
We revisit the pairwise kidney exchange problem established
by Roth Sonmez and Unver [23]. Our goal, explained in
terms of graph theory, is to find a maximum fractional match-
ing on an undirected graph, that Lorenz-dominates any other
fractional matching. The Lorenz-dominant fractional match-
ing, which can be implemented as a lottery of integral match-
ings, is in some sense the fairest allocation and also enjoys
the property of being incentive compatible. The original
algorithm by Roth et al. runs in time exponential in the
size of input. In this paper, we target at designing prac-
tically efficient polynomial time algorithms for finding the
Lorenz-dominant fractional matching. We start with a con-
ceptually very simple algorithm, coined the water-filling al-
gorithm. The water-filling algorithm is natural and allows
us to present a simpler constructive proof that there exists
a unique Lorenz-dominant fractional matching. The algo-
rithm can be readily realized by a series of linear programs,
each having an exponential number of constraints, and thus
can be solved by the ellipsoid algorithm in polynomial time.
However, it is known that the ellipsoid algorithm is not effi-
cient in practice. To make the algorithm practical, we pro-
pose the second implementation based on a parametric flow
computation on a carefully constructed flow network. No-
tably, the evolution of the parametric flow simulates exactly
the water-filling algorithm. The second implementation only
consists of a maximum matching computation and a para-
metric flow computation, both of which admit very efficient
algorithms in practice.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and Behavioral Sciences]: Eco-

∗This work was supported in part by the National Ba-
sic Research Program of China Grant 2011CBA00300(301),
the National Natural Science Foundation of China Grant
61033001, 61361136003, 61303077, 61202009 and a Tsinghua
University Initiative Scientific Research Grant.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

nomics; C.2.2 [Computer-Communication Networks]:
Network protocols

General Terms
Economics, Theory, Algorithms

Keywords
Kidney Exchange, Parametric Flow, Lorenz-dominant

1. INTRODUCTION
Over the past decade, designing desirable matching mar-

kets on various domains has become a major topic of in-
terests, attracting attentions from fields such as computer
science, economics, operation research and medical science.

The design of matching markets presents at least three
exciting challenges. The first is acquisition of domain knowl-
edge. This means, as designer, one cannot come up with so-
lutions that cannot be met in practice. Take for example the
design of a kidney exchange market [20, 23], domain knowl-
edge includes scale of surgeries that can be conducted simul-
taneously, types of preferences raised from patients, blood
and tissue type information of the pool, cost of compatibil-
ity test for each individual as well as constraints imposed by
law, etc. Unlike in the US where kidney exchange among
three or more patient-donor pairs are logistically feasible;
it is quite rare to conduct simultaneously surgeries at this
scale in less developed countries such as China. Further-
more, unlike in the US where kidney exchange among three
or more patient-donor pairs is legal, the “Regulations of hu-
man organ transplantation of China” explicitly requires the
relation between recipient and donor must satisfy one of the
three conditions: (1) Wife and Husband; (2) Blood-relatives
who share an common ancestor up to three generations; (3)
Provable relationship built during the treatment of decease.
Under this regulation, it is almost impossible to validate the
design of a market mechanism where three-way exchange
is an option. As a result, the only option for setting up a
kidney exchange system in China is pairwise exchange.

The second challenge regards economical incentives and
fairness. To build a nationwide kidney exchange market,
there are two levels of incentives at stake. At the patient
level, is the market designed in a way that each patient
benefits from reporting a truthful list of compatible kidneys
(see e.g., [20, 23])? At the hospital level, is the market so

designed that each hospital finds it most beneficial to report
all its available resources [4]? In addition, it is not only
desirable but sometimes also necessary to establish certain
fairness standard for the market [23, 9].
The third challenge, namely the computational complex-

ity of the market clearing algorithm, is particularly con-
cerned with electronic markets. That is, given certain do-
main constraints and incentive constraints, whether it is pos-
sible to obtain an efficient algorithm that clears a potentially
large scale market. It is well-known that, for the kidney ex-
change problem constrained by cycle length at most 3, the
clearing problem is NP-Hard [1]. However, via a nice inte-
ger linear programming formulation, it is possible to clear
the current US nationwide market using CPLEX and the
algorithm has already been fielded and improved over the
years [1].
As mentioned, we investigate the problem of pairwise kid-

ney exchange. In particular, we are confined to the identical
setting as in [23]. A general kidney exchange can be encoded
as an undirected graph G = (V,E), where a vertex in V rep-
resents a patient-donor pair and each edge in E represents
a possible pairwise kidney exchange, where the patient on
one side of the edge receives a kidney from the donor on the
other side, and vice versa. A clearing algorithm returns a
maximum (cardinality) matching 1. As is the case in Roth
et al. [23], we allow for an algorithm to return a lottery over
all possible maximum matchings. Under a lottery, a pa-
tient’s utility can be naturally interpreted as the probability
of being matched. With utility defined this way, a notion of
distributive fairness, called Lorenz-dominant utility, can be
defined as a utility profile u that, when compared with any
other utility profile v, the sum of the smallest k individual
utilities in u is no less than that of v, for all 1 ≤ k ≤ |V |.
The goal is to find the Lorenz-dominant utility profile and
the corresponding lottery.
To this end, Roth et al. proposed the well-known egalitar-

ian mechanism (also denoted as the RSU algorithm). The
mechanism returns a lottery that is Lorenz-dominant. The
mechanism is also proved to be strategy-proof: it is always
in every patient’s best interest to report truthfully the list
of compatible kidneys. Hence, the RSU algorithm perfectly
addresses the first two challenges mentioned above. How-
ever, it is not clear that their algorithm resolves the third
issue, namely, computational complexity, as the RSU algo-
rithm runs in exponential time on the size of the graph thus
is impractical to be deployed directly in large market 2.

1.1 Our Contribution
In this paper, we take the egalitarian mechanism one step

further by addressing the third challenge in a satisfactory
way. In particular, we obtain a polynomial-time algorithm,
that is also quite efficient in practice, for finding the Lorenz-
dominant utility profile. Although our algorithm is closely

1This implies patients’ preferences are 0-1: a patient receives
utility of 1 for being matched to any compatible kidney and 0
otherwise. 0-1 preference is justified to be a practical model
of preference by Roth et al. [23]. For general preference, a
clearing algorithm returns a maximum weighted matching
for a weighted graph.
2In fact, the running time of the RSU algorithm is exponen-
tial in the number of odd components in the Gallai-Edmonds
decomposition of G. The number of odd components is
|V | − 2|maximum matching|, which can be quite large in
large networks.

tied with the RSU algorithm (will explain in Section 5),
what we do is not to modify the RSU algorithm and design
a polynomial time implementation out of it. Indeed, this
direction was our initial attempt which did not seem to be
easy and successful (at least for us). Instead, we start all
over by proposing a more conceptually intuitive algorithm,
coined the water-filling algorithm. The RSU algorithm can
be derived as a particular implementation of it (not an ef-
ficient one though). The road-map of the paper and our
contribution can be summarized as follows:

1. (Section 3) We first propose the water-filling algorithm
for finding a Lorenz-dominant utility profile. The cor-
rectness of the algorithm can be shown using the repre-
sentation of polymatroid and the submodularity of the
associated rank function, This serves as a constructive
proof of the existence of the Lorenz-dominant utility
profile among all achievable utility profiles (the set of
achievable utility profiles forms a polymatroid). The
water-filling algorithm can be readily realized by solv-
ing a series of linear programs, each having an expo-
nential number of linear constraints. Hence, in theory,
we can apply the ellipsoid algorithm to solve the prob-
lem in polynomial time.

2. (Section 4) It is known that the ellipsoid algorithm is
inefficient in practice. So we target at designing a prac-
tically efficient implementation of the water-filling al-
gorithm. For this purpose, we construct a flow network
based on the Gallai-Edmonds decomposition (which
can be found in O(n3) time) [11] such that each feasi-
ble flow profile on the network corresponds to a feasi-
ble utility profile for the original problem. We adopt
a parametric flow computation [12] on the constructed
network. We show the evolution of the parametric flow
exactly simulates the series of linear programs corre-
sponding to the water-filling algorithm. Note that the
parametric flow can be computed in O(nm log(n2/m))
time [12] (only a constant times of a single maximum
flow computation).

3. (Section 5) We establish an explicit relationship be-
tween our parametric flow algorithm and the RSU al-
gorithm. In particular, we show the evolution of the
minimum cut in the parametric network exactly simu-
late the execution of the RSU algorithm. We can view
this relationship as an alternative (and simpler) proof
that the RSU algorithm actually returns the Lorenz-
dominant utility profile (the original proof in [23] is
rather involved).

4. (Section 6) We conduct extensive experiments in sev-
eral simulated data sets and our results demonstrate
the efficiency of our algorithm.

1.2 Other Related Work
Roth, Sonmez and Unver addressed the first two chal-

lenges mentioned previously, proposed several mechanisms
tailored for different practical scenarios and fielded a nation-
wide kidney exchange market [20, 23, 21, 22]. In a follow-up
work, Yilmaz gave a characterization of all egalitarian kid-
ney exchange mechanisms for an extended setting includ-
ing both exchanges and chains [30]. Our work is built and

improves upon their work of egalitarian pairwise kidney ex-
change [23], by addressing the third challenge — the time-
complexity of clearing algorithm.
Since then, there has been a surge of research on theo-

retical and empirical evaluation of clearing algorithms for
kidney exchange [13, 26, 1, 7]. More recently, chains, a se-
quence of exchange that starts with an altruistic donor, has
been investigated [8, 3]. Furthermore, incentives issues of a
kidney exchange market have been studied in various sce-
narios [2, 4, 29].
Finding a maximum matching is a central problem in com-

binatorial optimization. The first strongly polynomial time
algorithm is discovered by Edmonds in his classic paper [10].
Since then, the problem has been studied extensively over
several decades and several improvements over the time com-
plexity have been obtained (see [25] for a list of such results).

The current best results are an O(
√

|V ||E|) algorithm in [17]
and an O(|V |ω) algorithm in [18] where O(|V |ω) is the time
required for multiplying two n by n matrix. Cunningham
and Marsh [6] gave a linear programming characterization
of the maximum matching polytope.
Technically, perhaps the most related work is [28], which

shows the existence of a Lorenz-dominant vector among all
integral or fractional points in a generalized polymatroid.
However, Tamir’s elegant proof does not directly suggest an
practically efficient algorithm (for the fractional case). On
the other hand, the proof of Theorem 1 is associated with
the water-filling algorithm, based on which we can obtain
an efficient implementation. In our opinion, our proof, al-
though quite different from Tamir’s, is as succinct. Our
water-filling algorithm is also similar to the simultaneous
eating algorithm proposed in [5]. However, their objective
was not to find the Lorenz-dominate solution. Finally, we
would like to mention that the notion of Lorenz-domination
(or majorization) have been used in several resource alloca-
tion problems to characterize fairness, see e.g., [15, 27].

1.3 Problem Description
Consider an undirected graph G(V,E) (|V | = n, |E| = m),

where each vertex stands for a patient-donor pair and each
edge stands for a possible pairwise kidney exchange, where
the patient on one side of the edge receives a kidney from
the donor on the other side and vice versa. A matching µ is
a collection of vertex disjoint edges. A maximum matching
is a match with the largest possible cardinality. Let U be
the set of all matchings over G.
A matching lottery ℓ = (ℓµ)µ∈U is a probability distri-

bution over U . For each matching µ ∈ U , ℓµ ∈ [0, 1] is
the probability of choosing matching µ in lottery ℓ, and
∑

µ∈U ℓµ = 1. A matching lottery ℓ can be also viewed
as a fractional matching which is defined to be a convex
combination of several integral matchings. Let L be the set
of matching lotteries. Given ℓ ∈ L, define the utility xℓ

i

of vertex i to be the total probability that i is matched ,
i.e., xℓ

i =
∑

µ∈U,i is matched in µ ℓµ. Define the utility profile

induced by lottery ℓ to be the vector xℓ = (xℓ
i)i∈V . Let

P = {xℓ}ℓ∈L be the set of all feasible utility profiles.

Example 1.1. Consider the graph G with four vertices
u, v, w, z and three edges (u, v), (v, w) and (w, z). U consists
of five matchings: µ1 = {(u, v), (w, z)}, µ2 = {(u, v)}, µ3 =
{(v, w)}, µ4 = {(w, z)} and µ5 = ∅ (i.e., the empty match-
ing). Define a matching lottery ℓ such that ℓµ1

= 0.5 and
ℓµ3

= 0.5. Then, xℓ
u = ℓµ1

+ ℓµ2
= 0.5 and xℓ

v = ℓµ1
+

ℓµ2
+ ℓµ3

= 1. The utility profile of ℓ is (xℓ
u, x

ℓ
v, x

ℓ
w, x

ℓ
z) =

(0.5, 1, 1, 0.5).

For any utility profile x ∈ P, sort individual utilities in
increasing order. We use x(i) to denote the ith smallest entry
in x (ties are broken in an arbitrary but fixed manner).

Definition 1. (Lorenz-domination) A utility profile x ∈
P Lorenz-dominates 3 another utility profile y ∈ P if

1. For each t ∈ [n],
∑t

s=1 x(s) ≥
∑t

s=1 y(s).

2. For some t ∈ [n],
∑t

s=1 xs >
∑t

s=1 y(s).

Definition 2. (Lorenz-dominant Utility Profile) A
utility profile is Lorenz-dominant if and only if it Lorenz-
dominates every other utility profile in P.

The Lorenz-dominant utility profile corresponds to the
fairest allocation in some sense among all possible alloca-
tions of the available resource. Moreover, it is not hard to
see that the Lorenz-dominant condition implies Pareto effi-
ciency. The mechanism is also proved to be strategy-proof:
it is every patient’s best strategy to report truthfully the list
of compatible kidneys. The main goal of this paper is to de-
sign an efficient algorithm for finding the Lorenz-dominant
utility profile in P.

Example 1.2. Clearly, the lottery ℓ defined in Example 1.1
does not produce the Lorenz-dominant utility profile. The
Lorenz-dominant utility profile is in fact (1, 1, 1, 1), corre-
sponding to the lottery in which µ1 is assigned probability 1
and others 0. Consider another graph with vertices (u, v, w)
and edges (u, v), (v, w), (w, u) (i.e., a triangle). The Lorenz-
dominant utility profile is (2/3, 2/3, 2/3), corresponding to
the lottery in which each nonempty matching is assigned
probability 1/3.

2. PRELIMINARIES
We first recall basic definitions and properties on matroids

and polymatroids. Our discussion will heavily rely on these
combinatorial objects. For more information about the the-
ory of matroids and polymatroid, see, e.g., [25].

Definition 3. (Matroid and The Rank Function) A
finite matroid M is a pair (V, I), where V is a finite set
(called the ground set) and I is a collection of subsets of V .
Each element in I (a subset of V) is called an independent
set. Moreover,M = (V, I) satisfies the following three prop-
erties: (1) ∅ ∈ I; (2) if A ⊆ B and B ∈ I, then A ∈ I;
(3) for all A,B ∈ I with |A| > |B|, there exists an element
e ∈ A \B such that B ∪ {e} ∈ I.

The rank function rank : 2V → Z
+∪{0} of the matroidM

is defined to be rank(S) = maxI⊂S,I∈I |I| for all S ⊆ V.
The (inclusion-wise) maximal elements of I are called

the bases. From the definition, it is easy to see that all
bases have the same cardinality. Obviously, for any base B,
rank(B) = |B| = rank(V).

Definition 4. (Submodular Function) A set function
f : 2V → R is a em submodular function if

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T), ∀S, T ⊆ V.

3Such relation is also commonly termed as “super-
majorization” in mathematics community [16]. We decide
to inherit the terminology of [23] in this paper.

It is well-known that the rank function rank of a matroid
M is submodular.

Definition 5. (Polymatroid) Let f : 2V → R be a sub-
modular set function. The polymatroid associated with f
is defined to be the following polyhedran (it is a polyhedran
since it is defined by a set of linear inequalities)

Pf = {x ∈ R
V | x ≥ 0, x(S) ≤ f(S), ∀S ⊆ V }

where we use x(S) to denote
∑

v∈S xv.

We now recall several well-known facts of matroids and
polymatroids. For any S ⊂ V , we say vector x = {x1, . . . , x|V |}
is the characteristic vector of S if xv = 1 for v ∈ S and
xv = 0 for v /∈ S. We summarize them in the following
lemma.

Lemma 1. Consider the polymatroid Prank associated with
the rank function rank of matroid M(V, I). Then, we have
that Prank coincides with the convex hull of the characteristic
vectors of all independent sets of M, i.e., ConvexHull{xI |
I ∈ I}. In other words, Prank fully characterizes the matroid
M (this is why it is called polymatroid) and each vertex of
(a.k.a. extremal point) of Prank corresponds to a character-
istic vector of some independent set in I. Any point in Prank

can be written as a convex combination of several character-
istic vector of independent sets in I.

The following lemma about matchings is particularly use-
ful for us (see e.g., [25], also proved in [23]).

Lemma 2. For an undirected graph G(V,E), define I =
{I | I is the set of vertices that are matched by some match-
ing of G}. Then,M(V, I) is a matroid (called matching ma-
troid). A base in M is the set of vertices that are matched
by some maximum matching. rank(S) can be interpreted as
the maximum number of vertices in S that can be matched
in any matching.

From now on, rank refers to the rank function of the
matching matroid for G(V,E) and Prank refers to the poly-
matroid associated with this particular rank function. Re-
call that a feasible utility profile can be understood as a
fractional matching which is a convex combination of inte-
gral matchings. Therefore, Prank is exactly the set of feasible
utility profiles.

3. THE WATER-FILLING ALGORITHM VIA
LINEAR PROGRAMMING

We first describe the so-called water-filling algorithm for
finding the Lorenz-dominant utility profile in the polyma-
troid Prank associated with the submodular function rank :
2V → R. The initial value of x ∈ Prank is an all-zero vector.
The algorithm starts by increasing uniformly the values of all
coordinates of x until some constraint in Prank is tight (i.e.,
the constraint x(S) ≤ rank(S) holds with equality). We fix
those x′

is that participate in the tight constraint. Next, we
continue increasing the rest of coordinates until we hit an-
other tight constraint. We fix those tight x′

is and repeat the
above process, until no coordinate can be further increased.

Linear programs : The above water-filling process can be
readily implemented by solving a series of linear programs.

1. Step 1. Solve the linear program

LP1 = {max. λ1, subject to xv = λ1, ∀v ∈ V, x ∈ Prank}.

We call an element v ∈ V a tight element if xv partic-
ipates in some tight constraint in Prank

4. Let D1 be
the set of tight elements.

2. In general, at Step k, we solve the linear program

LPk = {max. λk, subject to xv = λj , ∀v ∈ Dj∀j < k,

xv = λk, ∀v ∈ V \ ∪j<kDj , x ∈ Prank}.

Dk ← the set of elements that become tight in step k.

3. The algorithm return x = {xv = λj for v ∈ Dj}v if
∪k

j=1Dj = V .

Polynomial time algorithms (in theory) Each linear program
LPi has an exponential number of constraints. So we can
use the ellipsoid algorithm to solve such linear program (see
e.g., [25]). To be able to apply the ellipsoid algorithm,
we need a polynomial time separation oracle which, given
a point x ∈ R

V , can decide in polynomial time whether
x is feasible, and in case x is infeasible, can return a vio-
lated constraint. In our problem, the separation oracle can
be implemented using a submodular function minimization
algorithm, which runs in polynomial time, (e.g., [14, 19]).
Although the ellipsoid algorithm and the existing submod-
ular function minimization algorithms runs in polynomial
times in theory, they are known to be impractical for even
medium-sized applications. An alternative way is to use the
Cunningham-Marsh formulation of the matching polytope
or solve a quadratic program. We defer the details to the
full version of the paper. However, both of them also require
the ellipsoid algorithm, which is inefficient in practice.

Proof of the Correctness We are ready to prove the first
important theorem of the paper, that is the water-filling
algorithm can indeed produce the Lorenz-dominant vector.
Our proof is an alternative proof of the main result of [28] for
polymatroid and can be seen as a constructive version of that
proof5. Our proof, quite different from Tamir’s, leverages
the submodularity of the rank function of the matroid and
maybe of interest in its own right.

Theorem 1. The vector x found by the water-filling al-
gorithm is the unique Lorenz-dominant vector in Prank.

Proof: We use the fact that x is Lorenz-dominant if and
only if x is the minimizer of the function G(y)

∑

i g(yi) for
all convex decreasing functions g over Prank [16]. It suffices
to show that for any y ∈ Prank such that y 6= x,

∑

v g(yv) is
not the minimum over Prank for any convex g. In particular,
we show that there are two coordinates i and j such that
(1) yi < yj and (2) the vector y′ = {y1, . . . , yi + ǫ, . . . , yj −

4In other words, increasing xv would violate some constraint
in Prank when other xus for u 6= v are fixed. In many linear
programming algorithms, we can easily detect such tight
elements. Another way to test the tightness of an element
is to solve a closely related linear program in which we fix
other xus and maximize xv.
5In fact, Tamir [28] provided a constructive proof for the fact
that there is a Lorenz-dominant vector among all integral
vectors in a generalized polymatroid. It was mentioned that
the fractional case is an extension of the integral case. This
step is not fully constructive.

ǫ, . . . , yn} is in Prank for some small ǫ > 0. Note that from
(1) and (2), we have that for any convex g and small ǫ > 0,

G(y′)−G(y) =
∑

k

g(y′
k)−

∑

k

g(yk)

= g(yi + ǫ) + g(yj − ǫ)− g(yi)− g(yj) < 0.

The last inequality is due to the the convexity of g.
Now, we show such coordinates i and j alway exist. Let

i = argmink{yk | yk 6= xk}. Suppose yi does not participate
in any tight constraint, i.e., y(S) < f(S) for all S ∋ i. Then,
we can slightly increase yi without violating any constraint
and get a smaller G(y) value. So y can not be a minimizer
of G over Prank. Now, we consider the harder case where
yi participates in some tight constraints. Consider any two
such constraints y(S1) = rank(S1) and y(S2) = rank(S2),
where S1, S2 ∋ i. Due to the submodularity of rank, we also
have that y(S1 ∩ S2) = rank(S1 ∩ S2) (and y(S1 ∪ S2) =
rank(S1 ∪ S2)). In fact, this is because

y(S1 ∩ S2) + y(S1 ∪ S2) ≤ rank(S1 ∩ S2) + rank(S1 ∪ S2)

≤ rank(S1) + rank(S2) = y(S1) + y(S2).

Hence, the equality holds throughout in the chain. Let
T = ∩kSk. Then, we can get that y(T) = rank(T). More-
over, T is not empty since it contains i. If we can show
that there exist j ∈ T such that yj > yi, the proof is done
since increasing yi by ǫ and decreasing yj by ǫ would main-
tain y(Sk) = rank(Sk) for all k and does not violate other
constraints for small enough ǫ > 0.
To show the existence of such j, it is critical to observe

that xi > yi. This is one property of our water-filling algo-
rithm which can be seen as follows: Suppose yi > xi. Dur-
ing the process of water-filling, when coordinate i reaches
value xi, the value of each other coordinate i′ is either less
than or equal to yi′ (because of the definition of i). This
means coordinate i does not participate in any tight con-
straint when its value is xi, rendering a contradiction. Since
y(T) = rank(T) ≥ x(T) and yi < xi, there must be another
coordinate j with yj > xj . Again by the definition of i, we
have yj > yi.
The uniqueness is also clear from the above proof since any

other vector in Prank does not minimize G. This completes
the proof of the theorem.

4. AN EFFICIENT ALGORITHM VIA PARA-
METRIC FLOW

In this section, we show that, instead of using the ellipsoid
algorithm, one can find the Lorenz-dominant utility profile
using one maximum matching computation and one para-
metric flow computation, both of which admit polynomial
time combinatorial algorithms that are very efficient in prac-
tice. We first show that we can construct a network flow
instance, so that (roughly speaking) each feasible flow cor-
responds a feasible utility profile and vise versa. Then we
conduct a parametric flow computation on this network to
find the Lorenz-dominant utility profile.
We need the following Gallai-Edmonds Decomposition (GED)

lemma [11] in the construction of the network flow instance.
The GED lemma also plays a critical role in [23]. Sup-
pose Umax = {µ : µ is a maximum cardinality matching}.
Firstly, we partition V into three parts V E , V M and V M :

1. V C : For each v ∈ V C , there is some maximum match-
ing where v is not matched, i.e., V C = {i ∈ [n] : ∃µ ∈
Umax, s.t. µ(ij) = 0 ∀j ∈ [n]}.

2. V M : It is the set of vertices that are not in V C but
have neighbor(s) in V C , i.e., V M = {i ∈ [n] \ V C :
∃j ∈ V C , s.t. (i, j) ∈ E}.

3. V E = V \ (V M ∪ V C) is the set of the rest of vertices.

Lemma 3. (Gallai-Edmonds Decomposition) Let µ ∈ Umax

be an arbitrary maximum cardinality matching.

1. For any vertex i ∈ V E, there exists a vertex j ∈ V E,
such that (i, j) ∈ µ. In fact, V E consists of even con-
nected components 6.

2. For any vertex i ∈ V M , there exists a vertex j ∈ V C ,
such that (i, j) ∈ µ;

3. V C consists of several odd connected components. For
any odd component C ∈ V C , one of the below holds:

(a) One and only one vertex i ∈ C is matched with a
vertex j ∈ V M while all remaining vertices in C
are matched with each other in µ;

(b) Arbitrary one vertex i ∈ J remains unmatched in
µ while all remaining vertices in C are matched
with each other in µ.

See Figure 1 for an example. It is well known that the
Gallai-Edmonds decomposition can be computed efficiently.

Lemma 4. [10] Given a graph G = (V,E) where |V | = n,
there exists an algorithm that computes a maximum cardi-
nality matching in O(n3) time. The Gallai-Edmonds decom-
position can be computed from an maximum matching in an
additional O(n2) time.

We can use other algorithms to find the maximum cardinal-
ity matching, such as the Micali-Vazirani algorithm which
runs in time O(

√

|V ||E|) [17].

4.1 A Flow Network Construction based on
GED

Given an undirected graph G = (V,E) where |V | = n,
we first compute the Gallai-Edmonds decomposition which
partitions the vertices into three disjoint sets V E , V M and
V C . Define C = {C1, . . . , Ck} as the set of odd components
in V C . where k = |C|. Then, we construct a bipartite graph
N = (A,B, F). Here each node in A corresponds to a node
in V . We use ai ∈ A to denote the node corresponding to
i ∈ V . We use AC1 , ..., ACk , to denote the k disjoint sets
corresponding to C1, . . . , Ck respectively. Let AEM = {ai |
i ∈ V E ∪ V M} AC = {ai | i ∈ V C}. The construction of B
is as follows. B can be partitioned into three parts BEM ∪
BM∪BC . Each node in BEM corresponds to a node in V E∪
V M . We use bi ∈ BEM to denote the node corresponding
to i ∈ V E ∪ V M . Each node in BM corresponds to a node
V M . We use b′i ∈ BM to denote the node corresponding to
i ∈ V M . BC consists of k disjoint sets BC1 , ..., BCk , where
BCi contains |Ci| − 1 vertices.

We now describe the construction of F .

6The number of vertices in a component is even.

BEM

A B

s t

BC

BM

b′
3

b1

b2

BC2

b5

b6

a1

a2

a3

a4

a5

a6

AC1

AC2

b3

a7

AEM

AC

V E

V M

v1 v2

v3

v4

v5

v6 v7
V C

C1

C2

Figure 1: The left hand side illustrates the the

Gallai-Edmonds decomposition of the graph and the

right hand side is the corresponding flow network.

1. For each i ∈ V E∪V M , we have edge (ai, bi) ∈ F where
ai ∈ AEM and bi ∈ BEM .

2. For a vertex ai ∈ AC and another vertex b′j ∈ BM , we
have (ai, bj) ∈ F if (i, j) ∈ E.

3. For each vertex a ∈ ACi and each vertex b ∈ BCi

(1 ≤ i ≤ k), we have (a, b) ∈ F . In other words, ACi

and BCi form a complete bipartite graph.

Finally we add two distinguished vertices s and t into the
graphN . s is the source and is connected to all vertices of A.
t is the sink and is connected to all vertices of B. All edges
from A to B have infinity capacity and the rest of edges
have unit capacity. This completes the the construction of
the network. See Figure 1 for an illustration.

Definition 6. (flow profile) Suppose f is a feasible flow
in the network N . We define the induced flow profile uf to
be a non-negative real value vector uf = (f(s, ai))i∈[n]. We
say a vector is a feasible flow profile if it is a flow profile
induced by some feasible flow.

The following theorem states the relation between the set
of feasible flow profiles and the set of utility profiles, which
plays an essential role in our algorithm. Due to space con-
straint, we omit the proof, which can be found in the full
version of the paper.

Theorem 2. The vector u = {u1, . . . , un} is a feasible
flow profile for N iff u is a feasible utility profile for G.

It is convenient to view the above theorem in the form
of the following corollary. For any S ⊆ V , we use N (S) to
denote the network that is the same as N except that the
set of edges going out of s is {(s, ai) | i ∈ S}.

Corollary 2.1. The polytope

{u | u is a feasible flow profile}

is the same as Pf (thus is a polymatroid). Moreover, the
corresponding rank function rank(S) can be reinterpreted as
the maximum amount of flow that can be pushed to the sink
t in N (S).

4.2 The Parametric Flow Algorithm
We briefly review the notion of parametric flow and show

how to use a parametric flow computation to compute the
Lorenz-dominant utility profile.

Parametric network : In the parametric network Nλ, the
edge capacities cλ(u, v) are linear functions of a real-valued
parameter λ such that

1. cλ(s, ai) = λ for all ai.
7

2. cλ(v, w) is constant for all v 6= s.

Let κ(λ) be the value of maximum flow (also the minimum
cut) on Nλ. Consider the curve κ(λ) on the λ-κ coordinate
system. Imagine the process of gradually increasing λ from
0 to 1. Initially, all (s, ai)s are saturated (i.e., f(s, ai) =
cλ(s, ai)) and the maximum flow is simply |A|λ when λ is
very small. This gives the first piece of the curve, |A|λ. As
we continue increasing λ, at some point, not all (s, ai)s can
be saturated and the slope of κ decreases. In general, κ(λ)
is a piecewise-linear concave function with at most n − 2
breakpoints (see e.g., [12]).

In fact, all breakpoints and all maximum flows corre-
sponding to these breakpoints can be found by a parametric
flow computation in O(nm log(n2/m)) time [12]. Moreover,
there is an important property of the algorithm in [12]:

P. As λ increases, f(s, ai) never decreases for all ai ∈ A.

Simulating the Water-Filling Algorithm : With Prop-
erty (P) and Corollary 2.1, the evolution of the flow profile
uf as we increase λ coincides with the evolution of the utility
profile x as we increase λ during the execution of the water-
filling algorithm. For example, in the beginning, we have all
(s, ai) are saturated in Nλ when λ is very small. This is the
same as setting xi = λ ∀i ∈ V in the linear program LP1.
As we keep increasing λ, due to Corollary 2.1, we will hit
a tight constraint x(S) = λ|S| = f(S) where f(S) is inter-
preted as in Corollary 2.1. So we reach the first break point
and its value is exactly λ1, the optimal value of LP1. Due
to Property (P), for all i ∈ S, f(s, ai) does not decrease or
increase even we increase the capacity of (s, ai) later. This is
the same as fixing the value of all tight elements in D1. The
later steps can be argued in exactly the same way. Hence,
at the end of this process (λ = 1), the flow profile returned
by the parametric flow algorithm is exactly the same as the
utility profile obtained by solving the set of linear programs,
which is Lorenz-dominant by Theorem 1. We summarize
our discussion in the following theorem.

Theorem 3. There is an O(n3) algorithm for finding the
Lorenz-dominant utility profile on an undirected graph with
n vertices.

Evolution of the Minimum s-t Cut : Let us gain a bit
more insight of the process of increasing λ by considering
the evolution of the minimum cut (Xλ, X̄λ) where the source
node s ∈ Xλ and the sink node t ∈ X̄λ. In fact, the evolution
of min-cut matches perfectly with the evolution of the tight
elements: at step k, we can see that the set of node in A
that join Xλ is exactly Dk, the set of new tight elements
found by LPk. More details can be found in the full version
of the paper.

7In a general parametric network, the capacity of an edge
going out s can be a general non-decreasing linear function
of λ and the capacity of an edge entering t can be a general
non-increasing linear function of λ.

5. RELATION WITH THE ROTH-SONMEZ-
UNVER ALGORITHM

Roth, Sonmez and Unver [23] proposed an exponential
time algorithm (denoted as the RSU algorithm from now
on) to find the Lorenz-dominant utility profile. The running
time of RSU is exponential in the number of odd components
in the GED decomposition of G. Due to the uniqueness of
the Lorenz-dominant utility profile, our parametric flow al-
gorithm obviously returns the same solution as the RSU
algorithm. However, reaching this conclusion of course re-
quires the correctness proof of RSU algorithm in [23], which
is rather involved. In this subsection, we would like to make
more explicit the relation between the RSU algorithm and
our LP and parametric flow approaches. The purpose of
this explicit relation is two fold: (1) The proof of Theorem 1
can then be seen as an alternative (but shorter) correctness
proof of the RSU algorithm. (2) The parametric flow algo-
rithm can be view as a polynomial time implementation of
the RSU algorithm.
First, let us briefly review the RSU algorithm, which is

also based on the GED decomposition. Let C be the set of
odd components of V C . For J ⊆ C and I ⊆ V M , define
C(J , I) = {i ∈ I : ∃j ∈ J , s.t. (i, j) ∈ E} which represents
the neighbors of the set of odd components J in I. Define
a real value function f through

f(J , I) =
|
⋃

J∈J J | − (|J | − |C(J , I)|)

|
⋃

J∈J J |

The RSU algorithm proceeds as follows:

1. Step 1: Let
D′

1 = argminJ⊆C f(J , V M) and V M
1 = C(D1, V

M).
If there are several sets minimizing f , we take their
union.

2. In general, at step k, let
D′

k = argmin
J⊆C\

⋃k−1

l=1
D′

l

f(J , V M \
⋃k−1

l=1 V M
l) and

V M
k = C(D′

k, V
M \

∑k−1
l=1 V M

l).

The utility profile u obtained is such that ui = 1 for each
i ∈ V \ V C , and ui = fk , f(D′

k, V
M
k) for each i ∈ D′

k.
Now, we establish the relation between the RSU algorithm

and our water-filling algorithm. In particular, we can show
the following lemma.

Lemma 5. We have that, for all k, fk = λk and D′
k = Dk

where λk is the kth breakpoint of the curve κ(λ) (λk is also
the optimal value of LPk) and Dk is the set of tight elements
found in step k.

6. EXPERIMENTS
In this section, we describe our implementations of the

water-filling algorithm using parametric flow and report our
experimental results on several generated data sets. We
compare our algorithm with (an improved version of) the
RSU algorithm. Since both the RSU and our algorithm are
exact algorithms, for all data sets, both return the same re-
sults. As expected, our algorithm runs significantly faster.

6.1 Implementation Details
We first make substantial improvements to both of the

original RSU and our parametric flow algorithm. We then
implement the improved algorithms for comparison.

Figure 2: Comparison of mechanisms

6.1.1 Improve RSU
Recall that in GED decomposition, M is the set of ver-

tices that are always in any maximum matching and are
connected by those who are not, and C is the set of vertices
that may not be in a maximum matching. For a typical
graph, |M | is much smaller than |C|, were |C| is the number
of odd components in C. |M | is the number of the vertices
in M . The original RSU algorithm exhaustively enumerates
of all components in C. In our improved version, we show
that one only needs to check all subsets of M . As a result,
the time complexity of RSU is improved from O(2|C||M |) to

O(2|M||C| log |C|). We refer the reader to the full version of
the paper for technical details of this part.

6.1.2 Simplify the flow network
In fact, the flow network constructed in Section 4 can

further be simplified, in an equivalent way, as follows.
First, remove parts AEM and BEM and set final utility

of each vertex in both sets to be 1. Second, for components
that are not connected to M , calculate the utility of each
vertex directly as follows: if the size of a component is s, then
the utility of any vertex in this component is s−1

s
. Third,

replace nodes of the same component by a single node, and
add up all the capacities and flows between this component
and outside nodes accordingly. One can show the simplified
network is equivalent to the one constructed in Section 4.

6.2 Experiment results
As mentioned, we implement the improved algorithms

and compare them over several data sets. As is standard
from the literature, we used a data generator by Saidman et
al.[24]. Our code is written using both C++ and Python.

The result shows that if the data set is very small, the RSU
is slightly faster than our water-filling algorithm. However
when the data set is slightly larger, water-filling consistently
beats the RSU with a large margin. The reason that RSU
slightly outperforms water-filling in small data is the over-
head introduced by the construction of the network required
by the parametric flow implementation. However, this small
overhead is outweighed by computational complexity once
the graph gets large. In addition, we find the time complex-
ity of the RSU is closely related to |M |, which may differ for
two graphs with the same size but different structures.

Fig.2 shows the comparison between water-filling, the RSU
algorithm and the improved RSU algorithms. We test 5 in-

100 200 300 400 500 600 700 800 900 1000

number of nodes

0

200

400

600

800

1000

1200

1400

t
i
m
e
:
s

Running time of water-filling algorithm

worst instance

best instance

median instance

mean value

Figure 3: This figure shows how the running time

grows as a function of the number of nodes

tances for each data size (20, 40, 60, 80, 100 nodes) and each
algorithm. Those cases with more than 10 minutes for each
in average are not plotted on the figure. As shown in the
figure, our water-filling algorithm is also much stable than
the other two algorithms. From the figure, it can be seen
that our algorithm fluctuates between the orders of n2 and
n3 as n grows, while the RSU algorithms are much slower
and much more unstable.
Fig.3 shows the runtime of the water-filling algorithm on

larger scale. The running time of water-filling now fluctuates
drastically for different instances. Recall that the worst case
complexity of our algorithm is O(n3). Clearly, the bound is
not met in many instances. When the size of graph gets
large, bad cases and good cases vary drastically in graph
structure. In other words, the fluctuation in performance is
due to the intrinsic complexity of the set of instances.

7. FUTURE WORK
One immediate next step is to extend our algorithms to a

more general setting that accommodates chains and cycles.
Note that the Lorenz-dominant allocation may not exist in
more general settings. Another important extension is to
consider the dynamic exchange network where nodes arrive
and leave online. How to deal with issues such fairness,
incentive and computation efficiency in the dynamic setting
is an interesting but challenging future direction.

8. REFERENCES
[1] D. J. Abraham, A. Blum, and T. Sandholm. Clearing

algorithms for barter exchange markets: enabling
nationwide kidney exchanges. In ACM EC, pages 295–304,
2007.

[2] I. Ashlagi, F. A. Fischer, I. A. Kash, and A. D. Procaccia.
Mix and match. In ACM EC, pages 305–314, 2010.

[3] I. Ashlagi, D. Gamarnik, M. A. Rees, and A. E. Roth. The
need for (long) chains in kidney exchange. Working Paper
18202, National Bureau of Economic Research, July 2012.

[4] I. Ashlagi and A. Roth. Individual rationality and
participation in large scale, multi-hospital kidney exchange.
In ACM EC, pages 321–322.

[5] A. Bogomolnaia and H. Moulin. A new solution to the
random assignment problem. Journal of Economic Theory,
100(2):295–328, 2001.

[6] W. Cunningham and A. Marsh. A primal algorithm for
optimum matching. Polyhedral Combinatorics, pages
50–72, 1978.

[7] J. P. Dickerson, A. D. Procaccia, and T. Sandholm.

Dynamic matching via weighted myopia with application to
kidney exchange. In AAAI, 2012.

[8] J. P. Dickerson, A. D. Procaccia, and T. Sandholm.
Optimizing kidney exchange with transplant chains: theory
and reality. In AAMAS, pages 711–718, 2012.

[9] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Price of
fairness in kidney exchange. In AAMAS, to appear, 2014.

[10] J. Edmonds. Paths, trees, and flowers. Canadian Journal of
mathematics, 17(3):449–467, 1965.

[11] T. Gallai. Maximale systeme unabhängiger kanten. Magyar
Tud. Akad. Mat. Kutató Int. Közl, 9:401–413, 1964.

[12] G. Gallo, M. Grigoriadis, and R. Tarjan. A fast parametric
maximum flow algorithm and applications. SIAM Journal
on Computing, 18(1):30–55, 1989.

[13] S. Gentry, D. Segev, and R. Montgomery. A comparison of
populations served by kidney paired donation and list
paired donation. American Journal of Transplant,
5(8):1914–21, 2005.

[14] S. Iwata and J. Orlin. A simple combinatorial algorithm for
submodular function minimization. In Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1230–1237. Society for Industrial and
Applied Mathematics, 2009.

[15] R. Latham. Lorenz-dominating income tax functions.
International Economic Review, 29(1):185–198, 1988.

[16] A. Marshall, I. Olkin, and B. Arnold. Inequalities: theory
of majorization and its applications. Springer, 2010.

[17] S. Micali and V. Vazirani. An o(
√

|V ||e|) algoithm for
finding maximum matching in general graphs. In
Foundations of Computer Science, 1980., 21st Annual
Symposium on, pages 17–27. IEEE, 1980.

[18] M. Mucha and P. Sankowski. Maximum matchings via
gaussian elimination. In Foundations of Computer Science,
2004. Proceedings. 45th Annual IEEE Symposium on,
pages 248–255. IEEE, 2004.

[19] J. Orlin. A faster strongly polynomial time algorithm for
submodular function minimization. Mathematical
Programming, 118(2):237–251, 2009.

[20] A. Roth, T. Sonmez, and M. Unver. Kidney exchange.
Quarterly Journal of Economics, 119:457–488, 2004.

[21] A. Roth, T. Sonmez, and U. Unver. A kidney exchange
clearinghouse in new england. American Economic Review,
pages 376–380, 2005.

[22] A. Roth, T. Sonmez, and U. Unver. Efficient kidney
exchange: Coincidence of wants in a markets with
compatibility-based preferences. American Economic
Review, 2007.

[23] A. Roth, T. Sönmez, and M. Utku Ünver. Pairwise kidney
exchange. Journal of Economic Theory, 125(2):151–188,
2005.

[24] S. L. Saidman, A. E. Roth, T. Sönmez, M. U. Ünver, and
F. L. Delmonico. Increasing the opportunity of live kidney
donation by matching for two-and three-way exchanges.
Transplantation, 81(5):773–782, 2006.

[25] A. Schrijver. Combinatorial Optimization: Polyhedra and
Efficiency. Springer, 2003.

[26] D. L. Segev, S. E. Gentry, D. S. Warren, B. Reeb, and
R. A. Montgomery. Kidney paired donation and optimizing
the use of live donor organs. Journal of American Medical
Association, 2005.

[27] C. Sung. Achieving log-utility fairness in cdma systems via
majorization theory. Communications Letters, IEEE,
13(9):625–627, 2009.

[28] A. Tamir. Least majorized elements and generalized
polymatroids. Mathematics of Operations Research,
20(3):583–589, 1995.

[29] P. Toulis and D. C. Parkes. A random graph model of
kidney exchanges: efficiency, individual-rationality and
incentives. In ACM EC, pages 323–332, 2011.

[30] O. Yilmaz. Kidney exchange: An egalitarian mechanism.
Journal of Economic Theory, 146(2):592–618, 2011.

