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Review: score-based generative
diffusion models



Review: reverse time SDE

@)

score function

dx = [f[x,t} - gz{t dt + g(t)dw

Reverse SDE (noise — data)

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

Figure 1: Solving a reverse-
time SDE yields a score-based
generative model. Transform-
ing data to a simple noise dis-
tribution can be accomplished
with a continuous-time SDE.
This SDE can be reversed if we
know the score of the distribu-
tion at each intermediate time

step, Vi log p(x).



DENOISING DIFFUSION PROBABILISTIC MODELS
(DDPM)

p(Xi | X?ﬁ-l) — N(Xi; V31— 6%, 5@11)
= A/ 1 — ﬁixiﬁl - mziﬁl

which is a discretization of OU process: dx = —%{3(1’?)}( dt + +/B(t) dw.
Pa; (Xi | X0) = N (x; Vaixo, (1 — a;)I), where o; = Hjl-zl(l — 5j)

Score matching loss:
= argmmz JE e () Epa L (X[x) y[lIse(x,7) — Vx log pa, (X | X)” I

The original DDPM paper uses the variational lower bound to derive the loss
function (see later)



Probability flow ODE

Data Forward SDE Prior Reverse SDE

Data
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score V log p;(x) (Section 3.3).

1
prob flow ODE:  dx = |£(x.t) = 5g(t)*Vx log pi(x) |at



A Variational Perspective of
Diffusion models

Variational Diffusion Models
Denoising Diffusion Probabilistic Models



Quick intro to ELBO

A quick intro to variational inference

* Typically, the posterior is hard to compute and sample from (MCMC approach can be pretty slow )

* We wish to use q (from some parametric family) to approximate the posterior p(z|x)

q*(z) = argminkL (q(z)||p(z|x)) .
q(z)e2

KL (q(2)llp(z|x)) = E [logq(z)] — E [log p(z|x)]
KL (q(2)llp(z]|x)) =E [logq(z)] — E [log p(z,x)] +log p(x).
Minimizing KL is equivalent to maximizing ELBO (since evidence logp(x) doesn’t depend on z)
ELBO: evidence lower bound  ELBO(q) = E [logp(z,x) ] — E [logq(z)]
e ELBO(q) =E [logp(z)] +E [logp(x|z)] —E [logq(z)]
=E [logp(x|z)] — k. (q(2)l|p(2)) -



Variational Diffusion models

X: data
Z: z, to z, diffusion latent variables (progressively adding noise)

q: forward process, adding noise  g(z;|x) = N (ax, 071)
p: reverse process
Maximize likelihood of the data: use EBLO loss for data x

—logp(x) < —VLB(x) = Dk1(q(21|x)|[p(21)) + Ey(z,|x) [~ log p(x|20)] + Lr(x).
- - - | - — _—

S

Prior loss Reconstruction loss Diffusion loss

In the case of finite T, using s(i) = (i — 1)/T, t(i) = i/T, the diffusion loss is:
T

Lr(x) =D Eya, 10 Prr[a(zs() 20y, X)||p(2s() [ze))]- - chain rule of KL

=1
By specifying p and q, we can get a loss that mirror the score-matching loss.
T .
SNR(t) = &f/0}.  Lr(x) = 5 BenN (0.0)i~0 (1,7} [(SNR(s) — SNR(t)) |[x — %o (z+;t)|[3]

T A ‘
Lr(x) = 5 Benn (0.1),inU{1,7} [(CXP(’Yn(t) —n(s)) —1)|le - fe(zt?f)ﬂﬂ

Noise prediction model



Figure 1. Our approach enables transformers to synthesize high-resolution images like this one, which contains 1280x460 pixels.

Taming transformers for high-resolution image synthesis.



VQ-GAN

» Taken together, convolutional and transformer architectures can model the
compositional nature of our visual world

— CNN: to efficiently learn a codebook of context-rich visual parts
— Transformer: long-range interactions for the compositions of patches

Learnable codebook Z

real/fake
Codebook 7 Transformer Ill VB E
_— _.ll I B
p(s) = [Lplsilscs) = T
— =
- E ?_I flr|r|r

1 .‘ oy
argmin,.-z |2 — z|

quantization

Figure 2. Our approach uses a convolutional VQGAN to learn a codebook of context-rich visual parts, whose composition is subsequently
modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a
patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of
convolutional approaches to transformer based high resolution image synthesis.

Details in [1] Taming transformers for high-resolution image synthesis.



VQ-GAN

Learnable codebook Z
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Figure 2. Our approach uses a convolutional VQGAN to learn a codebook of context-rich visual parts, whose composition is subsequently
modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a
patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of
convolutional approaches to transformer based high resolution image synthesis.

Z: Learnable discrete codebook |Z|= 1024
Final objective of VQGAN

2q = q(%) = (argmin”iij — Zk”) € Rhxwxns

zZREZ
Backpropagation through the non-differentiable quantization operation is Q" =argminmaxE, [EVQ (F,G,Z)
achieved by a straight-through gradient estimator, which simply copies the EGz D

gradients from the decoder to the encoder

FALaanEC.2) D}]

Lvo(E,G, Z) = ||z — || + ||sg[E(z)] — 24|l Sg: stop gradient
+ Isglzq] — E(2)[13-
Low({E, G, 2}, D) = [log D(x) + log(1 — D(i))] patch-based adversarial GAN loss



VQ-GAN

Generate images using VQGAN

» Using transformer to learning the sequence of
codebooks (attention is all you need in latent space)

— Generate the sequence autoregressively

p(s) = 1], p(sils<i)

— Adding the condition
p(sle) = [ [ p(sils<i, o).

— Generation:

s i i
- i

"

Figure 3. Sliding attention window.



Stable Diffusion

High-Resolution Image Synthesis with Latent Diffusion Models



ours (| = 1) DALL-E([ = &) VOGAN ([ = 16)
Input PSNR: 274 B-FIDe 0,58 PSNE: ¥ 2 R-FIDk 3201 FSNE: 19.9 R-FlD: | %=

Figure 1. Boosting the upper bound on achievable quality with
less agressive downsampling. Since diffusion models offer excel-
lent inductive biases for spatial data, we do not need the heavy spa-
tial downsampling of related generative models in latent space, but
can still greatly reduce the dimensionality of the data via suitable
dutﬂenc:ﬂdmg models, see Sec. 3. Images are from the DIVZK [ ]

alid: ; at 512 px. We denote the spatial down-
sampling factor by f .| Reconstruction FIDs [~] and PSNR are

calculated on ImageNet-val. [ | ']; see also Tab. 8.



Stable diffusion

|ldea: the reconstructions are confined to the image manifold (enforcing
local realism), rather than on pixel-space (Diffusion in latent space)
Use an autoencoder in VQGAN (trained by combination of a perceptual

loss and a patch-based adversarial objective)
Encoder E encodes image x into a latent representation z = E(x)
The encoder downsamples the image by a factor f
Decoder D reconstructs the image from the latent, giving x™ = D(z) = D(E(x))
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Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3



Stable diffusion
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Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3

Loss from variational lower bound on p(x), which mirrors denoising score-matching
Loss of Diffusion model: Loy =E, x|l — ef;(-rf,t)\lﬁ]

denoising autoencoders €g(x¢, 1)

Loss of Diffusion model in latent space: Liow :=Eg).cno.) [He = ca{zt,t)[lﬂ :
The neural backbone of the model €y(z:,1) is realized as a time-conditional UNet



Stable diffusion
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Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3

Conditioning Mechanisms:
a conditional denoising autoencoder <a(z:,t,y)

the cross-attention mechanism:
First pre-process y from various modalities (such as language prompts) use a domain

specific encoder 14 that projects y to an intermediate representation

* Cross attention: Attention(Q, K, V') = softmax (%) .V, with

Such a
attention
mechanism is (1) . (1) f(.,:)
complicated Q - H’Q . :,-9,,;(23:), K==W e T0 (y), V=W ¥ T()(y)-
and may —
interfere the | a (flattened) intermediate representation of the UNet implementing €4

UNet
gener:tion .
se s Loss of Conditional LDM: Ly pas = Ee (o y oo [”E—Eg(zt,t,?'g(y))”%}

ControlNet



Some detalls about UNet

inlqr;l:;g > . output
tile AL )| segmentation

2 map

I‘xi ! J*l*ﬂ = conv 3x3, ReLU

—~ copy and crop

I»l-ﬁ m- ¥ max pool 2x2
4 up-conv 2x2
ﬂb_ g = conv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

See: U-Net: Convolutional Networks for Biomedical Image Segmentation



Stable Diffusion: Text-to-Image

Text-to-Image Synthesis on LAION. 1.45B Model.

"A streer sign that reads "A zomibie in the ‘An image of an animal “An iflustrarion of a slightly ‘A painting of a A watercolor painting of a ‘A shirr with the inscription:

“Latent Diffusion” * stvle of Picasso’ half mouse half octopus® conscious newral network” squirrel eating a burger’ chair that looks like an octopus’ “Ilove generative models!” *

—
LATENT
DIFFUSION

TETEN
DIFFUSION

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [ "] database. Samples generated with 200 DDIM steps and 77 = 1.0. We use unconditional guidance [ "] with s = 10.0.



Stable Diffusion: Layout-to-Image

Figure 8. Layout-to-image synthesis with an LDM on COCO [ ],
see Sec. 4.3.1. Quantitative evaluation in the supplement D.3.



Stable Diffusion: super-resolution

bicubic

Figure 10. ImageNet 64—256 super-resolution on ImageNet-Val.
LDM-SR has advantages at rendering realistic textures but SR3
can synthesize more coherent fine structures. See appendix for
additional samples and cropouts. SR3 results from [ ].



Stable Diffusion: inpainting

input result

Figure 11. Qualitative results on object removal with our big, w/
Jt inpainting model. For more results, see Fig. 22.



ControlNet

ControlNet is a neural network architecture that can enhance
pretrained image diffusion models with task-specific conditions.



Source image
{for canny edge detection)

Canny edge (input) Generated images (output)

Figure 1: Control Stable Diffusion with Canny edge map. The canny edge map is input, and the
source image is not used when we generate the images on the right. The outputs are achieved with a
default prompt “a high-guality, detailed, and professional image”. This prompt 15 used in this paper
as a default prompt that does not mention anything about the image contents and object names. Most
of figures in this paper are high-resolution images and best viewed when zoomed in.



ControlNet

Z: “zero convolution” | i.e., 1 X1 convolution layer with both
weight and bias initialized with zeros. z;.(w B}),.=B.+3 1w,

y = F(x:0) Yo = F(x:0) + Z(F(z + Z(¢:0,):0.): Op)
_ I:rumni’nlutmn
x x ®
[ neural network | neural network E e T
block block {locked) ' iy
| zero convolution
Y ControlNet
(a) Before (b) After

Figure 2: ControlNet. We show the approach to apply a ControlNet to an arbitrary neural network

block. The x, i are deep features in neural networks. The “+" refers to feature additon. The “c” s
an extra condition that we want to add to the neural network. The “zero convolution™ 15 an 1 x 1

convolution layer with both weight and bias imtialized as zeros.



ControlNet in Stable Diffusion

Prompt
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latent code (middle
block).

It does not change
the decoder.

{b) ControlMNet

Figure 3: ControlMNet in Stable Diffusion. The gray blocks are the structure of Stable Diffusion 1.5
(or 8D V2.1, since they use the same U-Net architecture), while the blue blocks are ControlNet.



ControlNet

» the locked copy preserves the network capability learned from
billions of images

» the trainable copy is trained on task-specific datasets to learn the
conditional control.

» Since the zero convolution does not add new noise to deep features,
the training is as fast as fine tuning a diffusion model, compared to
training new layers from scratch.



Training
* Loss! L=E; .c,cne~N(0,1) D\C — eg(zt, t, c, Cf))”%]

* During the training, we randomly replace 50% text prompts c_t with empty strings. This
facilitates ControlNet’s capability to recognize semantic contents from input condition
maps, e.g., Canny edge maps or human scribbles, etc.

« This is mainly because when the prompt is not visible for the SD model, the encoder
tends to learn more semantics from input control maps as a replacement for the prompit.

« Small-Scale Training: When computation device is limited, one can accelerate
convergence by disconnecting the link to decoder 1,2,3,4 and only connecting the middle
block (this can improve the training speed by about a factor of 1.6)



use BLIP to generate captions
Input (Canny Edge)

Default

x. .
R e
'5‘,-.

1 4 -,'.\F&.}\. ‘

Autormatic Prompt

| User Prompt
| |
| .

“a man with beard sitting with two children”

y




“a robot head with gears” “robot, cybernetic, cyberpunk, science fiction”™

Figure 4: Controlling Stable Diffusion with Canny edges. The “automatic prompts™ are generated by BLIP based on the default result images
without using user prompts. See also the Appendix for source images for canny edge detection.



Input {(Hough Line) Automatic Prompt User Prompt

-y ..

| .r[‘ 1 :i

P

“adesk ina room” “hacker's mom at night”

Figure 5: Controlling Stable Diffusion with Hough lines (M-L5D). The “automatic prompts™ are generated by BLIP based on the default



“Michael Jackson's concert”

Figure 10 Controlling Stable Diffusion with human pose to generate different poses for a same

person (“Michael Jackson's concert”™). Images are not cherry picked. See also the Appendix for
soiTee 1 ases forf Inennose nocee detecrtiom



COCO Segmentation Diefault User Prompt

“cyberpunk, city at night®

Figure | 2: Controlling Stable Diffusion with COCO-Stuff [4] segmentation map.



Besults

Figure 16: Masked Diffusion. By diffusing images in masked areas, the Canny-edge model can be
used to support pen-based editing of image contents. Since all diffusion models naturally support
masked diffusion, the other models are also likely to be used in manipulating images.



Control Stable Diffusion with Scribble Maps

To use it, you have to download it as an extension in WebUL. Go to the Extensions tab and

choose the Install from URL option, then paste this link where it says the extension's git
repository URL: https://github.com/Mikubill/sd-webui-controlnet.



Same proapl:
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Figure 21: The sudden converge phenomenon. Because we use zero convolutions, the neural network always predict high-guality images during

the entire training. At a certain point of training step, the model suddenly learns to adapt to the input conditions. We call this “sudden converge
phenomenon™.



Input Taming Transformer, Esser ef.al

Ours default Ours “a glass of water”
{Seems to be interpreted as a (5eems unable to elimmate the
bird's eye view of an agricultural effects of mistaken recognitions)
field)

Figure 28: Limitation. When the semantic of input image is mistakenly recognized. the negative
effects seem difficult to be eliminated. even if a strong prompt is provided.



