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Abstract. In the maximum sharing problem (MS), we want to compute
a set of (non-simple) paths in an undirected bipartite graph covering as
many nodes as possible of the first node layer of the graph, with the con-
straint that all paths have both endpoints in the second node layer and
no node in that layer is covered more than once. MS is equivalent to the
node-duplication based crossing elimination problem (NDCE) that arises in
the design of molecular quantum-dot cellular automata (QCA) circuits
and the physical synthesis of BDD based regular circuit structures in
VLSI design. We show that MS is NP-hard, present a polynomial-time
1.5-approximation algorithm, and show that MS cannot be approximated
with a factor better than 740

739
unless P = NP .

1 Introduction

Let G = (U, V ; E) be an undirected bipartite graph in which U is the upper
node layer and V is the lower node layer. Let m = |E| and n = |U | + |V |. In
the maximum sharing (MS) problem we want to find a set of (non-simple) paths
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Fig. 1. MS and NDCE: (a) A layout of a two-layer graph G with ten edge crossings; (b)
an MS solution with four sharings; (c) the corresponding NDCE solution with two node
duplications.

with both endpoints in V maximizing the total length of the paths. Every edge
and every node of V can appear at most once in all the paths, except for edges
to nodes in V of degree one which may appear twice consecutively in the same
path. Note that a node in U can occur multiple times in the same path, and in
multiple paths as well. See Fig. 1(b) for an example. Intuitively, a path in an MS

solution can be viewed as a concatenated sequence of sharings. A sharing is a
path (x, u, y) with u ∈ U and x, y ∈ V , x 6= y.

MS has important applications in circuit design. Consider, for example, the
(two-layer) crossing minimization problem (CM). The two layers of G are laid
out on parallel straight lines and each edge is drawn as a straight line segment
between an upper node and a lower node. The objective is to minimize the
number of edge crossings by reordering the nodes in the two layers. In some
applications it is not enough to minimize the number of edge crossings — we
must have no crossings at all. This can be achieved by duplicating nodes of the
upper layer [3, 4]. When we duplicate a node u we create a new node u′ and
partition the edges incident to u into a set of edges that remain incident to u
and a set of edges that become incident to u′. A node may be duplicated multiple
times; at each instance some of the currently incident edges are transferred to
the new copy. In the node-duplication based crossing elimination problem (NDCE)
we want to minimize the number of upper nodes to be duplicated such that,
after a suitable reordering of the nodes, all edges can be drawn crossing-free as
straight lines. See Fig. 1(c) for an example.

An MS solution with s sharings corresponds to an NDCE solution with m−n−s
node duplications [4]. Thus, minimizing node duplications in NDCE is equivalent
to maximizing sharings in MS.

Good approximations for MS do not necessarily translate into good approx-
imations for NDCE (just consider the case when NDCE has a solution with zero
duplications), but a good MS-approximation can serve as a good heuristic for solv-
ing NDCE. For example, if the number of sharings is at most a fraction k/(k + 1)
of the number of upper vertices, for some k ≥ 1, then NDCE can be approximated
to a (1 + k/3) factor in polynomial time, using our 1.5-approximation for MS.



Our results. MS generalizes the NP-hard maximum weight node-disjoint path
cover problem (MWPC), where we want to find a set of node-disjoint paths in an
undirected graph maximizing the number (or total weight) of the edges used by
the paths. MWPC is equivalent to MS when all nodes in U have degree two (V and
U correspond to the nodes and edges of the MWPC instance, respectively). Thus,
MS is also NP-hard.

MWPC is also equivalent to the (1, 2)-TSP problem in the following sense. An
approximation ratio of γ for one problem yields an approximation ratio of 1

2−γ

for the other [15] (note that we adapted their formula for the approximation
ratio to our different definition of approximation ratio). Since (1, 2)-TSP can be
approximated with a factor of 8

7 [2], MWPC, and thus the case of MS where all
nodes in U have degree two can be approximated with a factor of 7

6 . On the
other hand, it is NP-hard to approximate (1, 2)-TSP better than with a factor of
741
740 [10]. Thus, MS cannot be approximated with a factor better than 740

739 unless
P = NP . This lower bound could also be derived directly from an approximation
preserving reduction from (1, 2)-TSP to MWPC.

The main result of this paper is a polynomial-time 1.5-approximation algo-
rithm for MS by a reduction to the color path packing problem (CPP). A maximum
matching in the graph of the CPP instance would give us a 2-approximation for
MS. We can solve a relaxation of CPP, the color path-cycle packing problem (CPCP),
optimally in polynomal time by computing a maximum matching in a related
graph. In a non-trivial step we can then transform an optimal CPCP solution
back to a 1.5-approximation solution for MS. The 2-matching algorithm would
also give us a 1.5-approximation for MWPC.

Related work. CM has been studied in the context of graph drawing [7], visual-
ization [6], DNA mapping [17], and optimization of circuit layouts in terms of
wiring congestion, total wire length, and layout area (e.g., see [3, 14]). It is NP-
hard [13], even when one layer of nodes is already in a fixed order [8] (so-called
fixed-layer CM). No approximability results are known for CM.

A related problem is to determine whether a given bipartite graph has a (not
necessarily induced) planar subgraph with at least k edges, for a given k. This
problem, too, was shown to be NP-complete by Eades and Whitesides [7]. It
remains NP-complete even for the fixed-layer case. If both layers have a fixed
ordering, then there is a polynomial-time algorithm. Another related problem is
when only a given set of edge crossings is considered as restricted, and the objec-
tive is to minimize the restricted crossings; Finocchi [11] gave a 2-approximation
solution for this problem.

NDCEwas introduced (and solved by an integer linear program formulation) by
Chaudhary et al. [4] to solve layout problems in the design of molecular quantum-
dot cellular automata (QCA) circuits [1, 16]. QCA circuits are currently the
focus of increasingly intense research efforts aimed at building logic gates at
the nanoscale. A major obstacle to building QCA circuits is that chemists are
finding that it is considerably difficult to fabricate wire crossings in molecular
QCA circuit layouts. Thus, some of the current research efforts are focused on



building QCA circuits with no crossings in their layouts. Hence the need for
solving NDCE.

Another application for crossing elimination can be found in the physical
synthesis of Binary Decision Diagram (BDD) based regular circuit structures [3].
In contrast to CM, fixed-layer NDCE (where the order of the nodes in V is fixed)
can be solved in linear time [4]. For NDCE on general non-bipartite graphs, a
heuristic method was proposed by Cao and Koh [3] but they did not give any
guarantees on the quality of the solution.

Sharings were introduced by Chaudhary et al. [4]. In an earlier paper [5],
the authors studied the maximum simple sharing problem (MSS), where also the
upper nodes can only be visited at most once by the paths. By relaxing the path
constraint to also allow cycles, they were able to obtain a 5

3 -approximation for
MSS. Although the two problems seem to be closely related, the techniques used
for solving MSS are not helpful for solving MS.

2 Approximating MS: A Special Case

In this section we present a polynomial-time 1.5-approximation algorithm for MS
under the assumption that all lower nodes in V have degree at least two. In the
next section we show how to extend it to also handle degree-one nodes.

Let G = (U, V ; E) be an undirected bipartite graph such that the nodes
in V have degree at least two. We will transform the MS problem on G into a
color path-cycle packing problem (CPCP) on a graph GV generated from G. CPCP
captures the key structure of MS, and we can solve it optimally in polynomial time
by reduction to a maximum matching problem. From an optimal CPCP solution
on GV we can then obtain a set of feasible paths forming a 1.5-approximate
solution for MS on G.

2.1 The Color Path-Cycle Packing Problem (CPCP)

Consider the following undirected graph GV = (V, EV ), which intuitively col-
lapses every sharing in G into a single edge between two lower nodes. The node
set of GV is just the lower node set V . For any two distinct nodes v, w in V , if v
and w can form a sharing in G, then we put the edge (v, w) in EV . We associate
with each edge e = (v, w) in EV a set Ce of upper nodes of G, called colors,
such that if v and w can form a sharing in G through an upper node u, then u
is included as a color in Ce.

MS is equivalent to the color path packing problem (CPP) on GV , where we
want to find a subgraph H of GV with the maximum number of edges consisting
of a set of node-disjoint simple paths in GV such that we can color each edge e
of H by a color in Ce without coloring any two consecutive edges in any path of
H by the same color. Since MS is NP-hard, CPP is also NP-hard.

To approximate MS, we actually need to relax CPP by allowing simple cycles
as well as simple paths in the sought subgraph of GV . We also relax the color
constraints. We call this relaxed version the color path-cycle packing problem
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Fig. 2. Transforming an MS problem on G into a maximum matching problem on G′.
(a) A simple bipartite graph G; (b) the corresponding graph G′ with a maximum
matching (the dashed edges); (c) the corresponding sharing path (v3, u, v1, w, v2) in
G.

(CPCP). Formally, CPCP is the problem to find a subgraph H of GV with the
maximum number of edges such that every node in H has degree at most two
and we can color both endnodes of every edge e of H by a color in Ce such that
the two colors corresponding to the two incident edges of a node are different.
Note that an edge may assign different colors to its two endpoints. In other
words, an edge may or may not change its color halfway between the endpoints.

Clearly, the optimal objective function value of CPCP is at least as large as
that of CPP. We show below that we can obtain a CPP solution SOLCPP from
any CPCP solution SOLCPCP such that |SOLCPP | ≥

2
3 |SOLCPCP |. Since we can

solve CPCP optimally in polynomial time by reduction to a maximum matching
problem, we obtain a 2

3 -approximation for CPP.

2.2 Solving CPCP

We construct an undirected graph G′ = (V ′, E′) from G and GV as follows (see
Fig. 2). For every node v ∈ V we put two nodes v′ and v′′ in V ′, called V -type
nodes. For every edge (v, u) in E with v ∈ V and u ∈ U we add to V ′ two nodes
C′

v,u and C′′
v,u, called C-type nodes, and to E′ three edges (v′, C′

v,u), (v′′, C′
v,u),

and (C′
v,u, C′′

v,u). For any two nodes v1, v2 in G that can form a sharing through
an upper node u ∈ U we add to V ′ two nodes Pv1;v1,v2

and Pv2;v1,v2
, called

P -type nodes, and to E′ an edge (Pv1;v1,v2
, Pv2;v1,v2

); moreover, we add edges
(Pv1;v1,v2

, C′′
v1,u) and (Pv2;v1,v2

, C′′
v2,u) to E′. These are the nodes and edges of

G′. Note that V ′ contains exactly 2 · |V | V -type nodes, 2 · |E| C-type nodes, and
2 · |EV | P -type nodes.

This construction transforms the MS problem on G to a maximum matching
problem on G′ (by relaxing some constraints of the MS problem). Fig. 2(c) gives
an example showing a sharing path in G corresponding to a matching in G′.

Theorem 1. Suppose GV has an optimal CPCP solution SOL whose value is
|SOL|, and G′ has a maximum matching M . Then, |M | = |EV | + |E| + |SOL|.

Proof. First we prove |M | ≥ |EV |+ |E|+ |SOL|. Given an optimal CPCP solution
SOL on GV , we construct a matching M ′ of size |EV | + |E| + |SOL| in G′ as



follows. For every edge e = (v, w) ∈ SOL in GV whose endpoints are colored by
ce,v and ce,w (possibly ce,v = ce,w), we add the edges (v′, C′

v,ce,v
), (C′′

v,ce,v
, Pv;v,w),

(w′, C′
w,ce,w

), and (C′′
w,ce,w

, Pw;v,w) of G′ to M ′. Note that v′ (or w′) should be
changed to v′′ (or w′′) if v′ (or w′) is already matched by an edge of M ′. Clearly,
these edges are part of a matching in G′.

After adding these edges to M ′, each unsaturated pair of P -type nodes
Pv1;v1,v2

and Pv2;v1,v2
can be matched by adding the edge (Pv1;v1,v2

, Pv2;v1,v2
)

to M ′. Each pair of unsaturated nodes C′
v,u and C′′

v,u can be matched by adding
the edge (C′

v,u, C′′
v,u) to M ′. Note that for every edge in SOL, our construction

of M ′ saturates two V -type nodes in G′; further, all C-type nodes and P -type
nodes are saturated. Therefore, the number of saturated nodes in G′ is exactly
2|SOL| + 2|E| + 2|EV |, and |M ′| = |SOL| + |E| + |EV |.

Now we prove |M | ≤ |EV |+|E|+|SOL|. Given a maximum matching M in G′,
it is sufficient to construct a CPCP solution SOL′ of size |SOL′| = |M |−|EV |−|E|
in GV . Note that there exists a maximum matching in G′ such that all the P -
type nodes and C-type nodes are saturated (the set of all edges of the types of
(C′

v,u, C′′
v,u) and (Pv1;v1,v2

, Pv2;v1,v2
) forms a matching in G′ saturating all P -type

and C-type nodes; then start Edmonds’ algorithm [9]). Suppose w.l.o.g. that M
has this property. Let ns denote the number of saturated V -type nodes in M .

Note that if any two nodes Pv1;v1,v2
and Pv2;v1,v2

are not matched by the
edge (Pv1;v1,v2

, Pv2;v1,v2
) in M , then both nodes must each be matched with

some C-type nodes. Let the corresponding edges in M be (Pv1;v1,v2
, C′′

v1,c1
) and

(Pv2;v1,v2
, C′′

v2,c2
). Then, SOL′ contains the edge e = (v1, v2), and the colors

assigned to (v1, v2) in SOL′ are ce,v1
= c1 and ce,v2

= c2.
We first argue that ns = 2 · |SOL′|. Since all P -type and all C-type nodes

are saturated, for each pair of P -type nodes, say Pv1;v1,v2
and Pv2;v1,v2

, that
are not matched by the edge (Pv1 ;v1,v2

, Pv2;v1,v2
) in M , there is a one-to-one

correspondence with a pair of saturated V -type nodes: one of v′1 or v′′1 and one
of v′2 or v′′2 .

Next, we prove that SOL′ is indeed a CPCP solution on GV . It is easy to
see that the degree of every node v in SOL′ is at most two, because each of
v′, v′′ ∈ V ′ can contribute to at most one edge adjacent to v in SOL′. Suppose
e1 = (u, v), e2 = (v, w) ∈ SOL′ are two adjacent edges, which means that in
G′, Pv;u,v is not matched with (Pv;u,v, Pu;u,v) and Pv;v,w is not matched with
(Pv;v,w, Pw;v,w). W.l.o.g. assume that Pv;u,v is matched with (Pv;u,v, C′′

v,c1
) and

Pv;v,w is matched with (Pv;v,w , C′′
v,c2

). Then we have c1 6= c2, and the label
colors ce1,v = c1 6= c2 = ce2,v (otherwise, C′′

v,c1
= C′′

v,c2
would be adjacent to

two different edges in the matching M , a contradiction). Therefore, SOL′ is a
feasible CPCP solution. Since 2|M | = ns + 2|EV | + 2|E| and ns = 2|SOL′|, we
conclude |SOL′| = |M | − |EV | − |E|. ⊓⊔

Corollary 1. There is a polynomial-time algorithm for computing an optimal
CPCP solution on GV .

Proof. The maximum matching problem on G′ can be solved in O(
√

|V ′| · |E′|)
time [12]. The proof of Theorem 1 shows how to obtain in polynomial time an
optimal CPCP solution SOL′ in GV from a maximum matching M in G′. ⊓⊔



2.3 A 1.5-Approximation for CPP and MS

In this subsection, we show how to obtain a 1.5-approximate CPP solution SOL
on GV from an optimal CPCP solution SOL′ on GV . This immediately gives a
1.5-approximation for MS on G. First, we illustrate on an example why a CPCP

solution SOL′ may fail to be a feasible CPP solution, and how we can make
it feasible by removing some edges from SOL′. Let P = (v1, v2, v3, v4) be a
path in GV with C(v1,v2) = {c1}, C(v2,v3) = {c1, c2}, and C(v3,v4) = {c2}. A
CPCP solution could contain all three edges with the following color labeling:
c(v1,v2),v1

= c(v1,v2),v2
= c1, c(v2,v3),v2

= c2, c(v2,v3),v3
= c1, and c(v3,v4),v3

=
c(v3,v4),v4

= c2. This is not a feasible CPP solution. But we can remove the
middle edge (v2, v3) to make it feasible.

Below we show how we can remove some edges from SOL′ to obtain a CPP

solution. Remember that we want to remove at most one third of all edges from
SOL′.

Let P = (v1, . . . , vℓ) be a path in SOL′ with label colors such that c(vi−1,vi),vi
6=

c(vi,vi+1),vi
for any i with 1 < i < ℓ. We say P can be feasibly colored if the col-

oring of P can be converted to a feasible CPP coloring by carefully choosing
color labels for its edges (not for its nodes) from the color labels of its nodes.
To be more precise, we can label each edge (vi−1, vi) of P by a color c(vi−1,vi) ∈
{c(vi−1,vi),vi−1

, c(vi−1,vi),vi
} for 1 < i ≤ ℓ, such that c(vi−1,vi) 6= c(vi,vi+1), for

1 < i < ℓ.

Lemma 1. Paths in SOL′ of length at most 2 are feasibly colorable. ⊓⊔

Note that in G two different nodes v1, v2 ∈ V cannot simultaneously have
sharings with two distinct upper nodes u, w ∈ U in a feasible MS solution. Such
short cycles cannot occur in SOL′ (for example, in Fig. 2(a), v1, v2 ∈ V cannot
simultaneously have sharings with u, w ∈ U). It might appear that such infeasible
simultaneous sharings might correspond to a “degenerate” cycle (v1, v2, v1) in
SOL′. The next lemma shows that there is no such “degenerate” cycle in SOL′.

Lemma 2. Every cycle in SOL′ has length at least three. ⊓⊔

SOL′ may contain simple paths and simple cycles. We first deal with the
paths in SOL′. Let P = (v0, . . . , vt−1) be a path in SOL′. We remove the edges
(v3k−1, v3k) from P , for k = 1, . . . , ⌊ t

3⌋. The remaining parts of P are a set of
paths of length at most two. By Lemma 1, these paths can be feasibly colored.
Note that we deleted no more than one third of the edges of SOL′.

Handling cycles in SOL′ is more complicated. By Lemma 2, the length of
each cycle in SOL′ is at least three. We distinguish three cases based on the
cycle length. An edge e = (u, v) in SOL′ with label colors ce,u = ce,v is called a
1-color edge, otherwise a 2-color edge.

Lemma 3. (a) A simple path consisting of successive 1-color edges and at most
two 2-color edges, one at each end of the path, that does not form a cycle can
be feasibly colored.
(b) A simple path consisting of successive 2-color edges and at most one 1-color
edge at one end of the path that does not form a cycle can be feasibly colored.



Proof. We only show part (b). Consider a simple path P = (v1, . . . , vℓ), in which
(v1, v2) is a 1-color edge and the other edges are 2-color edges. First, we label
(v1, v2) with color c(v1,v2),v1

. Since c(v2,v3),v2
6= c(v2,v3),v3

, at least one of them is
not equal to c(v1,v2),v1

. Thus, we can label (v2, v3) with this color. Similarly, we
can feasibly color the other 2-color edges of P . ⊓⊔

Lemma 4. For any cycle C ∈ SOL′ of length at least four, there exists a subpath
of length three in C that can be feasibly colored.

Proof. If C contains only 2-color edges or only 1-color edges (but not both types),
then, by Lemma 3, any three consecutive edges of C can be feasibly colored. If C
includes edges of both types, then consider a maximal subpath P of C consisting
of only 1-color edges. P is certainly not a cycle. If |P | ≥ 3, then the lemma holds
for P . If |P | is 1 (or 2), then we take two (or one) of the edges adjacent to
the endnodes of P (P together with these edges does not form a cycle, because
|C| > 3). The subpath of C formed by P and these edges can be feasibly colored
by Lemma 3(a). ⊓⊔

Lemma 5. For any cycle C ∈ SOL′ of length at least five in which the 1-color
edges and 2-color edges do not appear alternatingly, there exists a subpath of
length four in C that can be feasibly colored. ⊓⊔

Case 1: C = (v0, v1, . . . , v3t−1, v0) is a cycle of length 3t. We remove the
edges (v3k, v3k+1) from C, for k = 0, . . . , t − 1. The remaining parts of C are a
set of paths of length exactly two which can be feasibly colored by Lemma 1.

Case 2: C is a cycle of length 3t+1. We want to remove t edges, resulting in
one path of length three and t − 1 paths of length two which can all be feasibly
colored. By Lemma 4, we can find three successive edges of C that can be feasibly
colored (and thus be kept in the CPP solution SOL). Next, we remove the two
edges of C adjacent to this length-three subpath (if t = 1, then there is only
one such adjacent edge). If t ≥ 2, what is left from C at this point is a path P
of length 3t − 4. By using the same scheme as for handling the path case, we
remove t− 2 edges from P and obtain a set of paths of length at most two. Note
that we remove a total of t edges from C, which is less than a third of all edges.

Case 3: C is a cycle of length 3t + 2. Similarly to Case 2, if we can find
four successive edges in C that can be colored feasibly by Lemma 5, then we
are done. Suppose we cannot; then by Lemma 5, the 1-color edges and 2-color
edges in C must appear alternatingly, and thus t must be an even integer. Let
C = (v0, . . . , vt′−1), where t′ = 3t + 2, be a cycle in which the 1-color edges and
2-color edges appear alternatingly and (v0, v1) is a 1-color edge. We remove the

edges (v4k, v4k+1), for k = 0, . . . , ⌊ t′−1
4 ⌋. The remaining parts of C are all paths

of length at most three which can be feasibly colored by Lemma 3(a). Hence, in

this case we remove a total of ⌊ t′−1
4 ⌋+ 1 ≤ t edges, which is less than a third of

all edges.

Theorem 2. MS can be approximated within a factor of 1.5 in polynomial time
if there are no degree-one lower nodes.



Proof. The claim follows from Corollary 1. The running time of our MS approxi-
mation algorithm is dominated by the step of computing a maximum matching
in the graph G′, whose numbers of nodes and edges are a low degree polynomial
in the numbers of nodes and edges of the input graph G. ⊓⊔

2.4 A More Practical 1.5-Approximation Algorithm

The technique described in the previous subsection gives the currently best ap-
proximation ratio for MS. In practice, however, we can do better, since many
edges removed are unnecessary. Here, we propose a more practical algorithm to
compute a CPP solution by removing edges from a CPCP solution. Note that, in
the worst case, the scheme in this subsection also gives a 1.5-approximation.

Given a CPCP solution SOLCPCP that consists of some cycles and paths, we
first analyze the structures that make SOLCPCP not a feasible CPP solution.
One reason could be the existence of cycles, and we need to remove at least one
edge on each cycle.

Another problem might be a subpath formed by 2-color edges with two 1-color
edges at each end. For example, consider a simple path P = (v1, . . . , vℓ) in which
ℓ is even, (v1, v2) and (vℓ−1, vℓ) are both 1-color edges, and the other edges are
2-color edges. Moreover, colors are assigned as follows: c(v1,v2),v1

= c(v2,v3),v3
=

· · · = c(vℓ−2,vℓ−1),vℓ−1
= c1, and c(v2,v3),v2

= c(v3,v4),v3
= · · · = c(vℓ−2,vℓ−1),vℓ−2

=
c(vℓ−1,vℓ),vℓ

= c2. Clearly, this subpath cannot be feasibly colored without edge
removals. To see why this is the only case when we cannot feasibly color all edges,
consider an optimal deletion of a 1-color edge (v1, v2). It should be a 1-color edge
because we cannot feasibly color (v1, v2) with its color c(v1,v2),v1

= c1. This is
because one of its adjacent 2-color edges, say (v2, v3), would be forced to be
colored with c1 = c(v2,v3),v3

(note that c(v2,v3),v2
6= c1). If there is another choice

to color (v2, v3) (i.e., using color c(v2,v3),v2
) without changing other edges’ colors,

we could add (v1, v2) to the solution SOLCPCP , contradicting the optimality.
But why is (v2, v3) forced to be colored with c1 = c(v2,v3),v3

? That is because its
adjacent 2-color edge (v3, v4) is forced to be colored with c1 = c(v2,v3),v2

. We can
continue this argument until we encounter a 1-color edge (vℓ−1, vℓ) which must
be colored with c(vℓ−1,vℓ),vℓ

.

If a 2-color edge is deleted in an optimal deletion, the argument is similar
and proceeds until meeting the 1-color edges at the two ends of the path. If
such a structure occurs, then we cannot feasibly color all edges in the structure,
and at least one edge must be deleted. At the same time, it is easy to see that
it is sufficient to delete only one 1-color edge in such a subpath. Thus, we can
w.l.o.g. assume that an optimal method always removes 1-color edges. Moreover,
such subpaths are mutually disjoint except that some pairs of them may share
a common 1-color edge (at the ends of such a pair of subpaths).

We construct the following graph D for the edge removal. The nodes of D
are all 1-color edges of the CPCP solution. Two nodes of D are linked by an
edge if the two corresponding 1-color edges are at the two ends of one subpath
described above. Thus any edge removal that makes the CPCP solution a feasible



CPP solution corresponds to a vertex cover in D. Since D is a graph of maximum
degree two, we can compute a minimum vertex cover in D in polynomial time.

3 Approximating MS: The General Case

In this section we show how to modify the approximation algorithm of Section 2
to accommodate lower nodes of degree one. We will use the fact that we may
assume w.l.o.g. that each upper node is connected to at most one degree-one
lower node (if we can connect crossing-free to one such node, we can connect
crossing-free to many such nodes).

Given G, we construct GV exactly as before. We must slightly relax the color
constraint in the definition of CPP. If a path visits a degree-one node in V , it may
have two consecutive occurrences of the same edge leading to that node, which
of course must have the same color. Now, MS on G is again equivalent to CPP on
GV . For CPCP, we need a similar relaxation of the color constraint at degree-one
nodes of V . The optimal objective value of CPCP on GV is then at least as large
as that of CPP.

Now we construct the graph G′ from G. Let VS be the set of degree-one
lower nodes in G. For each v ∈ V we add two V-type nodes v′ and v′′, for a
total of 2 · |V | such nodes. For each edge (v, u) in G with v ∈ V and u ∈ U , if
v 6∈ VS , we add two C-type nodes C′

v,u and C′′
v,u, and we add edges as described

before. If, however, v ∈ VS , we add four C-type nodes: C′
va,u and C′′

va,u, as well as
C′

vb,u and C′′
vb,u. Further, we add the following six edges: (v′, C′

va,u), (v′′, C′
va,u),

and (C′
va,u, C′′

va,u), and (v′, C′
vb,u), (v′′, C′

vb,u), and (C′
vb,u, C′′

vb,u). Thus the total
number of C-type nodes is 2 · (|E + |VS |). Finally, we add 2 · |EV | P-type nodes
exactly as before. The edges between P-type and C-type nodes are added just
as before, except when for an edge (v1, v2) ∈ EV in which one (and there can
be only one) of the nodes, say v2, is in VS . In that case, let v1 and v2 have a
common upper node neighbor u (again, only one common neighbor is possible).
We add the following four edges to E′: (Pv1;v1,v2

, Pv2;v1,v2
), (Pv1;v1,v2

, C′′
v1,u),

(Pv2;v1,v2
, C′′

v2a,u), and (Pv2;v1,v2
, C′′

v2b,u).

Theorem 3. Suppose GV has an optimal CPCP solution SOL whose value is
|SOL|, and G′ has a maximum matching M . Then, |M | = |EV | + |E| + |VS | +
|SOL|. ⊓⊔

Informally, the only change in G′ is that there are now more C-type nodes
— 2 · |VS | more nodes. See Fig. 3 for an illustration.

The final step is to show that given any CPCP solution on GV , say SOL′,
we can obtain a solution SOL for CPP on GV such that |SOL| ≥ 2

3 |SOL′|. Let
v ∈ VS be a degree-one lower node that is a neighbor of the upper node u ∈ U .
Suppose SOL′ consists of a path or cycle with the three nodes σv = (v1, v, v2)
in order, and with corresponding colors c(v1,v),v1

, c(v1,v),v, c(v,v2),v, and c(v,v2),v2
.

Now c(v1,v),v = c(v,v2),v = u (this is a legal coloring). Observe that if there is no
such sequence σv in SOL′ for any v ∈ VS , then SOL′ is also a solution to CPCP
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C
′′
v1,u5

C ′′
v2,u3

C
′′
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Pv2;v2,v3

Pv4;v4,v5

C ′
v1,u1

C ′′
v3a,u2

C ′
v5,u5

C
′′
v5,u5

Pv5;v1,v5

Pv3;v2,v3

C
′
v3a,u2

C
′
v4,u2C

′′
v4,u2

C
′
v5,u4

C ′′
v5,u4

C ′′
v2,u1

C ′
v4,u3

Pv5;v4,v5

C ′′
v4,u4

Pv4;v2,v4

Pv2;v2,v4

v′4

C ′
v4,u4

Pv3;v3,v4

C ′′
v2,u2

C ′′
v3b,u2

C
′
v3b,u2

v′′5

v′1

v
′
2 v

′
3

v
′′
4

v′′1

v
′′
2

v
′′
3

v′5

C
′
v1,u5

C
′′
v1,u1

Pv1;v1,v2 Pv2;v1,v2

C ′
v2,u1 C

′
v2,u3

C
′
v2,u2

Fig. 3. The graph G′ corresponding to G in Fig. 1(a). The thick edges are the extra
edges required due to degree-one lower nodes. The dashed edges are the matching
corresponding to the CPCP solution.

on GV , and we can directly use the algorithm in Section 2.3 to obtain a solution
SOL for CPP on GV .

So suppose such a sequence σv exists. There can be at most one sequence for
each v ∈ VS . Take the path (or cycle) P ′ containing v and break it into two paths
(or one path, respectively) at the node v. In other words, the sequence (v1, v) is
separated from (v, v2). Let the resulting path(s) be denoted by P . Remove the
third edge for each path in P , as in Section 2.3, followed by an application of
Lemma 1, to obtain paths in P in which exactly one color from Ce is assigned to
each edge e, and no two consecutive edges have the same color. P may, however,
have two occurrences of v and thus cannot be part of a solution for CPP. We
remedy this by combining back the two separate ends (if they both exist) to
form the original sequence (v1, v, v2). This will lead to two consecutive edges
having the same color, but that is a legal coloring.

Does this recombination create a cycle? Observe that if the original sequence
σv is part of a cycle, the cycle has at least three edges. This follows from reasoning
very similar to the proof of Lemma 2. If P consists of a single path, it has at
least three edges, and thus at least one edge is removed. Thus, recombinations
do not form a cycle. The process described above is performed on every sequence
σv, for each v ∈ VS . For paths or cycles in SOL′ not containing such sequences,
the process is exactly as described in Section 2.3.

Theorem 4. MS can be approximated within a factor of 1.5 in polynomial time.
⊓⊔
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