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Delay Reduction via Lagrange Multipliers in
Stochastic Network Optimization

Longbo Huang, Michael J. Neely

Abstract—In this paper, we consider the problem of reducing
network delay in stochastic network utility optimization prob-
lems. We start by studying the recently proposed quadratic
Lyapunov function based algorithms (QLA, also known as
the MaxWeight algorithm). We show that for every stochas-
tic problem, there is a corresponding deterministic problem,
whose dual optimal solution “exponentially attracts” the network
backlog process under QLA. In particular, the probability that
the backlog vector under QLA deviates from the attractor is
exponentially decreasing in their Euclidean distance. This is the
first such result for the class of algorithms built upon quadratic
Lyapunov functions. The result quantifies the “network gravity”
role of Lagrange Multipliers in network scheduling. It not only
helps to explain how QLA achieves the desired performance but
also suggests that one can roughly “subtract out” a Lagrange
multiplier from the system induced by QLA.

Based on this finding, we develop a family of Fast Quadratic
Lyapunov based Algorithms (FQLA), which use virtual place-
holder bits and virtual control processes for decision mak-
ing. We prove that FQLA achieves an

[
O(1/V ), O([log(V )]2)

]
performance-delay tradeoff for problems with discrete action sets,
and achieves a square-root tradeoff for continuous problems. The
performance of FQLA is similar to the optimal tradeoffs achieved
in prior work by Neely (2007) via drift-steering methods, and
shows that QLA can also be used to approach such performance.

Index Terms—Queueing, Dynamic Control, Lyapunov analysis,
Stochastic Optimization

I. INTRODUCTION

In this paper, we consider the problem of reducing network
delay in the following general framework of the stochastic
network utility optimization problem. We are given a time
slotted stochastic network. The network state, such as the
network channel condition, is time varying according to some
probability law. A network controller performs some action
based on the observed network state at every time slot.
The chosen action incurs a cost (since cost minimization is
mathematically equivalent to utility maximization, below we
will use cost and utility interchangeably), but also serves some
amount of traffic and possibly generates new traffic for the
network. This traffic causes congestion, and thus leads to
backlogs at nodes in the network. The goal of the controller
is to minimize its time average cost subject to the constraint
that the time average total backlog in the network is finite.
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This setting is very general, and many existing works fall
into this category. Further, many techniques have been used
to study this problem (see [1] for a survey). In this paper, we
focus on algorithms that are built upon quadratic Lyapunov
functions (called QLA in the following), e.g., [2], [3], [4],
[5], [6], [7]. These QLA algorithms are easy to implement,
greedy in nature, and are parameterized by a scalar control
variable V . It has been shown that when the network state is
i.i.d., QLA algorithms can achieve a time average utility that
is within O(1/V ) to the optimal. Therefore, as V grows large,
the time average utility can be pushed arbitrarily close to the
optimal. However, such close-to-optimal utility is usually at
the expense of large network delay. In fact, in [3], [4], [7],
it is shown that an O(V ) network delay is incurred when
an O(1/V ) close-to-optimal utility is achieved. Two recent
papers [8] and [9], which show that it is possible to achieve
within O(1/V ) of optimal utility with only O(log(V )) delay,
use a more sophisticated algorithm design approach based
on exponential Lyapunov functions. Therefore, it seems that
though being simple in implementation, QLA algorithms have
undesired delay performance.

However, we note that the delay results of QLA are usually
given in terms of long term upper bounds of the average
network backlog e.g., [7]. Thus they do not examine the
possibility that the actual backlog vector (or its time average)
converges to some fixed value. Work in [10] considers drift
properties towards an “invariant” backlog vector, derived in
the special case of a one-hop downlink system and when the
problem exhibits a unique optimal Lagrange multiplier. An
upper bound on the long term deviation of the actual backlog
and the Lagrange multiplier vector is obtained. While this
suggests Lagrange multipliers are “gravitational attractors,” the
bounds there do not show that the the actual backlog is very
unlikely to deviate significantly from the attractor.

In this paper, we focus on obtaining stronger probability
results of the steady state backlog process behavior under
QLA. We first show that under QLA, even though the backlog
can grow linearly in V , it “typically” stays close to an “at-
tractor,” which is the dual optimal solution of a deterministic
optimization problem. In particular, the probability that the
backlog vector deviates from the attractor is exponentially
decreasing in distance. It significantly tightens the attractor
analysis in [10]. It also implies that a large amount of the data
is kept in the network simply for maintaining the backlog at the
“right” level. Therefore, we can replace these data with some
fake data (denoted as place-holder bits [11]) without heavily
affecting QLA’s performance. Based on this finding, we pro-
pose the Fast Quadratic Lyapunov based Algorithms (FQLA),
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which can be intuitively viewed as subtracting out a Lagrange
multiplier from the system induced by QLA. We show that
when the network state is i.i.d., FQLA is able to achieve
within O(1/V ) of optimal utility with an O([log(V )]2) delay
guarantee for problems with discrete action sets, and achieve
an [O(1/V ), O([log(V )]2

√
V )] tradeoff for problems with a

set of continuous action options. The development of FQLA
also provides additional insights into QLA and the role of
Lagrange multipliers in stochastic network optimization.

FQLA is closely related to the TOCA algorithm in [8],
which obtains the same logarithmic and square-root tradeoffs
for the energy-delay problem (up to a log(V ) difference) via
drift steering techniques. However, we note that FQLA differs
from TOCA in the following: First, TOCA is constructed
based on exponential Lyapunov functions; while FQLA uses
simpler quadratic Lyapunov functions. Second, FQLA is de-
signed to mimic QLA and is thus related to dual subgradient
algorithms; whereas TOCA is designed to ensure the primal
constraints are satisfied. Third, FQLA requires an arbitrary
small but nonzero fraction of packet droppings, hence can not
be applied to problems where packet dropping is not allowed.

We now summarize the main contributions of this paper:
(1) This paper proves that in steady state, the backlog

vector process under QLA is “exponentially attracted” to an
attractor, which is the dual optimal solution of a deterministic
optimization problem. This is the first such result for the
class of widely used QLA (MaxWeight) algorithms. This
exponential attraction result quantifies the “network gravity”
role of Lagrange multipliers in network scheduling and helps
to explain how QLA achieves the desired performance. It is
also the first theoretical result in the literature that explains
the recent delay improvement result observed in [12], where
by using LIFO together with QLA, one achieves a significant
(around 90%) network delay reduction.

(2) This paper proposes the Fast Quadratic Lyapunov
based Algorithms (FQLA) to “subtract out” a Lagrange mul-
tiplier from the network under QLA for delay reduction.
FQLA is usually easy to implement, and can achieve an[
O(1/V ), O([log(V )]2)

]
performance-delay tradeoff for gen-

eral stochastic network optimization problems with a discrete
set of action options as well as a square-root tradeoff for
continuous problems.

The paper is organized as follows: In Section II, we set up
our notations. In Section III, we state our network model. We
then review the QLA algorithm and define the deterministic
problem in Section IV. In Section V, we show that the backlog
process under QLA always stays close to an attractor. In
Section VI, we propose the FQLA algorithm. Section VII
provides simulation results.

II. NOTATIONS

• R (R+ or R−): the set of (nonnegative or non-positive)
real numbers

• Rn (or Rn+): the set of n dimensional column vectors,
with each element being in R (or R+)

• bold symbols a and aT : column vector and its transpose
• a � b: vector a is entrywise no less than vector b
• ||a− b||: the Euclidean distance of a and b

III. SYSTEM MODEL

In this section, we specify the general network model we
use. We consider a network controller that operates a network
with the goal of minimizing the time average cost, subject
to the queue stability constraint. The network is assumed to
operate in slotted time, i.e., t ∈ {0, 1, 2, ...}. We assume there
are r ≥ 1 queues in the network.

A. Network State

We assume there are a total of M different random network
states, and define S = {s1, s2, . . . , sM} as the set of possible
states. Each particular state si indicates the current network
parameters, such as a vector of channel conditions for each
link, or a collection of other relevant information about the
current network channels and arrivals. Let S(t) denote the
network state at time t. We assume that S(t) is i.i.d. every
time slot, and let psi denote its probability of being in state
si, i.e., psi = Pr{S(t) = si}. We assume the network
controller can observe S(t) at the beginning of every slot
t, but the psi probabilities are not necessarily known. Note
that if S(t) contains multiple components, e.g., if S(t) is a
vector of channel states of the network, the components can
be correlated to each other. See Section III-D for an example.

B. The Cost, Traffic, and Service

At each time t, after observing S(t) = si, the controller
chooses an action x(t) from a set X (si), i.e., x(t) = x(si) for
some x(si) ∈ X (si). The set X (si) is called the feasible action
set for network state si and is assumed to be time-invariant and
compact for all si ∈ S. The cost, traffic, and service generated
by the chosen action x(t) = x(si) are as follows:

(a) The chosen action has an associated cost given by the
cost function f(t) = f(si, x

(si)) : X (si) 7→ R+ (or
X (si) 7→ R− in reward maximization problems);

(b) The amount of traffic generated by the action to
queue j is determined by the traffic function Aj(t) =
Aj(si, x

(si)) : X (si) 7→ R+, in units of packets;
(c) The amount of service allocated to queue j is given by

the rate function µj(t) = µj(si, x
(si)) : X (si) 7→ R+, in

units of packets;

Note that Aj(t) includes both the exogenous arrivals from
outside the network to queue j, and the endogenous arrivals
from other queues, i.e., the transmitted packets from other
queues, to queue j (See Section III-C and III-D for further
explanations). We assume the functions f(si, ·), µj(si, ·) and
Aj(si, ·) are time-invariant, their magnitudes are uniformly
upper bounded by some constant δmax ∈ (0,∞) for all si, j,
and they are known to the network operator. We also assume
that there exists a set of actions {x(si)k}k=1,2,...,∞

i=1,...,M with
x(si)k ∈ X (si) such that

∑
si
psi
{∑

k ϑ
(si)
k [Aj(si, x

(si)k) −
µj(si, x

(si)k)]
}
≤ −ε for some ε > 0 for all j, with∑

k ϑ
(si)
k = 1 and ϑ

(si)
k ≥ 0 for all si and k. That is, the

constraints are feasible with ε slackness. Thus, there exists a
stationary randomized policy that stabilizes all queues (where
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ϑ
(si)
k represents the probability of choosing action x(si)k when
S(t) = si). In the following, we use:

A(t) = (A1(t), ..., Ar(t))
T , µ(t) = (µ1(t), ..., µr(t))

T , (1)

to denote the arrival and service vectors at time t. It is easy
to see from above that if we define:

B =
√
rδmax, (2)

then ‖A(t)− µ(t)‖ ≤ B for all t.

C. Queueing, Average Cost, and the Stochastic Problem

Let q(t) = (q1(t), ..., qr(t))
T ∈ Rr+, t = 0, 1, 2, ... be

the queue backlog vector process of the network, in units of
packets. We assume the following queueing dynamics:

qj(t+ 1) = max
[
qj(t)− µj(t), 0

]
+Aj(t) ∀j, (3)

and q(0) = 0. By using (3), we assume that when a queue does
not have enough packets to send, null packets are transmitted.
In this paper, we adopt the following notion of queue stability:

E
{ r∑
j=1

qj
}
, lim sup

t→∞

1

t

t−1∑
τ=0

r∑
j=1

E
{
qj(τ)

}
<∞. (4)

Note that this criterion is not restrictive. It can be shown
that our results remain the same under a wide class of other
stability criterions used in the literature. For more details, see
[13] and [14]. We also use fπav to denote the time average cost
induced by an action-seeking policy π, defined as:

fπav , lim sup
t→∞

1

t

t−1∑
τ=0

E
{
fπ(τ)

}
, (5)

where fπav(τ) is the cost incurred at time τ by policy π.
We call an action-seeking policy feasible if at every time
slot t it only chooses actions from the feasible action set
X (S(t)). We then call a feasible action-seeking policy under
which (4) holds a stable policy, and use f∗av to denote the
optimal time average cost over all stable policies. In every
slot, the network controller observes the current network state
and chooses a control action, with the goal of minimizing
time average cost subject to network stability. This goal can
be mathematically stated as: (P1) min : fπav, s.t. (4). In
the following, we will refer to (P1) as the stochastic problem.
This stochastic problem framework can be used to model many
network problems, e.g., the energy minimization problem [3]
and the access point pricing problem [5]. We note that a similar
network model with stochastic penalties is treated in [15]
using a fluid model and a primal-dual approach that achieves
optimality in a limiting sense. The framework is also treated
in [7] using a quadratic Lyapunov based algorithm (QLA)
that provides an explicit [O(1/V ), O(V )] performance-delay
tradeoff when the network state is i.i.d..

D. An Example of the Model

Here we provide an example to illustrate our model. Con-
sider the 2-queue network in Fig.1. In every slot, the network
operator decides whether or not to allocate one unit power
to serve packets at each queue, so as to support all arriving

traffic, i.e., maintain queue stability, with minimum energy
expenditure. The number of arrival packets R(t), is i.i.d.
over slots, being either 2 or 0 with probabilities 5/8 and
3/8 respectively. Each channel state CH1(t) or CH2(t) can
be either “G=good” or “B=bad.” However, the two channels
are correlated, so that (CH1(t), CH2(t)) can only be in
the channel set CH = {(B,B), (B,G), (G,G)}. We assume
(CH1(t), CH2(t)) is i.i.d. over slots and takes any value in
CH with probability 1

3 . When a link’s channel state is good,
one unit of power can serve 2 packets over the link, otherwise
it can only serve one. We assume powers can be allocated to
both channels without affecting each other.

!"#$% !&#$%
'"#$%()#$% *"#$%('&#$% *&#$%

+,"#$% +,&#$%

Fig. 1. A 2-queue system

In this case, the network state S(t) is a triple
(R(t), CH1(t), CH2(t)) and is i.i.d.. There are six possible
network states. At each state si, the action x(si) is a pair
(x1, x2), with xi being the amount of energy spent at queue
i, and (x1, x2) ∈ X (si) = {0/1, 0/1}. The cost function is
f(si, x

(si)) = x1 + x2, ∀si. The network states, the traffic
functions, and the service rate functions are summarized in
Fig. 2. Note here A1(t) = R(t) is part of S(t) and is inde-
pendent of x(si); while A2(t) = µ1(t) hence depends on x(si).
Also note that A2(t) equals µ1(t) instead of min[µ1(t), q1(t)]
due to our idle fill assumption in Section III-C.

S(t) R(t) CH1(t) CH2(t) A1(t) A2(t) µ1(t) µ2(t)
s1 0 B B 0 x1 x1 x2

s2 0 B G 0 x1 x1 2x2

s3 0 G G 0 2x1 2x1 2x2

s4 2 B B 2 x1 x1 x2

s5 2 B G 2 x1 x1 2x2

s6 2 G G 2 2x1 2x1 2x2

Fig. 2. Network state, Traffic, and Rate functions

IV. QLA AND THE DETERMINISTIC PROBLEM

In this section, we first review the quadratic Lyapunov func-
tions based algorithms (the QLA algorithm) [7] for solving the
stochastic problem. Then we define the deterministic problem
and its dual problem. We then also discuss some properties of
the dual function. The dual problem and the properties of the
dual function will be used later for our analysis of the steady
state backlog behavior under QLA.

A. The QLA algorithm

To solve the stochastic problem using QLA, we first define
a quadratic Lyapunov function L(q(t)) = 1

2

∑r
j=1 q

2
j (t). We

then define the one-slot conditional Lyapunov drift: ∆(q(t)) =
E
{
L(q(t+1))−L(q(t)) | q(t)

}
, where the expectation is taken

over the random network state S(t) and the possible random
actions. From (3), we obtain the following:

∆(q(t)) ≤ B2 − E
{ r∑
j=1

qj(t)
[
µj(t)−Aj(t)

]
| q(t)

}
.
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Now add to both sides the term V E
{
f(t) | q(t)

}
, where V ≥ 1

is a scalar control variable, we obtain:

∆(q(t)) + V E
{
f(t) | q(t)

}
≤ B2 − E

{
− V f(t) (6)

+

r∑
j=1

qj(t)
[
µj(t)−Aj(t)

]
| q(t)

}
.

The QLA algorithm is then obtained by choosing an action
x at every time t to minimize the right hand side of (6) given
q(t). Specifically, the QLA algorithm works as follows: 1

QLA: At every time slot t, observe the current network state
S(t) and the backlog q(t). If S(t) = si, choose x(si) ∈ X (si)

that solves the following:

max : −V f(si, x) +

r∑
j=1

qj(t)
[
µj(si, x)−Aj(si, x)

]
(7)

s.t. x ∈ X (si).

Depending on the problem structure, (7) can usually be
decomposed into separate parts that are easier to solve, e.g.,
[3], [5]. Also, it can be shown, as in [7] that,

fQLAav = f∗av +O(1/V ), qQLA = O(V ), (8)

where fQLAav and qQLA are the expected average cost and the
expected average network backlog under QLA, respectively.

B. The Deterministic Problem

Consider the deterministic problem as follows:

min : F(x) , V
∑
si

psif(si, x
(si)) (9)

s.t. Aj(x) ,
∑
si

psiAj(si, x
(si))

≤ Bj(x) ,
∑
si

psiµj(si, x
(si)) ∀ j

x(si) ∈ X (si) ∀ i = 1, 2, ...,M,

where psi corresponds to the probability of S(t) = si and x =
(x(s1), ..., x(sM ))T . The dual problem of (9) can be obtained
as follows (0 ∈ Rr has all entries being 0):

max : g(γ), s.t., γ � 0, (10)

where g(γ) is called the dual function and is defined as:

g(γ) = inf
x(si)∈X (si)

∑
si

psi

{
V f(si, x

(si)) (11)

+
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
.

Here γ = (γ1, ..., γr)
T is the Lagrange multiplier of

(9). It is well known that g(γ) in (11) is concave in the
vector γ, and hence the problem (10) can usually be solved
efficiently, particularly when cost functions and rate functions
are separable over different network components. It is also

1We assume without loss of generality that an optimal solution of (7) exists.
This condition can easily be satisfied if all f(si, ·), µj(si, ·) and Aj(si, ·)
functions are continuous.

well known that in many situations, the optimal value of (10)
is the same as the optimal value of (9) and in this case we say
that there is no duality gap [16].

We note that the deterministic problem (9) is not necessarily
convex as the sets X (si) are not necessarily convex, and the
functions f(si, ·), Aj(si, ·) and µj(si, ·) are not necessarily
convex. Therefore, there may be a duality gap between the
deterministic problem (9) and its dual (10). Furthermore, solv-
ing the deterministic problem (9) may not solve the stochastic
problem. This is so since at every network state, the stochastic
problem may require time sharing over more than one action,
but the solution to the deterministic problem gives only a fixed
operating point per network state. However, one can show that
the dual problem (10) gives the exact value of V f∗av , where
f∗av is the optimal time average cost for the stochastic problem,
even if (9) is non-convex.

For a given γ, let xγ = (x
(s1)
γ , x

(s2)
γ , ..., x

(sM )
γ )T with

x
(si)
γ ∈ X (si),∀ i, be a minimizer of the right-hand side of
g(γ). The term Gγ = (Gγ,1, Gγ,2, ..., Gγ,r)

T with:

Gγ,j = Aj(xγ)− Bj(xγ) (12)

=
∑
si

psi
[
− µj(si, x(si)γ ) +Aj(si, x

(si)
γ )

]
,

is then called the subgradient of g(·) at γ [16]. It is well
known that for any other γ̂ ∈ Rr, we have:

(γ̂ − γ)TGγ ≥ g(γ̂)− g(γ). (13)

Using ‖Gγ‖ ≤ B, we note that (13) also implies:

g(γ̂)− g(γ) ≤ B‖γ̂ − γ‖ ∀ γ̂,γ ∈ Rr (14)

We are now ready to study the steady state behavior of q(t)
under QLA. To simplify notations and highlight the scaling
effect of the scalar V in QLA, we use g0(γ) and γ∗0 to denote
the dual objective function and an optimal solution of (10)
when V = 1; and use g(γ) and γ∗V (also called the optimal
Lagrange multiplier) for their counterparts with general V ≥
1. To simplify analysis, we assume the following throughout:

Assumption 1: γ∗V = (γ∗V 1, ..., γ
∗
V r)

T is unique ∀ V ≥ 1.

Note that Assumption 1 is not very restrictive. In fact, it
holds in many network utility optimization problems, e.g.,
[10]. In many cases, we also have γ∗V 6= 0. Moreover, for
the assumption to hold for all V ≥ 1, it suffices to have just
γ∗0 being unique. This is shown in the following lemma.

Lemma 1: γ∗V = V γ∗0.

Proof: From (11) we see that:

g(γ)/V = inf
x(si)∈X (si)

∑
si

psi

{
f(si, x

(si))

+
∑
j

γ̂j
[
Aj(si, x

(si))− µj(si, x(si))
]}
,

where γ̂j =
γj
V . The right hand side is exactly g0(γ̂), and so

is maximized at γ̂ = γ∗0. Thus g(γ) is maximized at V γ∗0.
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V. BACKLOG VECTOR BEHAVIOR UNDER QLA

In this section we study the backlog vector behavior under
QLA of the stochastic problem. We first look at the case when
g0(γ) is “locally polyhedral.” We show that q(t) is mostly
within O(log(V )) distance from γ∗V in this case, even when
S(t) evolves according to a more general time homogeneous
Markovian process. We then consider the case when g0(γ)
is “locally smooth,” and show that q(t) is mostly within
O(
√
V log(V )) distance from γ∗V . As we will see, these two

results also explain how QLA functions. The choices of these
two types of g0(γ) functions are made based on their practical
generality. See Section V-C for further discussion.

A. When g0() is “locally polyhedral”

In this section, we study the backlog vector behavior under
QLA for the case where g0(γ) is locally polyhedral with
parameters ε, L, i.e., there exist ε, L > 0, such that for all
γ � 0 with ‖γ − γ∗0‖ < ε, the dual function g0(γ) satisfies:

g0(γ∗0) ≥ g0(γ) + L‖γ∗0 − γ‖. (15)

We will show that in this case, even if S(t) is a general
time homogeneous Markovian process, the backlog vector will
mostly be within O(log(V )) distance to γ∗V . Hence the same
is also true when S(t) is i.i.d..

To start, we assume for this subsection that S(t) evolves
according to a time homogeneous Markovian process. Now
we define the following notations. Given t0, define Tsi(t0, k)
to be the set of slots at which S(τ) = si for τ ∈ [t0, t0+k−1].
For a given ν > 0, define the convergent interval Tν [17] for
the S(t) process to be the smallest number of slots such that
for any t0, regardless of past history, we have:

M∑
i=1

∣∣∣∣psi − E
{
||Tsi(t0, Tν)|| | H(t0)

}
Tν

∣∣∣∣ ≤ ν, (16)

here ||Tsi(t0, Tν)|| is the cardinality of Tsi(t0, Tν), and
H(t0) = {S(τ)}t0−1τ=0 denotes the network state history up
to time t0. For any ν > 0, such a Tν must exist for any
stationary ergodic processes with finite state space, thus Tν
exists for S(t) in particular. When S(t) is i.i.d. every slot, we
have Tν = 1 for all ν ≥ 0, as E

{
||Tsi(t0, 1)|| | H(t0)

}
= psi .

Intuitively, Tν represents the time needed for the process to
reach its “near” steady state.

The following theorem summarizes the main results. Recall
that B is defined in (2) as the upper bound of the magnitude
change of q(t) in a slot, which is a function of the network
size r and δmax.

Theorem 1: If g0(γ) is locally polyhedral with constants
ε, L > 0, independent of V , then under QLA,

(a) There exist constants ν > 0, D ≥ η > 0, all independent
of V , such that D = D(ν), η = η(ν), and whenever
‖q(t)− γ∗V ‖ ≥ D, we have:

E
{
‖q(t+ Tν)− γ∗V ‖ | q(t)

}
≤ ‖q(t)− γ∗V ‖ − η. (17)

In particular, the constants ν, D and η that satisfy (17)
can be chosen as follows: Choose ν as any constant such

that 0 < ν < L/B. Then choose η as any value such
that 0 < η < Tν(L−Bν). Finally, choose D as: 2

D = max

[
(T 2
ν + Tν)B2 − η2

2Tν(L− η
Tν
−Bν)

, η

]
. (18)

(b) For given constants ν,D, η in (a), there exist some
constants c∗, β∗ > 0, independent of V , such that:

P(D,m) ≤ c∗e−β
∗m, (19)

where P(D,m) is defined as:

P(D,m) , lim sup
t→∞

1

t

t−1∑
τ=0

Pr{‖q(τ)− γ∗V ‖ > D +m}. (20)

Note that if m = log(V )
β∗ , by (19) we have P(D,m) ≤ c∗

V .
Also if a steady state distribution of ‖q(t)−γ∗V ‖ exists under
QLA, e.g., when qj(t) only takes integer values for all j, in
which case q(t) is a discrete time Markov chain with count-
ably infinite states and the limit of 1

t

∑t−1
τ=0 Pr{‖q(τ)−γ∗V ‖ >

D + m} exists as t → ∞, then one can replace P(D,m)
with the steady state probability that q(t) deviates from γ∗V
by an amount of D + m, i.e., Pr{‖q(t) − γ∗V ‖ > D + m}.
Therefore Theorem 1 can be viewed as showing that when (15)
is satisfied, for a large V , the backlog q(t) under QLA will
mostly be within O(log(V )) distance from γ∗V . This implies
that the average backlog will roughly be

∑
j γ
∗
V j , which is

typically Θ(V ) by Lemma 1. However, this fact will also allow
us to build FQLA upon QLA to “subtract out” roughly

∑
j γ
∗
V j

data from the network and reduce network delay. Theorem 1
also highlights a deep connection between the steady state
behavior of the network backlog q(t) and the structure of
g0(γ). We also note that (15) is not very restrictive. In fact,
if g0(γ) is polyhedral (e.g., X (si) is finite for all si), with
a unique optimal solution γ∗0 � 0, then (15) can usually
be satisfied (see Section VII for an example). To prove the
theorem, we need the following lemma.

Lemma 2: For any ν > 0, under QLA, we have for all t,

E
{
‖q(t+ Tν)− γ∗V ‖2 | q(t)

}
(21)

≤ ‖q(t)− γ∗V ‖2 + (T 2
ν + Tν)B2

−2Tν
(
g(γ∗V )− g(q(t))

)
+ 2TννB‖γ∗V − q(t)‖.

Proof: See Appendix A.
We now use Lemma 2 to prove Theorem 1.

Proof: (Theorem 1) Part (a): We first show that if (15)
holds for g0(γ) with L, then it also holds for g(γ) with the
same L. To this end, suppose (15) holds for g0(γ) for all
γ satisfying ‖γ − γ∗0‖ < ε. Then for any γ � 0 such that
‖γ − γ∗V ‖ < εV , we have ‖γ/V − γ∗0‖ < ε, hence:

g0(γ∗0) ≥ g0(γ/V ) + L‖γ∗0 − γ/V ‖.

Multiplying both sides by V , we get:

V g0(γ∗0) ≥ V g0(γ/V ) + LV ‖γ∗0 − γ/V ‖.

Now using γ∗V = V γ∗0 and g(γ) = V g0(γ/V ), we have for
all ‖γ − γ∗V ‖ < εV :

g(γ∗V ) ≥ g(γ) + L‖γ∗V − γ‖. (22)

2It can be seen from (14) that B ≥ L. Thus TνB > η.
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Since g(γ) is concave, we see that (22) indeed holds for all
γ � 0. Now for a given η > 0, if:

(T 2
ν + Tν)B2 − 2Tν

(
g(γ∗V )− g(q(t))

)
(23)

+2TννB‖γ∗V − q(t)‖ ≤ η2 − 2η‖γ∗V − q(t)‖,

then by (21), we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | q(t)

}
≤ (‖q(t)− γ∗V ‖ − η)2,

which then by Jensen’s inequality implies:

(E
{
‖q(t+ Tν)− γ∗V ‖ | q(t)

}
)2 ≤ (‖q(t)− γ∗V ‖ − η)2.

Thus (17) follows whenever (23) holds and ‖q(t)−γ∗V ‖ ≥ η.
It suffices to choose D and η such that D ≥ η and that (23)
holds whenever ‖q(t)−γ∗V ‖ ≥ D. Now note that (23) can be
rewritten as the following inequalty:

g(γ∗V ) ≥ g(q(t)) + (Bν +
η

Tν
)‖γ∗V − q(t)‖+ Y, (24)

where Y =
(T 2
ν+Tν)B

2−η2
2Tν

. Choose any ν > 0 independent of
V such that Bν < L and choose η ∈ (0, Tν(L − Bν)). By
(22), if:

L‖q(t)− γ∗V ‖ ≥ (Bν +
η

Tν
)‖γ∗V − q(t)‖+ Y (25)

then (24) holds. Now choose D as defined in (18), we see that
if ‖q(t)−γ∗V ‖ ≥ D, then (25) holds, which implies (24), and
equivalently (23). We also have D ≥ η, hence (17) holds.

Part (b): Now we show that (17) implies (19). Choose
constants ν, D and η that are independent of V in (a). Denote
Y (t) = ‖q(t) − γ∗V ‖, we see then whenever Y (t) ≥ D, we
have E

{
Y (t + Tν) − Y (t) | q(t)

}
≤ −η. It is also easy to

see that |Y (t+ Tν)− Y (t)| ≤ TνB, as B is defined in (2) as
the upper bound of the magnitude change of q(t) in a slot.
Define Ỹ (t) = max

[
Y (t) − D, 0

]
. We see that whenever

Ỹ (t) ≥ TνB, we have:

E
{
Ỹ (t+ Tν)− Ỹ (t) | q(t)

}
(26)

= E
{
Y (t+ Tν)− Y (t) | q(t)

}
≤ −η.

Now define a Lyapunov function of Ỹ (t) to be L(Ỹ (t)) =

ewỸ (t) with some w > 0, and define the Tν-slot conditional
drift to be:

∆Tν (Ỹ (t)) , E
{
L(Ỹ (t+ Tν))− L(Ỹ (t)) | q(t)

}
= E

{
ewỸ (t+Tν) − ewỸ (t) | q(t)

}
. (27)

It is shown in Appendix B that by choosing w =
η

T 2
νB

2+TνBη/3
, we have for all Ỹ (t) ≥ 0:

∆Tν (Ỹ (t)) ≤ e2wTνB − wη

2
ewỸ (t). (28)

Taking expectation on both sides, we have:

E
{
ewỸ (t+Tν) − ewỸ (t)

}
≤ e2wTνB − wη

2
E
{
ewỸ (t)

}
. (29)

Now summing (29) over t ∈ {t0, t0 +Tν , ..., t0 + (N − 1)Tν}
for some t0 ∈ {0, 1, ..., Tν − 1}, we have:

E
{
ewỸ (t0+NTν) − ewỸ (t0)

}
≤ Ne2wTνB

−
N−1∑
j=0

wη

2
E
{
ewỸ (t0+jTν)

}
.

Rearranging the terms, we have:

N−1∑
j=0

wη

2
E
{
ewỸ (t0+jTν)

}
≤ Ne2wTνB + E

{
ewỸ (t0)

}
.

Summing the above over t0 ∈ {0, 1, ..., Tν − 1}, we obtain:

NTν−1∑
t=0

wη

2
E
{
ewỸ (t)

}
≤ NTνe2wTνB +

Tν−1∑
t0=0

E
{
ewỸ (t0)

}
.

Dividing both sides with NTν , we obtain:

1

NTν

NTν−1∑
t=0

wη

2
E
{
ewỸ (t)

}
≤ e2wTνB (30)

+
1

NTν

Tν−1∑
t0=0

E
{
ewỸ (t0)

}
.

Taking the limsup as N goes to infinity, we obtain:

lim sup
t→∞

1

t

t−1∑
τ=0

wη

2
E
{
ewỸ (τ)

}
≤ e2wTνB . (31)

Using the fact that E
{
ewỸ (τ)

}
≥ ewmPr{Ỹ (τ) > m},

lim sup
t→∞

1

t

t−1∑
τ=0

wη

2
ewmPr{Ỹ (τ) > m} ≤ e2wTνB . (32)

Plug in w = η
T 2
νB

2+TνBη/3
and use the definition of Ỹ (t):

P(D,m) ≤ 2e2wTνB

wη
e−wm (33)

=
2(T 2

νB
2 + TνBη/3)e

2η
TνB+η/3

η2
e
− ηm

T2
νB

2+TνBη/3 ,

where P(D,m) is defined in (20). Therefore (19) holds with:

c∗ =
2(T 2

νB
2 + TνBη/3)e

2η
TνB+η/3

η2
,

β∗ =
η

T 2
νB

2 + TνBη/3
. (34)

It is easy to see that c∗ and β∗ are both independent of V .
Note from (30) and (31) that Theorem 1 indeed holds

for any finite q(0). We will later use this fact to prove the
performance of FQLA. The following theorem is a special case
of Theorem 1 and gives a more direct illustration of Theorem
1. Recall that P(D,m) is defined in (20). Define:

P(r)(D,m) (35)

, lim sup
t→∞

1

t

t−1∑
τ=0

Pr{∃ j, |qj(τ)− γ∗V j | > D +m}.

Theorem 2: If the condition in Theorem 1 holds and S(t)
is i.i.d., then under QLA, for any c > 0:

P(D1, cK1 log(V )) ≤ c∗1
V c

, (36)

P(r)(D1, cK1 log(V )) ≤ c∗1
V c

, (37)
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where D1 = 2B2

L + L
4 , K1 = B2+BL/6

L/2 and c∗1 =

8(B2+BL/6)e
L

B+L/6

L2 .
Proof: First we note that when S(t) is i.i.d., we have

Tν = 1 for ν = 0. Now choose ν = 0, Tν = 1 and η = L/2,
then we see from (18) that

D = max

[
2B2 − L2/4

L
,
L

2

]
≤ 2B2

L
+
L

4
.

Now by (34) we see that (19) holds with c∗ = c∗1 and β∗ =
L/2

B2+BL/6 . Thus by taking D1 = 2B2

L + L
4 , we have:

P(D1, cK1 log(V )) ≤ c∗e−cK1β
∗ log(V ) = c∗1e

−c log(V ),

where the last step follows since β∗K1 = 1. Thus (36) follows.
Equation (37) follows from (36) by using the fact that for any
constant ζ, the events E1 = {∃ j, |qj(τ)−γ∗V j | > ζ} and E2 =
{‖q(τ) − γ∗V ‖ > ζ} satisfy E1 ⊂ E2. Thus: Pr{∃ j, |qj(τ) −
γ∗V j | > ζ} ≤ Pr{‖q(τ)− γ∗V ‖ > ζ}.

Theorem 2 can be viewed as showing that for a large V ,
the probability for qj(t) to deviate from the jth component of
γ∗V is exponentially decreasing in the distance. Thus it rarely
deviates from γ∗V j by more than Θ(log(V )) distance.

B. When g0() is “locally smooth”

In this section, we consider the backlog behavior under
QLA, for the case where the dual function g0(γ) is “locally
smooth” at γ∗0. Specifically, we say that the function g0(γ) is
locally smooth at γ∗0 with parameters ε, L > 0 if for all γ � 0
such that ‖γ − γ∗0‖ < ε, we have:

g0(γ∗0) ≥ g0(γ) + L‖γ − γ∗0‖2, (38)

This condition contains the case when g0(γ) is twice differen-
tiable with ∇g(γ∗0) = 0 and aT∇2g(γ)a ≤ −2L‖a‖2, ∀a for
any γ with ‖γ∗0−γ‖ < ε. Such a case usually occurs when the
sets X (si), i = 1, ...,M are convex, thus a “continuous” set of
actions are available. Notice that (38) is a looser condition than
(15) in the neighborhood of γ∗0. As we will see, such structural
difference of g0(γ) in the neighborhood of γ∗0 greatly affects
the behavior of backlogs under QLA.

Theorem 3: If g0(γ) is locally smooth at γ∗0 with param-
eters ε, L > 0, independent of V , then under QLA with a
sufficiently large V , we have:

(a) There exists D = Θ(
√
V ) such that whenever ‖q(t) −

γ∗V ‖ ≥ D, we have:

E
{
‖q(t+ 1)− γ∗V ‖ | q(t)

}
≤ ‖q(t)− γ∗V ‖ −

1√
V
. (39)

(b) P(D,m) ≤ c∗e−β
∗m, where P(D,m) is defined in

(20), c∗ = Θ(V ) and β∗ = Θ(1/
√
V ).

Theorem 3 can be viewed as showing that, when g0(γ)
is locally smooth at γ∗0, the backlog vector will mostly be
within O(

√
V log(V )) distance from γ∗V . This contrasts with

Theorem 1, which shows that the backlog will mostly be
within O(log(V )) distance from γ∗V . Intuitively, this is due
to the fact that under local smoothness, the drift towards γ∗V
is smaller as q(t) gets closer to γ∗V , hence a Θ(

√
V ) distance

is needed to guarantee a drift of size Θ(1/
√
V ); whereas under

(15), any nonzero Θ(1) deviation from γ∗V roughly generates

a drift of size Θ(1) towards γ∗V , ensuring the backlog stays
within O(log(V )) distance from γ∗V . To prove Theorem 3, we
need the following corollary of Lemma 2.

Corollary 1: If S(t) is i.i.d., then under QLA,

E
{
‖q(t+ 1)− γ∗V ‖2 | q(t)

}
≤ ‖q(t)− γ∗V ‖2 + 2B2

−2
(
g(γ∗V )− g(q(t))

)
.

Proof: When S(t) is i.i.d., we have Tν = 1 for ν = 0.
Proof: (Theorem 3) Part (a): We first see that for any γ

with ‖γ − γ∗V ‖ < εV , we have ‖γ/V − γ∗0‖ < ε. Therefore,

g0(γ∗0) ≥ g0(γ/V ) + L‖γ/V − γ∗0‖2. (40)

Multiply both sides with V , we get:

g(γ∗V ) ≥ g(γ) +
L

V
‖γ − γ∗V ‖2. (41)

Similar as in the proof of Theorem 1 and by Corollary 1, we
see that for (39) to hold, we need ‖q(t)− γ∗V ‖ ≥ 1√

V
and:

2B2 − 2
(
g(γ∗V )− g(q(t))

)
≤ 1

V
− 2√

V
‖q(t)− γ∗V ‖,

which can be rewritten as:

g(γ∗V ) ≥ g(q(t))
)

+
1√
V
‖q(t)− γ∗V ‖+

2B2 − 1
V

2
. (42)

By (41), we see that for (42) to hold, we only need:

L

V
‖q(t)− γ∗V ‖2 ≥

1√
V
‖q(t)− γ∗V ‖+B2. (43)

It is easy to see that (43) holds whenever:

‖q(t)− γ∗V ‖ ≥
1√
V

+
√

1
V + 4B2L

V

2L/V
=

√
V +

√
V + 4B2LV

2L

Denote D =
√
V+
√
V+4B2LV
2L . We see now when V is large,

(39) holds for any q(t) with D ≤ ‖q(t) − γ∗V ‖ < εV . Now
since g(γ) is concave, it is easy to show that (42) holds for all
‖q(t)−γ∗V ‖ ≥ D. Hence (39) holds for all ‖q(t)−γ∗V ‖ ≥ D,
proving Part (a).

Part (b): By an argument that is similar as in the proof of
Theorem 1, we see that Part (b) follows with: β∗ = 3

3
√
V B2+B

and c∗ = 2(V B2 +B
√
V /3)e

6
3B
√
V+1 .

C. Discussion of the choices of g0(γ)

Note that in our analysis, we have focused only on the
dual function g0(γ) being either locally polyhedral or locally
smooth. These choices are made based on their practical gen-
erality. To be more precise, assume without loss of generality
that there is only one network state and the set of feasible
actions is a compact subset of Rn. In practice, this action
set is usually finite due to digitization. Thus we see from the
definition of g0(γ) that an action, if chosen given a Lagrange
multiplier γ, will remain the chosen action for a range of
Lagrange multipliers around γ. Hence g0(γ) is polyhedral in
this case. Now if the granularity of the action sets becomes
finer and finer, we can expect the dual function g0(γ) to be
“smoother and smoother,” in the sense that moving from one
action to another close-by action does not affect the value of
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g0(γ) by much. Eventually if the granularity is fine enough
then the action set can be viewed as convex. Now if the
optimal network performance is achieved at some action not
at the boundary of the action set, then we see that in a small
neighborhood of γ∗V , we will usually have a locally smooth
g0(γ) function. Further note that in both cases, the structure of
g0(γ) is independent of V . Hence the conditions in Theorem
1 and 3 can typically be satisfied in practice.

D. Implications of Theorem 1 and 3

Consider the following simple problem: an operator operates
a single queue and tries to support a Bernoulli arrival, i.e.,
either 1 or 0 packet arrives every slot, with rate λ = 0.5 (the
rate may be unknown to the operator) with minimum energy
expenditure. The channel is time-invariant. The rate-power
curve over the channel is given by: µ(t) = log(1 + P (t)),
where P (t) is the allocated power at time t. Thus to obtain a
rate of µ(t), we need P (t) = eµ(t)−1. In every time slot, the
operator decides how much power to allocate and serves the
queue at the corresponding rate, with the goal of minimizing
the time average power consumption subject to queue stability.
Let Φ denote the time average energy expenditure incurred by
the optimal policy. It is not difficult to see that Φ = e0.5 − 1.

Now we look at the deterministic problem:

min : V (eµ − 1), s.t. : 0.5 ≤ µ

It is easy to obtain g(γ) = infµ
{
V (eµ − 1) + γ(0.5 − µ)

}
.

Hence by the KKT conditions [16] one obtains that γ∗V =
V e0.5 and the optimal policy is to serve the queue at the
constant rate µ∗ = 0.5. Suppose now QLA is applied to the
problem. Then at slot t, if q(t) = q, QLA chooses the power
to achieve the rate µ(t) such that ([a]+ = max[a, 0]):

µ(t) ∈ arg min{V (eµ − 1) + q(0.5− µ)} =
[

log(
q

V
)
]+
. (44)

which incurs an instantanous power consumption of P (t) ≈
q(t)
V −1. In this case, it can be shown that Theorem 3 applies.

Thus for most of the time q(t) ∈ [γ∗V −
√
V , γ∗V +

√
V ], i.e.,

q(t) ∈ [V e0.5−
√
V , V e0.5 +

√
V ]. Hence it is almost always

the case that: log(e0.5− 1√
V

) ≤ µ(t) ≤ log(e0.5+ 1√
V

), which
implies: 0.5 − 1√

V
≤ µ(t) ≤ 0.5 + 1√

V
. Thus by a similar

argument as in [8], one can show that P ≤ Φ + O(1/V ),
where P is the average power consumption.

Now consider the case when we can only choose to operate
at µ ∈ {0, 14 ,

3
4 , 1}, with the corresponding power consump-

tions being: P ∈ {0, e 1
4 − 1, e

3
4 − 1, e− 1}. One can similarly

obtain Φ = 1
2 (e

3
4 + e

1
4 ) and γ∗V = 2V (e

3
4 − e 1

4 ). In this case,
Φ is achieved by time sharing the two rates { 14 ,

3
4} with equal

portion of time. It can also be shown that Theorem 1 applies in
this case. Thus we see that under QLA, q(t) is mostly within
log(V ) distance to γ∗V . Hence by (44), we see that QLA almost
always chooses between the two rates { 14 ,

3
4}, and uses them

with almost equal frequencies. Hence QLA is also able to
achieve P = Φ +O(1/V ) in this case.

The above argument can be generalized to many stochastic
network optimization problems. Thus, we see that Theorem 1
and 3 not only provide us with probabilistic deviation bounds
of q(t) from γ∗V , but also help to explain why QLA is able

to achieve the desired utility performance: under QLA, q(t)
always stays close to γ∗V , hence the chosen action is always
close to the set of optimal actions.

E. Discussion of Scalability of Theorem 1 and 3

We note that though our results hold for many general multi-
hop networks, the decaying exponents in Theorem 1 and 3 will
usually depend on the network size r, e.g., B is a function of
r. Hence the attraction may be looser as the network size r
increases. Verifying whether the exponents in Theorem 1 and
3 are optimal with respect to r will be an interesting future
research topic.

VI. THE FQLA ALGORITHM

In this section, we propose a family of Fast Quadratic
Lyapunov based Algorithms (FQLA) for general stochastic
network optimization problems. We first provide an example
to illustrate the idea of FQLA. We then describe FQLA with
known γ∗V , called FQLA-Ideal, and study its performance.
After that, we describe the more general FQLA without
such knowledge, called FQLA-General. For brevity, we only
describe FQLA for the case when g0(γ) is locally polyhedral.
FQLA for the other case is discussed in [18].

A. FQLA: a Single Queue Example

To illustrate the idea of FQLA, we first look at an example.
Figure 3 shows a 104-slot sample backlog process under
QLA.3 We see that after roughly 1500 slots, q(t) always stays
very close to γ∗V , which is a Θ(V ) scalar in this case. To
reduce delay, we can first find W ∈ (0, γ∗V ) such that: under
QLA, there exists a time t0 so that q(t0) ≥ W and once
q(t) ≥ W , it remains so for all time (the solid line in Fig.
3 shows one for these 104 slots). We then place W fake bits
(called place-holder bits [11]) in the queue at time 0, i.e.,
initialize q(0) = W , and run QLA. It is easy to show that
the utility performance of QLA will remain the same with
this change, and the average backlog is now reduced by W .
However, such a W may require W = γ∗V − Θ(V ), thus the
average backlog may still be Θ(V ).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

t

Number of place 
holder bits W

Start here

!
*

V

q(t)

!5 0 5 10 15 20 25 30 35 40 45

!4

!2

0

2

4

6

8

10

 

 

W(t)!W

q(t)
max[W(t)!W, 0] + !

max

Fig. 3. Left: A sample backlog process; Right: Example of W (t) and q(t).

FQLA instead finds a W such that in steady state, the
backlog process under QLA rarely goes below it, and places
W place-holder bits in the queue at time 0. FQLA then
uses an auxiliary process W (t), called the virtual backlog
process, to keep track of the backlog process that should have

3This sample backlog process is one sample backlog process of queue 1
of the system considered in Section VII, under QLA with V = 50.
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been generated if QLA is used. Specifically, FQLA initializes
W (0) = W . Then at every slot, QLA is run using W (t)
as the queue size, and W (t) is updated according to QLA.
With W (t) and W , FQLA works as follows: At time t, if
W (t) ≥ W , FQLA performs QLA’s action (obtained based on
S(t) and W (t)); else if W (t) <W , FQLA carefully modifies
QLA’s action so as to maintain q(t) ≈ max[W (t)−W, 0] for
all t (see Fig.3 for an example). Similar as above, this roughly
reduces the average backlog byW . The difference is that now
we can show that W = max[γ∗V − [log(V )]2, 0] meets the
requirement. Thus it is possible to bring the average backlog
down to O([log(V )]2). Also, since W (t) can be viewed as
a backlog process generated by QLA, it rarely goes below
W in steady state. Hence FQLA is almost always the same
as QLA, thus is able to achieve an O(1/V ) close-to-optimal
utility performance.

B. The FQLA-Ideal Algorithm

In this section, we present the FQLA-Ideal algorithm. We
assume the value γ∗V = (γ∗V 1, ..., γ

∗
V r)

T is known a-priori.
FQLA-Ideal:
(I) Determining place-holder bits: For each j, define:

Wj = max
[
γ∗V j − [log(V )]2, 0

]
, (45)

as the number of place-holder bits of queue j.
(II) Place-holder-bit based action: Initialize qj(0) = 0, and

Wj(0) =Wj , ∀j. For t ≥ 1, observe the network state
S(t), solve (7) with W (t) in place of q(t). Perform the
chosen action with the following modification: Let A(t)
and µ(t) be the arrival and service rate vectors generated
by the action. For each queue j, do (Idle fill if needed):

a) If Wj(t) ≥ Wj : admit Aj(t) arrivals, serve µj(t)
data, i.e., update the backlog by:

qj(t+ 1) = max
[
qj(t)− µj(t), 0

]
+Aj(t).

b) If Wj(t) <Wj : admit Ãj(t) = max
[
Aj(t)−Wj+

Wj(t), 0
]

arrivals, serve µj(t) data, i.e., update the
backlog by:

qj(t+ 1) = max
[
qj(t)− µj(t), 0

]
+ Ãj(t).

c) Update Wj(t) by:

Wj(t+ 1) = max
[
Wj(t)− µj(t), 0

]
+Aj(t).

From above we see that FQLA-Ideal is the same as
QLA based on W (t) when Wj(t) ≥ Wj for all j. When
Wj(t) < Wj for some queue j, FQLA-Ideal admits roughly
the excessive packets after Wj(t) is brought back to be above
Wj for the queue. Thus for problems where QLA admits an
easy implementation, e.g., [3], [5], it is also easy to implement
FQLA. However, we also notice two different features of
FQLA: (1) By (45), Wj can be 0. However, when V is large,
this happens only when γ∗0j = γ∗V j = 0 according to Lemma
1. In this case Wj = γ∗V j = 0, and queue j indeed needs zero
place-holder bits. (2) Packets may be dropped in Step II-(b)
upon their arrivals, or after they are admitted into the network
in a multihop problem. Such packet dropping is natural in
many flow control problems and does not change the nature

of these problems. In other problems where such option is not
available, the packet dropping option is introduced to achieve
desired delay performance, and it can be shown that the
fraction of packets dropped can be made arbitrarily small. Note
that packet dropping here is to compensate for the deviation
from the desired Lagrange multiplier, thus is different from
that in [19], where packet dropping is used for drift steering.

C. Performance of FQLA-Ideal

Here we look at the performance of FQLA-Ideal. We first
have the following lemma that shows the relationship between
q(t) andW (t) under FQLA-Ideal. We will use it later to prove
the delay bound of FQLA. Note that the lemma also holds for
FQLA-General described later, as FQLA-Ideal/General differ
only in the way of determining W = (W1, ...,Wr)

T .
Lemma 3: Under FQLA-Ideal/General, we have ∀ j, t:

max
[
Wj(t)−Wj , 0

]
≤ qj(t) ≤ max

[
Wj(t)−Wj , 0

]
+δmax

(46)
where δmax is defined in Section III-B to be the upper bound
of the number of arriving or departing packets of a queue.

Proof: See Appendix C.
The following theorem summarizes the main performance

results of FQLA-Ideal. Recall that for a given policy π, fπav
denotes its average cost defined in (5) and fπ(t) denotes the
cost induced by π at time t.

Theorem 4: If the condition in Theorem 1 holds and a
steady state distribution exists for the backlog process gener-
ated by QLA, then with a sufficiently large V , we have under
FQLA-Ideal that,

q = O([log(V )]2), (47)
fFIav = f∗av +O(1/V ), (48)
Pdrop = O(1/V c0 log(V )), (49)

where c0 = Θ(1), q is the time average backlog, fFIav is the
expected time average cost of FQLA-Ideal, f∗av is the optimal
time average cost and Pdrop is the time average fraction of
packets that are dropped in Step-II (b).

Proof: Since a steady state distribution exists for the
backlog process generated by QLA, we see that P(D,m) in
(20) represents the steady state probability of the event that
the backlog vector deviates from γ∗V by distance D+m. Now
since W (t) can be viewed as a backlog process generated
by QLA, with W (0) = W instead of 0, we see from the
proof of Theorem 1 that Theorem 1 and 2 hold for W (t),
and by [7], QLA based on W (t) achieves an average cost
of f∗av +O(1/V ). Hence by Theorem 2, there exist constants
D1,K1, c

∗
1 = Θ(1) so that: P(r)(D1, cK1 log(V )) ≤ c∗1

V c . By
the definition of P(r)(D1, cK1 log(V )), this implies that in
steady state: Pr{Wj(t) > γ∗V j +D1 +m} ≤ c∗1e

− m
K1 .

Now let: Qj(t) = max[Wj(t)− γ∗V j −D1, 0]. We see that
Pr{Qj(t) > m} ≤ c∗1e

− m
K1 , ∀m ≥ 0. We thus have Qj =

O(1), where Qj is the time average value of Qj(t). Now it is
easy to see by (45) and (46) that qj(t) ≤ Qj(t) + [log(V )]2 +
D1 + δmax for all t. Thus (47) follows since for a large V :

qj ≤ Qj + [log(V )]2 +D1 + δmax = Θ([log(V )]2).
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Now consider the average cost. To save space, we use FI for
FQLA-Ideal. From above, we see that QLA based on W (t)
achieves an expected average cost of f∗av + O(1/V ). Thus it
suffices to show that FQLA-Ideal performs almost the same
as QLA based on W (t). First we have for all t ≥ 1 that:

1

t

t−1∑
τ=0

fFI(τ) =
1

t

t−1∑
τ=0

fFI(τ)1E(τ) +
1

t

t−1∑
τ=0

fFI(τ)1Ec(τ).

Here 1E(τ) is the indicator function of the event E(τ), E(τ) is
the event that FQLA-Ideal performs the same action as QLA
at time τ , and 1Ec(τ) = 1−1E(τ). Taking expectation on both
sides and using the fact that when FQLA-Ideal takes the same
action as QLA, fFI(τ) = fQLA(τ), we have:

1

t

t−1∑
τ=0

E
{
fFI(τ)

}
≤ 1

t

t−1∑
τ=0

E
{
fQLA(τ)1E(τ)

}
+

1

t

t−1∑
τ=0

E
{
δmax1Ec(τ)

}
.

Taking the limit as t goes to infinity on both sides and using
fQLA(τ)1E(τ) ≤ fQLA(τ) , we get:

fFIav ≤ fQLAav + δmax lim
t→∞

1

t

t−1∑
τ=0

E
{

1Ec(τ)
}

= fQLAav + δmax lim
t→∞

1

t

t−1∑
τ=0

Pr{Ec(τ)}. (50)

However, Ec(τ) is included in the event that there exists a j
such that Wj(τ) <Wj . Therefore by (37) in Theorem 2, for
a large V such that 1

2 [log(V )]2 ≥ D1 and log(V ) ≥ 8K1,

lim
t→∞

1

t

t−1∑
τ=0

Pr{Ec(τ)} ≤ P(r)(D1, [log(V )]2 −D1)

= O(c∗1/V
1

2K1
log(V ))

= O(1/V 4). (51)

Using this fact in (50), we obtain:

fFIav = fQLAav +O(δmax/V
4) = f∗av +O(1/V ),

where the last equality holds since fQLAav = f∗av + O(1/V ).
This proves (48). (49) follows since packets are dropped at
time τ only if Ec(τ) happens, thus by (51), the fraction of
time when packet dropping happens is O(1/V c0 log(V )) with
c0 = 1

2K1
= Θ(1), and each time no more than

√
rB packets

can be dropped.

D. The FQLA-General algorithm

Now we describe the FQLA algorithm without any a-priori
knowledge of γ∗V , called FQLA-General. FQLA-General first
runs the system for a long enough time T , such that the system
enters its steady state. Then it chooses a sample of the queue
vector value to estimate γ∗V and uses that to decide W .

FQLA-General:
(I) Determining place-holder bits:

a) Choose a large time T (See Section VI-E for the
size of T ) and initialize W (0) = 0. Run the QLA

algorithm with parameter V , at every time slot t,
update W (t) according to the QLA algorithm and
obtain W (T ).

b) For each queue j, define:

Wj = max
[
Wj(T )− [log(V )]2, 0

]
, (52)

as the number of place-holder bits.
(II) Place-holder-bit based action: same as FQLA-Ideal.

The performance of FQLA-General is summarized as follows:
Theorem 5: Assume the conditions in Theorem 4 hold

and the system is in steady state at time T , then under
FQLA-General with a sufficiently large V , with probability
1−O( 1

V 4 ): (a) q = O([log(V )]2), (b) fFGav = f∗av +O(1/V ),
and (c) Pdrop = O(1/V c0 log(V )), where c0 = Θ(1) and fFGav
is the expected time average cost of FQLA-General.

Proof: We will show that with probability of 1−O( 1
V 4 ),

Wj is close to max[γ∗V j − [log(V )]2, 0]. The rest can then be
proven similarly as in the proof of Theorem 4.

For each queue j, define:

v+j = γ∗V j +
1

2
[log(V )]2, v−j = max

[
γ∗V j −

1

2
[log(V )]2, 0

]
.

Note that v−j is defined with a max[ ] operator. This is due
to the fact that γ∗V j can be zero. As in (51), we see that by
Theorem 2, there exists D1 = Θ(1),K1 = Θ(1) such that if
V is such that 1

4 log2(V ) ≥ D1 and log(V ) ≥ 16K1, then:

Pr
{
∃ j, Wj(T ) /∈ [v−j , v

+
j ]
}
≤ P(r)(D1,

1

2
[log(V )]2 −D1)

= O(1/V 4).

Thus Pr
{
Wj(T ) ∈ [v−j , v

+
j ]∀j

}
= 1−O(1/V 4), implying:

Pr
{
Wj ∈ [v̂−j , v̂

+
j ] ∀j

}
= 1−O(1/V 4).

where v̂+j = max
[
γ∗V j− 1

2 [log(V )]2, 0
]

and v̂−j = max
[
γ∗V j−

3
2 [log(V )]2, 0

]
. Hence for a large V , with probability 1 −

O( 1
V 4 ): if γ∗V j > 0, we have γ∗V j − 3

2 [log(V )]2 ≤ Wj ≤
γ∗V j − 1

2 [log(V )]2; else if γ∗V j = 0, we have Wj = γ∗V j . The
rest of the proof is similar to the proof of Theorem 4.

E. Practical Issues

From Lemma 1 we see that the magnitude of γ∗V can be
Θ(V ). This means that T in FQLA-General may need to be
Ω(V ), which is not very desirable when V is large. We can
instead use the following heuristic method to accelerate the
process of determining W : For every queue j, guess a very
large Wj . Then start with this W and run the QLA algorithm
for some T1, say

√
V slots. Observe the resulting backlog

process. Modify the guess for each queue j using a bisection
algorithm until a proper W is found, i.e. when running QLA
from W , we observe fluctuations of Wj(t) aroundWj instead
of a nearly constant increase or decrease for all j. Then let
Wj = max[Wj − [log(V )]2, 0]. To further reduce the error
probability, one can repeat Step-I (a) multiple times and use
the average value as W (T ).
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VII. SIMULATION

In this section we provide simulation results for the FQLA
algorithms. For simplicity, we only consider the case where
g0(γ) is locally polyhedral. We consider a five queue system
similar to the example in Section III-D. In this case r = 5.
The system is shown in Fig. 4. The goal is to perform power
allocation at each node so as to support the arrival with
minimum energy expenditure.

q1 q2 q3 q4 q5

R(t)
CH1(t) CH2(t) CH(t) CH4(t) CH5(t)

Fig. 4. A five queue system

In this example, the random network state S(t) is the
vector (R(t), CHi(t), i = 1, .., 5). Similar as in Section
III-D, we have: A(t) = (R(t), µ1(t), µ2(t), µ3(t), µ4(t))T

and µ(t) = (µ1(t), µ2(t), µ3(t), µ4(t), µ5(t))T , i.e., A1(t) =
R(t), Ai(t) = µi−1(t) for i ≥ 2, where µi(t) is the service
rate obtained by queue i at time t. R(t) is 0 or 2 with proba-
bilities 3

8 and 5
8 , respectively. CHi(t) can be “Good” or “Bad”

with equal probabilities for 1 ≤ i ≤ 5. When the channel is
good, one unit of power can serve two packets; otherwise it can
serve only one. We assume CHi(t) are all independent and all
channels can be activated at the same time without affecting
others. It can be verified that γ∗V = (5V, 4V, 3V, 2V, V )T is
unique. In this example, the backlog vector process evolves as
a Markov chain with countably many states. Thus there exists
a stationary distribution for the backlog vector under QLA.
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Fig. 5. FQLA-Ideal performance: Up-Left - Average queue size; Up-Right
- Percentage of packets dropped; Bottom - Sample (W1(t),W2(t)) process
for t ∈ [10000, 110000] and V = 1000 under FQLA-Ideal.

We simulate FQLA-Ideal and FQLA-General with V =
50, 100, 200, 500, 1000 and 2000. We run each case for 5×106

slots. For FQLA-General, we use T = 50V in Step-I and

repeat Step-I 100 times and use their average as W (T ). The
up-left plot in Fig. 5 shows that the average queue sizes under
both FQLAs are always close to the value 5[log(V )]2 (r = 5).
The up-right plot shows that the percentage of packets dropped
decreases rapidly and gets below 10−4 when V ≥ 500 under
both FQLAs. These plots show that in practice, V may not
have to be very large for Theorem 4 and 5 to hold. The bottom
plot shows a sample (W1(t),W2(t)) process for a 105-slot
interval under FQLA-Ideal with V = 1000, considering only
the first two queues of Fig. 4. We see that (W1(t),W2(t))
always remains close to (γ∗V 1, γ

∗
V 2) = (5V, 4V ), and W1(t) ≥

W1 = 4952, W2(t) ≥ W2 = 3952. For all V values, the
average power expenditure is very close to 3.75, which is the
optimal energy expenditure, and the average of

∑
jWj(t) is

very close to 15V (plots omitted for brevity).
Interestingly, the “attraction phenomenon” in the bottom

plot of Fig. 5 was also observed in a recent paper [12], which
implemented the QLA algorithm in a 40-node wireless sensor
network testbed. It has also been shown in [12] that by using
QLA plus LIFO, one can reduce the delay experienced by all
but a small fraction of the network traffic by more than 90%.
While this fact can not be explained by any previous results
on QLA, it can easily be explained using Theorem 1 and 3 as
follows: Consider a node j. Under LIFO, new packets entering
Node j are placed to the front of the buffer. We also know
that qj ∈ I = [γ∗V j − [log(V )]2, γ∗V j + [log(V )]2] for most
of the time. Thus most packets enter and leave Node j when
qj ∈ I. Hence for most packets, Node j is a queue with on
average no more than 2[log(V )]2 packets. Hence most packets
only need to wait for on average no more than Θ([log(V )]2)
packets before getting served.

VIII. LAGRANGE MULTIPLIER: “SHADOW PRICE” AND
“NETWORK GRAVITY”

4 It is well known that Lagrange Multipliers can play the
role of “shadow prices” to regulate flows in many flow-based
problems with different objectives, e.g., [20]. This important
feature has enabled the development of many distributed al-
gorithms in resource allocation problems, e.g., [21]. However,
a problem of this type typically requires data transmissions to
be represented as flows. Thus in a network that is discrete in
nature, e.g., time slotted or packetized transmission, a rate
allocation solution obtained by solving such a flow-based
problem does not immediately specify a scheduling policy.

Recently, several Lyapunov algorithms have been proposed
to solve utility optimization problems under discrete network
settings. In these algorithms, backlog vectors act as the “grav-
ity” of the network and allow optimal scheduling to be built
upon them. It is also revealed in [17] that QLA is closely
related to the dual subgradient method and backlogs play the
same role as Lagrange multipliers in a time invariant network.
Now we see by Theorem 1 and 3 that the backlogs indeed
play the same role as Lagrange multipliers even under a more
general stochastic network.

4This section appeared in the WiOpt 2009 paper. However, it is not included
in the IEEE TAC version due to space consideration.
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In fact, the backlog process under QLA can be closely
related to a sequence of updated Lagrange multipliers under
a subgradient method. Consider the following randomized
incremental subgradient method (RISM) [16], which makes
use of the separable nature of (11) and solves the dual problem
(10) as follows:

RISM: Initialize γ(0); at iteration t, observe γ(t), choose a
random state S(t) ∈ S according to some probability law. (1)
If S(t) = si, find x(si)γ(t) ∈ X

(si) that solves the following:

min : V f(si, x) +
∑
j

γj(t)
[
Aj(si, x)− µj(si, x)

]
s.t. x ∈ X (si). (53)

(2) Using the x(si)γ(t) found, update γ(t) according to: 5

γj(t+ 1) = max

[
γj(t)− αtµj(si, x(si)γ(t)), 0

]
+ αtAj(si, x

(si)
γ(t)).

As an example, S(t) can be chosen by independently
choosing S(t) = si with probability psi every time slot. In this
case S(t) will be i.i.d.. Note that in the stochastic problem, a
network state si is chosen randomly by nature as the physical
system state at time t; while here a state is chosen artificially
by RISM according some probability law. Now we see from
(7) and (53) that: given q(t) = γ(t) and si, QLA and RISM
choose an action in the same way. If also αt = 1 for all
t, and that S(t) under RISM evolves according to the same
probability law as S(t) of the physical system, we see that
applying QLA to the network is indeed equivalent to applying
RISM to the dual problem of (9), with the network state
being chosen by nature, and the network backlog being the
Lagrange multiplier. Therefore, Lagrange Multipliers under
such stochastic discrete network settings act as the “network
gravity,” thus allow scheduling to be done optimally and
adaptively based on them. This “network gravity” functionality
of Lagrange Multipliers in discrete network problems can
thus be viewed as the counterpart of their “shadow price”
functionality in the flow-based problems. Further more, the
“network gravity” property of Lagrange Multipliers enables
the use of place holder bits to reduce network delay in network
utility optimization problems. This is a unique feature not
possessed by its “price” counterpart.

IX. CONCLUSION

In this paper, we study the backlog behavior under the
class of QLA algorithms. We show that for every stochastic
network optimization problem, the network backlog is “expo-
nentially attracted” to an attractor, which is the dual optimal
solution of a corresponding deterministic problem. Based on
this finding, we develop the FQLA algorithm to achieve
an
[
O(1/V ), O([log(V )]2)

]
performance-delay tradeoff for

problems with a discrete set of action options, and a square-
root tradeoff for continuous problems.

5Note that this update rule is different from RISM’s usual rule, i.e., γj(t+
1) = max

[
γj(t) − αtµj(si, x) + αtAj(si, x), 0

]
, but it almost does not

affect the performance of RISM.

APPENDIX A- PROOF OF LEMMA 2

Here we prove Lemma 2. First we prove the following:
Lemma 4: Under queueing dynamic (3), we have:

‖q(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2

−2
(
γ∗V − q(t)

)T
(A(t)− µ(t)).

Proof: (Lemma 4) From (3), we see that q(t + 1) is
obtained by first projecting q(t) − µ(t) onto Rr+ and then
adding A(t). Thus we have (we use [a]+ to denote the
projection of a onto Rr+):

‖q(t+ 1)− γ∗V ‖2

= ‖[q(t)− µ(t)]+ +A(t)− γ∗V ‖2

=
(
[q(t)− µ(t)]+ +A(t)− γ∗V

)T(
[q(t)− µ(t)]+ +A(t)− γ∗V

)
=

(
[q(t)− µ(t)]+ − γ∗V

)T (
[q(t)− µ(t)]+ − γ∗V

)
+2
(
[q(t)− µ(t)]+ − γ∗V

)T
A(t) + ‖A(t)‖2. (54)

By the non expansive property of projection [16], we have:(
[q(t)− µ(t)]+ − γ∗V

)T (
[q(t)− µ(t)]+ − γ∗V

)
≤

(
q(t)− µ(t)− γ∗V

)T (
q(t)− µ(t)− γ∗V

)
= ‖q(t)− γ∗V ‖2 + ‖µ(t)‖2 − 2(q(t)− γ∗V )Tµ(t).

Plug this into (54), we have:

‖q(t+ 1)− γ∗V ‖2 (55)
≤ ‖q(t)− γ∗V ‖2 + ‖µ(t)‖2 − 2(q(t)− γ∗V )Tµ(t)

+‖A(t)‖2 + 2
(
[q(t)− µ(t)]+ − γ∗V

)T
A(t).

Now since q(t),µ(t),A(t) � 0, it is easy to see that:(
[q(t)− µ(t)]+

)T
A(t) ≤ q(t)TA(t). (56)

By (55) and (56) we have:

‖q(t+ 1)− γ∗V ‖2

≤ ‖q(t)− γ∗V ‖2 + ‖µ(t)‖2 − 2(q(t)− γ∗V )Tµ(t)

+‖A(t)‖2 + 2
(
q(t)− γ∗V

)T
A(t)

≤ ‖q(t)− γ∗V ‖2 + 2B2 − 2
(
γ∗V − q(t)

)T
(A(t)− µ(t)),

where the last inequality follows since ‖A(t)‖2 ≤ B2 and
‖µ(t)‖2 ≤ B2.

We now prove Lemma 2.
Proof: (Lemma 2) By Lemma 4 we see that when S(t) =

si, we have the following for any network state si with a given
q(t) (here we add superscripts to q(t+ 1), A(t) and µ(t) to
indicate their dependence on si):

‖q(si)(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2 (57)

−2(γ∗V − q(t))T (A(si)(t)− µ(si)(t)).

By definition, A
(si)
j (t) = Aj(si, x

(si)
q(t)), and µ

(si)
j (t) =

µj(si, x
(si)
q(t)), with x(si)q(t) being the solution of (7) for the given
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q(t). Now consider the deterministic problem (9) with only a
single network state si, then the dual function (11) becomes:

gsi(γ) = inf
x(si)∈X (si)

{
V f(si, x

(si)) (58)

+
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
.

Therefore by (12) we see that (A(si)(t) − µ(si)(t)) is a
subgradient of gsi(γ) at q(t). Thus by (13) we have:

(γ∗V − q(t))T (A(si)(t)− µ(si)(t)) (59)
≥ gsi(γ∗V )− gsi(q(t)).

Plug (59) into (57), we get:

‖q(si)(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2 (60)
−2
(
gsi(γ

∗
V )− gsi(q(t))

)
.

More generally, we have:

‖q(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2 (61)
−2
(
gS(t)(γ

∗
V )− gS(t)(q(t))

)
.

Now fix ν > 0 and summing up (61) from time t to t+Tν−1,

‖q(t+ Tν)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2TνB
2 (62)

−2

Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V )− gS(t+τ)(q(t+ τ))

]
.

Adding and subtracting the term 2
∑Tν−1
τ=0 gS(t+τ)(q(t)) from

the right hand side, we obtain:

‖q(t+ Tν)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2TνB
2 (63)

−2

Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V )− gS(t+τ)(q(t))

]
+2

Tν−1∑
τ=0

[
gS(t+τ)(q(t+ τ))− gS(t+τ)(q(t))

]
.

Since ‖q(t)−q(t+τ)‖ ≤ τB and ‖A(si)(t)−µ(si)(t)‖ ≤ B,
using (59) and the fact that for any two vectors a and b,
aT b ≤ ‖a‖‖b‖, we have:

gS(t+τ)(q(t+ τ))− gS(t+τ)(q(t)) ≤ τB2. (64)

Hence:
Tν−1∑
τ=0

[
gS(t+τ)(q(t+ τ))− gS(t+τ)(q(t))

]
≤
Tν−1∑
τ=0

(
τB2

)
=

1

2
(T 2
νB

2 − TνB2).

Plug this into (63), we have:

‖q(t+ Tν)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + (T 2
ν + Tν)B2 (65)

−2

Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V )− gS(t+τ)(q(t))

]
.

Now denote Z(t) = (H(t), q(t)), i.e., the pair of the history
up to time t, H(t) = {S(τ)}t−1τ=0 and the current backlog.

Taking expectations on both sides of (65), conditioning on
Z(t), we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
≤ E

{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2

−2E
{ Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V )− gS(t+τ)(q(t))

]
| Z(t)

}
.

Since the number of times gsi(γ) appears in the interval
[t, t+ Tν − 1] is ‖Tsi(t, Tν)‖, we can rewrite the above as:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
≤ E

{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2

−2TνE
{ M∑
i=1

‖Tsi(t, Tν)‖
Tν

[
gsi(γ

∗
V )− gsi(q(t))

]
| Z(t)

}
.

Adding and subtracting 2Tν
∑M
i=1 psi

[
gsi(γ

∗
V ) − gsi(q(t))

]
from the right hand side, we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
(66)

≤ E
{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2

−2Tν

M∑
i=1

psi
[
gsi(γ

∗
V )− gsi(q(t))

]
−2TνE

{ M∑
i=1

[
‖Tsi(t, Tν)‖

Tν
− psi

]
×[

gsi(γ
∗
V )− gsi(q(t))

]
| Z(t)

}
.

Denote the last term of (66) as Q, and using the fact that
gsi(γ

∗
V )− gsi(q(t)) is a constant given Z(t), we have:

Q = −2Tν

M∑
i=1

[
E
{
‖Tsi(t, Tν)‖ | Z(t)

}
Tν

− psi
]

×
[
gsi(γ

∗
V )− gsi(q(t))

]
≤ 2Tν

M∑
i=1

∣∣∣∣E
{
‖Tsi(t, Tν)‖ | Z(t)

}
Tν

− psi
∣∣∣∣

×
∣∣gsi(γ∗V )− gsi(q(t))

∣∣
By (59), gsi(γ

∗
V )−gsi(q(t)) ≤ B‖γ∗V −q(t)‖, thus we have:

Q ≤ 2TνB‖γ∗V − q(t)‖
M∑
i=1

∣∣∣∣E
{
‖Tsi(t, Tν)‖ | Z(t)

}
Tν

− psi
∣∣∣∣

≤ 2TννB‖γ∗V − q(t)‖, (67)

where the last step follows from the definition of Tν . Now by
(11) and (58):

M∑
i=1

psi
[
gsi(γ

∗
V )− gsi(q(t))

]
= g(γ∗V )− g(q(t)).

Plug this and (67) into (66), we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
≤ E

{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2

−2Tν
(
g(γ∗V )− g(q(t))

)
+ 2TννB‖γ∗V − q(t)‖.

Recall that Z(t) = (H(t), q(t)). Taking expectation over H(t)
on both sides proves the lemma.
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APPENDIX B – PROOF OF (28)

Here we prove that for Ỹ (t) defined in the proof of part (b)
of Theorem 1, we have for all Ỹ (t) ≥ 0 that:

∆Tν (Ỹ (t)) ≤ e2wTνB − wη

2
ewỸ (t).

Proof: If Ỹ (t) > TνB, denote δ(t) = Ỹ (t+ Tν)− Ỹ (t).
It is easy to see that |δ(t)| ≤ TνB. Rewrite (27) as:

∆Tν (Ỹ (t)) = ewỸ (t)E
{(
ewδ(t) − 1

)
| q(t)

}
. (68)

By a Taylor expansion, we have that:

ewδ(t) = 1 + wδ(t) +
w2δ2(t)

2
l(wδ(t)), (69)

where l(y) = 2
∑∞
k=2

yk−2

k! = 2(ey−1−y)
y2 [22] has the

following properties:
1) l(0) = 1; l(y) ≤ 1 for y < 0; l(y) is monotone

increasing for y ≥ 0;
2) For y < 3, l(y) = 2

∑∞
k=2

yk−2

k! ≤
∑∞
k=2

yk−2

3k−2 =
1

1−y/3 .

Thus by (69) we have:

ewδ(t) ≤ 1 + wδ(t) +
w2T 2

νB
2

2
l(wTνB). (70)

Plug this into (68), and note that Ỹ (t) > TνB, so by (26) we
have E

{
δ(t) | q(t)

}
≤ −η. Hence:

∆Tν (Ỹ (t)) ≤ ewỸ (t)
(
− wη +

w2T 2
νB

2

2
l(wTνB)

)
. (71)

Choosing w = η
T 2
νB

2+TνBη/3
, we see that wTνB < 3, thus:

w2T 2
νB

2

2
l(wTνB) ≤ w2T 2

νB
2

2

1

1− wTνB/3
=
wη

2
,

where the last equality follows since:

w =
η

T 2
νB

2 + TνBη/3
⇒ w(T 2

νB
2 + TνBη/3) = η

⇒ wT 2
νB

2 = η − wTνBη/3

⇒ wT 2
νB

2 1

1− wTνB/3
= η.

Therefore (71) becomes:

∆Tν (Ỹ (t)) ≤ −wη
2
ewỸ (t) ≤ e2wTνB − wη

2
ewỸ (t). (72)

Now if Ỹ (t) ≤ TνB, it is easy to see that ∆Tν (Ỹ (t)) ≤
e2wTνB − ewỸ (t) ≤ e2wTνB − wη

2 e
wỸ (t), since Ỹ (t + Tν) ≤

TνB+ Ỹ (t) ≤ 2TνB and wη
2 ≤ 1, as η < TνB. Therefore for

all Ỹ (t) ≥ 0, we see that (28) holds.

APPENDIX C-PROOF OF LEMMA 3

Here we prove Lemma 3. To save space, we will sometimes
use [a]+ to denote max[a, 0].

Proof: It suffices to show that (46) holds for a single
queue j. Also, when Wj = 0, (46) trivially holds, thus we
only consider Wj > 0.

Part (A): We first prove qj(t) ≤ max[Wj(t)−Wj , 0]+δmax.
First we see that it holds at t = 0, since Wj(0) = Wj and
qj(t) = 0. It also holds for t = 1. Since qj(0) = 0 and

Wj(0) =Wj , we have qj(1) = Aj(0) ≤ δmax. Thus we have
qj(1) ≤ max[Wj(1)−Wj , 0] + δmax.

Now assume qj(t) ≤ max[Wj(t) − Wj , 0] + δmax holds
for t = 0, 1, 2, ..., k, we want to show that it also holds for
t = k+1. Note that if qj(k) ≤ µj(k), the the result holds since
then qj(k+ 1) = [qj(k)−µj(k)]+ +Aj(k) = Aj(k) ≤ δmax.
Thus we will consider qj(k) ≥ µj(k) in the following:

(A-I) Suppose Wj(k) ≥ Wj . Note that in this case we have:

qj(k) ≤Wj(k)−Wj + δmax. (73)

Also, qj(t+1) = max[qj(t)−µj(t), 0]+Aj(t). Since qj(k) ≥
µj(k), we have:

qj(k + 1) = qj(k)− µj(k) +Aj(k)

≤ Wj(k)−Wj + δmax − µj(k) +Aj(k)

≤ [Wj(k)− µj(k) +Aj(k)−Wj ]
+ + δmax

≤
[
[Wj(k)− µj(k)]+ +Aj(k)−Wj

]+
+ δmax

= max[Wj(k + 1)−Wj , 0] + δmax,

where the first inequality is due to (73), the second and third
inequalities are due to the [a]+ operator, and the last equality
follows from the definition of Wj(k + 1).

(A-II) Now suppose Wj(k) < Wj . In this case we have
qj(k) ≤ δmax, Ãj(k) = [Aj(k)−Wj +Wj(k)]+ and:

qj(k + 1) = [qj(k)− µj(k)]+ + Ãj(k).

First consider the case when Wj(k) <Wj −Aj(k). In this
case Ãj(k) = 0, so we have:

qj(k + 1) = qj(k)− µj(k) ≤ δmax − µj(k) ≤ δmax,

which implies qj(k + 1) ≤ max[Wj(k + 1)−Wj , 0] + δmax.
Else if Wj −Aj(k) ≤Wj(k) <Wj , we have:

qj(k + 1) = qj(k)− µj(k) +Aj(k)−Wj +Wj(k)

≤ Wj(k)−Wj + δmax − µj(k) +Aj(k)

≤ max[Wj(k + 1)−Wj , 0] + δmax,

where the first inequality uses qj(k) ≤ δmax and the second
inequality follows as in (A-I).

Part (B): We now show that qj(t) ≥ max[Wj(t)−Wj , 0].
First we see that it holds for t = 0 since Wj(0) = Wj . We
also have for t = 1 that:

[Wj(1)−Wj ]
+ =

[
[Wj(0)− µj(0)]+ +Aj(0)−Wj

]+
≤

[
[Wj(0)− µj(0)−Wj ]

+ +Aj(0)
]+

= Aj(0)

Thus qj(1) ≥ max[Wj(1)−Wj , 0] since qj(1) = Aj(0). Now
suppose qj(t) ≥ max[Wj(t)−Wj , 0] holds for t = 0, 1, ..., k,
we will show that it holds for t = k + 1. We note that if
Wj(k+ 1) <Wj , then max[Wj(k+ 1)−Wj , 0] = 0 and we
are done. So we consider Wj(k + 1) ≥ Wj .

(B-I) First if Wj(k) ≥ Wj , we have Ãj(k) = Aj(k). Hence:

[Wj(k + 1)−Wj ]
+ = [Wj(k)− µj(k)]+ +Aj(k)−Wj

≤ [Wj(k)− µj(k)−Wj ]
+ +Aj(k)

≤ [[Wj(k)−Wj ]
+ − µj(k)]+ +Aj(k)

≤ [qj(k)− µj(k)]+ +Aj(k),
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where the first two inequalities are due to the [a]+ operator
and the last inequality is due to qj(k) ≥ [Wj(k)−Wj ]

+. This
implies [Wj(k + 1)−Wj ]

+ ≤ qj(k + 1).
(B-II) Suppose Wj(k) < Wj . Since Wj(k + 1) ≥ Wj , we

have Wj − Aj(k) ≤ Wj(k) < Wj , for otherwise Wj(k) <
Wj−Aj(k) and Wj(k+1) = [Wj(k)−µj(t)]++Aj(t) <Wj .
Hence in this case Ãj(k) = Aj(k)−Wj +Wj(k) ≥ 0.

[Wj(k + 1)−Wj ]
+

= [Wj(k)− µj(k)]+ +Aj(k)−Wj

≤ [Wj(k) + qj(k)− µj(k)]+ +Aj(k)−Wj

≤ [qj(k)− µj(k)]+ +Aj(k)−Wj +Wj(k)

= qj(k + 1),

where the two inequalities are due to the fact that qj(k) ≥ 0
and Wj(k) ≥ 0.
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