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Recall Fokker Planck equation

e Consider a diffusion process on R? with time-independent drift

and diffusion coefficients. The Fokker-Planck equation is

Z lzd: > (z)p), t >0, z € R
d‘:r? 2_ — d‘:rd‘:r? vP); T ’

p(z,0) = f(z), z€R™

Fokker Planck equation for OU-proces: dX; = —aX;dt + V2DdW;
Set a(t,x) = —ax, b(t,z) = 2D > O:

op  O(xp) d%p
E_& ox +Dﬁ




Fokker Planck equation
dX, = —VV(X,)dt + V2D dW,.

e The corresponding FP equation is:

0
L = V- (VVp) + DAp.
ot
The stationary distribution of the above Markov process is the following Gibbs
distribution: 1
-V D
p(r) = EE (z)/ one can verify it satifies FP equation

where the normalization factor Z is the partition function

A :/ e~ V@)D qq.
]Rd



A normalized version

* |t is more convenient to normalize the solution of the
* Fokker-Planck equation wrt the invariant distribution

let p(x) be the Gibbs distribution

Define h(x,t) through
p(x,t) = h(x,t)p(x).
Then the function h satisfies the backward Kolmogorov
equation:
Oh

57 =~ VV-Vh+DAh h(z,0) = p(z,0)p" " (z).



Proof. The initial condition follows from the definition of h. We
calculate the gradient and Laplacian of p:

Vp = pVh — phD1VV
and
Ap = pAh —2pD 'VV -Vh+hD ' AVp+ h|VV|?D?p.

We substitute these formulas into the FP equation to obtain

Oh
ot

from which the claim follows.

— p(—vv-vam),



The self-adjoint generator

* Consider the Hilbert space with the following inner product
(o= [ Fhole) da
Proposition 3. Assume that V(x) is a smooth potential and
assume that condition (7) holds. Then the operator
L=-VV(zx)-V+ DA

s self-adjoint in Lf}. Furthermore, it is non-positive, its kernel

consists of constants.



The self-adjoint generator

Proof. Let f, € C2(R%). We calculate
(Lf,h), = / (=VV -V + DA)fhpdx
Rd
= / (VV -V f)hpdx — D VfVhpdr — D VfhVpdzx
Rd

R4 R4

= D Vf-Vhpdzx,
]Rd

from which self-adjointness follows.



The self-adjoint generator

If we set f = h in the above equation we get
2
(‘f’f: .f)ﬂ — _DHVJCH,G:

which shows that £ is non-positive.

Clearly, constants are in the null space of £. Assume that

f € N(L). Then, from the above equation we get

and, consequently, f is a constant.



Dirichlet Form and Poincare inequality

Remark 1. The expression (—Lf, f), is called the Dirichlet form
of the operator L. In the case of a gradient flow, it takes the form
(=L, f)o = DIVl

Proposition 4. Assume that the potential V' satisfies the convexity
condition

D?V > ).

Then the corresponding Gibbs measure satisfies the Poincaré
tnequality with constant \:

fo=0 = |Vfl, = VAIfl, (11)

]Rd



How should we understand Poincare inequality?

Poincare inequality essentially asserts that the spectral gap of self-adjoint operator L is at least A.

fo=0 = |V£ll, = VISl

Rd

Note that the first eigenvalue of L is O (with eigenfunction being the constant function)

Larger spectral gap implies faster convergence (to the stationary distribution). Later.

Theorem 2. Assume that p(z,0) € L?(eV/P). Then the solution
p(xz,t) of the Fokker-Planck equation (6) converges to the Gibbs

distribution exponentially fast:

Ip(,t) = Z7 e V|- < e M Ip(-,0) — Z7 e

P 1.



Discrete Markov Chain

It would be instructive to consider the discrete Markov chain with uniform stationary
distribution (e.g., an undirected graph with uniform degree) (Here A is the transition matrix)

Let A be a symmetric m x o matrix. Let Ay > Ag > --- > A, be the eigen values of A and vy, v, . .., v, be the corresponding eigenveciors. Then
T Az T Az
A1 = max and As = max .
zeR" zlzx zln, zTg

fo=0 = [IVfl, = VAIfll,

f is orthognal to 1 recall (Lf, f), = —D|Vf|>
(w.r.t. inner prod (, ), )

So, the spectral gap of self-adjoint operator L is at least 4



Convergence of Discrete Markov Chain

Definition (mixing time)

()

t
Let 1 be the stationary of the chain, and pz" be the distribution after £ steps when the initial state is .

t
o« Az(t) = ||p£j — w||Tv is the distance to stationary distribution 7 after ¢ steps, started at state x.
« A(t) = max A;(t) is the maximum distance to stationary distribution 7r after ¢ steps.
Tef)

o 7z(€) = min{t | A;(t) < €} is the time until the total variation distance to the stationary distribution, started at the initial state z, reaches €.
o 7(€) = max T.(€) is the time until the total variation distance to the stationary distribution, started at the worst possible initial state, reaches €.
ze

Theoram

Let P be the transition matrix for a symmetric Markov chain on state space {where )| = N.Let A; > A9 = --- = Ay be the spectrum of P and
Amax = max{|As|, |Ax|} . The mixing rate of the Markov chain is

ﬂd{%mN+h%
D

1
Recall that due to Perron-Frobenius theorem, Ay = 1. And 1P = 1 since P is double stochastic, thus vy = =

1
1] _(@""’

9-
P

Source: https://tcs.nju.edu.cn/wiki/index.php?title=%E9%9A%8F%E6%ICY%BABETHAE%IT7%E6%B3%I5_(Fall_2015)/Expander_Graphs_and_Mixing



Proof.

As analysed above, if P is symmetric, it has orthonormal eigenvectors vy, . . . , U such that any distribution q over (1 can be expressed as

N N T
When g s a distribution, i.e., g is a nonnegative vector and ||g||; = 1. it holds thate; = g v = ——
q= ) cui=m+ )Y o o VN
==; i=2 and c;v; = (F, , N) = . thus
with ¢; = @~ v;. and N N
N qzzlchvi:‘fr Z;c,vn
i= i=
gPt =7+ Z C,'_)LE'U,'_.
i=2 N N
th =Pt + ZC.-*[:.;P: =4+ Zc.,).:ﬂ.,
Thus, i=2 i=2
N
t t
lgPt —nlly = 3 e,
- 1
N
<vN Z e\, (Cauchy-Schwarz)
i=2 o
N
— 2t
o Nw Z '::2)":'
i=2

I
< @Jufmw N

= VN [lqll2
<VNX__.

The last inequality is due to a universal relation ||g||2 < ||g||1 and the fact that q is a distribution.




Then for any « € (), denoted by 1, the indicator vector for & such that 1.(x) = 1 and 1.(y) = 0for y # x, we have

1
Ag(t) = 1.Pt 7 v = E 1.Pt -« L
< VN o< YN tod),
— 9 max — 9
Therefore, we have
1 1
3 InN +In 2

ra(e) = minft | As(t) < €} € ———

for any & € {2, thus the bound holds for T7(€) = max 7. (€).
I

[




Poincare inequality implies exponential convergence

Theorem 2. Assume that p(z,0) € L?>(e"/P). Then the solution
p(x,t) of the Fokker-Planck equation (6) converges to the Gibbs

distribution exponentially fast:

Ip(-t) —Z~ ' _VH,G < _ADth( 0) -2 . _VH,O
Proof.
d Oh
——|(h=1)|? = =2 (— h—l) = —2(Lh,h — 1)
dt P 0 p P

= (=L(h—1),h—1),=2D|V(h—1),
> 2DA||h — 1|3

Our assumption on p(-,0) implies that h(-,0) & LE,. Consequently,
the above calculation shows that

|R(-,t) — 1|, < e *PYH(-,0) —1]|,.

(ﬁf" f)P
IV£llp 2

= -D|Vf|?

V£,



