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1 Feyman-Kac Formula

Feyman-Kac formula is an important connection between SDE and parabolic PDE. Consider the
following boundary value problem on [0, T ]× R,

∂F

∂t
(t, x) + b(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x) = 0,

F (T, x) = Φ(x).

(1)

In general, there is no closed form solution of the above PDE. Feyman-Kac formula says that the
solution of the above PDE can be written as the expectation of certain stochastic process, defined
by the following SDE defined over [t, T ]:{

dXs = b(s,Xs)ds+ σ(s,Xs)dWs,

Xt = x.
(2)

Then one can conclude that

F (t, x) = Et,x[Φ(XT )], for t ≤ T

which is the Feyman-Kac formula. Here Et,x means that the initial point of the stochastic process
is Xt = x.

Proof: Consider the infinitesimal generator of the SDE:

A = b(t, x)
∂

∂x
+

1

2
σ2(t, x)

∂2

∂x2
.

So, Eq. (1) can be rewritten as 
∂F

∂t
(t, x) +AF (t, x) = 0,

F (T, x) = Φ(x).
(3)

By Ito’s Lemma, we have

dF = (
∂F

∂t
+AF )ds+ σ

∂F

∂x
dWs = σ

∂F

∂x
dWs. (4)

F (T,XT ) = F (t, x) +

∫ T

t
σ
∂F

∂x
dWs. (5)

Take the expectation, we have F (t, x) = Et,x[Φ(XT )], which is the Feyman-Kac formula. 2



Komogorov Backward Equation (KBE): An important corollary of Feyman-Kac formula is
that the function F (t, x) = P (xt′ = x′|xt = x) (for fixed t′, x′ and t′ > t) satisfies the first PDE in
Eq equation 1. Namely, the following

∂P (xt′ = x′|xt = x)

∂t
(t, x)+b(t, x)

∂P (xt′ = x′|xt = x)

∂x
(t, x)+

1

2
σ2(t, x)

∂2P (xt′ = x′|xt = x)

∂x2
(t, x) = 0.

This equation is also known as Komogorov Backward Equation (KBE). One way to see this is as
follows: for fixed t′ with t′ = T , let F (T, x) = Φ(x) = δx′(x). Hence, we can see that

F (t, x) = Et,x[Φ(XT )] = E[δx′(XT ) | Xt = x] = P (xt′ = x′|xt = x).

2 Fokker Planck Equation

There is a closely related equation called Kolmogorov Forward Equation, which is also known as
Fokker Planck Equation in physics literature.

2.1 Overview

Definition 1 (Hermitian adjoint) Each linear operator A on a Euclidean vector space defines
a Hermitian adjoint (or adjoint) operator A∗ on that space according to the rule

〈Ax, y〉 = 〈x,A∗y〉. (6)

where 〈·, ·〉 is the inner product on the vector space.

Definition 2 (Formal adjoint in one variable) In the functional space of square-integrable func-
tions on a real interval (a, b), the scalar product is defined by

〈f, g〉 =

∫ b

a
f(x)g(x)dx,

where ¯f(x) denotes the complex conjugate of f(x). We assume that f or g are smooth and their
values and derivatives vanish as x → a, x → b (such functions are typically called test functions).
Consider the differential operator T (T maps a function to a function), defined as follows:

Tu =

n∑
k=0

ak(x)Dku.

Here D is the differential operator. One can also define the adjoint of the linear differential operator
T as

T ∗u =
n∑
k=0

(−1)kDk[ak(x)u]. (7)

It is not difficult to prove that Eq. equation 7 is indeed the adjoint (i.e., it satisfies Definition 1.
We only need to apply integral by part (

∫
fdg = fg −

∫
gdf) repeatedly and we leave it as an

exercise.



Theorem 3 (Fokker Planck Equation / Kolmogorov Forward Equation) Assume that b(x)
is C1 and σ(x) is C2. For ρ ∈ C2, define

L∗ρ(x) = −
n∑
i=1

∂

∂xi
(bi(x)ρ(x)) +

1

2

n∑
i,j=1

m∑
k=1

∂2

∂xi∂xj
(σik(x)σjk(x)ρ(x)). (8)

Suppose that the density pt(x) exists and is C1 in t, C2 in x. Then

∂

∂t
pt(x) = L∗pt(x), t ∈ [0, T ], (9)

i.e. the density pt(x) of Xt must satisfy the Fokker Planck Equation (Kolmogorov Forward Equa-
tion).

Proof: Fix an f ∈ C2
0 (in C2 and with compact support). By Ito’s rule, we obtain

f(Xt) = f(X0) +

∫ t

0
Lf(Xs)ds+ martingale. (10)

(the last term is a martingale as f , and hence its derivatives, have compact support, and thus the
integrand is bounded). Taking the expectation and using Fubini’s theorem, we obtain

E(f(Xt)) = E(f(X0)) +

∫ t

0
E(Lf(Xs))ds. (11)

Substituting the definition of pt(y), integrating by parts, and using Fubini’s theorem again, we have∫
Rn
f(y)pt(y)dy =

∫
Rn
f(y)p0(y)dy +

∫
Rn
f(y)

∫ t

0
L∗ps(y)dsdy (12)

Now note that this expression holds for any f ∈ C2
0 , so we can conclude that

a(y) = pt(y)− p0(y)−
∫ t

0
L∗ps(y)ds = 0 (13)

for all y, except possibly on some subset with measure zero w.r.t. the Lebesgue measure. 2

2.2 Ornstein-Uhlenbeck Process

Definition 4 (Ornstein-Uhlenbeck Process) The Ornstein–Uhlenbeck process xt is defined by
the following stochastic differential equation:

dxt = −θ xt dt+ σ dWt (14)

where θ > 0 and σ > 0 are parameters and Wt denotes the Brownian motion process. See some
examples in Figure 1. Note that the OU process is a stationary process.



Figure 1: Five simulations with θ = 1, σ = 1

The Ornstein–Uhlenbeck process can also be described in terms of a probability density function,
P (x, t), which specifies the probability of finding the process in the state x at time t. This function
satisfies the Fokker–Planck equation

∂P

∂t
= θ

∂

∂x
(xP ) +D

∂2P

∂x2
(15)

where D = σ2/2. This is a linear parabolic partial differential equation which can be solved by a
variety of techniques. The transition probability, also known as the Green’s function, P (x, t | x′, t′)
is a Gaussian with mean x′e−θ(t−t

′) and variance
D

θ

(
1− e−2θ(t−t′)

)
:

P (x, t | x′, t′) =

√
θ

2πD(1− e−2θ(t−t′))
exp

[
− θ

2D

(x− x′e−θ(t−t′))2

1− e−2θ(t−t′)

]
(16)

This gives the probability of the state x occurring at time t given initial state x′ at time t′ < t.
Equivalently, P (x, t | x′, t′) is the solution of the Fokker–Planck equation with initial condition
P (x, t′) = δ(x− x′).

2.3 Heat Equation

Heat equation on Euclidean space is a special case of Fokker-Planck equation.

Definition 5 (Heat Equation) Given an open subset U ⊆ Rn and a subinterval I ⊆ R, one says
that a function u : U × I → R is a solution of the heat equation if

∂u

∂t
= α∇2u = α∆u (17)

where ∆ is the Laplacian operator.



Heat kernel solves the Heat equation. As

∂K

∂t
(x, y, t) = ∆xK(x, y, t), (18)

we have the solution is

K(x, y, t) =
1

(4πt)d/2
e−
|x−y|2

4t (19)

with limt→0K(x, y, t) = δ(x− y) = δx(y).

2.4 Gibbs Distribution

Consider the SDE with the energy field E (the drift direction is the negative gradient direction):

dxt = −∇xE(xt)dt+

√
2

β
dWt (20)

Let pt(·) be the density of xt. We want to find the stationary (density) distribution p(x). In
other words, if the initial distribution x0 ∼ p(x), xt is also distributed as p(x), i.e., pt = p for all
t ≥ 0. By Fokker Planck Equation, we know that

∂pt
∂t

(x) = L∗pt.

Since pt does not change with t, so ∂pt/∂t = 0. Equivalently we have L∗pt = 0, or more concretely

∇>(pt∇E) +
1

β
∇>∇pt = 0. (21)

So pt∇E+ 1
β∇pt should be a constant, say C. As pt should be smooth and integrable, so at infinity

pt and ∇pt should approach to 0, so the constant C = 0. Hence, we have

∇(E +
1

β
log pt) = 0.

Solving the above equation give the following solution:

pt(x) ∝ exp(−βE(x)). (22)

A stationary p.d.f. p of the above form is called the Gibbs distribution.

3 Reverse Time Diffusion Model

3.1 Reverse-time SDE

Much of this section follows Appendix B of (Song et al., 2020), so it might be a good idea to huff
it straight from the source now that we have all the tools to understand it. There are a few extra
things explicitly derived here, so let us keep moving forward.



We restrict the diffusion coefficient to be a scalar (or a scalar multiplied with the identity
matrix) which only depends on the time t and not X. The forward SDE is

dXt = f(Xt, t)dt+ g(t)dWt (23)

Here f is a vector function and Wt is the standard Wiener process with time ranging from 0 to
T . A remarkable theorem of Anderson [1] show that the reverse-time process {}X←t } can be also
described as an SDE as follows:

dX←t =
(
f(X←t , t)−

g2(t)

Pt(X←t )
∇xp(X←t )

)
dt+ g(t)dW̄t

=
(
f(X←t , t)− g2(t)∇x log pt(X

←
t )
)
dt+ g(t)dW̄t

(24)

Here, pt() is the distribution of Xt at time t in the forward process. In the reverse SDE, the time
ranges from T to 0 and thus dt is a negative increment, and dW̄t is the reversed Wiener process
(or Gaussian increment with variance −dt).

In particular, suppose the initial distribution of X0 (forward process) is p0 and the terminal
distribution is pT . Let the reverse process X←t starts from the distribution pT at time T . Now,
suppose the time goes backwards. Anderson shows that X←t follows the same distribution as Xt.
A complete proof of this fact can be found in [2].

In fact, more is true: not only the marginal distribution of X←t (at any time) is the same as
that of Xt, the joint distribution of the sample path {X←t } is the same as that of {Xt}, and it is
possible to construct a backward sample path from each forward sample path (they are not the
same!). See Anderson’s original paper [1] for the details.

4 Score-Based Generation Model

We briefly introduce two popular score-based diffusion models, SMLD and DDPM. Both models
consist of a forward process and backward process. In the forward process, we start from the data
distribution X(0) and gradually add Gaussian noise until the distribution X(T ) becomes close
to pure Gaussian noise. In the backward process, we start from X(T ) and gradually remove the
noise and generate X(0) by simulating the reverse process guaranteed by Anderson’s theorem. See
Figure 2. Both SMLD and DDPM can be regarded as discretizations of the above forward and
reverse SDEs.

4.1 Denoising Score Matching With Langevin Dynamics (SMLD) [3]

Let pdata(x) denote the data distribution. Let pσ(x̃|x) := N (x̃;x, σ2I) be a perturbation kernel, and
pσ(x̃) :=

∫
pdata(x)pσ(x̃|x)dx. Consider a sequence of positive noise scales σmin = σ1 < σ1 < · · · <

σN = σmax. Typically, σmin is small enough such that pσmin ≈ pdata(x), and σmax is large enough
such that pσmax ≈ N (x; 0, σ2maxI). The perturbation kernel pσ(x̃|x) corresponds to the following
Markov Chain:

xi = xi−1 +
√
σ2i − σ2i−1zi−1,

where zi−1 ∼ N(0, I). In the limit where σi becomes a continuous function σ(t), the above Markov
Chain can be viewed as a discretization of the following SDE:

dx =

√
d[σ2(t)]

dt
dw.



Figure 2: Diffusion models based on the reverse process. Figure from [5].

We train a Noise Conditional Score Network (NCSN), denoted by sθ(x, σ), with a weighted sum
of denoising score matching objectives:

θ∗ = arg min
N∑
1

σ2Epdata(x)Epσi (x̃|x)[||sθ(x̃, σ)−∇x̃ log pσi(x̃|x)||22] (25)

Given sufficient data and model capacity, the optimal score-based model sθ∗(x, σi) matches∇x̃ log pσi(x̃|x)
almost everywhere. For sampling, we run M steps Langevin MCMC to get a sample for each pσi(x)
sequentially:

xmi = xm−1i + εisθ∗(x, σi) +
√

2εiz
m
i (26)

where εi > 0is the step size, and zmi is standard normal. This can be seen as a discretization of the
reversed SDE. The above is repeated for i = N,N−1, · · · , 1 in turn with x0N and x ∼ N (x; 0, σ2maxI)
and x0i = xMi+1 when i < N . As M → ∞ and εi → 0 for all i, xM1 becomes an exact sample from
pσmin ≈ pdata(x) under some regularity conditions.

4.2 Denoising Diffusion Probabilistic Models (DDPM) [4]

For each training data point x0 ∼ pdata(x), a discrete Markov chain x0, x1, · · · , xN is constructed
such that

p(xi|xi−1) = N (xi;
√

1− βixi−1, βiI),

and therefore p(xi|x0) = N (xi;
√
αix0, (1−αi)I), where 0 < β1, · · · , βN < 1, αi =

∏i
j=1(1−βj). In

fact, this corresponds to a discretization of the following SDE (OU process)

dx = −1

2
β(t)xdt+

√
β(t)dw.

Similar to SMLD, we can denote the perturbed data distribution as pαi(x̃) =
∫
pdata(x)pαi(x̃|x)dx.

The noise scales are prescribed such that xN is approximately distributed according to N (0, I). A



variational Markov chain in the reverse direction is parameterized with pθ(xi−1|xi) = N (xi−1;
1√

1−βi)
(xi+

βisθ(xi, i)), βiI, and trained with a re-weighted variant of the evidence lower bound (ELBO):

θ∗ = arg min
N∑
1

(1− αi)Epdata(x)Epαi (x̃|x)[||sθ(x̃, i)−∇x̃ log pαi(x̃|x)||22] (27)

After solving the optimal model sθ∗(x̃, i), samples can be generated by starting from xN ∼ N (0, I)
and following the estimated reverse Markov chain as below

xi−1 =
1√

1− βi
(xi + βisθ∗(x̃, i)) +

√
βizi (28)

We call this method ancestral sampling, since it amounts to performing ancestral sampling from the
graphical model

∏N
i=1 pθ(xi−1|xi). The objective is also a weighted sum of denoising score matching

objectives, which implies that the optimal model, sθ∗(x̃, i), matches the score of the perturbed data
distribution, ∇x̃ log pαi(x̃|x). Notably, the weights of the i-th summand, namely σ2i and αi, are
related to corresponding perturbation kernels in the same functional form: σ2i ∝ E[∇x̃ log pσi(x̃|x)]
and αi ∝ E[∇x̃ log pαi ].

4.3 ESTIMATING SCORES FOR THE SDE [5]

By starting from samples of xT ∼ pT and reversing the process, we can obtain samples x0 ∼ p0. A
remarkable result from Anderson[1] states that the reverse of a diffusion process is also a diffusion
process, running backwards in time and given by the reverse-time SDE:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw (29)

where w is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, ∇x log pt(x), is known
for all t, we can derive the reverse diffusion process from Eq. 29 and simulate it to sample from p0.

The score of a distribution can be estimated by training a score-based model on samples with
score matching. To estimate ∇x log pt(x), we can train a time-dependent score-based model sθ(x, t)
via a continuous generalization to Eqs. 25 and 27:

θ∗ = arg min
θ

Et
{
λ(t)Ex(0)Ex(t)|x(0)

[∥∥sθ(x(t), t)−∇x(t) log p0t(x(t) | x(0))
∥∥2
2

]}
(30)

Here λ : [0, T ]→ R>0 is a positive weighting function, t is uniformly sampled over [0, T ]], x(0) ∼ p0
and xt ∼ p0t(x(t)|x(0)). With sufficient data and model capacity, score matching ensures that the
optimal solution to Eq. 30, denoted by sθ∗(x, t), equals ∇x log pt(x) for almost all x and t. As in
SMLD and DDPM, we can typically choose

λ ∝ 1/E
[∥∥∇x(t) log p0t(x(t) | x(0))

∥∥2
2

]
. (31)
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