
Deep Learning 1

Jian Li

IIIS, Tsinghua University

Optimization Basics

Convex Functions

• 𝑓
𝑥+𝑦

2
≤
1

2
(𝑓 𝑥 + 𝑓(𝑦))

• 𝑓 𝑡𝑥 + (1 − 𝑡)𝑦 ≤ 𝑡𝑓 𝑥 + 1 − 𝑡 𝑓 𝑦 , ∀𝑡 ∈ [0,1]

(the above two definitions are equivalent for continuous functions)

Concave functions

• f is concave if –f is convex

Convex Functions

• First order condition (for differentiable f):
• 𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓(𝑥)(𝑦 − 𝑥)

• 𝛻𝑓 𝑥 =
𝜕𝑓

𝜕𝑥𝑖 𝑖

• Second order condition (for twice-differentiable f):
• Hessian matrix 𝛻2𝑓(𝑥) is positive semidefinite (psd)

• 𝛻2𝑓 𝑥 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗 𝑖,𝑗

• 𝛻2𝑓 𝑥 specifies the local 2nd order shape of 𝑓 (how 𝑓 matches a quadratic function
locally)

• Recall Tayler expansion：

𝑓 𝑦 = 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑦 − 𝑥 +
1

2
𝑦 − 𝑥 𝑇𝛻2𝑓 𝑥 𝑦 − 𝑥 +⋯

x y

Convex Functions

• What if f is non-differentiable (but still convex)?

• Subgradient

First order condition: 𝑔 is a subgradient at 𝑥 if 𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔𝑇 𝑦 − 𝑥 ∀𝑦

Both 𝑔2 and 𝑔3 are sub-grad

Convex Optimization

• Convex optimization: 𝑓0, 𝑓1, … are convex functions, ℎ𝑗 are linear functions

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 𝑓0 𝑥
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖 𝑥 ≤ 0 ∀𝑖
ℎ𝑗 𝑥 = 0 ∀𝑗

All x satisfying the constraints defines
a convex region (feasible region).

𝑓0:objective function

Convex Optimization

• Linear Programming:
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0

Convex Optimization

• Quadratic Programming: 𝑃 is positive semi-definite

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 + 𝑟

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0

Note that if P is not psd, the objective function is not convex (it can be even concave).

Convex Optimization

• Second Order Cone Program (SOCP)

• Geometric Programming (GP)

• Semidefinite Programming (SDP)

See the classic book [Convex Optimization] by Stephen Boyd and Lieven Vandenberghe

Sub-gradient Descent

Sub-gradient Descent for unconstraint minimization:

• Iterate until converge: 𝑥(𝑘+1) = 𝑥(𝑘) − 𝛼𝑘𝑔𝑘
• 𝛼𝑘: step size

• Constant step size: 𝛼1 = 𝛼2 = 𝛼3 = ⋯

• Decreasing step size: 𝛼𝑘 = 𝑂(1/𝑘), 𝛼𝑘 = 𝑂(1/ 𝑘),….
• Testing convergence

• |𝑓 𝑥 𝑘+1 − 𝑓(𝑥(𝑘))| is small enough

• ….

Subgradient at 𝑥(𝑘)

Sub-gradient Descent

• Guarantee to converge for convex function

• May converge to local optimal or saddle point for nonconvex functions

Stochastic Gradient Descent

• Common loss function in ML
• 𝑙𝑜𝑠𝑠(𝑤) = (1/𝑛) 𝑖=1

𝑛 ℓ𝑖(𝑤) (each ℓ𝑖 corresponds to a data point, w is the
parameter we want to learn)
• E.g. ℓ𝑖 𝑤 = 𝑤

𝑇𝑥𝑖 − 𝑦𝑖
2

• SGD: Iterate until converge: 𝑤(𝑘+1) = 𝑤(𝑘) − 𝛼𝑘ℎ𝑘
• ℎ𝑘 is a random vector such that E[ℎ𝑘] = 𝑔𝑘
• For 𝑙𝑜𝑠𝑠(𝑤) = (1/𝑛) 𝑖=1

𝑛 ℓ𝑖(𝑤), we can choose ℎ𝑘 = 𝛻ℓ𝑖(𝑤
(𝑘)) where 𝑖 is

chosen uniformly at random from [n]

• It is easy to see that E[ℎ𝑘] = E 𝛻ℓ𝑖 𝑤
𝑘 =

1

𝑛
 𝑖 𝛻ℓ𝑖 𝑤

𝑘 = 𝛻𝑙𝑜𝑠𝑠(𝑤(𝑘))

• Hence, in each iteration, we only need one data point

GD vs SGD

SGD

• How to implement SGD (to make it run faster and on larger data sets)
• Parallel algorithm (Synchronous vs Asynchronous)

• Analyzing the convergence for asynchronous algorithm can be tricky
• Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent F. Niu, B. Recht, C. Ré,

and S. J. Wright. NIPS, 2011

• Asynchronous stochastic convex optimization. John C. Duchi, Sorathan Chaturapruek, and C. Ré.
NIPS15.

• Reduce the variance
• Rie Johnson and Tong Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction,

NIPS 2013.

• Mini-batch
• Instead of computing gradient for each single data point, we do it for a mini-batch (which

contains more than 1 points (e.g., 5-20).

• System level optimization

Logistic Regression

Logistic Regression

• Two class: p(x)=Pr[G=1|x]

Logistic function:

Logistic Regression

• Likelihood:

• Objective – maximize the log-likelihood

Logistic Regression

• The gradient:

• Cross Entropy (between two distributions p and q):

• The objective of RL is in fact minimizing the cross entropy

Logistic Regression

• Multiclass:

• Homework:
(1) Compute the log-likelihood for multiclass LR and its gradient

(2) Express the objective as the cross entropy function

Softmax function

SVM and The Idea of Max Margin

Support Vector Machines (SVM)

• Derived from statistical learning theory by Vapnik and Chervonenkis

(COLT-92)

• Base on convex optimization. Solid theoretical foundation.

• Mainstream machine learning method. Very successful for many
problems for many years.

• The ideas and algorithms are very important in the development of
machine learning.

• The max-margin idea (the hinge loss) extends to many many learning
problems
• Can be incorporated in deep learning

Two Class Problem: Linear Separable Case

Class 1

Class 2
• Many decision

boundaries can
separate these two
classes

• Which one should
we choose?

Note: Perceptron algorithm can also be used to find a decision boundary between class 1 and class 2

Example of Bad Decision Boundaries

Class 1

Class 2

Class 1

Class 2

Good Decision Boundary:
Maximizing the Margin

• The decision boundary should be as far away from
the data of both classes as possible

We should maximize the margin, m

Class 1

Class 2

m

The maximum margin linear

classifier is the linear classifier

with the maximum margin.

This is the simplest kind of

SVM (Called an Linear SVM)

• Maximize the margin, m

Class 1

Class 2

m

Good Decision Boundary:
Maximizing the Margin

• Maximize the margin, m

Class 1

Class 2

m

Support vectors

datapoints that the margin

pushes up against

Why? A HW.
Don’t look up the internet. It is
simple geometry. Do it by yourself

Good Decision Boundary:
Maximizing the Margin

The Optimization Problem

• Let {x1, ..., xn} be our data set and let yi  {1,-1} be the class label of xi

• The decision boundary should classify all points correctly

• A constrained optimization (Quadratic Programming) problem

6=1.4

A Geometrical Interpretation

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0

7=0

8=0.6

9=0

10=0 Support vectors

The boundary does
not depend on the
internal pts
(can be seen from
complementary
slackness)

Subject to
𝑦𝑖 w𝑥i + b ≥ 1 − 𝜉𝑖 for all i,
𝜉𝑖 ≥ 0 for all i

Non-linearly Separable Problems
• We allow “error” xi in classification; it is based on the output of the discriminant

function wTx+b

• xi approximates the number of misclassified samples

Class 1

Class 2

New QP:𝑦𝑖 w𝑥i + b ≥ 1 − 𝜉𝑖

C : tradeoff parameter

What happens for very large C?
For very small C?

Hinge Loss
• Hinge Loss:

• Think it as a Convexification of 0-1 loss

• A reformulation of non-separable SVM
using Hinge Loss:

Hinge Loss

ℓ 𝑡 = max(0, 1 − 𝑡)

S.t. 𝑦𝑖 w𝑥i + b ≥ 1 − 𝜉𝑖 for all i,
𝜉𝑖 ≥ 0 for all i

𝑚𝑖𝑛.
1

2
𝑤 2 + 𝐶

𝑖

ℓ(𝑦𝑖(𝑤𝑥𝑖 + 𝑏))

Hinge Loss

• More generally, for classification function, the hinge loss of point 𝑥𝑖:

• In linear SVM, 𝑓 𝑥 = 𝑤𝑥 + 𝑏

• If 𝑓 𝑥𝑖 has the same sign as 𝑦𝑖, and 𝑓 𝑥𝑖 ≥ 1, the loss
ℓ(𝑓 𝑥𝑖 , 𝑦𝑖) = 0

• Hinge loss is a convex loss function (but not differentiable). Hence, we
can use standard sub-gradient descent algorithm to solve it.

ℓ(𝑓 𝑥𝑖 , 𝑦𝑖) = max(0, 1 − 𝑦𝑖𝑓(𝑥𝑖))

Other (surrogate) Loss Functions

• Log (logistic) loss:

The loss for logistic regression (𝑦𝑖 = ±1)

(the loss in previous slides was for 𝑦𝑖 = 0,1)

ℓ(𝑓 𝑥𝑖 , 𝑦𝑖) = log2(1 + 𝑒
−𝑦𝑖𝑓(𝑥𝑖))

Other (surrogate) Loss Functions

• Modified Huber Loss:

• Exponential loss (in boosting)

• Sigmoid loss (nonconvex)

Regularization

• SVM: 𝑚𝑖𝑛.
1

2
𝑤 2 + 𝐶 𝑖 ℓ(𝑓 𝑥𝑖 , 𝑦𝑖)

• More generally:

𝑚𝑖𝑛𝑖𝑛𝑖𝑚𝑖𝑧𝑒 penalty(𝑤) + 𝐶

𝑖

ℓ𝑜𝑠𝑠(𝑓 𝑥𝑖 , 𝑦)

Loss: how well the function
fits the training data

Regularization: What do
we want about w

• ℓ2: 𝑤 2
2

• ℓ1 (𝐿𝐴𝑆𝑆𝑂): 1 1
(it encourages the
sparsity of w)

Why regularization?
One important reason: prevent overfitting.
Better generalization to new data points

SVM implementations

• Svmlight: http://svmlight.joachims.org/

• LIBSVM and LIBLINEAR

• Implemented in many machine learning libraries:
• sofia-ml (google)

• scikit-learn (python)

• matlab

http://svmlight.joachims.org/

Sub-gradient Descent

• Subgradient for Hinge loss:

•
𝜕ℓ

𝜕𝑤𝑖
= −𝑦𝑖𝑥𝑖 if 𝑦𝑖𝑓 𝑥𝑖 < 1

•
𝜕ℓ

𝜕𝑤𝑖
= 0 if 𝑦𝑖𝑓 𝑥𝑖 ≥ 1

• Coding HW:
Implement the subgradient descent
algorithm for SVM
(create a simple 2-d example and visualize it)

Multiclass SVM
P

ri
m

al

Dissimilarity of 𝑦𝑖 and 𝑦
E.g., Δ 𝑦𝑖 , 𝑦 = 1 − 𝐼(𝑦𝑖 = 𝑦)

matrix W = [𝑤1, 𝑤2, … , 𝑤𝑘]

The correct label should be better
than the other labels by a margin

Idea: There is a different weight vector 𝑤𝑖 or each class i (label)

Multiclass SVM

Multiclass SVM

• HW: Write a Hinge loss formulation for multiclass SVM (it should be
equivalent to the above formulation)

SVM-Rank
• Imagine that the search engine wants rank a collection of documents

for a query

• Training data (query, ranking):

• For each doc d and a query q, we can produce a feature

• Want to learn a good ranking function

• Assume linear ranking functions: d𝑖 is better than d𝑗 iff

Optimizing Search Engines using Click through Data, Joachims

The weight vector
we want to learn

SVM-Rank

• Training data (query, ranking):

• We want to following set of inequalities hold for the training data

Optimizing Search Engines using Clickthrough Data, Joachims

SVM-Rank

• Training data (query, ranking):

• Natural Idea: Maximize the margin

Optimizing Search Engines using Clickthrough Data, Joachims

Another formulation for Multiclass SVM
(more generally, Max-Margin for structured learning)

• Structured predictions
• There can be a huge number of labels due to combinatorics

• Ex 1: Muti-label prediction 𝑌 = +1,−1 𝑘

• |𝑌| = 2𝑘

• Δ 𝑌, 𝑌′ = 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡(𝑌, 𝑌′)

• Ex 2: Taxonomy classification

• Each label is a tree of size k

• Δ 𝑌, 𝑌′ = 𝑡𝑟𝑒𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑌 𝑎𝑛𝑑 𝑌′

• We can’t afford to have one weight vector for each label.

• We will be finding a single weight vector w

SVM is a special case of k=1

Another formulation for Multiclass SVM
(more generally, Max-Margin for structured learning)

• Taxonomy classification (e.g., tree edit distance)

Another formulation for Multiclass SVM
(more generally, Max-Margin for structured learning)
• Construct features which depends on both the input x and the label y

• The primal quadratic program

• We can also write our the dual.
• It can be quite challenging to solve the corresponding convex programming (a lot of constraints or

variables)

The correct label should be better
than the other lables by a margin

If we predict y and is large,
we need to pay a large loss (𝜉𝑖 is large)

Neural Network Basics

Artificial Neural Networks

• First proposed by Warren McCulloch and Walter Pitts (in 1940s)

Artificial Neural Networks

Artificial Neural Networks

Activation functions

View NN as functions

Forward Computation

Compute the gradient (Back Propagation)

Compute the gradient (Back Propagation)

Compute the gradient (Back Propagation)

Compute the gradient (Back Propagation)

Compute the gradient (Back Propagation)

Compute the gradient (Back Propagation)

Back Propagation

Back Propagation

Back Propagation

Training NN

(see PCA. next time)

Whitening

Training NN

Loss functions

Training NN

Training NN

• Tricks

Adagrad

Adagrad

• Hw: implement Adagrad for a simple function (in low dim) and
compare it with the standard GD (and visualize it)

RMSProp

ADAM

Batch Normalization [Ioffe, Szegedy]

• BP needs to be modified to account for
the change

• Improves gradient flow through the
network

• Allows higher learning rates

• Reduces the strong dependence on
initialization

• Acts as a form of regularization in a funny
way, and slightly reduces the need for
dropout, maybe

Additional parameters to learn (thru BP)

For a layer of input vector x:

Training NN

• Dropout:
• An effective way to prevent overfitting

• In each iteration, drop each node with probability p, and train the remaining
network.

• In some sense, it has the effect of regularization

• Make the training faster

• Can be seen as an ensemble of many network structures (in a loose sense)

• Data Augmentation
• E.g., images – flip, rotate, shift the images, delete some (rows or col) pixels

• Lots Lots of other tricks [Book: Neural Networks: Tricks of the Trade]

Reference

• Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines[J]. Journal of machine
learning research, 2001, 2(Dec): 265-292. (multi-class SVM)

• Joachims, Thorsten. "Optimizing search engines using clickthrough data."Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2002. (SVM-rank)

• Altun, Yasemin, Mikhail Belkin, and David A. Mcallester. "Maximum margin semi-supervised learning for structured
variables." Advances in neural information processing systems. 2005.

Acknowledgement:

The slides use materials from (1) Carla P. Gomes’s slides for SVM (2) Some slides borrowed from the
course slides from cs231n at Stanford

• Hw: page 20, 27,37, 40

• Coding: you can use any programming language you prefer.

• You need to submit your source code, an executable, and figures for
the visualization results.

• Recommendation: Anaconda (it is a free Python distribution with
most popular packages, very convenient for scientific computing, and
producing nice figures).

https://www.continuum.io/downloads

