
Receding Learning-aided Control in Stochastic Networks

Longbo Huang

longbohuang@tsinghua.edu.cn

IIIS, Tsinghua University ∗

Abstract

In this paper, we develop the Receding Learning-aided Control algorithm (RLC) for solving optimization

problems in general stochastic networks with potentially non-stationary system dynamics. RLC is a

low-complexity online algorithm that requires zero a-priori statistical knowledge. It has three main

functionalities. First, it detects changes of the underlying distribution of system dynamics via receding

sampling. Then, it carefully selects the sampled information and estimates a Lagrange multiplier of an

underlying optimization problem via dual-learning. Lastly, it incorporates the multiplier into an online

system controller via drift-augmentation. We show that RLC achieves near-optimal utility-delay tradeoffs

for stationary systems, while ensuring an effeicient distribution-change detection and a fast convergence

speed when applied to non-stationary networks. The results in this paper provide a general framework

for designing joint detection-learning-control algorithms and provide new understanding about the role-

of-information and the power-of-online-learning in network control.

1 Introduction

We consider the following constrained network optimization problem. We are given a stochastic network

with a dynamic system state that evolves according to some potentially non-stationary probability law.

Under each system state, a control action is chosen and implemented. The action generates traffic into the

network queues but also serves workload from them. The action also results in a system cost due to resource

expenditure. The traffic, service, and cost are jointly determined by the action and the system state. The

objective is to minimize the expected cost given traffic/service constraints. This is a general framework that

models many practical scenarios, for instance, computer networks, supply chains, mobile networks, and smart

grids. Hence, it is one of the central problems in network research to develop efficient control techniques for

this framework. In particular, it is most desirable for the techniques to (i) provide strong explicit utility and

∗This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant 61033001, 61361136003, 61303195, Tsinghua Initiative Research Grant,
Microsoft Research Asia Collaborative Research Award, and the China Youth 1000-talent Grant.

1

delay guarantees, (ii) possess fast convergence speed, and (iii) be able to quickly detect changes and adapt

to the dynamic environment.

However, this is a very challenging problem. First of all, statistical information of the system dynamics

is often unknown a-priori. Hence, in order to achieve optimal performance, algorithms must be able to

efficiently learn certain sufficient statistics of the dynamics. Second, since every time only a single random

state will appear, algorithms must be able to handle individual realization of the system randomness, which

often requires algorithms to be incremental. Third, to provide explicit delay guarantees, algorithms usually

need to have explicit queue-like interpretations of the control steps. However, such algorithms often suffer

from a slow convergence speed.

There has been continuous effort in developing algorithms that can achieve good utility and delay per-

formance for various networks, for instance, wireless networks, [1], [2], [3], processing networks, [4], [5],

cognitive radio, [6], and the smart grid, [7], [8]. However, we notice that most existing algorithms focus

on dynamic systems with stationary distributions, and they either assume full system statistical information

beforehand, or rely on stochastic approximation techniques to avoid the need of such information. Thus, both

approaches ignore the information and system observation aspects. As a result, they fail to provide deep

understanding about the role-of-information in network control and do not explore the power-of-learning.

This ignorance inevitably results in a mismatch between many control algorithms developed in the literature

and control schemes in practical systems, under which system dynamics are often constantly monitored and

such information is explicitly incorporated into control.

In this work, we develop the receding learning-aided control algorithm (RLC). RLC is an online algorithm

which requires zero a-priori statistical knowledge of the system. Instead, it continuously updates its esti-

mates of the underlying distribution of the dynamics via receding sampling of the observed system history,

and efficiently incorporates the information into the control component via learning an optimal Lagrange

multiplier of a carefully constructed optimization problem and drift-augmentation [9]. The receding learn-

ing feature enables a quick self-adaptation to the changing dynamics, while the learning and augmentation

steps explicitly explore the benefits of utilizing historic information in control. By carefully integrating the

components, RLC strikes a good balance among detection speed, learning accuracy, and algorithm perfor-

mance. Specifically, we show that RLC guarantees the near-optimal [O(ε), O(log(1/ε)2)] utility-delay tradeoff

(0 < ε < 1) when applied to stationary systems with discrete action space, while guaranteeing a detection

speed of O(ε−2/3) and a convergence time of O(ε−2/3 log(1/ε)2) (the time it takes for the algorithm to con-

verge to its optimal operating point) when the system is non-stationary. For systems with continuous action

sets, we similarly show that RLC achieves the near-optimal [O(ε), O(
√

1/ε log(1/ε)2)] utility-delay tradeoff for

stationary systems, and ensures an O(ε−4/3) detection time and an O(ε−4/3 log(1/ε)2) algorithm convergence

2

time for the non-stationary counterparts. In both cases, RLC’s convergence times are better than previous

known results, i.e., O(ε−1) for discrete systems and O(ε−3/2) for continuous systems, respectively, and it

offers explicit distribution change detection results for non-stationary systems.

Closest to our work are two recent works [9] and [10]. Specifically, [9] explores the possibility of joint

learning and control, but the resulting algorithms only apply to stationary systems. [10] considers an online

optimization setting very different from ours, and proposes a prediction-based algorithm to jointly optimize

algorithm competitive ratio and regret. Our work explicitly considers the non-stationarity in dynamic systems

and proposes a learning-aided control algorithm that quickly learns the underlying distribution and adapts

its actions. The results in this paper provide a systematic approach for designing joint detection-learning-

control algorithms for dynamic systems, and offer new insight into understanding the role-of-information and

learning in network control.

The main contributions of the paper are summarized as follows:

• We propose a general framework for joint detection-learning-control algorithm design, and develop the

receding learning-aided control (RLC) algorithm for potentially non-stationary dynamic systems. RLC

is an online algorithm that requires zero a-priori statistical knowledge. It quickly detects changes in

system dynamic statistics via receding sampling, and efficiently incorporates learned system information

into network control via dual learning and drift-augmentation.

• For stationary systems, we show that RLC guarantees a near-optimal [O(ε), O(log(1/ε)2)] utility-delay

tradeoff when applied to systems with discrete action space (0 < ε < 1). For systems with continuous

action sets, we show an achievement of the near-optimal [O(ε), O(ε−1/2 log(1/ε)2)] utility-delay tradeoff.

• For non-stationary systems, we show that RLC guarantees a detection time of O(ε−2/3) and an algorithm

convergence time of O(ε−2/3 log(1/ε)2) for discrete systems, and achieves an O(ε−4/3) detection time

and an O(ε−4/3 log(1/ε)2) convergence time for continuous systems. In both cases, RLC offers novel

distribution change detection results and its convergence times are better than previous known results,

i.e., O(ε−1) for discrete systems and O(ε−3/2) for continuous systems, respectively.

The rest of the paper is organized as follows. In Section 2, we discuss a few motivating examples in diverse

application fields and the related works. We set up our notations in Section 3, and present the system model

and problem formulation in Section 4. Background information is provided in Section 5. Then, we present

RLC in Section 6, and prove its performance in Section 7 and convergence in Section 8. Simulation results

are presented in Section 9, followed by conclusions in Section 10.

2 Motivating Examples

In this section, we present a few interesting practical scenarios where our framework can be applied.

3

Mobile Networks: Consider a mobile user sending data to a base-station (BS). The channel condition

(state) between the user and the BS is time-varying, which requires a different amount of power for packet

transmission (cost) at different time. Due to requirements from higher layer applications, the user has to

deliver a set of flows at given rates. The objective of the user is to find a joint power allocation and scheduling

policy, so as to minimize the average energy consumption, while meeting the rate constraints, e.g., [3], [6].

This example can be generalized to include other factors such as modulation/coding, or other objectives.

Crowdsourcing: In a crowdsourcing application, e.g., crowdsourcing map construction [11], tasks enter

the system and are assigned to crowd-workers by a server. Depending on workers’ qualifications, types of

jobs, and job requestors’ current requirements, i.e, whether a requestor is in a hurry due to job deadline

(state), task requestors receive reward (utility), e.g., satisfaction, upon job completion, and workers receive

payments (cost). The objective of the server is to find an assignment scheme to maximize the average system

utility minus cost.

Smart Grids: Consider a system operator trying to fulfill a set of flexible users’ power demand, e.g.,

charging an EV, by allocating available renewable energy, e.g., solar power, or by purchasing power from

the grid (cost) if the renewable is not sufficient. The available renewable energy evolves according to some

time-varying process (state), and the power prices change over time (state). The operator’s objective is to

design a joint power procurement and scheduling scheme to minimize the average expenditure while meeting

the average power demand of the users. Other important components in smart grid, e.g., demand response

[12], scheduling of deferrable load [13], and storage management [8], can also be included in this example.

Cloud Computing: Consider an operator, e.g., a dispatcher, trying to assign jobs to servers for process-

ing. The job arrival process is time-varying (state), and available processing capacities at servers may also

be dynamic (state), e.g., due to background processing. Completing user’s job requests brings the operator

reward (utility). The goal is to allocate resources and balance the loads in such a way that the system utility

is maximized. This example can be extended to capture other factors such as rate scaling [14] and data

locality constraints [15].

In all aforementioned examples and related works, we note that the state statistics are typically assumed

to be given and fixed (may be unknown), e.g., [3] and [8]. In practice, however, they are often time-varying

and may even be non-stationary. For instance, in cellular networks, a user’s location may change due to

mobility, which affects his channel statistics. In crowdsourcing, popularity levels of certain types of jobs

affect the satisfaction statistics of task completion. Yet this time-varying statistics aspect has been largely

ignored, resulting in a mismatch between many control algorithms developed in the literature and control

schemes in practical system, which often constantly monitor the system dynamics and adapt their actions

when a change is detected.

4

3 Notations

Rn denotes the n-dimensional Euclidean space. Rn+ and Rn− denote the non-negative and non-positive orthant.

Bold symbols x = (x1, ..., xn) denote vectors in Rn. The notion w.p.1 denotes “with probability 1.” ‖ · ‖

denotes the Euclidean norm. For a sequence of variables {y(t)}∞t=0, we also use y = limt→∞ 1
t

∑t−1
τ=0 E

{
y(τ)

}
to denote its average (when exists). x � y means that xj ≥ yj for all j.

4 System Model and Problem Formulation

In this section, we specify the general network model. We consider a network controller that operates a

network with the goal of minimizing the time average cost, subject to the queue stability constraint. The

network is assumed to operate in slotted time, i.e., t ∈ {0, 1, 2, ...}. We assume there are r ≥ 1 queues in the

network (e.g., the amount of data to be transmitted in cellular networks or the amount of flexible load to be

scheduled in a smart grid).

4.1 Network state

In every slot t, we use S(t) to denote the current network state, which indicates the current network pa-

rameters, such as a vector of conditions for each network link, or a collection of other relevant information

about the current network channels and arrivals. We assume that S(t) is i.i.d. over time given the state

distribution and takes M different random network states denoted as S = {s1, s2, . . . , sM}.1 We denote

πi(t) = Pr
{
S(t) = si

}
the probability of being in state si at time t and denote π(t) = (π1(t), ..., πM (t)) the

state distribution at time t. We assume that the network controller can observe S(t) at the beginning of

every slot t, but the πi(t) probabilities are unknown.

4.2 The cost, traffic, and service

At each time t, after observing S(t) = si, the controller chooses an action x(t) from a set X (si), i.e., x(t) = x(si)

for some x(si) ∈ X (si). The set X (si) is called the feasible action set for network state si and is assumed to

be time-invariant and compact for all si ∈ S. The cost, traffic, and service generated by the chosen action

x(t) = x(si) are as follows:

(a) The chosen action has an associated cost given by the cost function f(t) = f(si, x
(si)) : X (si) 7→ R+

(or X (si) 7→ R− in reward maximization problems);

(b) The amount of traffic generated by the action to queue j is determined by the traffic function Aj(t) =

Aj(si, x
(si)) : X (si) 7→ R+, in units of packets;

(c) The amount of service allocated to queue j is given by the rate function µj(t) = µj(si, x
(si)) : X (si) 7→

R+, in units of packets.

1The results in this paper can likely be generalized to systems where S(t) evolves according to general time inhomogeneous
Markovian dynamics.

5

Note that Aj(t) includes both the exogenous arrivals from outside the network to queue j, and the endogenous

arrivals from other queues, i.e., the transmitted packets from other queues, to queue j. We assume the

functions −f(si, ·), µj(si, ·) and Aj(si, ·) are time-invariant, their magnitudes are uniformly upper bounded

by some constant δmax ∈ (0,∞) for all si, j, and they are known to the network operator.

4.3 Problem formulation

Let q(t) = (q1(t), ..., qr(t))
T ∈ Rr+, t = 0, 1, 2, ... be the queue backlog vector process of the network, in units

of packets. We assume the following queueing dynamics:

qj(t+ 1) = max
[
qj(t)− µj(t) +Aj(t), 0

]
, ∀j, (1)

and q(0) = 0. By using (1), we assume that when a queue does not have enough packets to send, null packets

are transmitted, so that the number of packets entering qj(t) is equal to Aj(t). In this paper, we adopt the

following notion of queue stability [16]:

qav , lim sup
t→∞

1

t

t−1∑
τ=0

r∑
j=1

E
{
qj(τ)

}
<∞. (2)

We use Π to denote an action-choosing policy, and use fΠ
av to denote its time average cost, i.e.,

fΠ
av , lim sup

t→∞

1

t

t−1∑
τ=0

E
{
fΠ(τ)

}
, (3)

where fΠ(τ) is the cost incurred at time τ under policy Π. We call an action-choosing policy feasible if

at every time slot t it only chooses actions from the feasible action set X (S(t)). We then call a feasible

action-choosing policy under which (2) holds a stable policy.

In every slot, the network controller observes the current network state and chooses a control action, with

the goal of minimizing the time average cost subject to network stability. This goal can be mathematically

stated as:2
(P1) min : fΠ

av, s.t. (2).

In the following, we call (P1) the stochastic problem. It can be seen that the examples in Section 2 can all be

modeled by the stochastic problem framework, which is the problem formulation we focus on in this paper.

4.4 Discussion of the model

The key difference between our model and those in previous works is that π(t) itself can be time-varying. This

is an important extension, as practical systems often have time-varying distributions for system dynamics.

2When π(t) is time-varying, the optimal system utility needs to be defined carefully in general. We will specify it when
discussing corresponding results.

6

Thus, it is important to develop efficient techniques to handle network control in this case. Moreover, adopting

a time-varying distribution model allows us to explicitly investigate the convergence property and robustness

of the resulting algorithms, an aspect often missing in prior works, where mostly stochastic models with

fixed parameters are considered. Focusing on this model also motivates us to explicitly consider the roles of

information and learning in control.

5 Deterministic Problem and Backpressure

In this section, we review some known results in the literature that will be useful for our algorithm presentation

and analysis later. We first define the deterministic problem and its dual problem. Then, we review the

Backpressure algorithm (BP) developed in [16] for solving the stochastic problem (P1) with fixed π(t) = π.

5.1 The deterministic problem

The deterministic problem is defined as follows [17]:3

min : F (x,π) , V
∑
si

πif(si, x
(si)) (4)

s.t. Hj(x,π) ,
∑
si

πi[Aj(si, x
(si))− µj(si, x(si))] ≤ 0, ∀ j,

x(si) ∈ X (si), ∀ i = 1, 2, ...,M.

The minimization in (4) is taken over x ∈
∏
i X (si), where x = (x(s1), ..., x(sM))T , and V ≥ 1 is a positive

constant introduced for algorithm design and analysis later. The dual problem of (4) can be obtained as

follows:
max : gπ(γ), s.t. γ � 0, (5)

where gπ(γ) is the dual function and is defined as:

gπ(γ) = inf
x(si)∈X (si)

∑
si

πi

{
V f(si, x

(si)) +
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
. (6)

Here γ = (γ1, ..., γr)
T is the Lagrange multiplier of (4) and the subscript π is for specifying the distribution

under which the dual function is defined. It is well known that gπ(γ) in (6) is concave in the vector γ for all

γ ∈ Rr [19]. Below, we use γ∗π = (γ∗π,1, γ
∗
π,2, ..., γ

∗
π,r)

T to denote an optimal solution of the problem (5) for

a given distribution π. For our later analysis, we also define:

gi(γ) = inf
x(si)∈X (si)

{
V f(si, x

(si)) +
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
, (7)

3In stationary systems, it can be shown that if one has all the statistical information, then a “convexified” version of (4) can
be solved to obtain the optimal control policy [18].

7

to be the dual function for state si, i.e., when there is only a single state si. It is clear from equations (6)

and (7) that:

gπ(γ) =
∑
si

πigi(γ). (8)

In the following, we use f∗π and g∗π to denote the minimum average cost of the system and the optimal dual

value of (5) under distribution π.4 It has been shown in [18] that:

f∗π = g∗π. (9)

That is, g∗π captures the optimal time average cost of the stochastic problem.

5.2 The Backpressure algorithm

Among the many techniques developed for solving the stochastic problem, the Backpressure algorithm has

received much attention because (i) it does not require any statistical information of the changing network

conditions, (ii) it has low implementation complexity, and (iii) it has strong provable performance guarantees.

The Backpressure algorithm works as follows [16].5

Backpressure (BP): At every time slot t, observe the current network state S(t) and the backlog q(t). If

S(t) = si, choose x(si) ∈ X (si) that solves the following:

max : −V f(si, x) +

r∑
j=1

qj(t)
[
µj(si, x)−Aj(si, x)

]
(10)

s.t. x ∈ X (si). 3

Here V is a control parameter offered by BP for trading off system utility and delay. In many problems, (14)

can usually be decomposed into separate parts that are easier to solve, e.g., [21], [6]. Also, when the network

state process S(t) is i.i.d., it has been shown in [16] that,

fBPav = f∗av +O(1/V), qBP = O(V), (11)

where fBPav and qBP are the expected average cost and the expected average network backlog size under

Backpressure, respectively. The performance results in (11) hold under BP with any queueing discipline for

choosing which packets to serve and for any V . However, we note from (14) that BP completely discards the

historic information from system observations and ignores the potential benefits of learning.

4If a distribution π is such that there is no feasible solution for (4), in which case one can show that it is impossible to ensure
queue stability (2) and the primal optimal is infinity, we define f∗

π = g∗π =∞.
5A similar definition of Backpressure based on fluid model was also given in Section 4.8 of [20].

8

6 Receding Learning-Aided Control

In this section, we present the receding learning-aided control technique (RLC), which allows us to simultane-

ously handle time-varying distributions of system dynamics and achieve good performance.

Our algorithm works as follows. First, we choose a sampling window size w , V c (c to be specified) and

divide time into frames of w slots each, denoted by {Tk}∞k=0 where Tk = [kw, ..., (k + 1)w − 1]. Then, we fix

a detection threshold α , 8 log(V)
V c/2 and choose a reference starting time tc. We also choose a deviation factor

θ and a queue reference point qref (values to be specified). After that, we periodically compare the recent

samples with the historic samples to identify changes of the distribution, and adjust the sampling window’s

starting time once a change is identified. Then, we carry out a step called dual learning [9] to efficiently

incorporate the learned information about the underlying distribution into a Backpressure controller. Fig. 1

shows how RLC works. The formal algorithm is given after the demonstration.

Samples being
compared with

Samples
inconsistent

Re-estimate
First estimate

duration

Samples being
compared with

Samples
inconsistent

Re-estimate
Second estimate

duration

Samples being
compared with

Samples
inconsistent

Re-estimate
Third estimate

duration

Distribution 1 Distribution 2 Distribution 3

Figure 1: Demonstration of RLC. The solid rectangle represents the first frame for initialization. Once RLC detects
that the sample distribution is not consistent with the reference distribution, it moves the reference point forward
and re-estimates the Lagrange multiplier that will be used in the controller.

Receding Learning-aided Control (RLC): Initialize tc = 0 and γ∗[0] = θ. Implement:

• Receding Dual learning (performed every frame): At the k-th frame with k ≥ 1, let Nci[k] be the

number of slots in [tc, tc + w − 1] during which S(t) = si,
6 and let Nsi[k] be the number of slots in

[(k − 1)w, kw − 1] during which S(t) = si, respectively. Form the reference distribution π̂c[k] and the

sampling distribution π̂s[k] for frame k by having π̂ci[k] = Nci[k]/w and π̂si[k] = Nsi[k]/w. Then,

perform distribution change detection by checking if the following condition holds:7

max
i
|π̂ci[k]− π̂si[k]| ≤ α/4. (12)

(i) If yes, complete the learning step and set γ∗[k] = γ∗[k − 1].

6In actually implementation, one can use all samples in [0, tc +w] for estimating the empirical distribution if it can be assured
that the distribution has not yet changed.

7Note that π̂c[k] stays the same if tc remains unchanged. Note here that other methods for detecting distribution changes
and estimating underlying distributions can also be applied.

9

(ii) If not, set tc = (k − 1)w and let π̂c[k] = π̂s[k]. Then, carry out the dual learning step by solving

the following optimization problem and obtain the optimal solution γ∗[k]:

max : gπ̂c[k](γ) ,
∑
si

π̂ci[k]gi(γ), s.t. γ � 0. (13)

If the resulting optimal γ∗[k] is infinite, set γ∗[k] = V log(V) · 1. Moreover, set q(kw) = qref.

• Online control: At every time t ∈ [kw, (k + 1)w − 1], observe the current network state S(t) and the

backlog q(t). If S(t) = si, choose x(si) ∈ X (si) that solves the following:

max : −V f(si, x) +

r∑
j=1

Qj(t)
[
µj(si, x)−Aj(si, x)

]
s.t. x ∈ X (si). (14)

Here Qj(t) , qj(t) + βj(t) with βj(t) , γ∗j [k]− θj is the effective size for queue j at time t.

• Queueing update: Update the queues according to (1). Use Last-In-First-Out (LIFO) for packet

scheduling. 3

Remarks: (i) RLC does not require any statistical information of the system and retains the low-complexity

feature of BP. By setting w = ∞, RLC reduces to the online learning-aided control 2 (OLAC2) technique

developed in [9] for systems with fixed distributions. (ii) The dual learning step (13) only has to be solved

roughly once per distribution change. This significantly saves computational resources in practice compared

to continuous computing, and can avoid reacting too quickly to temporal random changes. (iii) RLC tries

to only utilize the recent historic information by adjusting tc when it believes there is a change in the

distribution. This feature is important and allows RLC to quickly adapt to distribution changes of the system

dynamics. (iv) RLC sets the queue vector to the queue reference value qref. This step readjusts the backlog

starting point to further improve convergence time of the algorithm. It requires adding dummy packets when

the original queue size is smaller and dropping redundant packets when there is more. We will see later that

dropping rarely happens and delay is almost not affected. (v) The reason for using (12) is for screening out

estimations π̂c[k] that are not accurate enough. This is an important step, as the quality of π̂c[k] affects the

estimation accuracy of γ∗[k], which in turn has a direct impact on the algorithm performance.

7 Performance Analysis

In this section, we carry out the analysis for the RLC algorithm. For ease of presentation, we introduce the

distribution switching time. Specifically, we use {td, d = 0, 1, ...} to denote the starting point of the d-th

distribution, i.e., π(t) = πd for all t ∈ Dd , {td, td+1 − 1}, where Dd is called the d-th interval. We also use

Dd , td+1 − td to denote the length of Dd.

10

We now present the assumptions made throughout our analysis. These assumptions are not restrictive

and can typically be satisfied in network optimization problems.8

Assumption 1. For every system distribution πd, there exists a constant εd = Θ(1) > 0 such that for any

valid state distribution π′ = (π′1, ..., π
′
M) with ‖π′ − πd‖ ≤ εd, there exist a set of actions {x(si)

z }z=1,2,...,∞
i=1,...,M

with x
(si)
z ∈ X (si) and some variables ϑ

(si)
z ≥ 0 for all si and z with

∑
z ϑ

(si)
z = 1 for all si (possibly depending

on π′), such that: ∑
si

πdi
{∑

z

ϑ(si)
z [Aj(si, x

(si)
z)− µj(si, x(si)

z)]
}
≤ −η, ∀ j, (15)

where η = Θ(1) > 0 is independent of π′. 3

Assumption 2. For every system distribution πd, gπd
(γ) has a unique optimal solution γ∗d 6= 0 in Rr. 3

In the existing literature, Assumption 1 is mostly assumed with εd = 0, e.g., [22], [23], and is known as

the “slack” condition that is necessary for queue stability. Under this assumption, one can show that there

exists a stationary randomized policy that stabilizes all the queues in the network (where ϑ
(si)
z represents

the probability of choosing action x
(si)
z when S(t) = si) [16]. Here with εd > 0, we assume that when two

systems are relatively “similar,” they can both be stabilized by some randomized control policy (the policies

may be different) that results in the same slack. Assumption 2 holds for many network utility optimization

problems, e.g., [3], [17].

Below, we first have two preliminary lemmas. To present the lemmas, we define a Lyapunov function

L(t) , 1
2

∑r
j=1 qj(t)

2 and the one-slot instant Lyapunov drift ∆(t) , Eπ(t){L(t+ 1)−L(t) | q(t)}, where the

expectation is taken over the distribution π(t). Then, we define:

∆V (t) , ∆(t) + V Eπ(t){f(t) | q(t)}. (16)

We then have the following lemma.

Lemma 1. At every time t, we have:

∆V (t)−∆A(t) ≤ B + V Eπ(t){f(t) | q(t)} −
r∑
j=1

Qj(t)Eπ(t){µj(t)−Aj(t) | q(t)}. (17)

Here ∆A(t) ,
∑
j Eπ(t){βj(t)[µj(t)−Aj(t)] | q(t)} is the drift-augmentation term, B , 2rδ2

max is independent

of V , and the expectation is taken over the distribution π(t) of the states at time t and the possible randomness

in the control policy. 3

Proof. See Appendix A.

8Our results can likely be extended to also handle the case where the assumptions do not hold under some distributions that
only last for some finite time (Indeed, if this is also violated, no algorithm can possibly stabilize the system).

11

Notice that Lemma 1 indeed holds under any feasible control policies. Also note in (17) that the learned

information about the underlying distribution is incorporated into system control via the term β(t) (recall

that Q(t) = β(t) + q(t) − θ). Based on this lemma, we obtain the following result regarding the utility

performance of RLC.

Lemma 2. For every Dd, we have:

1

Dd

td+1−1∑
t=td

Eπd
{f(t)} ≤ f∗πd

+
B

V
+

∆Dd

A

V Dd
+

∑
j Eπd

{qj(td)2}
2V Dd

. (18)

Here ∆Dd

A ,
∑td+1−1
t=td

Eπd
{∆A(t)} and f∗πd

denotes the optimal system utility when π(t) = πd for all t. 3

Proof. See Appendix B.

From Lemma 2, we see that the key in proving the performance of RLC lies in bounding the term ∆Dd

A /Dd,

which can be viewed as the temporal price to pay for the inherent inaccuracy in learning due to the finite

sample window size and receding sampling. This is a very challenging task. The main challenges come from

the interdependency between control and learning, i.e., βj(t) and µj(t) − Aj(t), the inaccuracy in learning

and estimation, and the fact that β(t) changes from time to time, which requires a non-asymptotic analysis.

In the following, we carry out our analysis for two system structures that are common in practice. These

two structures were first introduced in [17].

7.1 The polyhedral case

We first consider the case when the system in consideration satisfies the following polyhedral condition:

Definition 1. A system is polyhedral with parameter ρ > 0 under distribution π if the dual function gπ(γ)

satisfies:
gπ(γ∗) ≥ gπ(γ) + ρ‖γ∗π − γ‖. 3 (19)

Condition (19) typically holds for systems where control actions are discrete (see [17] for more discussions).

In this case, we first consider the performance of RLC when the distribution is time-invariant. Note that being

able to perform well in stationary systems is an important requirement for any efficient adaptive algorithm.

The following theorem shows that RLC achieves almost the best performance among existing algorithms

designed for systems with fixed distributions.

Theorem 1. (Polyhedral Stationary) Suppose (i) π(t) = π for all t and (ii) gπ(γ) is polyhedral with ρ =

Θ(1) > 0. Then, under RLC with w = V c, θj = qref,j = 2V 1−c/2 log(V)2, q(0) = 0, c ∈ [0, 1], and a

sufficiently large V , we have w.p.1 that:

12

• (Utility) The average cost satisfies:

fRLCav ≤ f∗π +
B +O(1)

V
. (20)

• (Delay) For each queue j with an average arrival rate λj > 0, there exist a set of packets with rate

λ̃j ≥ (λj −O(log(V)/V 2))+ that experience only O(log(V)2) delay.

• (Packet dropping) The average rate of the dropped packets during queue adjustment is O(1/V 4). 3

Proof. See Appendix C.

Theorem 1 shows that RLC achieves the near-optimal [O(1/V), O(log(V)2)] utility-delay tradeoff (only

a log-factor from the optimal), which is the same compared to the previous algorithms, e.g., OLAC [9] and

LIFO-BP [24]. We emphasize that the analysis of RLC is very different from previous algorithms. The main

challenge lies in the fact that the β(t) value is obtained from fixed size samples. Hence, it changes during

algorithm implementation, making it difficult to analyze the ∆Dd

A term.

Next, we consider the case when π(t) is time-varying. The following figure shows how RLC detects

distribution changes. The formal statement is given in the following lemma.

π1 π2

kk-1 k+1

t

Figure 2: RLC detects distribution changes in at most 2w slots.

Lemma 3. (Efficient Detection) Suppose for some time t, π(τ) = π1 for τ ∈ [t− 2w, t− 1] and π(τ) = π2

for τ ∈ [t, t+ 2w], where π1 6= π2.9 Then, under RLC with a sufficiently large V , this distribution change will

be detected by time t+ 2w with probability at least 1−O(2M
V log(V)). 3

Proof. See Appendix D.

Lemma 3 shows that RLC guarantees the detection of distribution changes within 2w timeslots with very

high probability (In many cases, it will be detected within w time), which contributes to guaranteeing a fast

convergence speed compared to existing algorithms (see Theorem 5 and discussions below). This property is

particularly useful for non-stationary systems, as shown in the following theorem.

Theorem 2. (Polyhedral Non-Stationary) Suppose condition (ii) in Theorem 1 holds. Then, under RLC with

w = V c, θj = qref,j = 2V 1−c/2 log(V)2, q(0) = 0, and a sufficiently large V , for each interval Dd with

Dd = Θ(V 2+ε−c/2) for ε > 0 and c ≤ 2+2ε
3 , we have with probability 1−O(M

V log(V)/2) that:

• (Utility) RLC achieves:
1

Dd

td+1−1∑
t=td

E{f(t)} ≤ f∗πd
+
B +O(1)

V
. (21)

9It should be pointed out that the distribution detection component of RLC really only requires the “frame distributions” to
be different, i.e., π[k] , (π(kw), ...,π((k + 1)w − 1)) is different from π[k + 1], which is weaker than the condition used in the
lemma. The condition in the lemma is for convenience in presentation.

13

• (Queueing) qav = O(V 1−c/2 log(V)2). 3

Proof. See Appendix E.

Theorem 2 provides a non-asymptotic result for RLC’s utility and delay performance. It is important to

note that (21) only requires Dd = Θ(V 2+ε−c/2) for some small ε > 0. Guaranteeing a similar performance

result under BP will need an Θ(V 2) time. Also, the O(V 1−c/2 log(V)2) average queue size applies to general

Dd sizes. For Dd values larger than Θ(V 2+ε−c/2), most packets will experience only O(log(V)2) delay as

in Theorem 1. To further appreciate the result, note that for smaller Dd values, it is much harder to

guarantee results similar to (21), as in this case algorithms will mostly be running at their transient stages.

On the other hand, if π(t) varies in a way that the aggregate frame distribution exhibits stationarity, i.e.,

π[k] , (π(kw), ...,π((k + 1)w − 1)) is statistically the same as π[k + 1] for all k, then it can be shown that

RLC achieves an O(1/V) close-to-optimal utility of the system under the frame-based distribution.

7.2 The locally-smooth case

We now consider the case when the system has a locally-smooth structure defined as follows [17].

Definition 2. A system is locally-smooth with parameters ρ and δ if there exist ρ > 0 and δ > 0, such that

when V = 1, for all γ with ‖γ − γ∗π‖ ≤ δ, the dual function gπ(γ) satisfies:

gπ(γ∗π) ≥ gπ(γ) + ρ‖γ∗π − γ‖2. 3 (22)

This structural property is different from the locally polyhedral case and we only require that all the

vectors γ with ‖γ−γ∗π‖ ≤ δ satisfy condition (22). This is due to the fact that f(si, ·), µj(si, ·) and Aj(si, ·)

are all upper bounded, which eventually leads to:

gπ(γ1)− gπ(γ2) ≤
√
B‖γ1 − γ2‖. (23)

That is, this condition indeed only holds locally. In contrast to the polyhedral condition in (19), (22) is

typically satisfied when the action set is continuous, in which case the dual function is mostly continuously

differentiable [17]. Similar to the polyhedral case, we first consider the performance of RLC in locally-smooth

systems with fixed distributions.

Theorem 3. (Locally-smooth Stationary) Suppose (i) π(t) = π for all t and (ii) gπ(γ) is locally-smooth with

δ, ρ = Θ(1) > 0. Then, under RLC with w = V c, θj = qref,j = 2V 3/2−c/2 log(V)2, q(0) = 0, c ∈ [0, 2], and a

sufficiently large V , we have w.p.1 that:

• (Utility) RLC achieves fRLCav ≤ f∗π +O(1
V).

14

• (Delay) For each queue j with an average arrival rate λj, there exists a set of packets with rate λ̃j ≥

(λj −O(1/V))+ that experience O(
√
V log(V)2) delay.

• (Packet dropping) The average rate of packets that can potentially be dropped is O(1/V 4).

Proof. See Appendix F.

Compared to Theorem 1, we notice that the values of θ, qref, and packet delay are all different. This is

because under the smooth structure, drift-based algorithms have loose control when Q(t) gets close to γ∗π,

resulting in a larger queue deviation and delay. The following theorem considers the non-stationary case for

smooth systems and is similar to Theorem 2.

Theorem 4. (Locally-smooth Non-Stationary) Suppose condition (ii) in Theorem 3 holds. Then, under

RLC with w = V c, θj = qref,j = 2V 3/2−c/2 log(V)2, q(0) = 0, and a sufficiently large V , for each Dd with

Dd = Θ(V 5/2+ε−c/2) for ε > 0 and c ≤ 1 + 2ε/3, we have with probability 1−O(M
V log(V)/2) that:

• (Utility) RLC achieves:

1

Dd

td+1−1∑
t=td

E{f(t)} ≤ f∗πd
+
B +O(1)

V
. (24)

• (Queueing) qav = O(V 3/2−c/2 log(V)2). 3

Proof. It can be proven almost identically as Theorem 2. Omitted for brevity.

Similar to the polyhedral case, here BP needs an Θ(V 2) time for achieving the same performance. Hence, by

choosing c > 1, RLC guarantees performance for intervals of similar sizes with much better queue size guarantee

(BP needs Θ(V)). Also, for Dd values that are larger, most packets will experience only O(
√
V log(V)) delay

as in Theorem 3.

8 Convergence Time Analysis

In this section, we look at the convergence time of our algorithms. Convergence time measures how fast an

algorithm reaches its steady-state. Hence, it is an important indicator of the robustness and efficiency of the

technique. To formally state our results, we adopt the following definition of convergence time from [9].

Definition 3. Let ζ > 0 be a given constant and let π be a system distribution. The ζ-convergence time of

a control algorithm, denoted by Tζ , is the time it takes for the effective queue vector Q(t) to get to within ζ

distance of γ∗π, i.e.,

Tζ , inf{t | ||Q(t)− γ∗π|| ≤ ζ}. 3 (25)

15

Our definition of convergence time is different from the that in [25] and [26], where convergence time

relates to how fast the time-average rates converge to the optimal values. Our convergence time definition

(25) is motivated by the fact that both BP and RLC (and many other drift-based algorithms) use the effective

queue vector to track γ∗π, which is the key for determining the optimal control actions. Hence, the faster the

algorithm learns γ∗π, the faster the system enters the optimal operating zone.

In the following, we present the convergence results of RLC.

Theorem 5. (Polyhedral Convergence) Suppose condition (ii) in Theorem 1 holds. Then, under RLC with

w = V c, θj = qref,j = 2V 1−c/2 log(V)2, and a sufficiently large V , for each Dd with Dd = Ω(V 1−c/2 log(V)2 +

V c) and Dd−1 ≥ 2V c, we have with probability 1−O(M
V log(V)) that:

E
{
TGp

}
= O(V 1−c/2 log(V)2 + V c). (26)

Here Gp = Θ(1) is a system-dependent constant. 3

Proof. See Appendix G.

Choosing c = 2
3 , we see that E

{
TGp

}
= Θ(V 2/3 log(V)2). This result is of the same order as the OLAC

algorithm’s convergence time, with the key difference that OLAC does not apply to non-stationary systems.

This convergence time is much faster compared to the Θ(V) time of BP (also see simulation).

We then also have the following convergence time result for the locally-smooth case.

Theorem 6. (Locally-smooth Convergence) Suppose condition (ii) in Theorem 3 holds. Then, under RLC

with w = V c, θj = qref,j = 2V 3/2−c/2 log(V)2, q(0) = 0, and a sufficiently large V , for each Dd with

Dd = Ω(V 2−c/2 log(V)2 + V c) and Dd−1 ≥ 2V c, we have with probability at least 1−O(M
V log(V)) that:

E
{
T RLC
Gs

}
= O(V 2−c/2 log(V)2 + V c), (27)

where Gs = Θ(
√
V). Also, in this case,

E
{
T BP
Gs

}
= O(V 3/2), (28)

where T BP
Gs

denotes the convergence time of BP. 3

Proof. See Appendix H.

Optimizing the c value for the locally-smooth case, we see that choosing c = 4/3 leads to T RLC
Gs

= Θ(V 4/3),

which is strictly better compared to the T BP
Gs

= Θ(V 3/2) convergence time of BP. Here, it is also important to

notice the different convergence times and proximities in the polyhedral case and the locally-smooth case, i.e.,

16

Gp = Θ(1) while Gs = Θ(
√
V). This difference is due to the structural properties. In the locally-smooth case,

the drift towards γ∗π decreases as the distance ‖Q(t)−γ∗π‖ decreases, and Gs is just enough to guarantee an

O(1/
√
V) drift. In the polyhedral case, the drift remains constant as long as Q(t) 6= γ∗. Hence, a deviation

of Gp is enough for guaranteeing a good concentration result.

9 Simulation

We provide simulation results for RLC to demonstrate both the utility-delay performance and the detection

and convergence behavior. We consider a two-queue system depicted in Fig. 3.

A1(t)

A2(t) C2(t)

C1(t)

Figure 3: A two-queue system. In this system, the queues receive exogenous arrivals and the server allocates power
for packet transmission over the time-varying channels.

We use Ai(t) to denote the number of arriving packets to qi(t) at time t. We assume that Ai(t) is i.i.d.

and takes value either 2 or 0. We use pi = Pr
{
Ai(t) = 2

}
and set p1 = 0.15 and p2 = 0.3. We assume that

the channel is time-varying and denote its state at time t by Ci(t), which takes values in C1 = {0, 1} and

C2 = {1, 2}. Each channel condition is equally likely for both channels. At each time t, the queue operator

decides how much power to allocate for transmission. We denote Pi(t) the power allocated at time t. Then,

the instantaneous service rate is given by:

µi(t) = log(1 + Ci(t)Pi(t)). (29)

The feasible power allocation set P = {0, 1, 2} for the discrete case and P = [0, 2] for the continuous case.

The operator’s objective is to stabilize the queues with minimum average power. We note that though the

setting considered here is simple, it can indeed be used to model many problems in various contexts, e.g.,

CPU scheduling or mobile user transmission. Also, it can be verified that Assumptions 1 and 2 both hold

for this example.

For comparison, we also simulate the BP algorithm. We choose V = {10, 30, 50, 100, 150} and run each

simulation instance for T = 5×105 slots. The left two plots in Fig. 4 present the power and delay performance

of RLC compared to the BP algorithm for the polyhedral case. It can be seen that RLC achieves a much better

delay performance compared to BP, as shown in Theorem 1. The right two plots present the performance of

RLC in the locally-smooth case. Similar to the polyhedral case, RLC achieves a better power-delay tradeoff.

Here the empirical delay is much better than O(
√
V log(V)2). This can be due to the structure of the

particular setting. With general settings, the O(
√
V log(V)2) will likely be observed.

17

0 50 100 150
1.1

1.105

1.11

1.115

1.12

1.125

1.13

1.135

V

0 50 100 150
0

100

200

300

400

500

600

700

V

RLC
BP

RLC
BP

Power − Polyhedral Delay− Polyhedral

0 50 100 150 200 250 300
1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

V

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

2000

V

RLC
BP

RLC
BP

Power − Smooth Delay− Smooth

Figure 4: (Left-two) Power-delay performance of RLC and BP for the polyhedral case. We see that RLC achieves a
similar power performance, while guaranteeing a much better delay. (Right-two) Performance of RLC in the locally-
smooth case (we also simulate V = 300 since BP’s power performance does not seem to converge at V = 150). The
results are similar to those in the polyhedral case.

Fig. 5 then also shows a convergence example of RLC in the polyhedral case with V = 500. In this case,

the packet arrival probabilities change to p1 = 0.1 and p2 = 0.1 at 1/3 of the simulation time. Throughout

the simulation, RLC changes tc three times, two before the rate change and one after. This shows that RLC

is efficient in detecting distribution changes. It can be seen from the plots that RLC adapts much faster

compared to BP. Indeed, the first convergence of RLC happens at time 1300 while BP converges at time 6000

(4500+ slots faster). The second convergence of RLC is around time 34000 while BP converges at 36000 (2000+

slots faster, change happens at 33333). We also observe that the actual queue size under RLC, i.e., q1(t) and

q2(t), remain stable during the simulation, with only small fluctuations when RLC adjusts tc and γ∗[k].

0 1 2 3 4 5 6 7 8 9 10
x 104

0

1000

2000

3000

0 1 2 3 4 5 6 7 8 9 10
x 104

0

500

1000

1500

0 1 2 3 4 5 6 7 8 9 10
x 104

200

300

400

500

600

Time

Q1(t)

Q2(t)

Q1(t)

Q2(t)

q1(t)

q2(t)

RLC

BP

1st convergence

1st convergence

2nd convergence

2nd convergence

Fluctuation
Re−adapt

RLC

Figure 5: (Top) Convergence of RLC. (Middle) Convergence of BP. (Bottom) The actual queue sizes under RLC. We
see that RLC converges much faster and ensures better smoothness of the actual queue sizes.

10 Conclusion

In this paper, we develop the Receding Learning-aided Control algorithm (RLC). RLC is a low-complexity

online algorithm that requires zero a-priori statistical knowledge. It efficiently detects distribution changes

via receding sampling and incorporates learned information into system controller via dual learning and

drift-augmentation. We show that RLC achieves near-optimal utility-delay tradeoffs for stationary systems,

18

while ensuring efficient distribution change detection and fast convergence when applied to non-stationary

networks. The results in this paper provide a general framework for designing joint detection-learning-control

algorithms and provide new understanding about the role-of-information and the power-of-online-learning in

network control.

References

[1] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of wireless networks with rechargeable batteries.

IEEE Trans. on Wireless Communications, Vol. 9, No. 2, Feb. 2010.

[2] D. I. Shuman and M. Liu. Energy-efficient transmission scheduling for wireless media streaming with

strict underflow constraints. WiOpt, 2008.

[3] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks using queue-length-based

scheduling and congestion control. IEEE/ACM Trans. Netw., 15(6):1333–1344, 2007.

[4] H. Zhao, C. H. Xia, Z. Liu, and D. Towsley. A unified modeling framework for distributed resource

allocation of general fork and join processing networks. Proc. of ACM Sigmetrics, 2010.

[5] L. Jiang and J. Walrand. Stable and utility-maximizing scheduling for stochastic processing networks.

Allerton Conference on Communication, Control, and Computing, 2009.

[6] R. Urgaonkar and M. J. Neely. Opportunistic scheduling with reliability guarantees in cognitive radio

networks. IEEE Transactions on Mobile Computing, 8(6):766–777, June 2009.

[7] H. Su and A. El Gamal. Modeling and analysis of the role of fast-response energy storage in the smart

grid. Proc. of Allerton, 2011.

[8] M. J. Neely R. Urgaonkar, B. Urgaonkar and A. Sivasubramaniam. Optimal power cost management

using stored energy in data centers. Proceedings of ACM Sigmetrics, June 2011.

[9] L. Huang, X. Liu, and X. Hao. The power of online learning in stochastic network optimization. Pro-

ceedings of ACM Sigmetrics, 2014.

[10] N. Chen, A. Agarwal, A. Wierman, S. Barman, and L. L. H. Andrew. Online convex optimization using

predictions. Proceedings of ACM Sigmetrics, 2015.

[11] Waze. https://www.waze.com/.

[12] L. Huang, J. Walrand, and K. Ramchandran. Optimal smart grid tariff. Information Theory and

Applications Workshop (ITA) (Invited), San Diego, Feb 2012.

19

[13] M. J. Neely, A. S. Tehrani, and A. G. Dimakis. Effficient algorithms for renewable energy allocation to

delay tolerant consumers. Proceedings of IEEE SmartGridComm, Oct 2010.

[14] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. J. Neely. Data centers power reduction: A two time

scale approach for delay tolerant workloads. IEEE Transactions on Parallel and Distributed Systems

(TPDS), vol. 25, no. 1, pp. 200-211, Jan 2014.

[15] W. Wang, K. Zhu, Lei Ying, J. Tan, and L. Zhang. Map task scheduling in mapreduce with data locality:

Throughput and heavy-traffic optimality. IEEE/ACM Transactions on Networking, to appear.

[16] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and Cross-Layer Control in Wireless

Networks. Foundations and Trends in Networking Vol. 1, no. 1, pp. 1-144, 2006.

[17] L. Huang and M. J. Neely. Delay reduction via Lagrange multipliers in stochastic network optimization.

IEEE Trans. on Automatic Control, 56(4):842–857, April 2011.

[18] L. Huang and M. J. Neely. Max-weight achieves the exact [O(1/V), O(V)] utility-delay tradeoff under

Markov dynamics. arXiv:1008.0200v1, 2010.

[19] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization. Boston: Athena

Scientific, 2003.

[20] Sean Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.

[21] L. Huang and M. J. Neely. The optimality of two prices: Maximizing revenue in a stochastic network.

IEEE/ACM Transactions on Networking, 18(2):406–419, April 2010.

[22] L. Ying, S. Shakkottai, and A. Reddy. On combining shortest-path and back-pressure routing over

multihop wireless networks. Proceedings of IEEE INFOCOM, April 2009.

[23] L. Bui, R. Srikant, and A. Stolyar. Novel architectures and algorithms for delay reduction in back-

pressure scheduling and routing. Proceedings of IEEE INFOCOM Mini-Conference, April 2009.

[24] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari. LIFO-backpressure achieves near optimal

utility-delay tradeoff. IEEE/ACM Transactions on Networking, 21(3):831–844, June 2013.

[25] B. Li, A. Eryilmaz, and R. Li. Wireless scheduling for utility maximization with optimal convergence

speed. Proceedings of IEEE INFOCOM, Turin, Italy, April 2013.

[26] M. Neely. Energy-aware wireless scheduling with near optimal backlog and convergence time tradeoffs.

Proceedings of IEEE INFOCOM, 2015.

20

Appendix A – Proof of Lemma 1

Proof. (Lemma 1) Squaring both sides of the queueing dynamics (1), we obtain:

qj(t+ 1)2 ≤ qj(t)2 +Aj(t)
2 + µj(t)

2 − 2qj(t)[µj(t)−Aj(t)].

Summing it over j = 1, ..., r, defining B , 2rδ2
max, and taking an expectation over S(t) with distribution π(t)

conditioning on q(t), we have:

∆(t) ≤ B −
∑
j

qj(t)Eπ(t){[µj(t)−Aj(t)] | q(t)}. (30)

Then, by adding to both sides the term V Eπ(t){f(t) | q(t)} −∆A(t), and using the definition of ∆A(t), we

see that the lemma follows.

Appendix B – Proof of Lemma 2

Proof. (Lemma 2) First, by comparing (14) and (7), one sees that (17) can indeed be rewritten as:

∆V (t)−∆A(t) ≤ B + V gπ(t)(Q(t)). (31)

Using (9) and the fact that gπ(t)(Q(t)) ≤ g∗π(t), we have:

∆V (t)−∆A(t) ≤ B + V f∗π(t). (32)

Thus, by taking an expectation over q(t) and carrying out a telescoping sum over t ∈ Dd, and by dividing

both sides by V Dd, we obtain:

1

Dd

td+1−1∑
t=td

Eπd
{f(t)} ≤ f∗πd

+
B

V
+

1

V Dd

td+1−1∑
t=td

Eπd
{∆A(t)}+

∑
j Eπd

{qj(td)2}
2V Dd

.

Using the definition of ∆Dd

A proves the lemma.

Appendix C – Proof of Theorem 1

We first have the following lemmas, which will be used in proving the theorem.

Lemma 4. Suppose π(t) = π. Then, for a large V , at every frame k, we have with probability at least

ps , 1− M
V log(V) that:

max
i
|π̂ci[k]− πi| ≤ α/2, (33)

where α , 8 log(V)
V c/2 is the detection threshold. 3

21

Proof. (Lemma 4) Using the proof of Theorem 5 in [9], we see that with probability at least ps = 1− M
V log(V) ,

maxi |π̂si[k]− πi| ≤ α/4. According to the detection rules of RLC, this ensures (33), i.e., either maxi |π̂ci[k]−

π̂si[k]| ≤ α/4, which guarantees maxi |π̂ci[k]− πi| ≤ α/2, or π̂c[k] will be replaced by π̂s[k].

Lemma 5. When the system is polyhedral, for a large V , at every frame k, if maxi |π̂ci[k]−πi| ≤ α/2, then:

‖γ∗[k]− γ∗π‖ ≤ epmax , b0V
1−c/2 log(V), (34)

where b0 = Θ(1) is a system dependent parameter. 3

Proof. (Lemma 5) It follows directly from the proof of Theorem 5 in [9].

Lemma 6. [17] Suppose the conditions in Theorem 1 hold. Then, under BP, there exist constants Gp, ε =

Θ(1), i.e., both independent of V , such that whenever ‖q(t)− γ∗‖ > Gp,

Eπ{‖q(t+ 1)− γ∗π‖ | q(t)} ≤ ‖q(t)− γ∗π‖ − ε. 3 (35)

We also need the following technical lemmas, whose proofs are given in Appendix I.

Lemma 7. Suppose π(t) = π. Then, for a large V , (i) if maxi |π̂ci[k]− πi| ≤ α/2, RLC declares distribution

change with probability O(M
V log(V)/4), and (ii) if maxi |π̂ci[k] − πi| > α/2, RLC declares distribution change

with probability at least 1− M
V log(V) . 3

Lemma 8. For any t1 < t2, we have for each queue qj(t) that:

t2−1∑
t=t1

[µj(t)−Aj(t)] ≤ qj(t1)− qj(t2) + δmax(1 +

t2−1∑
t=t1

I[qj(t)≤0]). 3 (36)

We now begin the proof for Theorem 1.

Proof. (Theorem 1) (Utility) We first prove the utility performance. By taking a limit as Dd →∞ in (18)

and using π(t) = π and q(0) <∞, we get:

fRLCav ≤ f∗π +
B + ∆

∞
A

V
. (37)

Here ∆
∞
A = limDd→∞∆Dd

A /Dd. It remains to show that ∆
∞
A = O(1), i.e.,

lim
D0→∞

1

D0

D0−1∑
t=0

∑
j

Eπ{βj(t)[µj(t)−Aj(t)]} = O(1), (38)

where we use D0 as we only have one distribution throughout.

Under Assumption 1, we see that for a large enough V , with probability 1, we have γ∗[k] = Θ(V) for

each k (Lemma 1 in [17]). Now let us divide the frames into disjoint intervals such that during each interval

22

π̂c remains unchanged (hence β(t) stays constant). Then, we say that (i) the reference distribution π̂c[k] is

correct if maxi |π̂ci[k]− πi| ≤ α/2 (event denoted by E [k]), or (ii) the reference estimation π̂c[k1] is incorrect

if maxi |π̂ci[k1]− πi| > α/2 (event denoted by E [k]c). This is shown in Fig. 6. Note that in both cases, β(t)

remains constant throughout the interval.

Correct Correct Incorrect

Figure 6: Under RLC, the timeline consists of intervals that possess correct (maxi |π̂ci[k] − πi| ≤ α/2) and incorrect
(maxi |π̂ci[k]− πi| > α/2) estimates of the distribution.

Denote Il , [klw, kl+1w − 1] the l-th interval during which β(t) stays constant. We rewrite ∆∞A as:

∆∞A ,
∑
l

∑
t∈Il

∑
j

Eπ{βj(t)[µj(t)−Aj(t)]} =

∞∑
l=0

kl+1w−1∑
t=klw

∑
j

Eπ{βj(t)[µj(t)−Aj(t)]}.

Note that by the rules of RLC, we always have |βj(t)| ≤ b1V log(V) for some constant b1 = Θ(1).

Consider one interval [k1w, k2w− 1] with k2 > k1 and look at
∑k2w−1
t=k1w

Eπ{βj(t)[µj(t)−Aj(t)]}. We start

with the first case where the reference is incorrect, i.e., E [k1]c happens. In this case, using Lemma 7, we see

that at most with probability M
V log(V) a change will not be declared. Therefore,

Pr
{
k2 − k1 ≥ l

}
≤ (

2M

V log(V)
)l−1, ∀ l ≥ 1. (39)

Hence, conditioning on E [k1]c and using the fact that |βj(t)| ≤ b1V log(V), we have:

E
{ k2w−1∑
t=k1w

Eπ{βj(t)[µj(t)−Aj(t)]} | E [k1]c
}
≤ wb1V log(V)δmax

(1− 2M
V log(V))2

≤ 2b1V
1+c log(V)δmax. (40)

We also note that the probability for E [k1]c to happen is O(M
V log(V)).

Now consider the second case when E [k1] takes place, i.e., the reference is correct. Using Lemma 7 again,

we have that:
Pr
{
k2 − k1 > V 2

}
≥ 1− 2MV 2

V log(V)/4
≥ 1− 2M

V 4
. (41)

Conditioning on E1 = {k2 − k1 ≤ V 2}, which happens with probability at most 2M
V 4 , one has:

E
{ k2w−1∑
t=k1w

Eπ{βj(t)[µj(t)−Aj(t)]} | E1, E [k1]
}
≤ b1V 3+c log(V)δmax. (42)

On the other hand, when k2 − k1 > V 2, which happens with probability at least 1 − 2M
V 4 , βj(t) remains

constant for at least V 2+c slots. Lemma 9 at the end of this appendix shows that, during this period,

k2w−1∑
t=k1w

Pr
{
qj(t) ≤ δmax

}
≤ b2[k2w − k1w + 1]/V log V . (43)

Here b2 = Θ(1) is some system-dependent parameter. Thus, using Lemma 8 and (43), we get:

23

E
{ k2w−1∑
t=k1w

Eπ{[µj(t)−Aj(t)]} | Ec1 , E [k1]
}

(44)

≤ E
{
qj(k1w)− qj(k2w − 1) | Ec1 , E [k1]

}
+ δmax + b2δmaxE

{
k2w − k1w + 1 | Ec1 , E [k1]

}
/V log V .

Lastly, note that we set q(k1w) = qref = 2V 1−c/2 log(V)2. Thus, combining (40), (42) and (44), we have:

k2w−1∑
t=k1w

∑
j

Eπ{βj(t)[µj(t)−Aj(t)]} (45)

≤ r
[
2b1V

1+c log(V)δmax ·
M

V log(V)
+

2M

V 4
· b1V 3+c log(V)δmax + psb1V log(V)2V 1−c/2 log(V)2

+psb1V log(V) · b2δmaxE
{
|I| | Ec1 , E [k]

}
/V log V + psδmaxV log(V)

]
= O(V 2−c/2 log(V)3).

Here |I| denotes the length of the interval.

Finally, to complete the analysis, recall that under RLC, the timeline is divided into intervals shown in

Fig. 6. We define Il as the l-th such interval and rewrite ∆
∞
A as follows:

∆
∞
A = lim

l→∞

∑
l

∑
t∈Il

∑
j Eπ{βj(t)[µj(t)−Aj(t)]}∑

l E
{
|Il|
} . (46)

From (41), we get that for each Il,
E
{
|Il|
}
≥ V 2/2. (47)

Also, using the fact that Pr
{
E1
}
≤ 2M

V 4 , it can be shown that E
{
|I| | Ec1 , E [k]

}
≤ 2E

{
|I|
}

. Combing this with

(45), (46) and (47), we conclude that:
∆
∞
A = O(1).

Plugging this into (37), we see that the utility result follows.

(Delay) Now we look at the delay performance. From the argument above, we see that the frames

with correct reference distribution dominate the intervals. Hence, we focus on showing that most packets

experience very small delay during these intervals.

Consider one such interval [k1w, k2w − 1]. Using Lemma 7 again, we can see that for a large V ,

Pr
{
k2 − k1 > V 5

}
≥ 1− 2MV 5

V log(V)/4
≥ 1− 2M

V 2
. (48)

Indeed, using (39), we see that the expected number of packet arrivals during an interval with an incorrect

reference is no more than 2V cδmax, while the expected number of arrivals during a correct frame is Ω(λjV
5/2).

According to Lemma 5, Lemma 6, and (54) in the proof of Lemma 9, we see that when the distribution

is correct,

24

‖γ∗[k1]− γ∗π‖ = O(V 1−c/2 log(V)). (49)

Define θ̂ = θ + γ∗π − γ∗[k1]. We see from Lemma 6 that whenever ‖q(t) − θ̂‖ > Gp, which is equivalent to

‖Q(t)− γ∗π‖ > Gp,

E
{
‖q(t+ 1)− θ̂‖ | q(t)

}
≤ ‖q(t)− θ̂‖ − ε,

for the sameGp, ε = Θ(1) in Lemma 6. Using (49) and θ = 2V 1−c/2 log(V)2, we see that θ̂ = Θ(V 1−c/2 log(V)2).

Therefore, by invoking Theorem 4 from [9], we have:

E
{
TGp(q(t))

}
≤ O(V 1−c/2 log(V)/ε). (50)

Here TGp
(q(t)) , inf{t : ‖q(t)− θ̂‖ ≤ Gp}. Thus,

Pr
{
TGp

(q(t)) > V 3−c/2} ≤ O(log(V)/V 2). (51)

Now focus on the event {TGp(q(t)) ≤ V 3−c/2} and denote t∗ the first time Y (t) , ‖q(t) − θ̂‖ ≤ Gp.

Following an argument almost identical to the proof of Theorem 1 in [17], one can show that:

k2w−1∑
t=t∗

νε

2
E
{
eνY (t)

}
≤ (k2w − 1− t∗)e2ν

√
rδmax + eνY (t∗). (52)

Here ν , ε
δ2max+δmaxε/3

= Θ(1). Hence, by denoting b3 = 2e2ν
√
rδmax/νε = Θ(1) and b4 = eνY (t∗) ≤ eνGp =

Θ(1) and by choosing m = log(V)2, we get from (52) that:

1

(k2 − k1)w

k2w−1∑
t=k1w

Pr
{
Y (t) > Gp +m

}
≤ b3e−νm + (b4 + b3(t∗ − k1w))/(k2 − k1)w = O(

V 3−c/2

V 5
) = O(1/V 2).

Thus, the fraction of time {‖q(t) − θ̂‖ ≥ Gp} happens is only O(log(V)/V 2), implying that at most

O(λj log(V)/V 2) amount of packet will enter and depart from qj(t) when ‖q(t)− θ̂‖ > Gp.

Summarizing the above, we see that all but an O(log(V)/V 2) fraction of the traffic (due to cases when

k2− k1 < V 5 and TGp
(q(t)) > V 3−c/2) enter and depart when qj(t) ∈ [θ̂j −Gp− log(V)2, θ̂j +Gp + log(V)2].

This implies that their delay in the queue is O(log(V)2).

(Dropping) We see from (48) that the frequency of dropping is no more than once every V 5+c slots with

probability larger than 0.9. Each case we drop no more than O(V) packets on average (Theorem 1 in [17]).

Hence, the overall dropping rate is O(1/V 4).

Lemma 9. Suppose the conditions in Theorem 1 hold. Then, under RLC, given E [k1], we have for each j

that:

25

k2w−1∑
t=k1w

Pr
{
qj(t) ≤ δmax

}
≤ b2[k2w − k1w + 1]/V log(V). (53)

Here b2 = Θ(1) is a system-dependent constant. 3

Proof. (Lemma 9) First, we see that with a large V , V 1−c/2 log(V)2 ≥ 2epmax = 2b0V
1−2/c log(V). Thus,

using Lemma 5 and that θj = 2V 1−c/2 log(V)2, we have that given E [k1], at every frame k ∈ [k1, k2],

βj(t) ∈ [γ∗πj −
3

4
θj , γ

∗
πj −

1

4
θj]. (54)

It means that whenever qj(t) < qp , 1
4V

1−c/2 log(V)2, Qj(t) = qj(t) + βj(t) < γ∗πj − 1
4V

1−c/2 log(V)2, which

implies ‖γ∗π −Q(t)‖ > Gp when V is large. Denote Ej(t) the event that qj(t) < qp − δmax. Lemma 6 then

shows that given E [k1], we have for every t ∈ [k1w, (k1 + 1)w − 1] that:

Eπ{‖q(t+ 1)− θ̃‖ | q(t), Ej(t)} ≤ ‖q(t)− θ̃‖ − ε, (55)

for some θ̃ with θ̃j ≥ 1
8θ for all j.

Having established (55), define Y (t) = ‖q(t + 1) − θ̃‖ − δmax. We see then qj(t) < θ̃ − δmax implies

Y (t) > 0. From (55), we see then:

Eπ{Y (t+ 1) | Y (t) > 0} ≤ Y (t)− ε. (56)

Define an exponential Lyapunov function L̃(t) , eνY (t) and ∆̃(t) , E
{
L̃(t+ 1)− L̃(t) | q(t)

}
. It was shown

in [17] that by choosing ν = ε
δ2max+δmaxε/3

= Θ(1), we get:

∆̃(t) ≤ e2νδmax − νε

2
eνY (t). (57)

Let t∗ be the first time after k1w that qj(t) ≤ θ̃−δmax. We see then 0 ≤ Y (t∗) ≤ δmax. By taking expectation

on both sides of (57) and carrying out a telescoping sum from t = t∗ to k2w − 1, we obtain:

k2w−1∑
t=t∗

νε

2
E
{
eνY (t)

}
≤ [k2w − 1− t∗]e2νδmax + E

{
eνY (t∗)

}
.

Using E
{
eνY (t)

}
≥ eνmPr

{
Y (t) > m

}
and the fact that qj(t) ≤ δmax implies Y (t) ≥ θ̃ − 2δmax, we have:

k2w−1∑
t=t∗

Pr
{
qj(t) ≤ δmax

}
≤

k2w−1∑
t=t∗

Pr
{
Y (t) ≥ 1

4
V 1−c/2 log(V)2 − 2δmax

}
≤ b2[k2w − t∗]e−νV

1−c/2 log(V)2/4 + eν(δmax− 1
4V

1−c/2 log(V)2+2δmax).

Here b2 , 2
νε = Θ(1). Using Pr

{
qj(t) ≤ δmax

}
= 0 for t ∈ [k1w, t

∗], we see that the lemma follows.

26

Appendix D – Proof of Lemma 3

Proof. (Lemma 3) Since π2 is different from π1, there exists at least one coordinate j such that |π1j −π2j | >

ε = Θ(1).

Denote by k the frame t belongs to. We see then frame k − 1 has π(t) = π1. Hence, we have that with

probability of at least 1− M
V log(V) , max |π̂ci[k − 1]− π1i| ≤ α/2. Note that this holds regardless of π̂c[k − 1]

being updated at frame k − 1 or not. Since π(τ) = π2 for τ ∈ [t, t + 2w], we see that at least frame k + 1

has a distribution very different from π̂c[k − 1]. Thus, a change will be declared at (k + 2)w. This is so

becasue with probability 1− M
V log(V) , max |πsi[k+1]−π2i| ≤ α/2. Thus, (12) will be violated at (k+2)w with

probability at least 1− 2M
V log(V) , if it is not yet violated at time (k+ 1)w (This is possible because w = V c. If

t is close to kw, then the sample distribution is not very different from π1).

Appendix E – Proof of Theorem 2

Proof. (Theorem 2) (Utility) Using Lemma 4, we see that with probability at least 1− M
V log(V) , maxi |π̂ci[0]−

πi| ≤ α/2. In this case, we see that when Dd = Θ(V 2+ε−c/2), with probability 1 − MV 3

V log(V) ≥ 1 − M
V log(V)/2 ,

β(t) remains unchanged throughout the interval.

Conditioning on this event and using the same argument as in the utility proof of Theorem 1, we have

∆Dd

A /Dd = O(1) (equation (45)). Moreover, Lemma 3 shows that the true distribution will be detected

in 2w = 2V c time with probability 1 − O(2M
V log(V)). Thus, choosing c such that 2 + ε − c/2 > c + 1, i.e.,

c ≤ (2 + 2ε)/3, ensures that the detection period contributes only O(1/V) of the cost. Plugging the above

into (18) and using the fact that qref,j = 2V 1−c/2 log(V)2 prove (21).

(Queueing) To show the queue performance, we note that (54) also holds in this case. Thus, there exists

θ̃ with θ̃j ≤ 3
4θ, such that whenever ‖q(t)− θ̃‖ > Gp,

E
{
‖q(t+ 1)− θ̃‖|q(t)

}
≤ ‖q(t)− θ̃‖ − ε, (58)

for some ε = Θ(1). Using an argument similar to the proof of Theorem 1 in [17], one can show that

qav = O(3r
4 V

1−c/2 log(V)2).

Appendix F – Proof of Theorem 3

We prove Theorem 3 here. First we have the following lemma, whose proof is given in Appendix J.

Lemma 10. When the system is locally-smooth, for a large enough V , at every frame k, if maxi |π̂ci[k]−π̂i| ≤

α/2, then:
‖γ∗[k]− γ∗π‖ ≤ esmax , b5V

3−c
2 log(V), (59)

27

where b5 = Θ(1) is a system-dependent constant. 3

We similarly have the following lemma regarding the drift of the queue vector towards γ∗π under BP.

Lemma 11. [17] Suppose the conditions in Theorem 3 hold. Then, under BP, there exist a constant Gs =

Θ(
√
V), such that whenever ‖q(t)− γ∗‖ > Gs,

Eπ{‖q(t+ 1)− γ∗π‖ | q(t)} ≤ ‖q(t)− γ∗π‖ −
1√
V
. 3 (60)

Now we prove Theorem 3.

Proof. (Theorem 3) (Utility) First, one can check that Lemma 7 and Lemma 8 still hold in this case, since

they only involve the underlying distribution and sample path queueing. Lemma 9 can also be verified to hold.

In particular, (57) holds with ε = 1/
√
V and ν = Θ(1/

√
V). In this case, we can define qs , 1

4V
(3−c)/2 log(V)2

and Yj(t) = max[qs− qj(t)− δmax, 0]. Then, the proof of Lemma 9 for the locally-smooth case follows exactly

as in the polyhedral case.

Therefore, one can verify that (40) to (44) still hold, while (45) becomes (recall qref,j = 2V
3−c
2 log(V)2):∑

t∈Il

∑
j

Eπ{βj(t)[µj(t)−Aj(t)]} (61)

≤ r
[
2b1V

1+c log(V)δmax ·
M

V log(V)
+

2M

V 4
· b1V 3+c log(V)δmax + psb1V log(V)2V (3−c)/2 log(V)2

+psb1V log(V) · b2δmaxE
{
|I| | Ec1 , E [k]

}
/V log V + psδmaxV log(V)

]
= O(V

5−c
2 log(V)2).

Having established (61), the rest of the proof goes exactly the same as in the proof of Theorem 1.

(Delay) We use a similar argument as in the polyhedral case. In particular, using Theorem 6, we have:

E
{
TGs(q(t))

}
≤ O(V 2−c/2 log(V)2), (62)

for some Gs = Θ(
√
V), and that:

Pr
{
TGs(q(t)) > V 4−c/2} ≤ O(log(V)2/V 2). (63)

Here we have ignored the V c term in Theorem 6 as there is only one distribution. Following the argument

as in the proof of Theorem 1 and using the fact that k2 − k1 ≥ V 5, we see that:

1

(k2 − k1)w

k2w−1∑
t=k1w

Pr
{
Y (t) > Gs +m

}
= O(1/V).

Using Theorem 3 in [17] and (63), we see that for each interval, with probability 1−O(log(V)
V 2), most packets

28

will enter and leave the queue when qj(t) ∈ [Gs −
√
V log(V)2, Gs +

√
V log(V)2]. Thus, all but an O(1/V)

fraction of the traffic only experience O(
√
V log(V)2) delay.

(Dropping): The proof is the same as in Theorem 1.

Appendix G – Proof of Theorem 5

Proof. (Theorem 5) First of all, we have from Lemma 3 that with probability at least 1 − O(2M
V log(V)), the

new distribution πd will be detected after 2w = 2V c time. Moreover, with probability 1 − O(M
V log(V)), (54)

holds, in which case we have:
‖Q(t)− γ∗π‖ = ‖β[k] + q(t)− γ∗π‖ = O(V 1−c/2 log(V)2). (64)

Lemma 5 in [9] then shows that the expected time for Q(t) to get to within Gp of γ∗π is O(V 1−c/2 log(V)2).

Combining it with the time to detect the distribution change, we see that the theorem follows.

Appendix H – Proof of Theorem 6

Proof. (Theorem 6) First, from Lemma 10, we have with probability of at least 1−O(M
V log(V)) that:

‖γ∗[k]− γ∗π‖ ≤ b5V
3−c
2 log(V). (65)

Using Lemma 11, (65), and Lemma 5 in [9], we conclude that after getting the correct estimation of the

underlying distribution, the expected time to get to within Gs distance is O(V 2−c/2 log(V)2). Combining it

with Lemma 3, which states that O(V c) time is sufficient for detecting distribution change, we obtain (27).

(28) follows by noticing that after the distribution change, we have ‖q(t)−γ∗‖ = Θ(V). This is so because

q(t) now has to move towards a different optimal multiplier, which has difference Θ(V) from the current one

(Lemma 1 in [17]). Hence, repeating the above argument, we obtain (28).

Appendix I – Proof of supporting lemmas

This appendix presents the proofs of supporting Lemmas 7, 8 and 10.

Proof. (Lemma 7) We first consider case (ii). Since maxi |π̂ci[k] − πi| > α/2, RLC will declare distribution

change if maxi |π̂si[k] − πi| ≤ α/4, because then maxi |π̂si[k] − π̂ci[k]| > α/4. Using Lemma 4, we see that

this happens with probability at least 1− M
V log(V) .

Now consider case (i), i.e., maxi |π̂ci[k] − πi| ≤ α/2. In this case, RLC only declares distribution change

when (12) is violated. We show that given maxi |π̂ci[k]− πi| ≤ α/2, this is very unlikely. To see this, denote

tc the reference time for frame k and let k′ be the index of the frame tc belongs to. Then, we have:
Pr
{

max
i
|π̂ci[k′]− πi| ≤ α/8 | max

i
|π̂ci[k′]− πi| ≤ α/2

}

29

=
Pr
{

maxi |π̂ci[k′]− πi| ≤ α/8
}

Pr
{

maxi |π̂ci[k′]− πi| ≤ α/2
}

≥ Pr
{

max
i
|π̂ci[k′]− πi| ≤ α/8

}
≥ 1−MV − log(V)/4.

The last inequality holds since π̂c[k
′] is formed by the sample distribution in frame k′. Given this, we see that

RLC declares distribution change only if maxi |π̂si[k] − πi| > α/8, which happens only with probability 1 −

MV − log(V)/4. Thus, RLC does not claim distribution change with probability at least 1− 2MV − log(V)/4.

Proof. (Lemma 8) To prove this result, let us look at a queue process example shown in Fig. 7. We see that

during any busy interval [t1i, t2i], i.e., qj(t) > 0 for t ∈ [t1i, t2i] but qj(t) = 0 for t = t1i − 1 and t2i + 1, one

must have
∑t2i−1
t=t1i−1[µj(t)−Aj(t)] ≤ 0.

qj(t1)

t1 t2t⇤1 t⇤2

Figure 7: A queue process with busy-idle intervals.

Thus, if we start from a time t∗1 when qj(t
∗
1) = 0, then

∑t2−1
t=t∗1

[µj(t)−Aj(t)] ≤ δmax

∑t2−1
t=t∗1

I[qj(t)≤0]. Now

choose t∗1 to be the first time after t1 such that qj(t) = 0 and denote t∗2 the last time before t2 that qj(t) = 0.

We see then the lemma follows as
∑t∗1−1
t=t1

[µj(t)−Aj(t)] ≤ qj(t1)+δmax and
∑t2
t=t∗2

[µj(t)−Aj(t)] ≤ −qj(t2).

Appendix J – Proof of Lemma 10

Proof. (Lemma 10) To start, we recall the following inequality from [9], which states that for all γ 6= γ∗π,

gπ(γ∗π)− gπ̂c[k](γ
∗[k]) ≤ 2 max

i
δi[k]M(V fmax + rξB). (66)

Here δi[k] , |πi − π̂∗ci [k]| is the distribution estimation error and ξ = Θ(V).

Given (22) and the concavity of gπ(γ), [17] shows that there exists Gs = Θ(
√
V), such that whenever

‖γ∗π − γ‖ > Gs,

gπ(γ∗π) ≥ gπ(γ) +
1√
V
‖γ∗π − γ‖. (67)

Combining (67) with (66), we conclude that with probability 1 − M
V log(V) , max δi[k] ≤ log(V)

V c/2 . Hence, when

c ∈ [0, 2],
‖γ∗[k]− γ∗π‖ ≤ b5V

3−c
2 log(V), (68)

for some constant b5 = Θ(1).

30

