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Abstract. We give logarithmic approximation algorithms for the non-
metric uncapacitated multicommodity and multilevel facility location
problems. The former algorithms are optimal up to a constant factor,
the latter algorithm is far away from the lower bound, but it is the first
algorithm to solve the general multilevel problem. To solve the multi-
commodity problem, we also define a new problem, the friendly tour
operator problem, which we approximate by a greedy algorithm.

1 Introduction

The facility location problem and many variants have been studied extensively
in both the operation research and computer science niterature [11, 13, 17]. In
the basic uncapacitated facility location problem (UFL) we are given a set C of
n clients and a set F of m facilities. Each facility f ∈ F has an opening cost
f0, and connecting a client c ∈ C to f costs cf . These costs can be arbitrary
real numbers, although they will be positive in most applications. In this paper,
all facility location problems will be uncapacitated, so we will henceforth omit
‘uncapacitated’ when speaking about facility location problems.

We may consider the sets C and F as the two sides of a bipartite graph.
Consider a set E of edges (or links) between C and F . Let FE be the subset of
facilities incident to at least one edge. If (c, f) is an edge in E, then we say c

can satisfy its demand, and f satisfies the demand of c. E is a feasible solution
if every client in C can satisfy its demand (i.e., every client is incident to at least
one edge). The cost of E is defined as

cost(E) =
∑

f∈FE

f0 +
∑

(c,f)∈E

cf ,
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where the first sum is the startup cost of FE and the second sum is the connection
cost (or link cost). UFL is the problem of finding a solution of minimum cost.

In metric UFL, the link costs obey the triangle inequality. In particular, in
geometric UFL the clients and facilities are points in the plane (or more general,
in R

d).
In this paper we will discuss four variants of non-metric UFL, two variants

of the multicommodity facility location problem, the multilevel facility location
problem,a and the multilevel concentrator location problem. These problems are
defined in Section 2. In Section 3 we state our new results and review previous
related work. In Section 4 we give our new asymptotically optimal approximation
algorithms for the two multicommodity facility location variants. In Section 5, we
then give approximation algorithms for the multilevel facility location problem
and for the multilevel concentrator location problem. We end the paper with
some remarks and open problems in Section 6.

2 The Models

2.1 Multicommodity Facility Location

The multicommodity facility location problem (MCFL) generalizes UFL by intro-
ducing a set S of k different commodities (or services). In UFL, we only have a
single commodity. Each client c demands one unit of each commodity in a subset
Sc ⊆ S, whereas each facility f can only offer a subset Sf ⊆ S of commodities
(but arbitrary many units of each type). A collection of links E is a feasible
solution if each client can satisfy its demand for each of its commodities. In a
more general setting, we might also consider a weighted version of MCFL where
clients have a certain non-negative demand for each commodity and facilities
have only limited capacity for each demand.

Note that the link costs do not scale with the number of commodities served
by the link. Once established, a link can be used to satisfy the demands for several
commodities without additional cost. MCFL is a natural model, for example, for
planning the locations of network switches (for a computer network in a large
building, or telephone switchboards in a city) where we want to minimize the
setup cost plus the cost of connecting each client to a switch.

We could generalize MCFL by charging an independent link cost for the com-
modities, i.e., if a client satisfies his demands for several commodities from one
facility, it must pay the link cost for each commodity. However, this problem
can be reduced to UFL by splitting each client into several clients at the same
location, one for each commodity.

Another generalization of UFL is the facility location with service installation
cost problem (FLSC) [14]. If facility f satisfies the demand for commodity s of
some client, it must pay a one-time installation cost fs for this commodity. Note
that now a feasible solution must specify the links E and for each facility f the
set Df ⊆ Sf of commodities provided by f , and each client must be able to
satisfy its demands from some facilities that provide the commodities and have
paid the respecitve startup costs. The startup cost of f is then



f0 +
∑

s∈Df

fs .

Ravi and Sinha called these cost functions linear [12].

2.2 Multilevel Facility Location

Let k ≥ 1 be some integer. In the k-level facility location problem (k-UFL) we
consider a (k + 1)-layer graph, where the first layer C = F0 is the set of clients,
and the next k layers F1, . . . ,Fk are sets of facilities. Each edge (link) has a cost.
We are interested in paths connecting a client in layer F0 with some facility in
the last layer Fk. The cost of such a path, call a link path, is the sum of its
individual link costs. A feasible solution is a set E of link paths such that each
node in F0 is incident to at least one link path. Intuitively, each client has a
demand for a commodity available at any facility in layer k, which then must be
routed to the client via facilities at the intermediate k − 1 layers. Note that in
this model an edge can incur multiple cost if it is used in several link paths.

If an edge only incurs cost once even if it is shared by several link paths, we
are dealing with the k-level concentrator location problem (k-LCLP). Here, each
client must be satisfied by a facility in F1, each facility in F1 must be satisfied
by a facility in F2, etc. Formally, our goal is to choose subsets ∅ 6= Vt ⊆ Ft, for
1 ≤ t ≤ k, such that

∑

j∈D

min
k∈V1

cjk +

k−1∑

t=1

∑

j∈Vt

min
i∈Vt+1

cji +

k∑

t=1

∑

it∈Vt

fit

is minimized.

3 Background and New Results

3.1 Multicommodity Facility Location

Facility location problems are usually NP-hard, and approximation algorithms
for many variants have been studied [11, 13, 17]. The multicommodity facility
location problem, however, has only been studied recently. Ravi and Sinha [12]
gave a first O(log |S|)-approximation algorithm for metric UFL when each client
can only demand a single commodity. The result generalizes to the case of clients
demanding several commodities, but if they satisfy them over the same link,
the link cost will also be charged several times (so this model is different from
MCFL). Their result is based on an IP formulation of the problem that can be
approximated by rounding fractional LP solutions.

Shmoys et al. [14] gave a primal-dual 6-approximation algorithm for FLSC

under the assumption that facilities can be ordered by increasing installation
costs, with the same order for all commodities.



We present in this paper the first approximation algorithms for non-metric
MCFL and FLSC. They are purely combinatorial, not based on IP-approximations.
For MCFL we give an Hh-approximation, where h is the total number of commodi-
ties demanded by all the clients, i.e., h =

∑
c∈S

|Sc|. Since h ≤ nk, this is an
O(log(nk))-approximation. For FLSC we give a (3Hh)-approximation, which is
also an O(log(nk))-approximation. If all facilities f have startup-cost f0 = 0, the
approximation ratio is only 2Hh. We also show that our approximation ratios are
asymptotically optimal. This follows easily from the non-approximability lower
bound bound for the set cover problem by Feige [5].

Both algorithms are based on the well-known greedy minimum weight set
cover (SC) approximation algorithm by Chvátal [4]. This algorithm iteratively
picks the set for which the ratio of weight over newly covered elements is min-
imized, giving a SC approximation of ratio of Hd, where d is the number of
elements in the set to be covered. As Hochbaum observed [8], the same algo-
rithm, with the same approximation factor, can be applied to other problems as
long as they can be reduced to SC and as long as it is possible to compute in
every step in polynomial time the subset (or its equivalent structure) minimiz-
ing the relative weight of the newly covered elements. For UFL, this condition is
fulfilled, with C the set to be covered, so there is an Hn-approximation for UFL
[8].

We will see in Section 4 that we can also easily use the SC approximation for
MCFL. However, for FLSC computing the minimum relative weight set in every
step is rather difficult. Since we cannot easily compute an optimal set, we use a 3-
approximation, which is the reason for the factor of 3 in the 3Hn-approximation
ratio of the FLSC algorithm. The 3-approximation is the solution of a new prob-
lem we define, the friendly tour operator problem (FTO). Such a quasi-greedy
approach has been used before, see for example [7].

3.2 Multilevel Facility Location

Multilevel facility location has a long history in operations research [1, 3, 9, 16].
Of course, 1-UFL is nothing but UFL. Shmoys et al. [15] gave the first constant
factor approximation algorithm for the metric case, and the current best known
result is a 1.52-approximation by Mahdian et al. [10]. Guha and Khuller showed
that it is unlikely to be approximated within a factor of 1.463 [6].

Shmoys et al. [15] extended their filtering and rounding technique for met-
ric 1-UFL to metric 2-UFL, resulting in a 3.16-approximation algorithm. Later,
Aardal et al. [2] showed that metric k-UFL can be approximated in polynomial
time by a factor of 3 for any positive integer k using a linear programming re-
laxation. For small values of k, better approximation algorithms are known: 1.77
for k = 2, 2.51 for k = 3, and 2.81 for k = 4 [18]. For non-metric 2-UFL, Zhang
gave an O(ln n)-approximation [18].

In this paper, we present the first approximation algorithm for general non-
metric k-UFL. The approximation ratio of our algorithm is O(lnk n). The algo-
rithm is defined inductively, starting with the classical O(ln n)-approximation



for 1-UFL. In the inductive step, we again make use of the greedy SC approx-
imation technique. With a very similar algorithm,we can also solve the k-level
concentrator location problem where we just have a hierarchy of k levels of fa-
cilities.

4 Multicommodity Facility Location

4.1 Set Cover and Facility Location

We first quickly review the relationship between UFL and SC, since this is at
the heart of all our algorithms. We follow loosely the exposition by Vygen [17,
Section 3.1].

In the set cover problem we are given a finite set U , a family X of subsets
of U which together cover U , and non-negative weights c(V ) on the sets V ∈ X .
The task is to find a subset Y ⊆ X covering U of minimum total weight. SC is
a special case of UFL: let the elements in U be the clients, the subsets in X the
facilities, the weight of a set V ∈ X the startup cost of the facility, and let the
link cost of client c ∈ U to facility V ∈ X be zero if c ∈ V and infinity if c 6∈ V .
Now, every solution to UFL corresponds to a set cover of the same cost, and vice
versa.

Conversely, UFL can be considered a special case of set cover. For an instance
of UFL, define a star to be a pair (f, C) with f ∈ F and C ⊆ C (meaning that
we link all the clients in C to facility f). The cost of this star is

f0 +
∑

c∈C

cf ,

and its effectiveness is

f0 +
∑

c∈C cf

|C| ,

i.e., the relative cost per client in the star. Then we can define a SC instance by
choosing C as the set U and all possible subsets of C as X , where C ⊆ C has
cost equal to the minimum cost of a star (f, C), minimized over all f ∈ F . Now,
an optimal solution to SC corresponds to an optimal solution to UFL of the same
cost, and vice versa.

Chvátal’s greedy SC approximation algorithm iteratively picks a set for which
the ratio of weight over newly covered elements is minimized [4]. If we apply this
algorithm to UFL, we must in every step pick the most effective star. Although
there are exponentially many stars, we do not need to compute them all. In-
stead, we can find the most effective star among the stars (f, C

f
k ), where f is an

arbitrary facility, and C
f
k denotes the first k clients in a linear order with nonde-

creasing link cost to f , for k = {1, . . . , n}. Having identified the most effective
star, we then open the facility and henceforth disregard all clients in this star.
We refer to this algorithm as the standard star algorithm.



4.2 Approximating MCFL

In MCFL, each client can demand several commodities. If the client decides to
satisfy its demand for one commodity from a facility, then it can, without addi-
tional cost, satisfy all demands that the facility provides from that facility. This
means, if we pick a star in the standard star algorithm, the facility should satisfy
all unsatisfied demands of the clients in the star. Thus, we should change the
definition of effectiveness of a star (f, C) to

f0 +
∑

c∈C cf

∑
c∈C |Sf ∩ Sc| .

In the definition of C
f
k we now order the clients in linear order with nondecreasing

link cost divided by number of demands that could maximally be satisfied by f ,
i.e., we sort them by nondecreasing

cf

|Sf ∩ Sc| .

Theorem 1. The modified standard star algorithm gives an Hh-approximation,
where h is the total number of commodities demanded by all the clients.

Proof. We have to show that the modified linear order of clients in the defini-
tion of C

f
k guarantees that we indeed find a most effective star. This proof is

straightforward and omitted in this extended abstract. ⊓⊔

4.3 The Friendly Tour Operator Problem

To solve FLSC, we must define a new problem that we need as a subroutine, the
friendly tour operator problem (FTO). Consider a tour operator who would like
to organize a tour for tourists. Each tour t incurs a fixed cost t0 (maybe the
profit of the tour operator). There is a certain finite set A of actions that can be
arbitrarily combined in a tour. Let At denote the set of actions offered in tour
t. Each action a incurs a cost ta (maybe an entrance fee). There is also a set T
of tourists. Each tourist x demands to participate in some set Ax of actions. He
will only join the tour t if Ax ⊆ At. The total cost of t will be

t0 +
∑

a∈At

ta ,

which is equally shared by all participants. The goal of the friendly tour oper-
ator is not to maximize his profit, but to offer a tour of minimum cost for the
participants.

We could model the problem as a hypergraph problem, where the nodes are
the actions and the hyperedges are the tourists. Then the problem generalizes the
densest subgraph problem which is NP-hard. So we cannot solve FTO optimally
in polynomial time. But we can find a good approximation to the best tour by
a simple greedy algorithm, Approx-FTO.



Starting with all actions, in each step we first compute the average cost of the
current action set and then discard that action (and all tourists demanding it)
that maximizes the quotient of the cost of the action and the number of tourists
demanding the action (i.e., intuitively we discard an action if it has high cost
and is not high in demand). In the sequence of action sets computed, we then
choose the one with lowest average cost.

Theorem 2. Let d be the maximum number of actions any tourist demands.
Then, Approx-FTO achieves an approximation factor of d if t0 = 0 and a factor
of d + 1 if t0 ≥ 0.

Proof. Let A⋆ be an optimal set of actions and OPT be the value of the optimal
solution. Let T ⋆ be the number of tourists participating in the optimal tour, and
let D⋆

b denote how many of them are demanding action b ∈ A⋆.
Let a be the first action in A⋆ deleted by Approx-FTO. Right before this

happens, let A be the current set of actions, T be the number of remaining
tourists, cost be the current average cost, and for any b ∈ A let Db denote the
number of tourists demanding action b. Clearly, D⋆

b ≤ Db for all b. Therefore,
ta

Da
≤ OPT , because otherwise A⋆ − {a} would be a better solution than A⋆.

We choose a in the next step because ta

Da
≥ tb

Db
, for all b ∈ A. Since each

tourist can demand at most d actions, we have
∑

b∈A Db ≤ d · T . Putting all
together, we obtain

cost ≤
t0 +

∑
b∈A tb

T
≤

t0

T ⋆
+

d ·
∑

b∈A tb∑
b∈A Db

≤ OPT + d ·
ta

Da

≤ (d + 1) · OPT .

If t0 = 0, the first OPT term vanishes and we get a d-approximation. ⊓⊔

As the following example shows, our analysis of Approx-FTO is tight if d = 2.
In this case, we can model FTO as a graph problem with actions as nodes and
edges as tourists. We assume startup cost t0 = 0. Consider the graph G which
is the union of Kn,n and S2n, where Kn,n is the complete bipartite graph with
node partitions U and V , where |U | = |V | = n, and S2n is a star with 2n + 1
nodes, namely a center node v and 2n leaves. Each node in U has cost 1 + ǫ,
where ǫ > 0 is sufficiently small. The cost of v is 2, while the leaves all have
cost 1

n
. The nodes in V have cost zero. The optimal solution is in this case the

Kn,n, with minimum average cost 1+ǫ
n

. But Approx-FTO will first delete a node
in Kn,n (which has maximum ratio 1+ǫ

n
) and eventually find S2n as the solution

with average cost
2+2n· 1

n

2n
= 2

n
.

4.4 Approximating FLSC

In FLSC, each facility has some additional startup cost for providing a commodity.
Therefore, it may now happen that a client satisfies one demand from one facility
but a second demand from another facility although the first facility could also
satisfy the second demand (but its startup cost for this demand is too high).



We must redefine cost and effectiveness of a star, and even stars itself. Con-
sider a facility f at some step of the algorithm. If it had been used before, its
startup cost is now zero. If some of its commodities are already in use from
earlier clients, their startup costs are also zero. A star is now a triple (f, C, S),
where S is a subset of commodities provided by the star. We may assume that
S always includes all commodities that are already in use at the facility (they
can now be used for free by other clients). The cost of the star is then defined as

f0 +
∑

s∈S

fs +
∑

c∈C

cf ,

and its effectiveness is

f0 +
∑

s∈S fs +
∑

c∈C cf

∑
c∈C |S ∩ Sc| .

After choosing a most effective star, we only discard the demands of the clients
that have been satisfied (a client can be discarded when all its demands are
satisfied).

The problem is how to find a most effective star in polynomial time. There
does not seem to be a natural linear order of clients in the definition of C

f
k

that guarantees that we indeed find the most effective star among the C
f
k . Since

we cannot find the best star, we approximate it. Note that to compute a most
effective star we only have to solve an FTO for each facility f and then choose
the cheapest of all of them. To be more precise, for fixed f , the FTO uses t0 = f0.
There are n + k actions, one for each commodity and one for each link from f

to a client. The cost of an action is the corresponding cost in FLSC. For each
client c ∈ C and unsatisfied comodity s ∈ Sc, there is a tourist demanding the
two actions c and the link from f to c.

Theorem 3. The modified standard star algorithm using Approx-FTO as a sub-
routine to approximate a most efficient star gives a 2Hh-approximation, where
h is the total number of commodities demanded by all the clients, if f0 = 0 for
all f ∈ F , and a 3Hh-approximation in the general case.

Proof. The theorem follows from the standard star algorithm together with the
approximation of the most effective star given in Theorem 2. ⊓⊔

4.5 Lower Bounds

FLSC is clearly a generalization of MCFL, so any lower bound for the approximation
factor of MCFL is also a lower bound for FLSC.

Theorem 4. There is no polynomial approximation algorithm for MCFL and
FLSC with an approximation factor of (1 − ǫ) · max{lnn, ln k}, for any ǫ > 0,
where n is the number of clients and k is the number of commodities.



Proof. We give two reductions from SC. Let |U | = n. Recall that there is no
polynomial time approximation algorithm for SC with an approximation factor
of (1 − ǫ) · lnn, for any ǫ > 0, unless NP ⊆ DTIME[nO(log log n)] [5].

The reduction given in Subsection 4.1, where we have a single commodity
and clients correspond to elements in U , gives a lower bound of lnn.

In the second reduction, let each commodity correspond to a unique element
in U . There is only one client demanding all commodities. For each subset in X ,
there is a facility with startup cost 1 providing the corresponding commodities.
All connection costs are zero. Now any set cover corresponds to a MCFL solution
of the same cost. Thus, we cannot approximate MCFL with a factor better than
ln k. ⊓⊔

5 k-Level Facility Location

We must define a more general version of k-UFL, k-UFLℓ, which has an additional
input parameter ℓ. In this problem, we can first choose s subset of ℓ clients which
is then optimally served by some set of facilities. Note that k-UFLm is just the
original k-UFL.

We define our approximation algorithm for k-UFL inductively. First, we give
an O(ln ℓ)-approximation algorithm for 1-UFLℓ. Then we show how to lift an
O(lnk−1 ℓ)-approximation for (k − 1)-UFLℓ up to an O(lnk ℓ)-approximation for
k-UFLℓ.

5.1 Approximating 1-UFLℓ

The ln ℓ-approximation algorithm for 1-UFLℓ is very similar to the greedy algo-
rithm for 1-UFL. When we compute the most effective star for facility f , we only
consider sets C

f
k for k = 1, . . . , ℓ, and we stop when we have satisfied ℓ clients.

Theorem 5. The modified standard star algorithm computes a ln ℓ-approxima-
tion for 1-UFLℓ, for any 1 ≤ ℓ ≤ m. ⊓⊔

5.2 Approximating k-UFLℓ

Suppose we have an approximation algorithm APPROX-(k − 1)-UFLℓ for (k −
1)-UFLℓ for every 1 ≤ ℓ ≤ n. Then we can construct an algorithm APPROX-k-UFLℓ

for k-UFLℓ as follows.
Consider a fixed facility f ∈ Fk. We construct an instance for (k − 1)-UFLℓ

as follows. The set of clients remains unchanged, also the set of facility levels
F1, . . . ,Fk−1. What changes is the connection cost between Fk−2 and Fk−1. We
increase the cost of each original edge (u, v) between the two levels by the cost
of the original edge (v, f). Intuitively, we are extending the last edge on a path
from a client to a node in level k − 1 by the edge leading to f in level k.

In the standard star algorithm, we would now compute, for each facility,
the best way to connect it with 1, 2, 3, . . . clients, and then choose the cheapest



star. Here we cannot easily compute these values. Instead, we again approximate
them.

Let cost(f, j) be the cost of an approximation computed by APPROX-(k −
1)-UFLj, for 1 ≤ j ≤ ℓ. We compute all these values for all f and j and determine
the smallest one. This tells us which facility f in level k to choose. We choose all
the facilities and connections computed in the corresponding approximation of
the (k−1)-level problem, and we connect f to all facilities chosen on level k−1.

Theorem 6. If APPROX-(k − 1)-UFLℓ can achieve an approximation factor of
O(lnk−1 ℓ), for all 1 ≤ ℓ ≤ n, then APPROX-k-UFLℓ computes an O(lnk ℓ)-
approximation. ⊓⊔

Theorem 7. There exists a lnk n-approximation algorithm for k-UFL. ⊓⊔

5.3 The k-Level Concentrator Location Problem

It is not hard to modify our algorithm for k-UFL to approximate k-LCLP. The
only change is in the inductive step when we change the connection costs of
edges between layers k − 2 and k. Instead, we now increase the startup costs of
facilities on layer k − 1 by the cost of the edge to facility f on layer k.

Theorem 8. There exists a lnk n-approximation for k-LCLP. ⊓⊔

6 Conclusions

We presented the first logarithmic approximation algorithms for the non-metric
multicommodity facility location problem. Note that in our model the connection
costs do not scale with the number of commodities that use a connection. This
actually generalizes the case where connection costs scale. For FLSC, our algo-
rithms have an additional constant factor of 2 or 3, which may not be necessary
for an optimal approximation algorithm.

We also presented the first poly-logarithmic approximation algorithm for the
non-metric k-level facility location problem. We conjecture that this problem
admits a logarithmic approximation for any k ≥ 1.
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