
PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 1

Delay Reduction via Lagrange Multipliers in
Stochastic Network Optimization

Longbo Huang, Michael J. Neely

Abstract—In this paper, we consider the problem of reducing
network delay in stochastic network utility optimization prob-
lems. We start by studying the recently proposed quadratic
Lyapunov function based algorithms (QLA). We show that for
every stochastic problem, there is a corresponding deterministic
problem, whose dual optimal solution “exponentially attracts”
the network backlog process under QLA. In particular, the
probability that the backlog vector under QLA deviates from the
attractor is exponentially decreasing in their Euclidean distance.
This suggests that one can roughly “subtract out” a Lagrange
multiplier from the system induced by QLA. We thus develop a
family of Fast Quadratic Lyapunov based Algorithms (FQLA) that
achieve an [O(1/V), O(log2(V))] performance-delay tradeoff.

These results highlight the “network gravity” role of Lagrange
Multipliers in network scheduling. This role can be viewed as the
counterpart of the “shadow price” role of Lagrange Multipliers
in flow regulation for classic flow-based network problems.

Index Terms—Queueing, Dynamic Control, Lyapunov analysis,
Stochastic Optimization

I. INTRODUCTION

In this paper, we consider the problem of reducing network
delay in the following general framework of the stochastic
network utility optimization problem. We are given a time
slotted stochastic network. The network state, such as the
network channel condition, is time varying according to some
probability law. A network controller performs some action
based on the observed network state at every time slot.
The chosen action incurs a cost (since cost minimization is
mathematically equivalent to utility maximization, below we
will use cost and utility interchangeably), but also serves some
amount of traffic and possibly generates new traffic for the
network. This traffic causes congestion, and thus leads to
backlogs at nodes in the network. The goal of the controller
is to minimize its time average cost subject to the constraint
that the time average total backlog in the network is finite.

This setting is very general, and many existing works fall
into this category. Further, many techniques have been used
to study this problem (see [1] for a survey). In this paper, we
focus on algorithms that are built upon quadratic Lyapunov
functions (called QLA in the following), e.g., [2], [3], [4],
[5], [6], [7]. These QLA algorithms are easy to implement,
greedy in nature, and are parameterized by a scalar control
variable V . It has been shown that when the network state is

Longbo Huang (email: longbohu@usc.edu) and Michael J. Neely (web:
http://www-rcf.usc.edu/∼mjneely) are with the Department of Electrical En-
gineering, University of Southern California, Los Angeles, CA 90089, USA.

This material is supported in part by one or more of the following: the
DARPA IT-MANET program grant W911NF-07-0028, the NSF grant OCE
0520324, the NSF Career grant CCF-0747525.

i.i.d., QLA algorithms can achieve a time average utility that
is within O(1/V) to the optimal. Therefore, as V grows large,
the time average utility can be pushed arbitrarily close to the
optimal. However, such close-to-optimal utility is usually at
the expense of large network delay. In fact, in [3], [4], [7],
it is shown that an O(V) network delay is incurred when
an O(1/V) close-to-optimal utility is achieved. Two recent
papers [8] and [9], which show that it is possible to achieve
within O(1/V) of optimal utility with only O(log(V)) delay,
use a more sophisticated algorithm design approach based
on exponential Lyapunov functions. Therefore, it seems that
though being simple in implementation, QLA algorithms have
undesired delay performance.

However, we note that the delay results of QLA are usually
given in terms of long term upper bounds of the average
network backlog e.g., [7]. Thus they do not examine the
possibility that the actual backlog vector (or its time average)
converges to some fixed value. Work in [10] considers drift
properties towards an “invariant” backlog vector, derived in
the special case when the problem exhibits a unique optimal
Lagrange multiplier. An upper bound on the long term devia-
tion of the actual backlog and the Lagrange multiplier vector
is obtained. While this suggests Lagrange multipliers are
“gravitational attractors,” the bounds in [10] do not show that
the the actual backlog is very unlikely to deviate significantly
from the attractor.

In this paper, we focus on obtaining stronger probability re-
sults of the steady state backlog process behavior under QLA.
We first show that under QLA, even though the backlog can
grow linearly in V , it “typically” stays close to an “attractor,”
which is the dual optimal solution of a deterministic optimiza-
tion problem. In particular, the probability that the backlog
vector deviates from the attractor is exponentially decreasing
in distance, which significantly tightens the attractor analysis
in [10]. This implies that a large amount of the data is kept in
the network simply for maintaining the backlog at the “right”
level. Therefore, even if we replace these data with some
fake data (denoted as place-holder bits [11]), the performance
of QLA will not be heavily affected. Based on this finding,
we propose a family of Fast Quadratic Lyapunov based
Algorithms (FQLA), which intuitively speaking, can be viewed
as subtracting out a Lagrange multiplier from the system
induced by QLA. We show that when the network state is i.i.d.,
FQLA is able to achieve within O(1/V) of optimal utility with
an O(log2(V)) delay guarantee. The development of FQLA
also provides us with additional insights into QLA algorithms
and the role of Lagrange multipliers in stochastic network
optimization. We now summarize the main contributions of

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 2

this paper in the following:
• This paper proves that in steady state, the backlog process

under QLA is “exponentially attracted” to an attractor.
• This paper proposes a family of Fast Quadratic Lyapunov

based Algorithms (FQLA), which are usually easy to
implement, and can achieve an [O(1/V), O(log2(V))]
performance-delay tradeoff for general stochastic opti-
mization problems.

• This paper highlights a new functionality of Lagrange
multipliers: the “network gravity” in network scheduling.

The paper is organized as follows: In Section II, we set up
our notations. In Section III, we state our network model. We
then review the QLA algorithm and define the deterministic
problem in Section IV. In Section V, we show that the backlog
process under QLA always stays close to an attractor. In
Section VI, we propose the FQLA algorithm. Section VII
provides simulation results. We discuss the “gravity” role
of Lagrange multipliers and relate QLA to the randomized
incremental subgradient method (RISM) [12] in Section VIII.

II. NOTATIONS

• R: the set of real numbers
• R+ (or R−): the set of nonnegative (or non-positive) real

numbers
• Rn (or Rn+): the set of n dimensional column vectors,

with each element being in R (or R+)
• bold symbols x and xT : column vector and its transpose
• x � y: vector x is entrywise no less than vector y
• 0: column vector with all elements being 0

III. SYSTEM MODEL

In this section, we specify the general network model we
use. We consider a network controller that operates a network
with the goal of minimizing the time average cost, subject
to the queue stability constraint. The network is assumed to
operate in slotted time, i.e., t ∈ {0, 1, 2, ...}. We assume there
are r ≥ 1 queues in the network.

A. Network State

We assume there are a total of M different random network
states, and define S = {s1, s2, . . . , sM} as the set of possible
states. Each particular state si indicates the current network
parameters, such as a vector of channel conditions for each
link, or a collection of other relevant information about the
current network channels and arrivals. Let S(t) denote the
network state at time t. We assume that S(t) is i.i.d. every
time slot, and let psi denote its probability of being in state si,
i.e., psi = Pr{S(t) = si}. We assume the network controller
can observe S(t) at the beginning of every slot t, but the psi
probabilities are not necessarily known.

B. The Cost, Traffic and Service

At each time t, after observing S(t) = si, the controller
chooses an action x(t) from a set X (si), i.e., x(t) = x(si) for
some x(si) ∈ X (si). The set X (si) is called the feasible action
set for network state si and is assumed to be time-invariant and
compact for all si ∈ S. The cost, traffic and service generated
by the chosen action x(t) = x(si) are as follows:

(a) The chosen action has an associated cost given by
the cost function f(t) = f(si, x(si)) : X (si) 7→ R+

(or X (si) 7→ R− in the case of reward maximization
problems);

(b) The amount of traffic generated by the action to
queue j is determined by the traffic function Aj(t) =
gj(si, x(si)) : X (si) 7→ R+, in units of packets;

(c) The amount of service allocated to queue j is given by
the rate function µj(t) = bj(si, x(si)) : X (si) 7→ R+, in
units of packets;

Note that Aj(t) includes both the exogenous arrivals from out-
side the network to queue j, and the endogenous arrivals from
other queues, i.e., the transmitted packets from other queues, to
queue j (See Section III-C and III-D for further explanations).
We assume the functions f(si, ·), gj(si, ·) and bj(si, ·) are
time-invariant, their magnitudes are uniformly upper bounded
by some constant δmax ∈ (0,∞) for all si, j, and they are
known to the network operator. We also assume that there
exists a set of actions {x(si)k}k=1,...,r+2

i=1,...,M with x(si)k ∈ X (si)

such that
∑
si
psi
{∑

k ϑ
(si)
k [gj(si, x(si)k)−bj(si, x(si)k)]

} ≤
−ε for some ε > 0 for all j, with

∑
j ϑ

(si)
k = 1 and

ϑ
(si)
k ≥ 0 for all si and k. That is, the constraints are feasible

with ε slackness. Thus, there exists a stationary randomized
policy that stabilizes all queues (where ϑ

(si)
k represents the

probability of choosing action x(si)k when S(t) = si). In the
following, we use:

A(t) = (A1(t), A2(t), ..., Ar(t))T , (1)
µ(t) = (µ1(t), µ2(t), ..., µr(t))T , (2)

to denote the arrival and service vectors at time t. It is easy
to see from above that if we define:

B =
√
rδmax, (3)

then ‖A(t)− µ(t)‖ ≤ B for all t.

C. Queueing, Average Cost and the Stochastic Problem

Let U(t) = (U1(t), ..., Ur(t))T ∈ Rr+, t = 0, 1, 2, ... be
the queue backlog vector process of the network, in units of
packets. We assume the following queueing dynamics:

Uj(t+ 1) = max
[
Uj(t)− µj(t), 0

]
+Aj(t) ∀j, (4)

and U(0) = 0. Note that by using (4), we assume that when
a queue does not have enough packets to send, null packets
are transmitted. In this paper, we adopt the following notion
of queue stability:

E
{ r∑
j=1

Uj
}

, lim sup
t→∞

1
t

t−1∑
τ=0

r∑
j=1

E
{
Uj(τ)

}
<∞. (5)

We also use fπav to denote the time average cost induced by
an action-seeking policy π, defined as:

fπav , lim sup
t→∞

1
t

t−1∑
τ=0

E
{
fπ(τ)

}
, (6)

where fπ(τ) is the cost incurred at time τ by policy π. We call
an action-seeking policy under which (5) holds a stable policy,

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 3

and use f∗av to denote the optimal time average cost over
all stable policies. Every slot, the network controller observes
the current network state and chooses a control action, with
the goal of minimizing time average cost subject to network
stability. This goal can be mathematically stated as:

min : fav, s.t. (5).

In the rest of the paper, we will refer to this problem as
the stochastic problem. This stochastic problem framework
can be used to model many network utility problems, such
as the energy minimization problem [3] and the access point
pricing problem [5]. We note that a similar network model
with stochastic penalties is treated in [13] using a fluid model
and a primal-dual approach that achieves optimality in a
limiting sense. The framework is also treated in [7] using a
quadratic Lyapunov based algorithm (QLA) that provides an
explicit [O(1/V), O(V)] performance-delay tradeoff when the
network state is i.i.d..

D. An Example of the Model

Here we provide an example to illustrate our model. Con-
sider the 2-queue network in Fig.1. Every slot, the network
operator makes a decision on whether or not to allocate one
unit power to serve packets at each queue, so as to support all
arriving traffic, i.e., maintain queue stability, with minimum
energy expenditure. Every slot, the number of arrival packets
R(t), is i.i.d., being either 2 or 0 with probabilities 5/8 and
3/8 respectively. The channel states S1(t), S2(t) are also i.i.d.
being either “G=good” or “B=bad” with equal probabilities.
One unit of power can serve 2 packets in a good channel but
can only serve one in a bad channel. Both channels can be
activated simultaneously without affecting each other.

U1 U2
A1(t)=R(t) !1(t)=A2(t) !2(t)

S1(t) S2(t)

Fig. 1. A 2-queue system

In this case, a network state S(t) is a (R(t), S1(t), S2(t))
tuple and S(t) is i.i.d.. There are eight possible network states.
At each state si, the action x(si) is a pair (x1, x2), with xi
being the amount of energy spent at queue i, and (x1, x2) ∈
X (si) = {0/1, 0/1}. The cost function is always f(si, x(si)) =
x1 +x2 for all si. The network states, the traffic functions and
service rate functions are summarized in Fig. 2. Note here
A1(t) = R(t) is part of S(t) and thus is independent of x(si);
while A2(t) = µ1(t) hence depends on x(si). Also note that
A2(t) equals µ1(t) instead of min[µ1(t), U1(t)] due to our
idle fill assumption in Section III-C.

IV. QLA AND THE DETERMINISTIC PROBLEM

In this section, we first review the quadratic Lyapunov func-
tions based algorithms (the QLA algorithm) [7] for solving the
stochastic problem. Then we define the deterministic problem
and its dual. We then describe the ordinary subgradient method
(OSM) that can be used to solve the dual. The dual problem
and OSM will also be used later for our analysis of the steady
state backlog behavior under QLA.

DRAFT 3

where fπ(τ) is the cost incurred at time τ by policy π. We call
an action-seeking policy under which (5) holds a stable policy,
and use f∗

av to denote the optimal time average cost over
all stable policies. Every slot, the network operator observes
the current network state and chooses a control action, with
the goal of minimizing time average cost subject to network
stability. This goal can be mathematically stated as:

min : fav

s.t. (5).

In the rest of the paper, we will refer to this problem as the
stochastic problem. This stochastic problem framework can
be used to model many network utility problems, such as the
energy minimization problem [3] and the access point pricing
problem [5].

We note that a similar network model with stochastic penal-
ties is treated in [12] using a fluid model and a primal-dual ap-
proach that achieves optimality in a limiting sense. The frame-
work is also treated in [7] using a quadratic Lyapunov based
algorithm (QLA) that provides an explicit [O(1/V), O(V)]
performance-delay tradeoff when the network state is i.i.d..

D. An Example of the Model
Here we provide an example to illustrate our model. Con-

sider the 2-queue network in Fig.1. Every slot, the network
operator makes a decision on how to allocate power on
queues, so as to support all arriving traffic, i.e., maintain queue
stability, with minimum energy expenditure. Every slot, the
number of arrival packets R(t), is i.i.d., being either 2 or 0
with probabilities 5/8 and 3/8 respectively. The channel states
S1(t), S2(t) are also i.i.d. being either “G=good” or “B=bad”
with equal probabilities. One unit of power can serve 2 packets
in a good channel but can only serve one in a bad channel.

U1 U2
A1(t)=R(t) !1(t)=A2(t) !2(t)

S1(t) S2(t)

Fig. 1. A 2-queue system

In this example, a network state S(t) is an
(R(t), S1(t), S2(t)) tuple and the network state is i.i.d..
There are eight network states. At each state si, the action
x(si) is a pair (x(si)

1 , x
(si)
2), with x

(si)
i representing the

amount of energy spent at queue i. The cost function is
always f(si, x) = x1 +x2 for all i. The state information, the
traffic function and service rate functions are summarized in
the following table. Note that in this example A1(t) = R(t)
is part of the network state and thus is independent of x(si);
while A2(t) = µ1(t) hence depends on the action.

IV. QLA AND THE DETERMINISTIC PROBLEM

In this section, we first review the quadratic Lyapunov func-
tions based algorithms (the QLA algorithm) [7] for solving the
stochastic problem. Then we define the deterministic problem
and its dual. We then describe the ordinary subgradient method
(OSM) that can be used to solve the dual. The dual problem
and OSM will also be used later for our analysis of the steady
state backlog behavior under QLA.

TABLE I
NETWORK STATE, TRAFFIC AND RATE

S(t) R(t) S1(t) S2(t) A1(t) A2(t) µ1(t) µ2(t)
s1 0 B B 0 x1 x1 x2

s2 0 B G 0 x1 x1 2x2

s3 0 G B 0 2x1 2x1 x2

s4 0 G G 0 2x1 2x1 2x2

s5 2 B B 2 x1 x1 x2

s6 2 B G 2 x1 x1 2x2

s7 2 G B 2 2x1 2x1 x2

s8 2 G G 2 2x1 2x1 2x2

A. The QLA algorithm

To solve the stochastic problem using QLA, we first define
a quadratic Lyapunov function L(U(t)) = 1

2

∑r
j=1 U2

j (t).
We then define the one-slot conditional Lyapunov drift:
∆(U(t)) = E

{
L(U(t + 1)) − L(U(t)) | U(t)

}
. From (4),

we obtain the following drift expression:

∆(U(t)) ≤ C − E
{ r∑

j=1

Uj(t)
[
µj(t)−Aj(t)

] | U(t)
}
,

where C = rδ2
max. Now add to both sides the term

V E
{
f(t) | U(t)

}
, where V ≥ 1 is a scalar control variable,

we obtain:

∆(U(t)) + V E
{
f(t) | U(t)

} ≤ C − E
{
− V f(t) (7)

+
r∑

j=1

Uj(t)
[
µj(t)−Aj(t)

] | U(t)
}

.

The QLA algorithm is then obtained by choosing an action
x at every time slot t to minimize the right hand side of (7)
given U(t). Specifically, the QLA algorithm works as follows:

QLA: At every time slot t, observe the current network state
S(t) and the backlog U(t). If S(t) = si, choose x(si) ∈ X (si)

that maximizes the following:

max −V f(si, x) +
r∑

j=1

Uj(t)
[
bj(si, x)− gj(si, x)

]
(8)

s.t. x ∈ X (si).

Depending on the problem structure, (8) can usually be
decomposed into separate parts that are easier to solve e.g., [3],
[5]. Also, it can be shown, as in [5] that, QLA can achieve a
time average cost (defined in (6)) that is within O(log(V)/V)
to f∗

av , with a time average backlog E
{ ∑r

j=1 Uj

}
, or equiv-

alently, time average delay, being O(V). Further, if S(t) is
i.i.d., then QLA achieves an [O(1/V), O(V)] performance-
delay tradeoff.

Fig. 2. Network state, Traffic and Rate functions

A. The QLA algorithm

To solve the stochastic problem using QLA, we first define
a quadratic Lyapunov function L(U(t)) = 1

2

∑r
j=1 U

2
j (t).

We then define the one-slot conditional Lyapunov drift:
∆(U(t)) = E

{
L(U(t + 1)) − L(U(t)) | U(t)

}
. From (4),

we obtain the following drift expression:

∆(U(t)) ≤ C − E
{ r∑
j=1

Uj(t)
[
µj(t)−Aj(t)

] | U(t)
}
,

where C = rδ2max. Now add to both sides the term
V E
{
f(t) | U(t)

}
, where V ≥ 1 is a scalar control variable,

we obtain:

∆(U(t)) + V E
{
f(t) | U(t)

} ≤ C − E
{
− V f(t) (7)

+
r∑
j=1

Uj(t)
[
µj(t)−Aj(t)

] | U(t)
}
.

The QLA algorithm is then obtained by choosing an action
x at every time slot t to minimize the right hand side of (7)
given U(t). Specifically, the QLA algorithm works as follows:

QLA: At every time slot t, observe the current network state
S(t) and the backlog U(t). If S(t) = si, choose x(si) ∈ X (si)

that solves the following:

max −V f(si, x) +
r∑
j=1

Uj(t)
[
bj(si, x)− gj(si, x)

]
(8)

s.t. x ∈ X (si).

Depending on the problem structure, (8) can usually be
decomposed into separate parts that are easier to solve, e.g.,
[3], [5]. Also, it can be shown, as in [7] that,

fQLAav = f∗av +O(1/V), U
QLA

= O(V), (9)

where fQLAav is the average cost under QLA and U
QLA

is the
time average network backlog size under QLA.

B. The Deterministic Problem

Consider the deterministic problem as follows:

min F(x) , V
∑
si

psif(si, x(si)) (10)

s.t. Gj(x) ,
∑
si

psigj(si, x
(si))

≤ Bj(x) ,
∑
si

psibj(si, x
(si)) ∀ j

x(si) ∈ X (si) ∀ i = 1, 2, ...,M,

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 4

where psi corresponds to the probability of S(t) = si and
x = (x(s1), ..., x(sM))T . The dual problem of (10) can be
obtained as follows:

max q(U) (11)
s.t. U � 0,

where q(U) is called the dual function and is defined as:

q(U) = inf
x(si)∈X (si)

{
V
∑
si

psif(si, x(si)) (12)

+
∑
j

Uj
[∑
si

psigj(si, x
(si))−

∑
si

psibj(si, x
(si))

]}
.

By rearranging the terms, we note that q(U) can also be
written in the following separable form, which is more useful
for our later analysis.

q(U) = inf
x(si)∈X (si)

∑
si

psi

{
V f(si, x(si)) (13)

+
∑
j

Uj
[
gj(si, x(si))− bj(si, x(si))

]}
.

Here U = (U1, ..., Ur)T is the Lagrange multiplier of
(10). It is well known that q(U) in (12) is concave in the
vector U , and hence the problem (11) can usually be solved
efficiently, particularly when cost functions and rate functions
are separable over different different network components. It
is also well known that in many situations, the optimal value
of (11) is the same as the optimal value of (10) and in this
case we say that there is no duality gap [12].

We note that the deterministic problem (10) is not neces-
sarily convex as the sets X (si) are not necessarily convex, and
the functions f(si, ·), gj(si, ·) and bj(si, ·) are not necessarily
convex. Therefore, there may be a duality gap between the
deterministic problem (10) and its dual (11). Furthermore,
solving the deterministic problem (10) may not solve the
stochastic problem. This is so since at every network state,
the stochastic problem may require time sharing over more
than one action, but the solution to the deterministic problem
gives only a fixed operating point per network state. However,
one can show, by using an argument similar to showing the
existence of an optimal stationary randomized algorithm in
[5], that the dual problem (11) gives the exact value of V f∗av ,
where f∗av is the optimal time average cost, even if (10) is
non-convex.

Among the many algorithms that can be used to solve (11),
the following algorithm is the most common one (for per-
formance see [12]), we denote it as the ordinary subgradient
method (OSM):

OSM: Initialize U(0); at every iteration t, observe U(t),
1) Find x(si)

U ∈ X (si) for i ∈ {1, ...,M} that achieves the
infimum of the right hand side of (12).

2) Using the xU = (x(s1)
U , x

(s)
U , ..., x

(sM)
U)T found, update:

Uj(t+ 1) = max
[
Uj(t)− αt

∑
si

psi
[
bj(si, x

(si)
U) (14)

−gj(si, x(si)
U)

]
, 0
]
.

We use x(si)
U to highlight its dependency on U(t). The term

αt > 0 is called the step size at iteration t. In the following, we
will always assume αt = 1 when referring to OSM. Note that
if there is only one network state, QLA and OSM will choose
the same action given the same U , and they differ only by (4)
and (14). The term GU = (GU ,1, GU ,2, ..., GU ,r)T , with:

GU ,j = Gj(xU)− Bj(xU) (15)

=
∑
si

psi
[− bj(si, x(si)

U) + gj(si, x
(si)
U)

]
,

is called the subgradient of q(U) at U(t). It is well known
that for any other Û ∈ Rr, we have:

(Û −U(t))TGU ≥ q(Û)− q(U(t)). (16)

Using ‖GU‖ ≤ B, we note that (16) also implies:

q(Û)− q(U(t)) ≤ B‖Û −U(t)‖ ∀ Û ,U ∈ Rr (17)

We are now ready to study the steady state behavior of U(t)
under QLA. To simplify notations and highlight the scaling
effect of the scalar V in QLA, we use the following notations:

1) We use q0(U) and U∗0 to denote the dual objective
function and an optimal solution of (11) when V = 1;
and use q(U) and U∗V (also called the optimal Lagrange
multiplier) for their counterparts with general V ≥ 1;

2) We use x
(si)
U to denote an action chosen by QLA

for a given U(t) and S(t) = si; and use xU =
(x(s1)

U , ..., x
(sM)
U)T to denote a solution chosen by OSM

for a given U(t).
To simplify analysis, we assume the following throughout:
Assumption 1: U∗V = (U∗V 1, ..., U

∗
V r)

T is unique for all
V ≥ 1.

Note that Assumption 1 is not very restrictive. In fact, it
holds in many network utility optimization problems, e.g.,
[10]. In many cases, we also have U∗V 6= 0. Moreover, for the
assumption to hold for all V ≥ 1, it suffices to have just U∗0
being unique. This is shown in the following lemma regarding
the scaling effect of the parameter V on the optimal Lagrange
multiplier.

Lemma 1: U∗V = VU∗0.
Proof: From (13) we see that:

q(U)/V = inf
x(si)∈X (si)

∑
si

psi

{
f(si, x(si))

+
∑
j

Ûj
[
gj(si, x(si))− bj(si, x(si))

]}
,

where Ûj = Uj
V . However, the right hand side is exactly

q0(Û), and thus is maximized at Û = U∗0. Hence q(U) is
maximized at VU∗0.

V. BACKLOG VECTOR BEHAVIOR UNDER QLA

In this section we study the backlog vector behavior under
QLA of the stochastic problem. The following theorem sum-
marizes the main results. Recall that B is defined in (3) as the
upper bound of the magnitude change of U in a slot.

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 5

Theorem 1: If the dual function q0(U) satisfies:

q0(U∗0) ≥ q0(U) + L‖U∗0 −U‖ ∀ U � 0, (18)

for some constant L > 0 independent of V , then under QLA,
(a) There exist constants D ≥ η > 0, both independent of

V , such that whenever ‖U(t)−U∗V ‖ ≥ D, we have:

E
{‖U(t+ 1)−U∗V ‖ | U(t)

} ≤ ‖U(t)−U∗V ‖ − η. (19)

In particular, the constants D and η that satisfy (19) can
be chosen as follows: Choose η as any value such that
0 < η < L, independent of V . Then, choose D as: 1

D = max
[

2B2 − η2

2(L− η)
, η

]
. (20)

(b) For given constants D, η in (a), there exist some con-
stants c∗, β∗ > 0, independent of V , such that:

P(D,m) ≤ c∗e−β∗m, (21)

where P(D,m) is defined as:

P(D,m) , lim sup
t→∞

1
t

t−1∑
τ=0

Pr{‖U(τ)−U∗V ‖ > D +m}. (22)

Note that if m = log(V)
β∗ , by (21) we have P(D,m) ≤ c∗

V .
Also if a steady state distribution of ‖U(t)−U∗V ‖ exists under
QLA, i.e., the limit of 1

t

∑t−1
τ=0 Pr{‖U(τ)−U∗V ‖ > D+m}

exists as t → ∞, then one can replace P(D,m) with the
steady state probability that U(t) deviates from U∗V by an
amount of D + m, i.e., Pr{‖U(t) − U∗V ‖ > D + m}.
Therefore Theorem 1 can be viewed as showing that when (18)
is satisfied, for a large V , the backlog U(t) under QLA will
mostly be within O(log(V)) distance from U∗V . This implies
that the average backlog will roughly be

∑
U∗V j , which is

typically Θ(V) by Lemma 1. However, this fact will also
allow us to build FQLA upon QLA to “subtract out” roughly∑
U∗V j data from the network and reduce network delay.

Theorem 1 also highlights a deep connection between the
steady state behavior of the network backlog process U(t) and
the structure of the dual function q0(U). We note that (18) is
not very restrictive. In fact, if q0(U) is polyhedral (e.g., X (si)

is finite for all si), with a unique optimal solution U∗0 � 0,
then (18) can be satisfied (see Section VII for an example).
To prove the theorem, we need the following lemma.

Lemma 2: Under QLA, we have for all t,

E
{‖U(t+ 1)−U∗V ‖2 | U(t)

} ≤ ‖U(t)−U∗V ‖2 + 2B2 (23)
−2(q(U∗V)− q(U(t))).

Proof: See [14].
We now use Lemma 2 to prove Theorem 1.

Proof: (Theorem 1) Part (a): We first show that if (18)
holds for q0(U) with L, then it also holds for q(U) with the
same L. To this end, suppose (18) holds for q0(U) for all
U � 0. Multiplying both sides of (18) by V , we get:

V q0(U∗0) ≥ V q0(U) + LV ‖U∗0 −U‖.
1It can be seen from (17) that B ≥ L. Thus B > η.

Now using U∗V = VU∗0 and q(U) = V q0(U/V) in the above
inequality, we have for all U � 0:

q(U∗V) ≥ q(VU) + L‖U∗V − VU‖.
Thus for any U � 0, we have:

q(U∗V) ≥ q(U) + L‖U∗V −U‖. (24)

Now for a given η > 0, if:

2B2 − 2
(
q(U∗V)− q(U(t))

) ≤ η2 − 2η‖U∗V −U(t)‖, (25)

then by (23), we have:

E
{‖U(t+ 1)−U∗V ‖2 | U(t)

} ≤ (‖U(t)−U∗V ‖ − η)2,

which then by Jensen’s inequality implies:

(E
{‖U(t+ 1)−U∗V ‖ | U(t)

}
)2 ≤ (‖U(t)−U∗V ‖ − η)2.

Thus (19) follows whenever (25) holds and ‖U(t)−U∗V ‖ ≥ η.
It suffices to choose D and η such that D ≥ η and that (25)
holds whenever ‖U(t) −U∗V ‖ ≥ D. Now note that (25) can
be rewritten as the following inequalty:

q(U∗V) ≥ q(U(t)) + η‖U∗V −U(t)‖+ Y (26)

where Y = 2B2−η2

2 . Choose η ∈ (0, L) independent of V . By
(24), if:

L‖U(t)−U∗V ‖ ≥ η‖U∗V −U(t)‖+ Y (27)

then (26) holds. Now choose D as defined in (20), we see that
if ‖U(t) − U∗V ‖ ≥ D, then (27) holds, which implies (26),
and equivalently (25). We also have D ≥ η, hence (19) holds.

Part (b): Now we show that (19) implies (21). Choose
constants D and η that are independent of V in (a). Denote
Y (t) = ‖U(t)−U∗V ‖, we see then whenever Y (t) ≥ D, we
have E

{
Y (t+ 1)− Y (t) | U(t)

} ≤ −η. It is also easy to see
that |Y (t + 1) − Y (t)| ≤ B, as B is defined in (3) as the
upper bound of the magnitude change of U in a slot. Define
Ỹ (t) = max

[
Y (t)−D, 0]. We see that whenever Ỹ (t) ≥ B,

we have:

E
{
Ỹ (t+ 1)− Ỹ (t) | U(t)

}
(28)

= E
{
Y (t+ 1)− Y (t) | U(t)

} ≤ −η.
Now define a Lyapunov function of Ỹ (t) to be L(Ỹ (t)) =
ewỸ (t) with some w > 0, and define the one-slot conditional
drift to be:

∆(Ỹ (t)) , E
{
L(Ỹ (t+ 1))− L(Ỹ (t)) | U(t)

}
= E

{
ewỸ (t+1) − ewỸ (t) | U(t)

}
. (29)

It is shown in Appendix A that by choosing w = η
B2+Bη/3 ,

we have for all Ỹ (t) ≥ 0:

∆(Ỹ (t)) ≤ e2wB − wη

2
ewỸ (t). (30)

Taking expectation on both sides and carrying out a telescop-
ing sum, we obtain:

t−1∑
τ=0

wη

2
E
{
ewỸ (τ)

} ≤ te2wB + E
{
ewỸ (0)

}
. (31)

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 6

Divide both sides by t and take the limsup as t goes to infinity,
we obtain:

lim sup
t→∞

1
t

t−1∑
τ=0

wη

2
E
{
ewỸ (τ)

} ≤ e2wB . (32)

Using that E
{
ewỸ (τ)

} ≥ ewmPr{Ỹ (τ) > m}, we obtain:

lim sup
t→∞

1
t

t−1∑
τ=0

wη

2
ewmPr{Ỹ (τ) > m} ≤ e2wB . (33)

Plug in w = η
B2+Bη/3 and use the definition of Ỹ (t), we get:

P(D,m) ≤ 2e2wB

wη
e−wm

=
2(B2 +Bη/3)e

2η
B+η/3

η2
e
− ηm

B2+Bη/3 , (34)

where P(D,m) is defined in (22). Therefore (21) holds with:

c∗ =
2(B2 +Bη/3)e

2η
B+η/3

η2
, β∗ =

η

B2 +Bη/3
. (35)

It is easy to see that c∗ and β∗ are independent of V .
Note from (31) and (32) that Theorem 1 indeed holds for

any finite U(0). We will later use this fact to prove the
performance of FQLA. The following theorem is a special case
of Theorem 1 and gives a more direct illustration of Theorem
1. Recall that P(D,m) is defined in (22). Define:

P(r)(D,m) (36)

, lim sup
t→∞

1
t

t−1∑
τ=0

Pr{∃ j, |Uj(τ)− U∗V j | > D +m}.

Theorem 2: If the condition in Theorem 1 holds, then
under QLA, for any c > 0:

P(D1, cK1 log(V)) ≤ c∗1
V c

, (37)

P(r)(D1, cK1 log(V)) ≤ c∗1
V c

. (38)

where D1 = 2B2

L + L
4 , K1 = B2+BL/6

L/2 and c∗1 =

8(B2+BL/6)e
L

B+L/6

L2 .
Proof: Choose η = L/2, then we see from (20) that

D = max
[

2B2 − L2/4
L

,
L

2

]
≤ 2B2

L
+
L

4
.

Now by (35) we see that (21) holds with c∗ = c∗1 and β∗ =
L/2

B2+BL/6 . Thus by taking D1 = 2B2

L + L
4 , we have:

P(D1, cK1 log(V)) ≤ c∗e−cK1β
∗ log(V)

= c∗1e
−c log(V),

where the last step follows since β∗K1 = 1. Thus (37) follows.
Equation (38) follows from (37) by using the fact that for any
constant ζ, the events E1 = {∃ j, |Uj(τ)−U∗V j | > ζ} and E2 =
{‖U(τ)−U∗V ‖ > ζ} satisfy E1 ⊂ E2. Thus: Pr{∃ j, |Uj(τ)−
U∗V j | > ζ} ≤ Pr{‖U(τ)−U∗V ‖ > ζ}.

Theorem 2 can be viewed as showing that for a large V ,
the probability for Uj(t) to deviate from the jth component of

U∗V is exponentially decreasing in the distance. Thus it rarely
deviates from U∗V j by more than Θ(log(V)) distance. Note
that one can similarly prove the following theorem for OSM:

Theorem 3: If the condition in Theorem 1 holds, then there
exist positive constants D = Θ(1) and η = Θ(1), i.e, inde-
pendent of V , such that, under OSM, if ‖U(t)−U∗V ‖ ≥ D,

‖U(t+ 1)−U∗V ‖ ≤ ‖U(t)−U∗V ‖ − η. (39)

Proof: It is easy to show that under OSM, Lemma 2 holds
without the expectation. Thus the theorem follows by the same
argument as in Theorem 1.

Therefore, when there is a single network state, we see that
given (18), the backlog process converges to a ball of size
Θ(1) around U∗V .

VI. THE FQLA ALGORITHM

In this section, we propose a family of Fast Quadratic
Lyapunov based Algorithms (FQLA) for general stochastic
network optimization problems. We first provide an example
to illustrate the idea of FQLA. We then describe FQLA with
known U∗V , called FQLA-Ideal, and study its performance.
After that, we describe the more general FQLA without such
knowledge, called FQLA-General.

A. FQLA: a Single Queue Example

To illustrate the idea of FQLA, we first look at an example.
Figure 3 shows a 104-slot sample backlog process under
QLA.2 We see that after roughly 1500 slots, U(t) always stays
very close to U∗V , which is a Θ(V) scalar in this case. To
reduce delay, we can first find W ∈ (0, U∗V) such that: under
QLA, there exists a time t0 so that U(t0) ≥ W and once
U(t) ≥ W , it remains so for all time (the solid line in Fig.
3 shows one for these 104 slots). We then place W fake bits
(called place-holder bits [11]) in the queue at time 0, i.e.,
initialize U(0) = W , and run QLA. It is easy to show that
the utility performance of QLA will remain the same with
this change, and the average backlog is now reduced by W .
However, such a W may require W = U∗V −Θ(V), thus the
average backlog may still be Θ(V).

0 2000 4000 6000 8000 10000
0

t

Number of place
holder bits

U
*

V

U(t)

Start here

0 10 20 30 40

!4

!2

0

2

4

6

8

10

W(t)!W

U(t)

max[W(t)!W, 0] + !
max

Fig. 3. Left: A sample backlog process; Right: An Example of W (t) and
U(t).

FQLA instead finds a W such that in steady state, the
backlog process under QLA rarely goes below it, and places
W place-holder bits in the queue at time 0. FQLA then
uses an auxiliary process W (t), called the virtual backlog
process, to keep track of the backlog process that should have

2This sample backlog process is one sample backlog process of queue 1
of the system considered in Section VII, under QLA with V = 50.

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 7

been generated if QLA is used. Specifically, FQLA initializes
W (0) = W . Then at every slot, QLA is run using W (t)
as the queue size, and W (t) is updated according to QLA.
With W (t) and W , FQLA works as follows: At time t, if
W (t) ≥ W , FQLA performs QLA’s action (obtained based on
S(t) and W (t)); else if W (t) <W , FQLA carefully modifies
QLA’s action so as to maintain U(t) ≈ max[W (t) − W, 0]
for all t (see Fig.3 for an example). Similar as above, this
roughly reduces the average backlog by W . The difference
is that now we can show that W = max[U∗V − log2(V), 0]
meets the requirement. Thus it is possible to bring the average
backlog down to O(log2(V)). Also, since W (t) can be viewed
as a backlog process generated by QLA, it rarely goes below
W in steady state. Hence FQLA is almost always the same
as QLA, thus is able to achieve an O(1/V) close-to-optimal
utility performance.

B. The FQLA-Ideal Algorithm

In this section, we present the FQLA-Ideal algorithm. We
assume the value U∗V = (U∗V 1, ..., U

∗
V r)

T is known a-priori.
FQLA-Ideal:
(I) Determining place-holder bits: For each j, define:

Wj = max
[
U∗V j − log2(V), 0

]
, (40)

as the number of place-holder bits of queue j.
(II) Place-holder-bit based action: Initialize

Uj(0) = 0, Wj(0) =Wj , ∀j.
For t ≥ 1, observe the network state S(t), solve (8) with
W (t) in place of U(t). Perform the chosen action with
the following modification: Let A(t) and µ(t) be the
arrival and service rate vectors generated by the action.
For each queue j, do (Idle fill whenever needed):

a) If Wj(t) ≥ Wj : admit Aj(t) arrivals, serve µj(t)
data, i.e., update the backlog by:

Uj(t+ 1) = max
[
Uj(t)− µj(t), 0

]
+Aj(t).

b) If Wj(t) <Wj : admit Ãj(t) = max
[
Aj(t)−Wj+

Wj(t), 0
]

arrivals, serve µj(t) data, i.e., update the
backlog by:

Uj(t+ 1) = max
[
Uj(t)− µj(t), 0

]
+ Ãj(t).

c) Update Wj(t) by:

Wj(t+ 1) = max
[
Wj(t)− µj(t), 0

]
+Aj(t).

From above we see that FQLA-Ideal is the same as
QLA based on W (t) when Wj(t) ≥ Wj for all j. When
Wj(t) < Wj for some queue j, FQLA-Ideal admits roughly
the excessive packets after Wj(t) is brought back to be above
Wj for the queue. Thus for problems where QLA admits an
easy implementation, e.g., [3], [5], it is also easy to implement
FQLA. However, we also notice two different features of
FQLA: (1) By (40), Wj can be 0. However, when V is large,
this happens only when U∗0j = U∗V j = 0 according to Lemma
1. In this caseWj = U∗V j = 0, and queue j indeed needs zero
place-holder bits. (2) Packets may be dropped in Step II-(b)
upon their arrivals, or after they are admitted into the network

in a multihop problem. Such packet dropping is natural in
many flow control problems and does not change the nature
of these problems. In other problems where such option is not
available, the packet dropping option is introduced to achieve
desired delay performance, and it can be shown that the
fraction of packets dropped can be made arbitrarily small. Note
that packet dropping here is to compensate for the deviation
from the desired Lagrange multiplier, thus is different from
that in [15], where packet dropping is used for drift steering.

C. Performance of FQLA-Ideal

We look at the performance of FQLA-Ideal in this section.
We first have the following lemma that shows the relationship
between U(t) and W (t). We will use it later to prove the
delay bound of FQLA. Note that the lemma also holds for
FQLA-General described later, as FQLA-Ideal/General differ
only in the way of determining W = (W1, ...,Wr)T .

Lemma 3: Under FQLA-Ideal/General, we have ∀ j, t:
max

[
Wj(t)−Wj , 0

] ≤ Uj(t) ≤ max
[
Wj(t)−Wj , 0

]
+δmax

(41)
where δmax is defined in Section III-B to be the upper bound
of the number of arriving or departing packets of a queue.

Proof: See [14].
The following theorem summarizes the main performance

results of FQLA-Ideal. Recall that for a given policy π, fπav
denotes its average cost defined in (6) and fπ(t) denotes the
cost induced by π at time t.

Theorem 4: If the condition in Theorem 1 holds and a
steady state distribution exists for the backlog process gener-
ated by QLA, then with a sufficiently large V , we have under
FQLA-Ideal that,

U = O(log2(V)), (42)
fFIav = f∗av +O(1/V), (43)
Pdrop = O(1/V c0 log(V)), (44)

where c0 = Θ(1), U is the time average backlog, fFIav is
the time average cost of FQLA-Ideal, f∗av is the optimal time
average cost and Pdrop is the time average fraction of packets
that are dropped in Step-II (b).

Proof: Since a steady state distribution exists for the
backlog process generated by QLA, we see that P(D,m) in
(22) represents the steady state probability of the event that the
backlog vector deviates from U∗V by distance D + m. Now
since W (t) can be viewed as a backlog process generated
by QLA, with W (0) = W instead of 0, we see from the
proof of Theorem 1 that Theorem 1 and 2 hold for W (t),
and by [7], QLA based on W (t) achieves an average cost
of f∗av +O(1/V). Hence by Theorem 2, there exist constants
D1,K1, c

∗
1 = Θ(1) so that: P(r)(D1, cK1 log(V)) ≤ c∗1

V c . By
the definition of P(r)(D1, cK1 log(V)), this implies that in
steady state:

Pr{Wj(t) > U∗V j +D1 +m} ≤ c∗1e−
m
K1 ,

Now let: Qj(t) = max[Wj(t) − U∗V j − D1, 0]. We see that
Pr{Qj(t) > m} ≤ c∗1e

− m
K1 , ∀m ≥ 0. We thus have Qj =

O(1), where Qj is the time average value of Qj(t). Now it is

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 8

easy to see by (40) and (41) that Uj(t) ≤ Qj(t) + log2(V) +
D1 + δmax for all t. Thus (42) follows since for a large V :

Uj ≤ Qj + log2(V) +D1 + δmax = Θ(log2(V)).

Now consider the average cost. To save space, we use FI for
FQLA-Ideal. From above, we see that QLA based on W (t)
achieves an average cost of f∗av + O(1/V). Thus it suffices
to show that FQLA-Ideal performs almost the same as QLA
based on W (t). First we have for all t ≥ 1 that:

1
t

t−1∑
τ=0

fFI(τ) =
1
t

t−1∑
τ=0

fFI(τ)1E(τ) +
1
t

t−1∑
τ=0

fFI(τ)1Ec(τ),

where 1E(τ) is the indicator function of the event E(τ), E(τ)
is the event that FQLA-Ideal performs the same action as QLA
at time τ , and 1Ec(τ) = 1−1E(τ). Taking expectation on both
sides and using the fact that when FQLA-Ideal takes the same
action as QLA, fFI(τ) = fQLA(τ), we have:

1
t

t−1∑
τ=0

E
{
fFI(τ)

} ≤ 1
t

t−1∑
τ=0

E
{
fQLA(τ)1E(τ)

}
+

1
t

t−1∑
τ=0

E
{
δmax1Ec(τ)

}
.

Taking the limit as t goes to infinity on both sides and using
fQLA(τ)1E(τ) ≤ fQLA(τ) , we get:

fFIav ≤ fQLAav + δmax lim
t→∞

1
t

t−1∑
τ=0

E
{

1Ec(τ)
}

= fQLAav + δmax lim
t→∞

1
t

t−1∑
τ=0

Pr{Ec(τ)}. (45)

However, Ec(τ) is included in the event that there exists a j
such that Wj(τ) <Wj . Therefore by (38) in Theorem 2, for
a large V such that 1

2 log2(V) ≥ D1 and log(V) ≥ 8K1,

lim
t→∞

1
t

t−1∑
τ=0

Pr{Ec(τ)} ≤ P(r)(D1, log2(V)−D1)

= O(c∗1/V
1

2K1
log(V))

= O(1/V 4). (46)

Using this fact in (45), we obtain:

fFIav = fQLAav +O(δmax/V 4) = f∗av +O(1/V),

where the last equality holds since fQLAav = f∗av + O(1/V).
This proves (43). (44) follows since packets are dropped at
time τ only if Ec(τ) happens, thus by (46), the fraction of
time when packet dropping happens is O(1/V c0 log(V)) with
c0 = 1

2K1
= Θ(1), and each time no more than

√
rB packets

can be dropped.

D. The FQLA-General algorithm

Now we describe the FQLA algorithm without any a-priori
knowledge of U∗V , called FQLA-General. FQLA-General first
runs the system for a long enough time T , such that the
system enters its steady state. Then it chooses a sample of
the queue vector value to estimate U∗V and uses that to decide
the number of place holder bits.

FQLA-General:
(I) Determining place-holder bits:

a) Choose a large time T (See Section VI-E for the
size of T) and initialize W (0) = 0. Run the QLA
algorithm with parameter V , at every time slot t,
update W (t) according to the QLA algorithm and
obtain W (T).

b) For each queue j, define:

Wj = max
[
Wj(T)− log2(V), 0

]
, (47)

as the number of place-holder bits.
(II) Place-holder-bit based action: same as FQLA-Ideal.

The performance of FQLA-General is summarized as follows:
Theorem 5: Assume the conditions in Theorem 4 hold

and the system is in steady state at time T , then under
FQLA-General with a sufficiently large V , with probability
1−O(1

V 4): (a) U = O(log2(V)), (b) fFGav = f∗av +O(1/V),
and (c) Pdrop = O(1/V c0 log(V)), where c0 = Θ(1) and fFGav
is the time average cost of FQLA-General.

Proof: We will show that with probability of 1−O(1
V 4),

Wj is close to max[U∗V j − log2(V), 0]. The rest can then be
proven similarly as in the proof of Theorem 4.

For each queue j, define:

v+
j = U∗V j +

1
2

log2(V), v−j = max
[
U∗V j −

1
2

log2(V), 0
]
.

Note that v−j is defined with a max[] operator. This is due
to the fact that U∗V j can be zero. As in (46), we see that by
Theorem 2, there exists D1 = Θ(1),K1 = Θ(1) such that if
V is such that 1

4 log2(V) ≥ D1 and log(V) ≥ 16K1, then:

Pr
{∃ j, Wj(T) /∈ [v−j , v

+
j]
} ≤ P(r)(D1,

1
2

log2(V)−D1)

= O(1/V 4)

Thus we see that Pr
{
Wj(T) ∈ [v−j , v

+
j]∀j} = 1−O(1/V 4),

which implies:

Pr
{Wj ∈ [v̂−j , v̂

+
j] ∀j} = 1−O(1/V 4).

where v̂+
j = max

[
U∗V j− 1

2 log2(V), 0
]

and v̂−j = max
[
U∗V j−

3
2 log2(V), 0

]
. Hence for a large V , with probability 1 −

O(1
V 4): if U∗V j > 0, we have U∗V j − 3

2 log2(V) ≤ Wj ≤
U∗V j − 1

2 log2(V); else if U∗V j = 0, we have Wj = U∗V j . The
rest of the proof is similar to the proof of Theorem 4.

E. Practical Issues

From Lemma 1 we see that the magnitude of U∗V can be
Θ(V). This means that T in FQLA-General may need to be
Ω(V), which is not very desirable when V is large. We can
instead use the following heuristic method to accelerate the
process of determining W : For every queue j, guess a very
large Wj . Then start with this W and run the QLA algorithm
for some T1, say

√
V slots. Observe the resulting backlog

process. Modify the guess for each queue j using a bisection
algorithm until a proper W is found, i.e. when running QLA
from that value, we observe fluctuations of Wj(t) around Wj

instead of a nearly constant increase or decrease for all j. Then
letWj = max[Wj−log2(V), 0] be the number of place-holder

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 9

bits of queue j. To further reduce the error probability, one
can repeat Step-I (a) multiple times and use the average value
as W (T).

Note that even though results in Theorem 4 and 5 assume
a large V , in practice, the V value may not have to be very
large (See Section VII for an example).

VII. SIMULATION

In this section we provide simulation results for the FQLA
algorithms. We consider a five queue system that extends the
example in Section III-D. In this case r = 5. The system is
shown in Fig. 4. The goal is to perform power allocation at
each node so as to support the arrival with minimum energy
expenditure.

U1 U2 U3 U4 U5

R(t)

S1(t) S2(t) S3(t) S4(t) S5(t)

Fig. 4. A five queue system

In this example, the random network state S(t) is the vector
containing the random arrivals R(t) and the channel states
Si(t), i = 1, ..., 5. Similar as in Section III-D, we have:

A(t) = (R(t), µ1(t), µ2(t), µ3(t), µ4(t))T ,
µ(t) = (µ1(t), µ2(t), µ3(t), µ4(t), µ5(t))T ,

i.e., A1(t) = R(t), Ai(t) = µi−1(t) for i ≥ 2, where µi(t)
is the service rate obtained by queue i at time t. R(t) is 0
or 2 with probabilities 3

8 and 5
8 , respectively. Si(t) can be

“Good” or “Bad” with equal probabilities for 1 ≤ i ≤ 5.
When the channel is good, one unit of power can serve
two packets; otherwise one unit of power can serve only
one packet. We assume all channels can be activated at
the same time without affecting others. It can be verified
that U∗V = (5V, 4V, 3V, 2V, V)T is unique. In this example,
the backlog vector process evolves as a Markov chain with
countably many states. Thus one can show that there exists a
stationary distribution for the backlog vector under QLA.

We simulate FQLA-Ideal and FQLA-General with V =
50, 100, 200, 500, 1000 and 2000. We run each case for 5×106

slots under both algorithms. For FQLA-General, we use
T = 50V in Step-I and repeat Step-I 100 times and use
their average as W (T). It is easy to see from the left plot
in Fig. 5 that the average queue sizes under both FQLAs
are always close to the value 5 log2(V) (r = 5). From the
middle plot we also see that the percentage of packets dropped
decreases rapidly and gets below 10−4 when V ≥ 500 under
both FQLAs. These plots show that in practice, V may not
have to be very large for Theorem 4 and 5 to hold. The
right plot shows a sample (W1(t),W2(t)) process for a 105-
slot interval under FQLA-Ideal with V = 1000, considering
only the first two queues of Fig. 4 for this example. We
see that during this interval, (W1(t),W2(t)) always remains
close to (U∗V 1, U

∗
V 2) = (5V, 4V), and W1(t) ≥ W1 = 4952,

W2(t) ≥ W2 = 3952. For all V values, the average power
expenditure is very close to 3.75, which is the optimal energy
expenditure, and the average of

∑
Wj(t) is very close to 15V

(plots omitted for brevity).

10
1

10
2

10
3

10
4

50

100

150

200

250

300

V

0 500 1000 1500 2000
10

!5

10
!4

10
!3

10
!2

10
!1

V

FQLA!I

FQLA!G

FQLA!I

FQLA!G

rlog
2
(V)

4960 4970 4980 4990 5000 5010 5020 5030
3960

3970

3980

3990

4000

4010

4020

W
1
(t)

W
2
(t

)

(W
1
(t), W

2
(t))

(5000, 4000)

Fig. 5. FQLA-Ideal performance: Left - Average queue size; Middle -
Percentage of packets dropped; Right - Sample (W1(t),W2(t)) process for
t ∈ [10000, 110000] and V = 1000 under FQLA-Ideal.

VIII. LAGRANGE MULTIPLIER: “SHADOW PRICE” AND
“NETWORK GRAVITY”

It is well known that Lagrange Multipliers can play the
role of “shadow prices” to regulate flows in many flow-based
problems with different objectives, e.g., [16]. This important
feature has enabled the development of many distributed al-
gorithms in resource allocation problems, e.g., [17]. However,
a problem of this type typically requires data transmissions to
be represented as flows. Thus in a network that is discrete in
nature, e.g., time slotted or packetized transmission, a rate
allocation solution obtained by solving such a flow-based
problem does not immediately specify a scheduling policy.

Recently, several Lyapunov algorithms have been proposed
to solve utility optimization problems under discrete network
settings. In these algorithms, backlog vectors act as the “grav-
ity” of the network and allow optimal scheduling to be built
upon them. It is also revealed in [18] that QLA is closely
related to the dual subgradient method and backlogs play the
same role as Lagrange multipliers in a time invariant network.
Now we see by Theorem 1 that the backlogs indeed play the
same role as Lagrange multipliers even under a more general
stochastic network.

In fact, the backlog process under QLA can be closely
related to a sequence of updated Lagrange multipliers under
a subgradient method. Consider the following important vari-
ant of OSM, called the randomized incremental subgradient
method (RISM) [12], which makes use of the separable nature
of (13) and solves the dual problem (11) as follows:

RISM: Initialize U(0); at iteration t, observe U(t), choose
a random state S(t) ∈ S according to some probability law.
(1) If S(t) = si, find x(si)

U ∈ X (si) that solves the following:

min V f(si, x) +
∑
j

Uj(t)
[
gj(si, x)− bj(si, x)

]
s.t. x ∈ X (si). (48)

(2) Using the x(si)
U found, update U(t) according to: 3

Uj(t+ 1) = max
[
Uj(t)− αtbj(si, x(si)

U), 0
]

+ αtgj(si, x
(si)
U).

As an example, S(t) can be chosen by independently
choosing S(t) = si with probability psi every time slot. In this

3Note that this update rule is different from RISM’s usual rule, i.e., Uj(t+
1) = max

ˆ
Uj(t) − αtbj(si, x) + αtgj(si, x), 0

˜
, but it almost does not

affect the performance of RISM.

PROC. OF 7TH INTL. SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), JUNE 2009 10

case S(t) will be i.i.d.. Note that in the stochastic problem, a
network state si is chosen randomly by nature as the physical
system state at time t; while here a state is chosen artificially
by RISM according some probability law. Now we see from
(8) and (48) that: given the same U(t) and si, QLA and RISM
choose an action in the same way. If also αt = 1 for all
t, and that S(t) under RISM evolves according to the same
probability law as S(t) of the physical system, we see that
applying QLA to the network is indeed equivalent to applying
RISM to the dual problem of (10), with the network state
being chosen by nature, and the network backlog being the
Lagrange multiplier. Therefore, Lagrange Multipliers under
such stochastic discrete network settings act as the “network
gravity,” thus allow scheduling to be done optimally and
adaptively based on them. This “network gravity” functionality
of Lagrange Multipliers in discrete network problems can
thus be viewed as the counterpart of their “shadow price”
functionality in the flow-based problems. Further more, the
“network gravity” property of Lagrange Multipliers enables
the use of place holder bits to reduce network delay in network
utility optimization problems. This is a unique feature not
possessed by its “price” counterpart.

APPENDIX A – PROOF OF (30)

Here we prove that for Ỹ (t) defined in the proof of part (b)
of Theorem 1, we have for all Ỹ (t) ≥ 0:

∆(Ỹ (t)) ≤ e2wB − wη

2
ewỸ (t).

Proof: If Ỹ (t) > B, denote δ(t) = Ỹ (t+ 1)− Ỹ (t). It is
easy to see that |δ(t)| ≤ B. Rewrite (29) as:

∆(Ỹ (t)) = ewỸ (t)E
{(
ewδ(t) − 1

) | U(t)
}
. (49)

By a Taylor expansion, we have that:

ewδ(t) = 1 + wδ(t) +
w2δ2(t)

2
g(wδ(t)), (50)

where g(y) = 2
∑∞
k=2

yk−2

k! = 2(ey−1−y)
y2 [19] has the

following properties:
1) g(0) = 1; g(y) ≤ 1 for y < 0; g(y) is monotone

increasing for y ≥ 0;
2) For y < 3,

g(y) = 2
∞∑
k=2

yk−2

k!
≤
∞∑
k=2

yk−2

3k−2
=

1
1− y/3 .

Thus by (50) we have:

ewδ(t) ≤ 1 + wδ(t) +
w2B2

2
g(wB). (51)

Plug this into (49) and note that Ỹ (t) > B, so by (28) we
have: E

{
δ(t) | U(t)

} ≤ −η. Hence:

∆(Ỹ (t)) ≤ ewỸ (t)
(− wη +

w2B2

2
g(wB)

)
. (52)

Choosing w = η
B2+Bη/3 , we see that wB < 3, thus:

w2B2

2
g(wB) ≤ w2B2

2
1

1− wB/3 =
wη

2
.

The last equality follows since:

w =
η

B2 +Bη/3
⇒ w(B2 +Bη/3) = η

⇒ wB2 = η − wBη/3
⇒ wB2 1

1− wB/3 = η.

Therefore (52) becomes:

∆(Ỹ (t)) ≤ −wη
2
ewỸ (t) ≤ e2wB − wη

2
ewỸ (t). (53)

Now if Ỹ (t) ≤ B, it is easy to see that ∆(Ỹ (t)) ≤ e2wB −
ewỸ (t) ≤ e2wB− wη

2 e
wỸ (t), since Ỹ (t+1) ≤ B+ Ỹ (t) ≤ 2B

and wη
2 ≤ 1. Thus for all Ỹ (t) ≥ 0, (30) holds.

REFERENCES

[1] Y.Yi and M.Chiang. Stochastic network utility maximization: A tribute
to kelly’s paper published in this journal a decade ago. European
Transactions on Telecommunications, vol. 19, no. 4, pp. 421-442, June
2008.

[2] L.Tassiulas and A.Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control, vol.
37, no. 12, pp. 1936-1949, Dec. 1992.

[3] M.J.Neely. Energy optimal control for time-varying wireless networks.
IEEE Transactions on Information Theory 52(7): 2915-2934, July 2006.

[4] M.J.Neely, E.Modiano, and C.Li. Fairness and optimal stochastic control
for heterogeneous networks. IEEE INFOCOM Proceedings, March
2005.

[5] L.Huang and M.J.Neely. The optimality of two prices: Maximizing rev-
enue in a stochastic network. Proc. of 45th Annual Allerton Conference
on Communication, Control, and Computing (invited paper), Sept. 2007.

[6] R.Urgaonkar and M.J.Neely. Opportunistic scheduling with reliability
guarantees in cognitive radio networks. IEEE INFOCOM Proceedings,
April 2008.

[7] L.Georgiadis, M.J.Neely, and L.Tassiulas. Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking Vol. 1, no. 1, pp. 1-144, 2006.

[8] M.J.Neely. Optimal energy and delay tradeoffs for multi-user wireless
downlinks. IEEE Transactions on Information Theory vol. 53, no. 9, pp.
3095-3113, Sept. 2007.

[9] M.J.Neely. Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks. IEEE Journal on Selected Areas in Communica-
tions (JSAC), Special Issue on Nonlinear Optimization of Communica-
tion Systems, 24(8), Aug. 2006.

[10] A.Eryilmaz and R.Srikant. Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. IEEE/ACM
Trans. Netw., 15(6):1333–1344, 2007.

[11] M.J.Neely and R.Urgaonkar. Opportunism, backpressure, and stochastic
optimization with the wireless broadcast advantage. Asilomar Confer-
ence on Signals, Systems, and Computers, Pacific Grove, CA (Invited
paper), Oct. 2008.

[12] D.P.Bertsekas, A.Nedic, and A.E.Ozdaglar. Convex Analysis and Opti-
mization. Boston: Athena Scientific, 2003.

[13] A.L.Stolyar. Greedy primal-dual algorithm for dynamic resource alloca-
tion in complex networks. Queueing Systems, Vol. 54, No.3, pp.203-220,
2006.

[14] L.Huang and M.J.Neely. Delay reduction via lagrange multipliers in
stochastic network optimization. arXiv:0904.3795v1, April 2009.

[15] M.J.Neely. Intelligent packet dropping for optimal energy-delay trade-
offs in wireless downlinks. Proc. of the 4th Int. Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
April 2006.

[16] F.Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, vol. 8, pp. 33-37, 1997.

[17] C.Curescu and S.Nadjm-Tehrani. Price/utility-based optimized resource
allocation in wireless ad hoc networks. IEEE SECON, 85- 95, 2005.

[18] M.J.Neely, E.Modiano, and C.E.Rohrs. Dynamic power allocation and
routing for time-varying wireless networks. IEEE Journal on Selected
Areas in Communications, Vol 23, NO.1, January 2005.

[19] F.Chung and L.Lu. Concentration inequalities and martingale inequali-
ties a survey. Internet Math., 3 (2006-2007), 79–127.

	Introduction
	Notations
	System Model
	Network State
	The Cost, Traffic and Service
	Queueing, Average Cost and the Stochastic Problem
	An Example of the Model

	QLA and the Deterministic Problem
	The QLA algorithm
	The Deterministic Problem

	Backlog vector behavior under QLA
	The FQLA Algorithm
	FQLA: a Single Queue Example
	The FQLA-Ideal Algorithm
	Performance of FQLA-Ideal
	The FQLA-General algorithm
	Practical Issues

	Simulation
	Lagrange Multiplier: ``shadow price'' and ``network gravity''
	References

