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ABSTRACT
We investigate the problem of stochastic network optimization in
the presence of imperfect state prediction and non-stationarity.
Based on a novel distribution-accuracy curve prediction model, we
develop the predictive learning-aided control (PLC) algorithm, which
jointly utilizes historic and predicted network state information
for decision making. PLC is an online algorithm that requires zero
a-prior system statistical information, and consists of three key
components, namely sequential distribution estimation and change
detection, dual learning, and online queue-based control.

Speci�cally, we show that PLC simultaneously achieves good
long-term performance, short-term queue size reduction, accu-
rate change detection, and fast algorithm convergence. In partic-
ular, for stationary networks, PLC achieves a near-optimal [O (� ),
O (log(1/� )2)] utility-delay tradeo�. For non-stationary networks,
PLC obtains an [O (� ),O (log2 (1/� ) +min(�c/2�1, ew /� ))] utility-backlog
tradeo� for distributions that last �(max(��c ,e�2w )

� 1+a ) time, where ew
is the prediction accuracy and a = �(1) > 0 is a constant (the
Backpressue algorithm [1] requires an O (��2) length for the same
utility performance with a larger backlog). Moreover, PLC detects
distribution changeO (w ) slots faster with high probability (w is the
prediction size) and achieves anO (min(��1+c/2, ew /� )+ log2 (1/� ))
convergence time, which is faster than Backpressure and other
algorithms. Our results demonstrate that state prediction (even
imperfect) can help (i) achieve faster detection and convergence,
and (ii) obtain be�er utility-delay tradeo�s. �ey also quantify the
bene�ts of prediction in four important performance metrics, i.e.,
utility (e�ciency), delay (quality-of-service), detection (robustness),
and convergence (adaptability), and provide new insight for joint
prediction, learning and optimization in stochastic networks.
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1 INTRODUCTION
Enabled by recent developments in sensing, monitoring, and ma-
chine learning methods, utilizing prediction for performance im-
provement in networked systems has received a growing a�ention
in both industry and research. For instance, recent research works
[2], [3], and [4] investigate the bene�ts of utilizing prediction in
energy saving, job migration in cloud computing, and video stream-
ing in cellular networks. On the industry side, various companies
have implemented di�erent ways to take advantage of prediction,
e.g., Amazon utilizes prediction for be�er package delivery [5]
and Facebook enables prefetching for faster webpage loading [6].
However, despite the continuing success in these a�empts, most
existing results in network control and analysis do not investigate
the impact of prediction. �erefore, we still lack a thorough the-
oretical understanding about the value-of-prediction in stochastic
network control. Fundamental questions regarding how prediction
should be integrated in network algorithms, the ultimate predic-
tion gains, and how prediction error impacts performance, remain
largely unanswered.

To contribute to developing a theoretical foundation for utilizing
prediction in networks, in this paper, we consider a general con-
strained stochastic network optimization formulation, and aim to
rigorously quantify the bene�ts of system state prediction and the
impact of prediction error. Speci�cally, we are given a discrete-time
stochastic network with a dynamic state that evolves according to
some potentially non-stationary probability law. Under each sys-
tem state, a control action is chosen and implemented. �e action
generates tra�c into network queues but also serves workload from
them. �e action also results in a system utility (cost) due to service
completion (resource expenditure). �e tra�c, service, and cost are
jointly determined by the action and the system state. �e objective
is to maximize the expected utility (or equivalently, minimize the
cost) subject to tra�c/service constraints, given imperfect system
state prediction information.

�is is a general framework that models various practical sce-
narios, for instance, mobile networks, computer networks, supply
chains, and smart grids. However, understanding the impact of
prediction in this framework is challenging. First, statistical infor-
mation of network dynamics is o�en unknown a-priori. Hence,
in order to achieve good performance, algorithms must be able
to quickly learn certain su�cient statistics of the dynamics, and
make e�cient use of prediction while carefully handling predic-
tion error. Second, system states appear randomly in every time
slot. �us, algorithms must perform well under such incremental
realizations of the randomness. �ird, quantifying system service
quality o�en involves handling queueing in the system. As a result,
explicit connections between control actions and queues must be
established.
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�ere has been a recent e�ort in developing algorithms that
can achieve good utility and delay performance for this general
problem without prediction in various se�ings, for instance, wire-
less networks, [7], [8], [9], [10], processing networks, [11], [12],
cognitive radio, [13], and the smart grid, [14], [15]. However, exist-
ing results mostly focus on networks with stationary distributions.
�ey either assume full system statistical information beforehand,
or rely on stochastic approximation techniques to avoid the need
of such information. Works [16] and [17] propose schemes to in-
corporate historic system information into control, but they do not
consider prediction. Recent results in [18], [19], [20], [21] and [22]
consider problems with tra�c demand prediction, and [23] jointly
considers demand and channel prediction. However, they focus
either onM/M/1-type models, or do not consider queueing, or do
not consider the impact of prediction error. In a di�erent line of
work, [24], [25], [26] and [27] investigate the bene�t of prediction
from the online algorithm design perspective. Although the results
provide novel understanding about the e�ect of prediction, they do
not apply to the general constrained network optimization prob-
lems, where action outcomes are general functions of time-varying
network states, queues evolve in a controlled manner, i.e., arrival
and departure rates depend on the control policy, and prediction
can contain error.

In this paper, we develop a novel control algorithm for the gen-
eral framework called predictive learning-aided control (PLC). PLC is
an online algorithm that consists of three components, sequential
distribution estimation and change detection, dual learning, and
online control (see Fig. 1).

Prediction

& History

Distribution

Estimate
Learning

Queue-based

Control
Network

Figure 1: �e PLC algorithm contains (i) a distribution es-
timator that utilizes historic and predicted information to
simultaneously form a distribution estimate and detect dis-
tribution change, (ii) a learning component that computes
an empirical Lagrange multiplier based on the distribution
estimate, and (iii) a queue-based controller whose decision-
making information is augmented with the multiplier.

�e distribution estimator conducts sequential statistical com-
parisons based on prediction and historic network state records.
Doing so e�ciently detects changes of the underlying probability
distribution and guides us in selecting the right state samples to
form distribution estimates. �e estimated distribution is then fed
into the dual learning component to compute an empirical multi-
plier of an underlying optimization formulation. �is multiplier
is further incorporated into the Backpressure (BP) network con-
troller [1] to perform realtime network operation. Compared to the
commonly adopted receding-horizon-control approach (RHC), e.g.,
[28], PLC provides another way to utilize future state information,

which focuses on using the predicted distribution for guiding ac-
tion selection in the present slot and can be viewed as performing
steady-state control under the predicted future distribution.

We summarize our main contributions as follows.
i. We propose a general state prediction model featured with

a distribution-accuracy curve. Our model captures key factors of
several existing prediction models, including window-based [22],
distribution-based [29], and �lter-based [26] models.

ii. We propose a general constrained network control algorithm
called predictive learning-aided control (PLC), which is an online
algorithm that requires zero a-prior system statistical information.
PLC jointly performs sequential distribution estimation and change
detection, dual learning, and queue-based online control.

iii. We show that for stationary networks, PLC achieves an
[O (� ),O (log2 (1/� ))] utility-delay tradeo�. For non-stationary net-
works, PLC obtains an [O (� ),O (log2 (1/� ) +min(�c/2�1, ew /� ))]
utility-backlog tradeo� for distributions that last �(max(��c ,e�2w )

� 1+a )
time, where ew is the prediction accuracy, c 2 (0, 1) and a > 0 is an
�(1) constant (the Backpressue algorithm [1] requires an O (��2)
length for the same utility performance with a larger backlog).1

iv. We show that for both stationary and non-stationary sys-
tem dynamics, PLC detects distribution change O (w ) slots (w is
prediction window size) faster with high probability and achieves
a fastO (min(��1+c/2, ew /� ) + log2 (1/� )) convergence time, which
is faster than the O (��1+c/2 + ��c ) time of the OLAC scheme [16],
and the O (1/� ) time of Backpressure.

v. Our results show that state prediction (even imperfect) can
help performance in two ways (a) achieve faster detection, i.e.,
detect change w slots faster, and (b) obtain a be�er utility-delay
tradeo�, i.e., reduce delay toO (ew /�+log2 (1/� )) for the same utility.
�ey rigorously quantify the bene�ts of prediction in four impor-
tant performance metrics, i.e., utility (e�ciency), delay (quality-of-
service), detection (robustness), and convergence (adaptability).

�e rest of the paper is organized as follows. In Section 2, we
discuss a few motivating examples in di�erent application scenar-
ios. We set up the notations in Section 3, and present the problem
formulation in Section 4. Background information is provided in
Section 5. �en, we present PLC in Section 6, and prove its perfor-
mance in Section 7. Simulation results are presented in Section 8,
followed by conclusions in Section 9. To facilitate reading, all the
proofs are placed in the appendices.

2 MOTIVATING EXAMPLES
In this section, we present a few interesting practical scenarios that
fall into our general framework.

Matching in sharing platforms: Consider a Uber-like com-
pany that provides ride service to customers. At every time, cus-
tomer requests enter the system and available cars join to provide
service. Depending on the environment condition (state), e.g., traf-
�c condition or customer status, matching customers to drivers
can result in di�erent user satisfaction, and a�ect the revenue of
the company (utility). �e company gets access to future customer
demand and car availability, and system condition information (pre-
diction), e.g., through reservation or machine learning tools. �e

1Note that when there is no prediction, i.e.,w = 0 and ew = 1, we recover previous
results of OLAC [16].
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objective is to optimally match customers to cars so that the utility
is maximized, e.g., [30] and [31].

Energy optimization in mobile networks: Consider a base-
station (BS) sending tra�c to a set of mobile users. �e channel
conditions (state) between users and the BS are time-varying. �us,
the BS needs di�erent amounts of power for packet transmission
(cost) at di�erent times. Due to higher layer application require-
ments, the BS is required to deliver packets to users at pre-speci�ed
rates. On the other hand, the BS can predict future user locations
in some short period of time, from which it can estimate future
channel conditions (prediction). �e objective of the BS is to jointly
optimize power allocation and scheduling among users, so as to
minimize energy consumption, while meeting the rate require-
ments, e.g., [8], [13]. Other factors such as energy harvesting, e.g.,
[32], can also be incorporated in the formulation.

Resource allocation in cloud computing: Consider an op-
erator, e.g., a dispatcher, assigning computing jobs to servers for
processing. �e job arrival process is time-varying (state), and
available processing capacities at servers are also dynamic (state),
e.g., due to background processing. Completing users’ job requests
brings the operator reward (utility). �e operator may also have
information regarding future job arrivals and service capacities
(prediction). �e goal is to allocate resources and balance the loads
properly, so as to maximize system utility. �is example can be
extended to capture other factors such as rate scaling [33] and data
locality constraints [34].

In these examples and related works, not only can the state statis-
tics be potentially non-stationary, but the system o�en gets access
to certain (possibly imperfect) future state information through
various prediction techniques. �ese features make the problems
di�erent from existing se�ings considered, e.g., [8] and [15], and
require di�erent approaches for both algorithm design and analysis.

3 NOTATIONS
Rn denotes then-dimensional Euclidean space. Rn+ (Rn�) denotes the
non-negative (non-positive) orthant. Bold symbols x = (x1, ...,xn )
denote vectors in Rn . w .p.1 denotes “with probability 1.” k ·
k denotes the Euclidean norm. For a sequence {� (t )}1t=0, � =
limt!1 1

t
Pt�1
�=0 E

(
� (� )

)
denotes its average (when exists). x ⌫ Ä

means x j � �j for all j . For distributions �1 and �2, k�1��2kt� =P
i |�1i � �2i | denotes the total variation distance.

4 SYSTEM MODEL
Consider a controller that operates a network with the goal of
minimizing the time average cost, subject to the queue stability
constraint. �e network is assumed to operate in slo�ed time, i.e.,
t 2 {0, 1, 2, ...}, and there are r � 1 queues in the network.

4.1 Network state
In every slot t , we use S (t ) to denote the current network state,
which indicates the current network parameters, such as a vector of
conditions for each network link, or a collection of other relevant
information about the current network channels and arrivals. S (t )
is independently distributed across time, and each realization is
drawn from a state space of M distinct states denoted as S =

{s1, s2, . . . , sM }.2 We denote �i (t ) = Pr
(
S (t ) = si

)
the probability

of being in state si at time t and denote � (t ) = (�1 (t ), ...,�M (t ))
the state distribution at time t . �e network controller can observe
S (t ) at the beginning of every slot t , but the �i (t ) probabilities
are unknown. To simplify notations, we divide time into intervals
that have the same distributions and denote {tk ,k = 0, 1, ...} the
starting point of the k-th interval Ik , i.e., � (t ) = �k for all t 2
Ik , {tk , tk+1 � 1}. �e length of Ik is denoted by dk , tk+1 � tk .

4.2 State prediction
At every time slot, the operator gets access to a prediction module,
e.g., a machine learning algorithm, which provides prediction of
future network states. Di�erent from recent works, e.g., [25], [26]
and [35], which assume prediction models on individual states, we
assume that the prediction module outputs a sequence of predicted
distributionsWw (t ) , {�̂ (t ), �̂ (t + 1), ..., �̂ (t +w )}, wherew + 1
is the prediction window size. Moreover, the prediction quality is
characterized by a distribution-accuracy curve {e (0), ..., e (w )} as
follows. For every 0  k  w , �̂ (t + k ) satis�es:

| |�̂ (t + k ) � � (t + k ) | |t�  e (k ), 8 k . (1)

�at is, the predicted distribution at time k has a total-variation
error bounded by some e (k ) � 0.3 Note that e (k ) = 0 for all
0  k  w corresponds to a perfect predictor, in that it predicts
the exact distribution in every slot. We assume the {e (0), ..., e (w )}
curve is known to the operator and denote ew , 1

w+1
Pw
k=0 e (k )

the average prediction error.
Our prediction model (1) is general and captures key characteris-

tics of several existing prediction models. For instance, it captures
the exact demand statistics prediction model in [29], where the
future demand distribution is known (e (k ) = 0 for all 0  k  w).
It can also capture the window-based predictor model, e.g., [22], if
each �̂ (t + k ) corresponds to the indicator value for the true state.
Moreover, our model captures the error-convolution prediction
model proposed in [35], [25] and [26], which captures features of
the Wiener �lter and Kalman �lter. Speci�cally, under the convolu-
tion model, the predicted state Ŝ (t + k ) at time t satis�es:4

kŜ (t + k ) � S (t + k )k =
t+kX

s=t+1
�(t + k � s )a(s ), (2)

where �(s ) is the impulse function that captures how error propa-
gates over time in prediction, and a(s ) is assumed to be a zero mean
i.i.d. random variable [25]. �us, we can compute the correspond-
ing e (k ) once �(s ) and a(s ) are given.

4.3 �e cost, tra�c, and service
At each time t , a�er observing S (t ) = si , the controller chooses
an action x (t ) from a set Xi , i.e., x (t ) = xi for some xi 2 Xi . �e
set Xi is called the feasible action set for network state si and is
assumed to be time-invariant and compact for all si 2 S. �e cost,
tra�c, and service generated by the action x (t ) = xi are as follows:
2�e independent assumption is made to facilitate presentation and understanding.
�e results in this paper can likely be generalized to systems where S (t ) evolves
according to general time inhomogeneous Markovian dynamics.
3It makes sense to assume a deterministic upper bound of the di�erence here because
we are dealing with distributions.
4In [25] and [26], the state space is a metric space.
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(a) �e chosen action has an associated cost given by the cost
function f (t ) = f (si ,xi ) : Xi 7! R+ (or Xi 7! R� in
reward maximization problems).5

(b) �e amount of tra�c generated by the action to queue j
is determined by the tra�c function Aj (t ) = Aj (si ,xi ) :
Xi 7! R+, in units of packets.

(c) �e amount of service allocated to queue j is given by the
rate function µ j (t ) = µ j (si ,xi ) : Xi 7! R+, in units of
packets.

Here Aj (t ) can include both exogenous arrivals from outside the
network to queue j , and endogenous arrivals from other queues, i.e.,
transmi�ed packets from other queues to queue j. We assume the
functions �f (si , ·), µ j (si , ·) and Aj (si , ·) are time-invariant, their
magnitudes are uniformly upper bounded by some constant �max 2
(0,1) for all si , j, and they are known to the operator. Note that
this formulation is general and models many network problems,
e.g., [8], [15], and [36].

4.4 Problem formulation
Let q(t ) = (q1 (t ), ...,qr (t ))T 2 Rr+, t = 0, 1, 2, ... be the queue
backlog vector process of the network, in units of packets. We
assume the following queueing dynamics:

qj (t + 1) = max
f
qj (t ) � µ j (t ) +Aj (t ), 0

g
, 8j, (3)

and q(0) = 0. By using (3), we assume that when a queue does not
have enough packets to send, null packets are transmi�ed, so that
the number of packets entering qj (t ) is equal to Aj (t ). We adopt
the following notion of queue stability [1]:

qav , lim sup
t!1

1
t

t�1X

�=0

rX

j=1
E
(
qj (� )

)
< 1. (4)

We use � to denote an action-choosing policy, and use f �av to denote
its time average cost, i.e.,

f �av , lim sup
t!1

1
t

t�1X

�=0
E
(
f � (� )

)
, (5)

where f � (� ) is the cost incurred at time � under policy �. We
call an action-choosing policy feasible if at every time slot t it only
chooses actions from the feasible action set Xi when S (t ) = si . We
then call a feasible action-choosing policy under which (4) holds a
stable policy.

In every slot, the network controller observes the current net-
work state and prediction, and chooses a control action, with the
goal of minimizing the time average cost subject to network stabil-
ity. �is goal can be mathematically stated as:6

(P1) min : f

�
av, s.t. (4).

In the following, we call (P1) the stochastic problem, and we use f �av
to denote its optimal solution given a �xed distribution � . It can
be seen that the examples in Section 2 can all be modeled by our
stochastic problem framework.

�roughout our paper, we make the following assumption.

5We use cost and utility interchangeably in this paper.
6When � (t ) is time-varying, the optimal system utility needs to be de�ned carefully.
We will specify it when discussing the corresponding results.

A��������� 1. For every system distribution �k , there exists a
constant �k = �(1) > 0 such that for any valid state distribution
�

0 = (� 01, ...,� 0M ) with k� 0 ��k kt�  �k , there exist a set of actions

{x (si )z }z=1,2, ...,1i=1, ...,M with x (si )z 2 Xi and variables � (si )
z � 0 for all si

and z with
P
z �

(si )
z = 1 for all si (possibly depending on �

0), such
that:

X

si
� 0i

(X
z

� (si )
z [Aj (si ,x

(si )
z ) � µ j (si ,x (si )z )]

)
 ��0, 8 j, (6)

where �0 = �(1) > 0 is independent of � 0. ^

Assumption 1 corresponds to the “slack” condition commonly
assumed in the literature with �k = 0, e.g., [36] and [37].7 With
�k > 0, we assume that when two systems are relatively close to
each other (in terms of � ), they can both be stabilized by some
(possibly di�erent) randomized control policy that results in the
same slack.

4.5 Discussion of the model
Two key di�erences between our model and previous ones include
(i) � (t ) itself can be time-varying and (ii) the operator gets access
to a prediction windowWw (t ) that contains imperfect prediction.
�ese two extensions are important to the current network control
literature. First, practical systems are o�en non-stationary. �us,
system dynamics can have time-varying distributions. �us, it is
important to have e�cient algorithms to automatically adapt to
the changing environment. Second, prediction has recently been
made increasingly accurate in various contexts, e.g., user mobility
in cellular network and harvestable energy availability in wireless
systems, by data collection and machine learning tools. �us, it
is critical to understand the fundamental bene�ts and limits of
prediction, and its optimal usage.

5 THE DETERMINISTIC PROBLEM
For our algorithm design and analysis, we de�ne the deterministic
problem and its dual problem [38]. Speci�cally, the deterministic
problem for a given distribution � is de�ned as follows [38]:

min : V
X

si
�i f (si ,x

(si ) ) (7)

s.t.
X

si
�i [Aj (si ,x

(si ) ) � µ j (si ,x (si ) )]  0, 8 j,

x (si ) 2 Xi 8 i = 1, 2, ...,M .

Here theminimization is taken overx 2 Q
i Xi , wherex = (x (s1 ) , ...,

x (sM ) )T , and V � 1 is a positive constant introduced for later anal-
ysis. �e dual problem of (7) can be obtained as follows:

max : �(� ,� ), s.t. � ⌫ 0, (8)

where �(� ,� ) is the dual function for problem (7) and is de�ned as:

�(� ,� ) = inf
x (si ) 2Xi

X

si
�i

(
V f (si ,x

(si ) ) (9)

+
X

j
�j
f
Aj (si ,x

(si ) ) � µ j (si ,x (si ) )
g)
.

7Note that �0 � 0 is a necessary condition for network stability [1].
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� = (�1, ...,�r )T is the Lagrange multiplier of (7). It is well known
that �(� ,� ) in (9) is concave in the vector � for all � 2 Rr . Hence,
the problem (8) can usually be solved e�ciently, particularly when
the cost functions and rate functions are separable over di�erent
network components [39]. We use �⇤� to denote the optimal multi-
plier corresponding to a given � and sometimes omit the subscript
when it is clear. Denote �⇤� the optimal value of (8) under a �xed
distribution � . It was shown in [40] that:

f �av = �
⇤
� . (10)

�at is, �⇤� characterizes the optimal time average cost of the sto-
chastic problem. For our analysis, we make the following assump-
tion on the �(� ,�k ) function.

A��������� 2. For every system distribution �k , �(� ,�k ) has
a unique optimal solution �⇤� k

, 0 in Rr . ^

Assumption 2 is also commonly assumed and holds for many
network utility optimization problems, e.g., [8] and [38].

6 PREDICTIVE LEARNING-AIDED CONTROL
In this section, we present the predictive learning-aided control al-
gorithm (PLC). PLC contains three main components: a distribution
estimator, a learning component, and an online queue-based con-
troller. Below, we �rst present the estimation part. �en, we present
the PLC algorithm.

6.1 Distribution estimation and change
detection

Here we specify the distribution estimator. �e idea is to �rst com-
bine the prediction inWw (t )with historic state information to form
an average distribution, and then perform statistical comparisons
for change detection. We call the module the average distribution
estimate (ADE).

Speci�cally, ADE maintains two windowsWm (t ) andWd (t ) to
store network state samples, i.e.,

Wd (t ) = {bsd (t ), ...,bed (t )}, (11)
Wm (t ) = {bm (t ), ...,min[bsd (t ),bm (t ) +Tl ]}. (12)

Here bsd (t ) and bm (t ) mark the beginning slots of Wd (t ) and
Wm (t ), respectively, and bed (t ) marks the end of Wd (t ). Ide-
ally, Wd (t ) contains the most recent d samples (including the
prediction) andWm (t ) contains Tl subsequent samples (where
Tl is a pre-speci�ed number). We denoteWm (t ) = |Wm (t ) | and
Wd (t ) = |Wd (t ) |. Without loss of generality, we assume that
d � w + 1. �is is a reasonable assumption, as we see later that
d grows with our control parameter V while prediction power is
o�en limited in practice.

We use �̂d (t ) and �̂

m (t ) to denote the empirical distributions
ofWd (t ) andWm (t ), i.e.,8

�̂di (t ) =
1
d

 t�1X

�=(t+w�d )+
1[S (� )=si ] +

X

� 2Ww (t )
�̂i (� )

!

�̂mi (t ) =
1

Wm (t )

X

� 2Wm (t )
1[S (� )=si ].

8Note that this is only one way to utilize the samples. Other methods such as EWMA
can also be applied when appropriate.

�at is, �̂d (t ) is the average of the empirical distribution of the “ob-
served” samples inWd (t ) and the predicted distribution, whereas
�̂

m (t ) is the empirical distribution.
�e formal procedure of ADE is as follows (parameters Tl ,d, �d

will be speci�ed later).
Average Distribution Estimate (ADE(Tl ,d, �d )): Initializebsd (0) =

0, bed (0) = t + w and bm (0) = 0, i.e.,Wd (t ) = {0, ..., t + w } and
Wm (t ) = �. At every time t , update bsd (t ), b

e
d (t ) and bm (t ) as

follows:
(i) IfWm (t ) � d and | |�̂d (t ) � �̂

m (t ) | |t� > �d , set bm (t ) =
t +w + 1 and bsd (t ) = b

e
d (t ) = t +w + 1.

(ii) IfWm (t ) = Tl and there exists k such that | |�̂ (t + k ) �
�̂

m (t ) | |t� > e (k ) +
2M log(Tl )p

Tl
, set bm (t ) = t +w + 1 and

bsd (t ) = b
e
d (t ) = t +w + 1. Mark t +w + 1 a reset point.

(iii) Else if t  bsd (t � 1), bm (t ) = bm (t � 1), bsd (t ) = bsd (t � 1),
and bed (t ) = b

e
d (t � 1).9

(iv) Else set bm (t ) = bm (t � 1), bsd (t ) = (t + w � d )+ and
bed (t ) = t +w .

Output an estimate at time t as follow:

�a (t ) =

(
�̂

m (t ) if Wm (t ) � Tl
1

w+1
Pw
k=0 �̂ (t + k ) else ^ (13)

�e idea of ADE is shown in Fig. 4.

t + w

Wd(t)Wm(t)

t + 1bm(t + 1)

bm(t) t

Wm(t + 1) Wd(t + 1)

t + w + 1

t + w

Wd(t)Wm(t)

bm(t + 1)

bm(t) t

bs
d(t + 1)

be
d(t + 1)

t + 1

Figure 2: Evolution ofWm (t ) andWd (t ). (Le�) No change
detected: Wd (t ) advances by one slot andWm (t ) increases
its size by one. (Right) Change detected: both windows set
their start and end points to t +w + 1.

�e intuition of ADE is that if the environment is changing over
time, we should rely on prediction for control. Else if the environ-
ment is stationary, then one should use the average distribution
learned over time to combat the potential prediction error that may
a�ect performance. Tl is introduced to ensure the accuracy of the
empirical distribution and can be regarded as the con�dence-level
given to the distribution stationarity. A couple of technical remarks
are also ready. (a) �e term 2M log(Tl )/

p
Tl is to compensate the

inevitable deviation of �̂m (t ) from the true value due to random-
ness. (b) InWm (t ), we only use the �rstTl historic samples. Doing
so avoids random oscillation in estimation and facilitates analysis.

Note that prediction is used in two ways in ADE. First, it is used
in step (i) to decide whether the empirical distributions match
(average prediction). Second, it is used to check whether prediction
is consistent with the history (individual prediction). �e reason
for having this two-way utilization is to accommodate general
prediction types. For example, suppose each �̂ (t + k ) denotes the
indicator for state S (t +k ), e.g., as in the look-ahead window model

9�is step is evoked a�er we set bm (t 0) = bsd (t
0) = t 0 +w + 1 � t for some time t 0,

in which case we the two windows remain unchanged until t is larger than t 0 +w + 1.
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[22]. �en, step (ii) is loose since e (k ) is large, but step (i) will be
useful. On the other hand, when �̂ (t + k ) gets closer to the true
distribution, both steps will be useful.

6.2 Predictive learning-aided control
We are now ready to present the PLC algorithm. Our algorithm is
shown in Fig. 1, and the formal description is given below.

Predictive Learning-aided Control (PLC): At time t , do:
• (Estimation) Update �a (t ) with ADE(Tl ,d, �d ).• (Learning) Solve the following empirical problem and com-

pute the optimal Lagrange multiplier �⇤ (t ), i.e.,
max : �(� ,�a (t )), s.t. � ⌫ 0, (14)

If �⇤ (t ) = 1, set �⇤ (t ) = V log(V ) · 1. IfWm (t � 1) = Tl
and �a (t ) , �a (t � 1), set q(t +w + 1) = 0.

• (Control) At every time slot t , observe the current network
state S (t ) and the backlog q(t ). If S (t ) = si , choose x (si ) 2
Xi that solves the following:

max : �V f (si ,x ) +
rX

j=1
Q j (t )

f
µ j (si ,x ) �Aj (si ,x )

g

s.t. x 2 Xi , (15)

where Q j (t ) , qj (t ) + (� ⇤j (t ) � � )+. �en, update the
queues according to (3) with Last-In-First-Out. ^

For readers who are familiar with the Backpressure (BP) algo-
rithm, e.g., [1] and [41], the control component of PLC is the BP
algorithm with its queue vector augmented by the empirical multi-
plier �⇤ (t ). Also note that packet dropping is introduced to enable
quick adaptation to new dynamics if there is a distribution change.
It occurs only when a long-lasting distribution ends, which avoids
dropping packets frequently in a fast-changing environment.

We have the following remarks. (i) Prediction usage: Predic-
tion is explicitly incorporated into control by forming an average
distribution and converting the distribution estimate into a La-
grange multiplier. �e intuition for having Tl = max(V c , e�2w ) is
that when ew is small, we should rely on prediction as much as
possible, and only switch to learned statistics when it is su�ciently
accurate. (ii) Connection with RHC: It is interesting to see that
whenWm (t ) < Tl , PLC mimics the commonly adopted receding-
horizon-control method (RHC), e.g., [28]. �e main di�erence is
that, in RHC, future states are predicted and are directly fed into
a predictive optimization formulation for computing the current
action. Under PLC, distribution prediction is combined with historic
state information to compute an empirical multiplier for augment-
ing the controller. In this regard, PLC can be viewed as exploring
the bene�ts of statistics whenever it �nds the system stationary
(and does it automatically). (iii) Parameter selection: �e pa-
rameters in PLC can be conveniently chosen as follows. First, �x
a detection error probability � = V � log(V ) . �en, choose a small
�d and a d that satis�es d � 4 log(V )2/�2d +w + 1. Finally, choose
Tl = max(V c , e�2w ) and � according to (17).

While recent works [16] and [17] also design learning-based
algorithms that utilize historic information, they do not consider
prediction and do not provide insight on its bene�ts and the impact
of prediction error. Moreover, [16] focuses on stationary systems
and [17] adopts a frame-based scheme.

7 PERFORMANCE ANALYSIS
�is section presents the performance results of PLC. We focus on
four metrics, detection e�ciency, network utility, service delay,
and algorithm convergence. �e metrics are chosen to represent
robustness, resource utilization e�ciency, quality-of-service, and
adaptability, respectively.

7.1 Detection and estimation
We �rst look at the detection and estimation part. �e following
lemma summarizes the performance of ADE, which is a�ected by
the prediction accuracy as expected.

L���� 7.1. Under ADE(Tl ,d, �d ), we have:
(a) Suppose at a time t , � (�1) = �1 for �1 2Wd (t ) and � (�2) =

�2 , �1 for all �2 2Wm (t ) and max |�1i � �2i | > 4(w + 1)ew /d .
�en, by choosing �d < �0 , max |�1i � �2i |/2 � (w + 1)ew /d and
d > ln 4

� · 1
2� 2d
+w+1, ifWm (t ) �Wd (t ) = d , with probability at least

1� � , bm (t + 1) = t +w + 1 andWm (t + 1) = �, i.e.,Wm (t + 1) = 0.
(b) Suppose � (t ) = � 8 t . �en, ifWm (t ) � Wd (t ) = d , under

ADE(Tl ,d, �d ) with d � ln 4
� · 2

� 2d
+w + 1, with probability at least

1 � � � (w + 1)MT
�2 log(Tl )
l , bm (t + 1) = bm (t ). ^

P����. See Appendix A. ⇤

Lemma 7.1 shows that for a stationary system, i.e., � (t ) = � ,
Wm (t ) will likely grow to a large value (Part (b)), in which case
�a (t ) will stay close to � most of the time. If insteadWm (t ) and
Wd (t ) contain samples from di�erent distributions, ADE will reset
Wm (t ) with high probability. Note that since the �rstw + 1 slots
are predicted, this means that PLC detects changesO (w ) slots faster
compared to that without prediction. �e condition max |�1i �
�2i | > 4(w + 1)ew /d can be understood as follows. If we want
to distinguish two di�erent distributions, we want the detection
threshold to be no more than half of the distribution distance. Now
with prediction, we want the potential prediction error to be no
more than half of the threshold, hence the factor 4. Also note that
the delay involved in detecting a distribution change is nearly order-
optimal, in that it requires only d = O (1/mini |�1i � �2i |2) time,
which is known to be necessary for distinguishing two distributions
[42]. Moreover, d = O (ln(1/� )) shows that a logarithmic window
size is enough to ensure a high detection accuracy.

7.2 Utility and delay
In this section, we look at the utility and delay performance of PLC.
To state our results, we �rst de�ne the following structural property
of the system.

De�nition 7.2. A system is called polyhedral with parameter
� > 0 under distribution � if the dual function �(� ,� ) satis�es:

�(�⇤,� ) � �(� ,� ) + �k�⇤� �� k. ^ (16)

�e polyhedral property typically holds for practical systems,
especially when action sets are �nite (see [38] for more discussions).

7.2.1 Stationary system. We �rst consider stationary systems,
i.e., � (t ) = � . Our theorem shows that PLC achieves the near-
optimal utility-delay tradeo� for stationary networks. �is result is
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important, as any good adaptive algorithm must be able to handle
stationary se�ings well.

T������ 7.3. Suppose � (t ) = � , the system is polyhedral with
� = �(1), ew > 0, and q(0) = 0. Choose 0 < �d < �0 , 2(w +
1)ew /d , d = log(V )3/�2d , Tl = max(V c , e�2w ) for c 2 (0, 1) and

� = 2 log(V )2 (1 +
V
p
Tl

), (17)

�en, with a su�ciently large V , PLC achieves the following:
(a) Utility: f PLCav = f �av +O (1/V )
(b) Delay: For all but an O ( 1V ) fraction of tra�c, the average

packet delay is D = O (log(V )2)
(c) Dropping: �e packet dropping rate is O (V �1). ^

P����. Omi�ed due to space limitation. Please see [43] for
details. ⇤

Choosing � = 1/V , we see that PLC achieves the near-optimal
[O (� ),O (log(1/� )2)] utility-delay tradeo�. Moreover, prediction
enables PLC to also greatly reduce the queue size (see Part (b) of
�eorem 7.4). Our result is di�erent from the results in [20] and [22]
for proactive service se�ings, where delay vanishes as prediction
power increases. �is is because we only assume observability
of future states but not pre-service, and highlights the di�erence
between pre-service and pure prediction. Note that the performance
of PLC does not depend heavily on �d in �eorem 7.3. �e value
�d is more crucial for non-stationary systems, where a low false-
negative rate is critical for performance. Also note that although
packet dropping can occur during operation, the fraction of packets
dropped is very small, and the resulting performance guarantee
cannot be obtained by simply dropping the same amount of packets,
in which case the delay will still be �(1/� ).

Although �eorem 7.3 has a similar form as those in [17] and
[16], the analysis is very di�erent, in that (i) prediction error must
be taken into account, and (ii) PLC performs sequential detection
and decision-making.

7.2.2 Piecewise stationary system. We now turn to the non-
stationary case and consider the scenario where � (t ) changes over
time. In this case, we see that prediction is critical as it signi�cantly
accelerates convergence and helps to achieve good performance
when each distribution only lasts for a �nite time. As we know
that when the distribution can change arbitrarily, it is hard to even
de�ne optimality. �us, we consider the case when the system is
piecewise stationary, i.e., each distribution lasts for a duration of
time, and study how the algorithm optimizes the performance for
each distribution.

�e following theorem summarizes the performance of PLC in
this case. In the theorem, we de�ne Dk , tk + d � t⇤, where
t⇤ , sup{t < tk +d : t is a reset point}, i.e., the most recent ending
time a�er having a cycle with size Tl (recall that reset points are
marked in step (ii) of ADE and d � w + 1).

T������ 7.4. Suppose dk � 4d and the system is polyhedral with
� = �(1) for all k ,. Also, suppose there exists �⇤0 = �(1) > 0 such
that �⇤0  infk,i |�ki � � 0k�1i | and q(0) = 0. Choose �d < �⇤0 in ADE,
and choose d , � and Tl as in �eorem 7.3. Fix any distribution �k
with length dk = �(V 1+aTl ) for some a = �(1) > 0. �en, under

PLC with a su�ciently largeV , ifWm (tk ) only contains samples a�er
tk�1, we achieve the following with probability 1 �O (V �3 log(V )/4):

(a) Utility: f PLCav = f � k
av +O (1/V ) +O (

Dk log(V )
TlV 1+a )

(b)�eueing: qa� = O ((min(V 1�c/2,Vew )+1) log2 (V )+Dk +d ).
(c) In particular, if dk�1 = �(TlV

a1 ) for a1 = �(1) > 0 and
Wm (tk�1) only contains samples a�er tk�2, then with probability 1�
O (V �2),Dk = O (d ), f PLCav = f � k

av +O (1/V ) andqa� = O (min(V 1�c/2,
Vew ) + log2 (V )). ^

P����. Omi�ed due to space limitation. Please see [43] for
details. ⇤

A few remarks are in place. (i) �eorem 7.4 shows that, with
an increasing prediction power, i.e., a smaller ew , it is possible to
simultaneously reduce network queue size and the time it takes to
achieve a desired average performance (even if we do not execute
actions ahead of time). �e requirement dk = �(V 1+aTl ) can
be strictly less than the O (V 2�c/2+a ) requirement for RLC in [17]
and the O (V 2) requirement of BP for achieving the same average
utility. �is implies that PLC �nds a good system operating point
faster than previous algorithms, a desirable feature for network
algorithms. (ii) �e dependency on Dk here is necessary. �is is
because PLC does not perform packet dropping if previous intervals
do not exceed length Tl . As a result, the accumulated backlog
can a�ect decision making in the current interval. Fortunately the
queues are shown to be small and do not heavily a�ect performance
(also see simulations). (iii) To appreciate the queueing result, note
that BP (without learning) under the same se�ing will result in an
O (V ) queue size.

Compared to the analysis in [17], one complicating factor in
proving �eorem 7.4 is that ADE may not always throw away sam-
ples from a previous interval. Instead, ADE ensures that with high
probability, only o(d ) samples from a previous interval will remain.
�is ensures high learning accuracy and fast convergence of PLC.
One interesting special case not covered in the last two theorems
is when ew = 0. In this case, prediction is perfect and Tl = 1, and
PLC always runs with �a (t ) =

1
w+1

Pw
k=0 �̂ (t + k ), which is the

exact average distribution. For this case, we have the following
result.

T������ 7.5. Suppose ew = 0 and q(0) = 0. �en, PLC achieves
the following:

(a) Suppose � (t ) = � and the system is polyhedral with � =
�(1). �en, under the conditions of �eorem 7.3, PLC achieves the
[O (� ),O (log(1/� )2)] utility-delay tradeo�.

(b) Suppose dk � d log2 (V ) and the system is polyhedral with
� = �(1) under each �k . Under the conditions of �eorem 7.4, for
an interval dk � V 1+� for any � > 0, PLC achieves that f PLCav =

f � k
av +O (1/V ) and E

(
q(tk )

)
= O (log4 (V )). ^

P����. Omi�ed due to space limitation. Please see [43] for
details. ⇤

�e intuition here is that since prediction is perfect, �a (t ) = �k
during [tk + d, tk+1 �w]. �erefore, a be�er performance can be
achieved. �e key challenge in this case is that PLC does not perform
any packet dropping. �us, queues can build up and one needs to
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show that the queues will be concentrating around � · 1 even when
the distribution changes.

7.3 Convergence time
We now consider the algorithm convergence time, which is an
important evaluation metric and measures how long it takes for an
algorithm to reach its steady-state. While recent works [17], [16],
[44], and [45] also investigate algorithm convergence time, they do
not consider utilizing prediction in learning and do not study the
impact of prediction error.

To formally state our results, we adopt the following de�nition
of convergence time from [16].

De�nition 7.6. Let � > 0 be a given constant and let � be a
system distribution. �e � -convergence time of a control algorithm,
denoted by T� , is the time it takes for the e�ective queue vector
Q (t ) to get to within � distance of �⇤� , i.e.,

T� , inf {t | | |Q (t ) ��⇤� | |  � }. ^ (18)

We have the following theorem. Recall thatw  d = �(log(V )2).

T������ 7.7. Assuming all conditions in�eorem 7.4, except that
� (t ) = �k for all t � tk . If ew = 0, under PLC,

E
(
TG

)
= O (log4 (V )). (19)

Else suppose ew > 0. Under the conditions of �eorem 7.4, with
probability 1 �O ( 1

VTl +
Dk
V 2Tl

),

E
(
TG

)
= O (� +Tl + Dk +w ) (20)

E
(
TG1

)
= O (d ). (21)

Here G = �(1) and G1 = �(Dk + 2 log(V )2 (1 + Vew )), where Dk
is de�ned in �eorem 7.4 as the most recent reset point prior to tk .
In particular, if dk�1 = �(TlV

a1 ) for some a1 = �(1) > 0 and
� = O (log(V )2), then with probability 1 �O (V �2), Dk = O (d ), and
E
(
TG1

)
= O (log2 (V )). ^

P����. Omi�ed. Please see [43] for details. ⇤

Here the assumption � (t ) = �k for all t � tk is made to avoid
the need for specifying the length of the intervals. It is interesting to
compare (19), (20) and (21) with the convergence results in [16] and
[17] without prediction, where it was shown that the convergence
time isO (V 1�c/2 log(V )2 +V c ), with a minimum ofO (V 2/3). Here
although we may still need O (V 2/3) time for ge�ing into an G-
neighborhood (depending on ew ), ge�ing to the G1-neighborhood
can take only an O (log2 (V )) time, which is much faster compared
to previous results, e.g., when ew = o(V �2) and Dk = O (w ), we
have G1 = O (log2 (V )). �is con�rms our intuition that prediction
accelerates algorithm convergence and demonstrates the power of
(even imperfect) prediction.

8 SIMULATION
In this section, we present simulation results of PLC in a two-queue
system shown in Fig. 3. �ough being simple, the system models
various se�ings, e.g., a two-user downlink transmission problem in
a mobile network, a CPU scheduling problemwith two applications,

A1(t)

A2(t)
CH2(t)

CH1(t)

Figure 3: A single-server two-queue system. Each queue re-
ceives random arrivals. �e server can only serve one queue
at a time.

or an inventory control system where two types of orders are being
processed.

Aj (t ) denotes the number of arriving packets to queue j at time
t . We assume Aj (t ) is i.i.d. with either 1 or 0 with probabilities
pj and 1 � pj , and use p1 = 0.3 and p2 = 0.6. �us, �1 = 0.3
and �2 = 0.6. Each queue has a time-varying channel condition.
We denote CHj (t ) the channel condition of queue j at time t . We
assume that CHj (t ) 2 CH j with CH 1 = {0, 1} and CH 2 = {1, 2}.
�e channel distributions are assumed to be uniform. At each time,
the server determines the power allocation to each queue. We use
Pj (t ) to denote the power allocated to queue j at time t . �en, the
instantaneous service rate qj (t ) gets is given by:

µ j (t ) = log(1 +CHj (t )Pj (t )). (22)

We assume that Pj (t ) 2 P = {0, 1, 2} for j = 1, 2, and at each
time only one queue can be served. �e objective is to stabilize
the system with minimum average power. It can be veri�ed that
Assumptions 1 and 2 both hold in this example.

We compare PLC with BP in two cases. �e �rst case is a station-
ary system where the arrival distributions remain constant. �e sec-
ond case is a non-stationary case, where we change the arrival distri-
butions during the simulation. In both cases we simulate the system
for T = 5 ⇥ 104 slots. We simulate V 2 {20, 50, 100, 150, 200, 300}.
We setw + 1 = 5 and generate prediction error by adding uniform
random noise to distributions with max value e (k ) (speci�ed below).
We also use �d = 0.1, � = 0.005 and d = 2 ln(4/� )/�2 +w + 1. We
also simplify the choice of � and set it to � = log(V )2.

We �rst examine the long-term performance. Fig. 4 shows the
utility-delay performance of PLC compared to BP in the stationary
se�ing. �ere are two PLC we simulated, one is with ew = 0 (PLC)
and the other is with ew = 0.04 (PLC-e). From the plot, we see
that both PLCs achieve a similar utility as BP, but guarantee a much
smaller delay. �e reason PLC-e has a be�er performance is due to
packet dropping. We observe around an average packet dropping
rate of 0.06. As noted before, the delay reduction of PLC cannot be
achieved by simply dropping this amount of packets.

Next, we take a look at the detection and convergence perfor-
mance of PLC. Fig. 5 shows the performance of PLC with perfect
prediction (ew = 0), PLC with prediction error (ew = 0.04) and
BP when the underlying distribution changes. Speci�cally, we run
the simulation for T = 5000 slots and start with the arrival rates
of p1 = 0.2 and p2 = 0.4. �en, we change them to p1 = 0.3 and
p2 = 0.6 at time T /2.

We can see from the green and red curves that PLC quickly adapts
to the change and modi�es the Lagrange multiplier accordingly. By
doing so, the actual queues under PLC (the purple and the brown
curves) remain largely una�ected. For comparison, we see that BP
takes a longer time to adapt to the new distribution and results
in a larger queue size. We also see that during the 5000 slots,
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Figure 4: Utility and delay performance comparison be-
tween PLC and BP.
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Figure 5: Convergence comparison between PLC and BP for
queue 1 under V = 100. Here PLC (ew = 0) is the perfect case
and PLC (ew = 0.04) contains prediction error. Both versions
converge much faster compared to BP.

PLC (ew = 0.04) drops packets 3 times (zero for the �rst half),
validating the results in Lemma 7.1 and �eorem 7.3. Moreover,
a�er the distribution change, PLC (ew = 0.04) quickly adapts to
the new equilibrium, despite having imperfect prediction. �e fast
convergence result also validates our theorem about short term
utility performance under PLC. Indeed, if we look at slots during
time 200 � 500, and slots between 2500 � 3500, we see that when
BP is learning the target backlog, PLC already operates near the
optimal mode. �is shows the bene�ts of prediction and learning
in stochastic network control.

9 CONCLUSION
We investigate the problem of stochastic network optimization in
the presence of imperfect state prediction and non-stationarity.
Based on a novel distribution-accuracy curve prediction model, we
develop the predictive learning-aided control (PLC) algorithm. PLC
is an online algorithm that requires zero a-prior system statistical
information, and contains three main functionalities, sequential
distribution estimation and change detection, dual learning, and
online queue-based control. We show that PLC simultaneously
achieves good long-term performance, short-term queue size reduc-
tion, accurate change detection, and fast algorithm convergence.
Our results demonstrate that state prediction (even imperfect) can
help improve performance and quantify the bene�ts of prediction
in four important metrics, i.e., utility (e�ciency), delay (quality-
of-service), detection (robustness), and convergence (adaptability).
�ey provide new insight for joint prediction, learning and opti-
mization in stochastic networks.
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APPENDIX A - PROOF OF LEMMA 7.1
(Proof of Lemma 7.1)We prove the performance of ADE(Tl ,d, �)
with an argument inspired by [46]. We will make use of the follow-
ing concentration result.

T������ 10.1. [47] Let X1, …, Xn be independent random vari-
ables with Pr

(
Xi = 1

)
= pi , and Pr

(
Xi = 0

)
= 1 � pi . Consider

X =
Pn
i=1 Xi with expectation E

(
X
)
=

Pn
i=1 pi . �en, we have:

Pr
(
X  E

(
X
)
�m

)
 e

�m2
2E{X } , (23)

Pr
(
X � E

(
X
)
+m

)
 e

�m2
2(E{X }+m/3) . ^ (24)

P����. (Lemma 7.1) (Part (a)) In this case, it su�ces to check
condition (i) in ADE. De�ne

�̃di (t ) ,
1
d

 t�1X

�=(t+w�d )+
1[S (� )=si ] +

X

� 2Ww (t )
�i (� )

!
,

i.e., �̃di (t ) is de�ned with the true distributions inWd (t ). Denote
�1 = (w + 1)ew /d , we see then k�̃d (t ) � �̂d (t )k  �1. �us, for any
� > 0, we have:

Pr
(
k�̂d (t ) � �̂m (t )kt�  �

)
 Pr

(
k�̃d (t ) � �̂m (t )kt�  � + �1

)
 Pr

(
|�̃di (t ) � �̂mi (t ) |  � + �1

)
. (25)

Choose � = 1
2 max |�1i � �2i | � 2�1 > 0 and let �0 = � + �1. Fix

� 2 (0, 1) and consider i 2 argmaxi |�1i � �2i |. We have:

Pr
(
|�̃di (t ) � �̂mi (t ) |  �0

)
 Pr

(
{|�̃di (t ) � �1i | � ��0}
[{|�̂mi (t ) � �2i | � (1 � � )�0}

)
 Pr

(
|�̃di (t ) � �1i | � ��0

)
+Pr

(
|�̂mi (t ) � �2i | � (1 � � )�0

)
. (26)

Here the �rst inequality follows because if we have both {|�̃di (t ) �
�1i | < ��0} and {|�̂mi (t )��2i | < (1�� )�0, and |�̃di (t )��̂mi (t ) |  �0,
we must have:

|�1i � �2i |  |�̃di (t ) � �1i | + |�̂mi (t ) � �2i | + |�̃di (t ) � �̂mi (t ) |
= 2�0 < |�1i � �2i |,

which contradicts the fact that i achieves maxi |�1i � �2i |. Using
(26) and Hoe�ding inequality [48], we �rst have:

Pr
(
|�̂mi (t ) � �2i | � (1 � � )�0

)
 2 exp(�2((1 � � )�0)2Wm (t )). (27)

For the �rst term in (26), we have:

Pr
(
|�̃di (t ) � �1i | � ��0

)
 2 exp(�2(��0)2 (Wd (t ) �w � 1)). (28)

Equating the above two probabilities and se�ing the sum equal to

� , we have � =
p
Wm (t )/(Wd (t )�w�1)

1+
p
Wm (t )/(Wd (t )�w�1)

, and

�0 =

r
ln

4
�
· 1 +

p
(Wd (t ) �w � 1)/Wm (t )
p
2(Wd (t ) �w � 1)

. (29)

In order to detect the di�erent distributions, we can choose �d < �0,
which on the other hand requires that:

�d
(⇤)

r
ln

4
�
·
r

1
2(d �w � 1) < �0

) d > ln
4
�
· 1
2�2d
+w + 1. (30)

Here (*) follows becauseWd (t ) = d  Wm (t ). �is shows that
wheneverWd (t ) = d  Wm (t ) and the windows are loaded with
non-coherent samples, error will be detected with probability 1� � .

(Part (b)) Omi�ed due to space limitation. Please see [43] for
details. ⇤


