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1 Gaussian process

Definition 1 A set of random variables {Xt}t∈T is called a Gaussian process (GP) if for any
finite subset {t1, t2, · · · , tk}, {Xt1 , Xt2 , · · · , Xtk} follows a jointly Gaussian distribution N (µ,Σ)
where µ ∈ Rk,Σ ∈ Rk×k. Note that |T | may be infinite and T may have its own structure, e.g.,
T = R.

A Gaussian Process can be described by its expectation function µ(t) = E [Xt] , t ∈ T , and
the covariance function (kernel function) k(·, ·) with k(s, t) = Cov (Xs, Xt), where s, t ∈ T . Here
k(., .) should be a positive semidefinite (psd) function (i.e., for any finite subset {t1, t2, · · · , tk}, the
matrix {k(ti, tj)}i,j∈[k] is a psd matrix).

Here are some examples of GPs with different kernel functions (depicted in Fig. 1).

1. The Ornstein-Uhlenbeck (OU) kernel: k (x, x′) = exp
(
− |x−x

′|
l

)
.

2. The min kernel: k (x, x′) = min (x, x′) (this is the covariance function for Brownian motion).

3. The linear kernel: k (x, x′) = x>x′.

4. The quadratic kernel: k (x, x′) =
(
x>x′ + c

)2
.

5. The Radial Basis Function (RBF) kernel: k (x, x′) = exp
(
−‖x−x

′‖2
2l2

)
.

6. The periodic kernel (Exp-Sine-Squared): k (x, x′) = σ2 exp
(
− sin2(‖x−x′‖/p)

l2

)
.

2 Basics of Wiener process

Wiener process is named in honor of American mathematician Norbert Wiener for his investigations
on the mathematical properties of the one-dimensional Brownian motion. In this lecture, the names
Wiener process and Brownian motion are used interchangeably. Typically, people use {Wt}t≥0 or
{Bt}t≥0 to denote the Wiener process.

Definition 2 {Wt}t≥0 is a Wiener process if

1. W0 = 0

2. Wt is continuous in t a.s..

3. For any s > t ≥ 0 we have Ws −Wt ∼ N (0, s − t) and Ws −Wt ⊥ Wt. Here X ⊥ Y means
that X and Y are independent.



Figure 1: Examples of GPs with different kernels.

Remark: The above definition is not the most basic definition of Wiener process. If we want to
define Wiener process completely rigorously, we need measure theory and it is nontrivial to show
the existence of a process with the above properties. There are many excellent textbooks on this
topic (see e.g., [4]).

We will study calculus involving Wiener process. There are two types of integrals: one is
like

∫ T
0 Wtdt (Wt appears in the integrand) and the other is like

∫ T
0 WtdWt (Wt appears in the

differential). The later is called Ito’s integral and we will study it later. The former is in fact just
the Riemann integral. The only difference is that the integrand is a random variable and hence the
integral is also a random variable.

Example 3 The integral Y :=
∫ T

0 Wtdt is also a r.v. following the Gaussian distribution. In fact
we have Y ∼ N (0, 1

3T
3).

Proof: By definition of Riemann integrals, we have

Y =

∫ T

0
Wtdt = lim

∆t→0

n−1∑
k=0

∆tkWtk

where 0 = t0 < t1 < · · · < tn = T , ∆tk = tk+1 − tk and ∆t = max(∆tk). Hence, it is easy to see



that E[Y ] = 0 since it is a sum of zero-mean Gaussians. Now, we analyze its variance:

E[Y 2] = E

 lim
∆t→0

∆t
n−1∑
j=0

Wtj

(∆t
n−1∑
k=0

Wtk

)
= lim

∆t→0

(∆t)2
n−1∑
j,k

E[WtjWtk ]


= lim

∆t→0

(∆t)2
n−1∑
j,k

min(tj , tk)


=

∫ T

0

∫ T

0
min(s, t)dtds =

1

3
T 3.

The third equation uses the covariance formula for Wiener process: E[WtWs] = min(s, t). 2

Proposition 4 A few properties of Wiener processes:

1. (Quadratic variation) Let 0 = t0 < t1 < · · · < tN = t, ∆t = maxj(tj − tj−1), and ∆Wj =
Wtj −Wtj−1 ∼ (0, tj − tj−1) 1. Then, with probability 1, the quadratic variation

QV(W ) = lim
∆t→0

N∑
j=1

(∆Wj)
2 = T.

Note that for a differentiable function, the quadratic variation is 0.

2. The Wiener process is not differentiable.

In fact, the first item can be seen easily using the law of large number. The second is a corollary
of the first: indeed, if a function f is differentiable, its quadratic variation is 0. This can be easily
seen as follows: suppose f ′ is the derivative of f .

QV(f) = lim
∆t→0

N∑
j=1

(∆fj)
2 ≤ max

j
|∆fj | lim

∆t→0

N∑
j=1

|∆f | ≤ max(f ′)2 lim
∆t→0

∆t
N∑
j=1

|∆tj | = 0.

3 Itô Integral

Next, let us study the Itô integral of a Wiener process. In particular, we would like to provide a
rigorous definition for notions like

∫ T
0 f(t,Wt)dWt. However, since Wt is a stochastic process, we

need to be really careful about what f we can integrate. The following definition is very important.

1From this we have E[(∆Wj)
2] = tj − tj−1, and intuitively we’ll have (dWt)

2 = dt,
∫

(dWt)
2 = T , which might be

helpful in understanding the Itô integral afterwards.



Definition 5 (Non-anticipativity) A function f(t) is non-anticipative w.r.t. a Wiener process
{Wt} if f(t) = f({Ws}s≤t , t) for some function f , i.e., the value of f(t) does not depend on Ws

for s > t.2

Definition 6 (Itô integral) Suppose f is non-anticipative w.r.t. a Wiener process {Wt} such

that E
[∫ T

0 |f(t)|2dt
]
<∞. Then, the Itô integral is defined as

∫ T

0
f(t)dWt = lim

∆t→0

n∑
j=1

f(tj−1)(W (tj)−W (tj−1)).3

Note that the integral may not follow a Gaussian distribution, unless f is independent of Wt.
Also, note that the non-anticipativity ensures that f(tj−1) and W (tj)−W (tj−1) are independent.
Without non-anticipativity, the limit may not be well defined, as shown in the following example
(Example 9). Specifically, we present a sequence of functions fk (which can adapt to the future
change of Wt), such that limn→∞ fk → 0 uniformly over [0, 1], but

∑n
j=1 fk(tj−1)(W (tj)−W (tj−1))

diverges to +∞ as k → +∞.

Definition 7 The total variation of a function g : [0, 1]→ R is defined as the following limit:

TV(g) = lim
∆t→0

n−1∑
j=0

|g(tj+1)− g(tj)|.

Exercise 8 It is an easy exercise to show that

TV(Wt) = +∞.

Example 9 Consider a function w(t) : [0, 1]→ R such that TV(w) =∞. There exists a sequence
of piece-wise constant functions {fk}k∈N such that {fk}k∈N converges uniformly to 0 but I(fk) =∑n

j=1 fk(tj−1)(w(tj)− w(tj−1)) diverges.

Proof: By definition, there exist partitions {Πn = (t0, . . . , tn)}n∈N+ of [0, 1] s.t. the variation
of g on Πn diverges. Let hk(ti) = sgn(g(ti+1) − g(ti)). Obviously I(hk) → ∞ as k → ∞. Let
fk = I(hk)−1/2hk, which converges to 0 uniformly as k →∞. But we have I(fk) = I(hk)1/2 →∞.

2

Since the total variation of a Wiener process is obviously infinity, this counter-example illustrates
the reason why we need non-anticipativity in Definition 6.

Definition 10 (Martingale) A martingale is a stochastic process for which, at a particular time,
the conditional expectation of the next value in the sequence is equal to the present value, regardless
of all prior values. For discrete time stochastic process {Y1, Y2, . . .} such that E(|Yn|) < ∞, a
martingale means the following holds:

E(Yn+1 | Y1, . . . , Yn) = Yn.

2For example, f(t) := Wt is non-anticipative (w.r.t. {Wt}); f(t) := maxt≤s≤T Ws is not non-anticipative; f(t) :={
0 if maxt≤s≤T f(s, )

1 otherwise.
is not non-anticipative.

3Here we use f(tj−1) instead of f(tj) to make sure that W (tj)−W (tj−1) is independent with f(tj−1).



For a continuous time stochastic process {Yt}t such that E(|Yt|) < ∞, a martingale means the
following holds: for any t > s,

E(Yt | Fs) = Ys.

Here Fs is the filtration up to time s. If you are not family with the language of filtration, you can
understand Fs as the history up to time s.

Exercise 11 It is an easy exercise to show that {Wt}t and the Ito integral
∫ T

0 f(t)dWt are both
martingales.

Remark 12 There are also two different integral similar to Itô integral that you may find in the
literature. They are useful in certain technical context. We do not cover them in detail. Here we
use the same notations in Definition 6.

1. (Backward Itô integral) We define∫ T

0
f(t)dWt = lim

∆t→0

n∑
j=1

f(tj)(W (tj)−W (tj−1)).

Note that in the Backward Itô integral we change tj−1 to tj. This integral is particularly useful
when one to reverse the time of the process.

2. (Fisk-Stratonovich integral) We define∫ T

0
f(t)dWt = lim

∆t→0

n∑
j=1

f(sj)(W (tj)−W (tj−1))

where sj =
tj−1+tj

2 . A nice feature of Fisk-Stratonovich integral is that we can still use the
ordinary chain rule (as in ordinary calculus). Sometimes this is useful.

However, both the above integrals have the problem that the two product terms at right-hand-side are
non-independent. So the expectations of them may not be 0, hence they are typically not martingale.
So in most cases, we use Ito’s integral, unless specified explicitly.

4 Itô Process and Itô Calculus

Now, let us consider how to compute an Itô integral. We first need to define the concept of the Itô
process.

Definition 13 (Itô process) A stochastic process X(t) is called an Itô process if it satisfies the
following

X(t) = X(0) +

∫ t

0
δ(s)dWs +

∫ t

0
b(s)ds

where Wt is a Wiener process. This is often written in the differential form for short:

dX(t) = δ(t)dWt + b(t)dt.



Very often the differential form is given. But we should keep in mind that its rigorous meaning
is the integral equation. This definition illustrates that an infinitesimal increment of X(t) follows
N (b(t), δ2(t)), but X(t) may not be a Gaussian random variable. Here δ(t)dWt is called the diffusion
term, and b(t)dt is called the drift term.

It is important to remember that we cannot do the normal differentiate process in Itô calculus,
that is, assume that F is the primitive function of f (F ′ = f), then we cannot have dF (Wt) =
f(Wt)dWt or

∫ t
0 f(Wt)dWt = F (Wt)− F (W0). Consider the following illuminating example.

Example 14 For example, for a given n ∈ N+, T ≥ 0 we denote Wj = W jT
n

for j ∈ [n]. If we let

F (x) = x2

2 , f(x) = x, then we cannot have
∫ T

0 f(Wt)dWt =
W 2

T
2 because clearly the expectation of

left-hand-side is 0, but right-hand-side isn’t. In fact, by straight calculations we have∫ T

0
f(Wt)dWt = lim

n→∞

n∑
j=1

Wj−1dWj = lim
n→∞

n∑
j=1

Wj−1(Wj −Wj−1)

= lim
n→∞

− n∑
j=1

(Wj −Wj−1)2 +

n∑
j=1

Wj(Wj −Wj−1)


= lim

n→∞

− n∑
j=1

(Wj −Wj−1)2 +

n∑
j=1

(W2
j −W2

j−1)−
n∑

j=1

Wj−1(Wj −Wj−1)


= −T +W 2

T −
∫ T

0
WtdWt.

Therefore, we have
∫ T

0 f(Wt)dWt =
W 2

T
2 −

T
2 (this is the correct answer). Intuitively, the additional

term −T/2 comes from the quadratic variation
∑

j(dWj)
2.

To correctly calculate the differentiate process in Itô calculus, we need to introduce the Itô’s
lemma below.

Lemma 15 (Itô’s lemma) Assume that X(t) is an Itô process, F (X(t), t) is a smooth function,
then Y (t) := F (X(t), t) is also an Itô process. It has the form Σ(t)dWt +B(t)dt with

Σ(t) =
∂F (X(t), t)

∂X
δ(t),

B(t) =
∂F (X(t), t)

∂t
+

1

2
δ2(t)

∂2F (X(t), t)

∂X2
+ b(t)

∂F (X(t), t)

∂X
.

Proof Sketch. We only provide a high level proof sketch. As we will see, Itô’s lemma is nothing
but the Taylor expansion up to 2nd order terms. In particular, assume we perturb t to t′ with
difference ∆t = t − t′. Let ∆W = Wt −Wt′ and ∆X = X(t) −X(t′). Since F is smooth (in fact
F ∈ C2 is enough), by Taylor expansion we have

F (X(t), t)− F (X(t′), t′) =
∂F

∂t
∆t+

∂F

∂X
∆X +

1

2

∂2F

∂X2
(∆X)2 + · · ·



We then substitute ∆X by δ(t)∆W +b(t)∆t, and we see that the terms involving ∆W∆t, (∆t)2

or larger order terms will vanish when ∆t→ 0 (after the whole expression is divided by ∆t). 1 The
only interesting term that remains is (∆Wt)

2. By quadratic variation of Wiener process, we know

that the limit of
∑

(∆Wt)
2 (or

∫ T
0 (dWt)

2) is T . Hence, (∆Wt)
2 can be replaced by ∆t (or (dWt)

2

is replaced by dt). Adding the remaining terms will obtain the Itô’s lemma. 2

If you do not want to memorize Itô lemma, you can simply use the following formula.

dYt =
∂F

∂t
dt+

∂F

∂X
dXt +

1

2

∂2F

∂X2
(dXt)

2.

Then, we replace dXt by δ(t)dWt + b(t)dt. For the product of the differentials, we use the following
Itô’s table. Basically, when we see (dWt)

2, we can replace it by dt. In other cases, the product is
simply zero.

Itô’s table

dWt dt

dWt dt 0

dt 0 0

Itô process can be also extended to the multi-dimensional setting.

Definition 16 Let {Wt}t≥0 be an m-dim Wiener process. {Xt}t is an n-dim Itô process if

Xt = X0 +

∫ t

0
F (s)ds+

∫ t

0
G(s)dWs,

where G(s) ∈ Rn×m, F and G are non-anticipative w.r.t. {Wt}t≥0. This is also written as

dX(t) = F (t)dt+G(t)dWt.

Theorem 17 (Itô’s rule for multi-dim processes) Let {Xt} be an m-dim Itô process, F (Xt, t)
be a smooth, twice differentiable function w.r.t. (X, t). We have

dF (Xt, t) =
∂F

∂t
dt+

∂F

∂x
dXt +

1

2
dX>t

∂2F

∂x2
dXt.

1

Example 18 We are given two Ito processes dX1
t = a(t)dt + b(t)dWt, dX

2
t = c(t)dt + e(t)dWt.

Compute d(X1
tX

2
t ) and present it in the form of Ito process. Note that the corresponding Hessian

matrix of X1
tX

2
t is

(
0 1
1 0

)
. Using Ito’s rule for multidimensional case, we have

d(X1
tX

2
t ) = X2

t (a(t)dt+ b(t)dWt) +X1
t (c(t)dt+ e(t)dWt)

+ (a(t)dt+ b(t)dWt) · (c(t)dt+ e(t)dWt)

= X2
t (a(t)dt+ b(t)dWt) +X1

t (c(t)dt+ e(t)dWt) + b(t)e(t)dt

= (c(t)X1
t + a(t)X2

t + b(t)e(t))dt+ (e(t)X1
t + b(t)X2

t )dWt.

1In fact we have E[|∆W |p(∆t)q] ∝ (∆t)
p
2
+q for p, q ∈ N.

1Note that ∂F
∂t

, dXt are vectors, and ∂F
∂x

, ∂2F
∂x2 are matrices.
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