Deep Learning 2
深度学习 2

Jian Li
IIIS, Tsinghua
Some Linear Algebra, PCA, Eigenface
线性代数 主成分分析 本征脸
Least Square

Least square problem (LS)

\[
\inf_{x \in \mathbb{R}^n} \|Ax - b\|_2^2 \quad A \in \mathbb{R}^{m \times n} \text{ (m points, n dimension)}
\]

\[
f(x) = (Ax - b)^T (Ax - b) = x^T A^T Ax - 2b^T Ax + b^T b
\]

Let \(\nabla f = 2A^T Ax - 2A^T b = 0 \)

\[
A^T Ax = A^T b
\]

If rank(A) = n, \(A^T A \) is invertible, so \(x = (A^T A)^{-1} A^T b \)

Moore-Penrose Pseudoinverse if rank(A)=n

Note: if not full col rank, we need to solve the problem in the row subspace.

Can do it via SVD.

如果不是列满秩，我们需要在行空间中解决问题，SVD！
矩阵奇异值分解 SVD

Moore-Penrose inverse
SVD: $X = USV^T$

$X^{inv} = VSU^T$

The solution to LS problem
$\inf \|Xt - b\|$

is still $X^{inv}b$
Now let us derive it geometrically. Consider the subspace spanned by col of X: col(X). 考虑由X列空间的子空间

So $Xt \in \text{col}(X)$. $\|Xt - b\|_2$ is the dist between Xt and b

Def: 正交投影算子 orthogonal projection operator (onto $\text{col}(X)$)

(projection: $PP = P$; orthogonal proj: $P = P^T$)

$$P_X = UU^T = A(A^T A)^{inv} A^T = USV^T (VSV^T) VSU^T$$

here we use $(A^T A)^{inv} = A^{inv} (A^T)^{inv}$

几何直觉 Geometric intuition: consider $P_Xt = UU^T t$

几何观点 geometrical view: Consider the subspace spanned by col of X: col(X). 考虑由X列空间的子空间

So $Xt \in \text{col}(X)$. $\|Xt - b\|_2$ is the dist between Xt and b

Def: 正交投影算子 orthogonal projection operator (onto $\text{col}(X)$)

(projection: $PP = P$; orthogonal proj: $P = P^T$)

$$P_X = UU^T = A(A^T A)^{inv} A^T = USV^T (VSV^T) VSU^T$$

here we use $(A^T A)^{inv} = A^{inv} (A^T)^{inv}$

几何直觉 Geometric intuition: consider $P_Xt = UU^T t$
几何观点 Geometric View

正交性 Orthogonality

$t - P_X t = (I - P_X)t$ should be orthogonal to $\text{col}(X)$

For every μ_i:

$$\mu_i^T (I - P_X)t = (\mu_i^T - \mu_i^T U U^T)t = (\mu_i^T - (0, \ldots, 1, \ldots, 0)U^T)t = 0$$

为什么正交投影可以最小化呢？Why orthogonal Projection is the minimizer?

for any vector $v \in \text{col}(X)$,

$$\|v - b\|^2 = \|P_X b + (v - P_X b) - b\|^2 = \|P_X b - b\|^2 + \|v - P_X b\|^2$$

可以跳过
主成分分析 Principle Component Analysis

• First principle component: the direction that maximizes the variance (which is the first eigenvector of the covariance matrix $X^T X$) $X \in \mathbb{R}^{m \times n}$ (m points, n dimension)

第一个主元素，方向是最大化该方向的方差；是协方差矩阵的第一个特征向量

$$w_{(1)} = \arg \max \left\{ \frac{w^T X^T X w}{w^T w} \right\}$$

• 2nd principle component: the direction orthogonal to 1st PC and maximizes the variance

第二个主元素，与第一个主元素垂直，方向是最大化该方向的方差；是协方差矩阵的第二个特征向量

• Dimension reduction: project to the first few PC

降维：投影到前几个主元素上
本征脸 Eigen-face [Turk, Pentland ‘91]

• Treat each face as a vector
• Eigen face: just principle components 主成分

1. Detect whether a figure is a face (see the distance from it to the subspace spanned by the first few PC 检测一个图片是否是个脸
1. Detect and locate a face in a figure (like CNN) 检测定位某张脸
2. Tracking movement of a face 跟踪脸的运动
3. Reconstruct occluded image (ask student) 重建有遮挡的图片
 • Dictionary learning 字典学习
代码 Code for SVD and PCA

• Let X be the training samples

```python
U, S, V = np.linalg.svd(X)
cov = X.T.dot(X)/X.shape[0]
U_cov, _, _ = np.linalg.svd(cov)
X_reduced = X.dot(U_cov[:, :k])
```

SVD for X
SVD分解X

Compute covariance matrix
计算协方差矩阵

SVD for covariance matrix
SVD分界协方差矩阵

Projection to the first k cols of U
PCA for X where k is the number of features that you want to reserve
投影到U的前k列，k是保留的维数
卷积神经网络Convolutional Neural Network
卷积Convolution

• 连续一维卷积1d convolution (continuous):
 \[s(t) = \int x(a)w(t-a)da \]

• 离散一维卷积1d convolution (discrete):
 \[s[t] = (x \ast w)(t) = \sum_{a=-\infty}^{\infty} x[a]w[t-a] \]
卷积 Convolution

For a 2-D image H and a 2-D kernel F,

- Convolution Operator: $G = H \ast F$

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]$$
High维空间的随机向量 Random Vectors in High Dimension

• Pick two i.i.d. n-dimensional Gaussian $N(0, I)$ X, Y
 在n维高斯分布中采样两个点
 As n becomes large, X and Y are nearly orthogonal (i.e., $\langle X, Y \rangle \approx 0$)
 随着n变大, 两个点基本正交

• Pick two points X, Y uniformly randomly from n-dimensional unit sphere
 在n维球的均匀分布中采样两个点
 As n becomes large, X and Y are nearly orthogonal (i.e., $\langle X, Y \rangle \approx 0$)
 随着n变大, 两个点基本正交

• For two points X, Y, if $\langle X, Y \rangle$ is far away from 0, they must be highly correlated.
 如果$\langle X, Y \rangle$不接近0, 说明X, Y关联性很强

High dimension phenomena – not true in low dimensions 这个是高维空间的现象，在低维空间不成立
Example Architecture: Overview. We will go into more details below, but a simple ConvNet for CIFAR-10 classification could have the architecture [INPUT - CONV - RELU - POOL - FC]. In more detail:

- **INPUT** [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three color channels R,G,B.
- **CONV** layer will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and the region they are connected to in the input volume. This may result in volume such as [32x32x12].
- **RELU** layer will apply an elementwise activation function, such as the max(0,x) thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]).
- **POOL** layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as [16x16x12].
- **FC** (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

http://cs231n.github.io/convolutional-networks/
Receptive field

A depth column

A depth slice (share the same conv filter 共享卷积核)

在输入的边界加零 Zero padding the boundary of input

F: size of receptive field

P: zero padding

Input: W

S: stride

conv layer neurons = $\frac{W + 2P - F}{S} + 1$
卷积层 **Convolution Layer**

Stride=2

<table>
<thead>
<tr>
<th>Input Volume (+pad 1) (7x7x3)</th>
<th>Filter W0 (3x3x3)</th>
<th>Filter W1 (3x3x3)</th>
<th>Output Volume (3x3x2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x[:, :, 0]</td>
<td>w0[:, :, 0]</td>
<td>w1[:, :, 0]</td>
<td>o[:, :, 0]</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 1 0</td>
<td>0 -1 -1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 1 0 1 0 1 0 0 0</td>
<td>1 0 1</td>
<td>1 0 -1</td>
<td>-1 12 5</td>
</tr>
<tr>
<td>0 0 0 2 2 0 0 0 0</td>
<td>1 0 0</td>
<td>1 1 1</td>
<td>5 5 6</td>
</tr>
<tr>
<td>0 2 2 0 2 1 0 0 0</td>
<td>w0[:, :, 1]</td>
<td>w1[:, :, 1]</td>
<td>o[:, :, 1]</td>
</tr>
<tr>
<td>0 1 2 1 1 2 0 0 0</td>
<td>1 -1 0</td>
<td>1 1 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>0 1 2 0 1 0 0 0 0</td>
<td>1 -1 1</td>
<td>0 1 -1</td>
<td>-2 2 2</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td>w0[:, :, 2]</td>
<td>w1[:, :, 2]</td>
<td>o[:, :, 2]</td>
</tr>
<tr>
<td>0 1 2 2 0 0 0 0 0</td>
<td>-1 -1 -1</td>
<td>-1 0 0</td>
<td>-4 -2 -4</td>
</tr>
<tr>
<td>0 2 0 2 1 2 0 0 0</td>
<td>-1 -1 0</td>
<td>-1 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 1 2 0 0 0</td>
<td>-1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Filter W0

Filter W1

9 parameters
Pooling Layer

- fractional pooling: randomized 1×1, 1×2, 2×1, 2×2 pooling
- all convolutional Net 全卷积网络 (无 pooling)
卷积神经网络中的梯度 BP in CNN

\[\frac{\partial L}{\partial \omega_i} = \sum_j \frac{\partial L}{\partial y_j} \cdot \frac{\partial y_j}{\partial \omega_i} \]

Can be viewed as

Grad flow
特征的层级 A Hierarchy of Features

• Toy training images
特征的层级 A Hierarchy of Features
A Hierarchy of Features
Visualizing CNN
卷积神经网络可视化
Deconv Net and Visualizing CNN [Matthew D. Zeiler and Rob Fergus]

Try to figure this by yourself!

Deconv a ReLU layer

\[+y \cdot F \]

Filter

If the gate is activated, the previous layer \[+y \cdot F \]

In fact, this is a convolution operation again

Conv filter \(F \) (vertically & horizontally reversed)

Try to figure this by yourself!
T-SNE [van der Maaten, Hinton]

- t-distributed stochastic neighbor embedding
 - A nonlinear dimension reduction
- Think the CNN code of an image as its feature vector (highly nonlinear features)
- Two images are closer if their CNN codes are closer in the feature space
Some popular CNN architectures
一些流行的卷积神经网络架构
LeNet (Lecun-98)

Lenet-5 (Lecun-98), Convolutional Neural Network for digits recognition
Alexnet

• Similar framework to LeCun’98 but:
 • Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
 • More data (10^6 vs. 10^3 images)
 • GPU implementation (50x speedup over CPU)
 • Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

• https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
VGG Net [Simonyan, Zisserman]

- Implemented in Caffe
- You can download the weight from http://www.robots.ox.ac.uk/~vgg/research/very_deep/
- In Tensorflow: https://www.cs.toronto.edu/~frossard/post/vgg16/

<table>
<thead>
<tr>
<th>Model</th>
<th>top-5 classification error on ILSVRC-2012 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-layer</td>
<td>validation set: 7.5% test set: 7.4%</td>
</tr>
<tr>
<td>19-layer</td>
<td>validation set: 7.5% test set: 7.3%</td>
</tr>
<tr>
<td>model fusion</td>
<td>validation set: 7.1% test set: 7.0%</td>
</tr>
</tbody>
</table>

Top-5 error in ImageNet (1000 classes)

![Diagram of VGG16 architecture with labels for convolution, max pooling, fully connected, and ReLU layers.](image)
GoogleNet [Szegedy et al.]

- https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
ResNet [He et al.]

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer “plain” networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.
ResNet [He et al.]

Stack many plain layers may even increase the training error.

More generally, \(y = F(x, \{W_i\}) + x \)

where \(F \) can be a general function e.g. \(F = W_2\delta(W_1x) \) in above.

We hypothesis \(H(x) \) is close to \(x \).
ResNet

\[y = F(x, \{W_i\}) + W_S x \]

Stride=2 output size halves

(A) The shortcut still performs identity mapping, with extra zero entries padded for increasing dimensions. This option introduces no extra parameter; (B) The projection shortcut in Eqn.(2) is used to match dimensions (done by 1x1 convolutions). For both options, when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2.

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.
ResNet

• https://github.com/KaimingHe/deep-residual-networks

• A later improved model has 1000 layers
Fractal Net [Larsson et al.]

- The network is defined recursively
 \[f_1(z) = \text{conv}(z) \]
 \[f_{C+1}(z) = [(f_C \circ f_C)(z)] \oplus [\text{conv}(z)] \]
 \(\circ \) denotes composition and \(\oplus \) a join operation

- Instead of adding shortcut, FracNet provides a combination of short and long paths
 - neural information processing pathway

![Fractal Expansion Rule and Diagram](image-url)
Fractal Net

- Drop-path: a generalization of dropout dropout
性能

<table>
<thead>
<tr>
<th>Method</th>
<th>C100</th>
<th>C100+</th>
<th>C100++</th>
<th>C10</th>
<th>C10+</th>
<th>C10++</th>
<th>SVHN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network in Network [21]</td>
<td>35.68</td>
<td>-</td>
<td>-</td>
<td>10.41</td>
<td>8.81</td>
<td>-</td>
<td>2.35</td>
</tr>
<tr>
<td>Generalized Pooling [17]</td>
<td>32.37</td>
<td>-</td>
<td>-</td>
<td>7.62</td>
<td>6.05</td>
<td>-</td>
<td>1.69</td>
</tr>
<tr>
<td>Recurrent CNN [19]</td>
<td>31.75</td>
<td>-</td>
<td>-</td>
<td>8.69</td>
<td>7.09</td>
<td>-</td>
<td>1.77</td>
</tr>
<tr>
<td>Competitive Multi-scale [20]</td>
<td>27.56</td>
<td>-</td>
<td>-</td>
<td>6.87</td>
<td>-</td>
<td>-</td>
<td>1.76</td>
</tr>
<tr>
<td>FitNet [27]</td>
<td>-</td>
<td>35.04</td>
<td>-</td>
<td>-</td>
<td>8.39</td>
<td>-</td>
<td>2.42</td>
</tr>
<tr>
<td>Deeply Supervised [18]</td>
<td>-</td>
<td>34.57</td>
<td>-</td>
<td>9.69</td>
<td>7.97</td>
<td>-</td>
<td>1.92</td>
</tr>
<tr>
<td>All-CNN [30]</td>
<td>-</td>
<td>33.71</td>
<td>-</td>
<td>9.08</td>
<td>7.25</td>
<td>4.41</td>
<td>-</td>
</tr>
<tr>
<td>Highway Network [31]</td>
<td>-</td>
<td>32.39</td>
<td>-</td>
<td>-</td>
<td>7.72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELU [2]</td>
<td>-</td>
<td>24.28</td>
<td>-</td>
<td>-</td>
<td>6.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scalable BO [29]</td>
<td>-</td>
<td>-</td>
<td>27.04</td>
<td>-</td>
<td>-</td>
<td>6.37</td>
<td>1.77</td>
</tr>
<tr>
<td>Fractional Max-Pooling [5]</td>
<td>-</td>
<td>-</td>
<td>26.32</td>
<td>-</td>
<td>-</td>
<td>3.47</td>
<td>-</td>
</tr>
<tr>
<td>FitResNet (LSUV) [23]</td>
<td>-</td>
<td>27.66</td>
<td>-</td>
<td>-</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ResNet [8]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ResNet (reported by [11])</td>
<td>44.76</td>
<td>27.22</td>
<td>-</td>
<td>13.63</td>
<td>6.41</td>
<td>-</td>
<td>2.01</td>
</tr>
<tr>
<td>ResNet in ResNet [33]</td>
<td>-</td>
<td>22.90</td>
<td>-</td>
<td>-</td>
<td>5.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FractalNet</td>
<td>35.34</td>
<td>23.30</td>
<td>22.85</td>
<td>10.18</td>
<td>5.22</td>
<td>5.11</td>
<td>2.01</td>
</tr>
<tr>
<td>FractalNet+dropout/drop-path</td>
<td>28.20</td>
<td>23.73</td>
<td>23.36</td>
<td>7.33</td>
<td>4.60</td>
<td>4.59</td>
<td>1.87</td>
</tr>
<tr>
<td>Deepest column alone</td>
<td>29.05</td>
<td>24.32</td>
<td>23.60</td>
<td>7.27</td>
<td>4.68</td>
<td>4.63</td>
<td>1.89</td>
</tr>
</tbody>
</table>

Table 1: **CIFAR-100/CIFAR-10/SVHN.** We compare test error (%) with other leading methods, trained with either no data augmentation, translation/mirroring (+), or more substantial augmentation (++). Our main point of comparison is ResNet. We closely match its state-of-the-art results using data augmentation, and outperform it by large margins without data augmentation. Training with drop-path, we can extract from FractalNet simple single-column networks that are highly competitive.
Stochastic Depth [Huang et al.]

- Very deep residual network: very hard and very slow to train
- Idea: randomly drop a subset of layers (treating them as Identity) (for each mini-batch)
- Allow one to go beyond 1200 layers

Fig. 2. The linear decay of p_ℓ illustrated on a ResNet with stochastic depth for $p_0 = 1$ and $p_L = 0.5$. Conceptually, we treat the input to the first ResBlock as H_0, which is always active.
Stochastic Depth

- https://github.com/yueatsprograms/Stochastic_Depth

Table 1. Test error (%) of ResNets trained with stochastic depth compared to other most competitive methods previously published (whenever available). A "+" in the name denotes standard data augmentation. ResNet with constant depth refers to our reproduction of the experiments by He et al.

<table>
<thead>
<tr>
<th>Method</th>
<th>CIFAR10+</th>
<th>CIFAR100+</th>
<th>SVHN</th>
<th>ImageNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxout [21]</td>
<td>9.38</td>
<td>-</td>
<td>2.47</td>
<td>-</td>
</tr>
<tr>
<td>DropConnect [20]</td>
<td>9.32</td>
<td>-</td>
<td>1.94</td>
<td>-</td>
</tr>
<tr>
<td>Net in Net [24]</td>
<td>8.81</td>
<td>-</td>
<td>2.35</td>
<td>-</td>
</tr>
<tr>
<td>Deeply Supervised [13]</td>
<td>7.97</td>
<td>-</td>
<td>1.92</td>
<td>33.70</td>
</tr>
<tr>
<td>Frac. Pool [25]</td>
<td>-</td>
<td>27.62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>All-CNN [6]</td>
<td>7.25</td>
<td>-</td>
<td>-</td>
<td>41.20</td>
</tr>
<tr>
<td>Learning Activation [26]</td>
<td>7.51</td>
<td>30.83</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R-CNN [27]</td>
<td>7.09</td>
<td>-</td>
<td>1.77</td>
<td>-</td>
</tr>
<tr>
<td>Scalable BO [28]</td>
<td>6.37</td>
<td>27.40</td>
<td>1.77</td>
<td>-</td>
</tr>
<tr>
<td>Highway Network [29]</td>
<td>7.60</td>
<td>32.24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gen. Pool [30]</td>
<td>6.05</td>
<td>-</td>
<td>1.69</td>
<td>28.02</td>
</tr>
<tr>
<td>ResNet with constant depth</td>
<td>6.41</td>
<td>27.76</td>
<td>1.80</td>
<td>21.78</td>
</tr>
<tr>
<td>ResNet with stochastic depth</td>
<td>5.25</td>
<td>24.98</td>
<td>1.75</td>
<td>21.98</td>
</tr>
</tbody>
</table>

Table 2. Training time comparison on benchmark datasets.

<table>
<thead>
<tr>
<th>Method</th>
<th>CIFAR10+</th>
<th>CIFAR100+</th>
<th>SVHN</th>
<th>ImageNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Depth</td>
<td>20h 42m</td>
<td>20h 51m</td>
<td>33h 43m</td>
<td></td>
</tr>
<tr>
<td>Stochastic Depth</td>
<td>15h 7m</td>
<td>15h 20m</td>
<td>25h 33m</td>
<td></td>
</tr>
</tbody>
</table>
Applications
应用
Image Reconstruction [Mahendran, Vedaldi 2014]

Find an image such that:
- Its code is similar to a given code
- It “looks natural” (image prior regularization)

\[
\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^{H \times W \times C}} \ell(\Phi(\mathbf{x}), \Phi_0) + \lambda \mathcal{R}(\mathbf{x})
\]

\[
\ell(\Phi(\mathbf{x}), \Phi_0) = \|\Phi(\mathbf{x}) - \Phi_0\|^2
\]

\(\mathcal{R}(\mathbf{x}) \): regularizer to encourage “natural image”

\(\mathcal{R}(\mathbf{x}) = \|\mathbf{x}\|_\alpha^\alpha \) (e.g. \(\alpha = 6 \))

\[
\mathcal{R}_{TV}(\mathbf{x}) = \sum_{ij} \left((x_{i+1,j} - x_{ij})^2 + (x_{i,j+1} - x_{ij})^2 \right)^{\beta/2}
\]
Image Reconstruction

Understanding Deep Image Representations by Inverting Them [Mahendran and Vedaldi, 2014]

original image

reconstructions from the 1000 log probabilities for ImageNet (ILSVRC) classes
Reconstructions from the representation after last pooling layer (immediately before the first Fully Connected layer)
Reconstructions from intermediate layers
图像重构Image Reconstruction

• https://github.com/aravindhm/deep-goggle
Deep Dream
Deep Dream

- caffe

IDEA: if a neuron is activated, activate it further!

We don’t have a loss function

DeepDream: set $dx = x$

a layer in googlenet

```
def objective_L2(dst):
    dst.diff[:] = dst.data

def make_step(net, step_size=1.5, end='inception_4c/output',
    jitter=32, clip=True, objective=objective_L2):
    '''Basic gradient ascent step.''

    src = net.blobs['data']  # input image is stored in Net's 'data' blob
    dst = net.blobs[end]

    ox, oy = np.random.randint(-jitter, jitter+1, 2)
    src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2)  # apply jitter shift

    net.forward(end=end)  # a forward computation (from 'data' to end), we get activation values at 'end'
    objective(dst)  # specify the optimization objective
    net.backward(start=end)  # backward computation, starting from 'end'

    g = src.diff[0]
    # apply normalized ascent step to the input image
    src.data[0] += step_size / np.abs(g).mean() * g

    src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2)  # unshift image

    if clip:
        bias = net.transformer.mean['data']
        src.data[:] = np.clip(src.data, -bias, 255-bias)
```

```
```
Deep Dream

DeepDream modifies the image in a way that "boosts" all activations, at any layer.
Deep Dream

DeepDream modifies the image in a way that “boosts” all activations, at any layer.
Deep Dream
Neuralstyle [Gatys et al. 2015]
NeuralStyle

1. Try to match the content from the original figure
2. Try to match the style from the art work

Correlation of filter response
Neuralstyle

Layler l: all response can be stored in tensor $R^{d_l \times \omega_l \times h_l}$, flatten it into $F_l \in R^{d_l \times A_l} (A_l = \omega_l \times h_l)$
Neuralstyle

(find an image)

Matching the content.

loss: $L_{content}(p, x, l) = \frac{1}{2} \sum_{ij} (F_{ij}^l - p_{ij}^l)^2$

p: given input image, x: we want to generate x, l: layer l

F_{ij}^l: feature representation of x in layer l

p_{ij}^l: feature representation of p in layer l

How to get x? 用白噪声初始化 再通过梯度下降迭代

initially $x \leftarrow$ white noise

iterate GD (the network is fixed, but x is variable. So $\nabla_x L$ is well-defined

$x_t \leftarrow x_{t-1} - \lambda_t \nabla_x L$)
Neuralstyle

Matching the style
Feature correlation

\(G^l \in \mathbb{R}^{d_l \times d_l} \)

Loss function:

\[
L_{style}(a, x) = \sum_{l=0}^{L} \omega_l \left(\frac{1}{4d_l^2A_l^2} \sum_{ij} \left(G^l_{ij} - A^l_{ij} \right)^2 \right)
\]

\(a \): art work, \(x \): we want to generate, \(\omega_l \): weight for layers
\(G^l_{ij} \): feature correlation for \(x \), \(A^l_{ij} \): feature correlation for the art work

Training is the same (start from white noise)

Overall loss:

\[
L_{total}(p, a, x) = \alpha L_{content}(p, x) + \beta L_{style}(a, x)
\]
NeuralStyle
Neuralstyle
NeuralStyle

More focus on style

More focus on content

Different α/β value

Which style layer to match

Style more local

Depending on size of receptive field

Style more global
Neuralstyle

• In tensorflow:
 • https://github.com/anishathalye/neural-style

• Mxnet
 • https://github.com/dmlc/mxnet/tree/master/example/neural-style
Convolution Layer in Keras

• Keras Code

```python
keras.layers.convolutional.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None,
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
```

• When using this layer as the first layer in a model, provide the keyword argument input_shape
• Input dim: 4D tensor with shape: (samples, channels, rows, cols)
• Output dim: 4D tensor with shape: (samples, filters, new_rows, new_cols)

filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
kernel_size: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding: one of "valid" or "same" (case-insensitive).
activation: Activation function to use (see activations). If you don't specify anything, no activation is applied (ie. "linear" activation: \(a(x) = x \).
Pooling Layer in Keras

• Keras Code

Max pooling

```python
ekeras.layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None)
```

- Input dim: 4D tensor with shape: (batch_size, rows, cols, channels)
- Output dim: 4D tensor with shape: (batch_size, pooled_rows, pooled_cols, channels)

padding: one of "valid" or "same" (case-insensitive).

Average pooling

```python
ekeras.layers.pooling.AveragePooling1D(pool_size=2, strides=None, padding='valid')
```

https://keras.io/layers/pooling/
用Keras实现CNN
Keras for CNN

```python
# The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()

model.add(Conv2D(32, (3, 3), padding='same',
                input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
```

读入数据

处理label，变成categorical类型

顺序模型

2D Convolution，卷积核长宽3×3，补0使得输入输出长宽一样，32个输出channel
Keras for CNN

```python
model.add(Flatten())  # 把目前的tensor展开成1维
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])
```

- **lr**: float >= 0, Learning rate.
- **rho**: float >= 0.
- **epsilon**: float >= 0. Fuzz factor.
- **decay**: float >= 0. Learning rate decay over each update.
用Tensorflow实现CNN
import tensorflow as tf
import mnist

def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
Tensorflow for CNN

```python
# paras
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

# conv layer-1
x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# conv layer-2
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# full connection
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# output layer: softmax
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
```

- Produce first convolution layer parameters
- Reshape data to image shape
- Create first convolution layer followed by a relu nonlinear func and max pooling
- Produce full connection layer parameters
- Reshape data from image shape to a matrix shape
- Create a full connection layer followed by a relu nonlinear func
Tensorflow for CNN

```python
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
y_ = tf.placeholder(tf.float32, [None, 10])

# model training
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

num_epoch = 10000
batchsz = 50
iters_per_epoch = num_epoch / batchsz
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in xrange(num_epoch):
        for iters in xrange(iters_per_epoch):
            batch = mnist.train.next_batch(batchsz)
            tf.run(train_step, feed_dict = {x: batch[0], y_: batch[1]})
        train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
```

Compute accuracy
• Some slides borrowed from Gaurav Mittal’s slides, Lawrence Carin’s slides, cs231n at Stanford