
166 COMMUNICATIONS OF THE ACM | APRIL 2021 | VOL. 64 | NO. 4

research highlights

DOI:10.1145/3450262

Succinct Range Filters
By Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen,
Michael Kaminsky, Kimberly Keeton, and Andrew Pavlo

Abstract
We present the Succinct Range Filter (SuRF), a fast and
compact data structure for approximate membership tests.
Unlike traditional Bloom filters, SuRF supports both single-
key lookups and common range queries, such as range
counts. SuRF is based on a new data structure called the
Fast Succinct Trie (FST) that matches the performance of
state-of-the-art order-preserving indexes, while consuming
only 10 bits per trie node—a space close to the minimum
required by information theory. Our experiments show that
SuRF speeds up range queries in a widely used database
storage engine by up to 5×.

1. INTRODUCTION
Write-optimized log-structured merge (LSM) trees16 are
popular low-level storage engines for general-purpose
databases that provide fast writes1, 14, 18 and ingest-abun-
dant DBMSs such as time-series databases.5, 17 One of their
main challenges for fast query processing is that items
could reside in different immutable files (SSTables) from
all levels. Item retrieval in these systems may therefore
incur multiple expensive disk I/Os.16, 18

Many LSM tree-based systems use Bloom filters to “guard”
on-disk files to reduce the number of unnecessary I/Os2, 3, 17,

18: they read an on-disk file only when the associated in-mem-
ory Bloom filter indicates that the query item may exist in the
file. Bloom filters are a good match for this task. First,
Bloom filters are fast and small enough to reside in mem-
ory. Second, Bloom filters answer approximate member-
ship tests with “one-sided” errors—if the querying item
is a member, the filter is guaranteed to return true; other-
wise, the filter will likely return false, but may incur a false
positive.

Although Bloom filters are useful for single-key lookups
(“Is key 50 in the SSTable?”), they cannot handle range que-
ries (“Are there keys between 40 and 60 in the SSTable?”).
With only Bloom filters, an LSM tree-based storage engine
still needs to read additional disk blocks for range queries.
Alternatively, one could maintain an auxiliary index, such
as a B+Tree, to accelerate range queries, but the memory
cost would be significant. To partly address the high I/O
cost of range queries, LSM tree-based designs often use
prefix Bloom filters to optimize certain fixed-prefix queries
(e.g., “where email starts with com.foo@”),2, 11, 17 despite
their inflexibility for more general range queries.

To address these limitations, we present the Succinct
Range Filter (SuRF), a fast and compact data structure that
provides exact-match filtering, range filtering, and approx-
imate range counts. Like Bloom filters, SuRF guarantees
one-sided errors for point and range membership tests.
SuRF can trade between false positive rate and memory
consumption, and this trade-off is tunable for point and

The original version of this paper is entitled “SuRF:
Practical Range Query Filtering with Fast Succinct
Tries” and was published in Proceedings of the 2018 ACM
SIGMOD International Conference on Management of Data
(Houston, TX, USA).

range queries semi-independently.
SuRF is built upon a new space-efficient data structure

called the Fast Succinct Trie (FST). It performs compara-
bly to or better than state-of-the-art uncompressed index
structures for both integer and string workloads. FST con-
sumes only 10 bits per trie node, which is close to the infor-
mation-theoretic lower bound.

The key insight in SuRF is to transform the FST into an
approximate (range) membership filter by removing levels
of the trie and replacing them with some number of suffix
bits. The number of such bits (either from the key itself or
from a hash of the key—as we discuss later in the paper)
trades space for decreased false positives.

We evaluate SuRF via microbenchmarks and as a Bloom
filter replacement in RocksDB—a widely-used database
storage engine.2 Our experiments on a 100GB time-series
dataset show that replacing the Bloom filters with SuRFs
of the same filter size reduces I/O. This speeds up closed-
range queries (i.e., with an upper bound) by up to 5× com-
pared to the original implementation, with a modest cost
on the worst-case point query throughput due to slightly
higher false positive rate. One can eliminate this perfor-
mance gap by increasing the size of SuRFs by a few bits per
key.

2. FAST SUCCINCT TRIES
The core data structure in SuRF is the Fast Succinct Trie
(FST). FST is a space-efficient, static trie that answers point
and range queries. FST is 4–15× faster than earlier succinct
tries,6, 12 achieving performance comparable to or better
than the state-of-the-art pointer-based indexes.8, 15, 19

FST’s design is based on the observation that the upper
levels of a trie comprise few nodes but incur many accesses.
The lower levels comprise the majority of nodes, but are
relatively “colder.” We therefore encode the lower levels of
the trie using the succinct LOUDS-Sparse scheme to guar-
antee the overall space-efficiency of the data structure.
Here, LOUDS stands for the Level-Ordered Unary Degree
Sequence.13 By contrast, we encode the upper levels using
a fast bitmap-based encoding scheme, called LOUDS-
Dense, in which a child node search requires only one array
lookup, choosing performance over space.

For the rest of the section, we assume that the trie maps
the keys to fixed-length values. We also assume that the trie
has a fanout of 256 (i.e., one byte per level).

http://dx.doi.org/10.1145/3450262

APRIL 2021 | VOL. 64 | NO. 4 | COMMUNICATIONS OF THE ACM 167

2.2 LOUDS-Dense
As shown in the top half of Figure 1, LOUDS-Dense
encodes each trie node using three bitmaps of size 256
and a byte-sequence to hold the values. The encoding fol-
lows the level order.

The first bitmap (D-Labels) records the branch-
ing labels for each node. Specifically, the ith bit in the
bitmap (0 ≤ i ≤ 255) indicates whether the node has a
branch with label i. For example, the root node in Figure
1 has three outgoing branches labeled f, s, and t. The
D-Labels bitmap thus sets the 102nd (f), 115th (s), and
116th (t) bits and clears the rest.

The second bitmap (D-HasChild) indicates whether a
branch points to a subtrie or terminates (i.e., points to the
value or the branch does not exist). Taking the root node in
Figure 1 as an example, the f and the t branches continue
with subtries, while the s branch terminates with a value.
In this case, the D-HasChild bitmap only sets the 102nd (f)
and 116th (t) bits for the node.

The third bitmap (D-IsPrefixKey) includes only one bit
per node to indicate whether the prefix that leads to the
node is also a valid key. The same case is handled by the
special byte 0×FF in LOUDS-Sparse.

The final byte-sequence (D-Values) is organized the same
way as S-Values in LOUDS-Sparse.

Tree navigation in LOUDS-Dense also uses the rank &
select primitives. Given a position pos in D-Labels, to move
to the child node: 256 × rank(D-HasChild, pos); to move
to the parent: select(D-HasChild, ëpos/256û); to access the
value: rank(D-Labels, pos) - rank(D-HasChild, pos) + rank(D-
IsPrefixKey, ëpos/256û) - 1.

LOUDS-Dense is faster than LOUDS-Sparse because (1)
label search within a node requires only one lookup in the
bitmap rather than a binary search and (2) move to child
only computes a rank in one bit-vector instead of a rank
and a select on different bit-vectors.

2.3 FST and operations
FST is a hybrid trie in which the upper levels are encoded
with LOUDS-Dense and the lower levels with LOUDS-Sparse.
The dividing point between the upper and lower levels is
tunable to trade performance and space. By default, we

2.1 LOUDS-Sparse
LOUDS-Sparse encodes the trie nodes in the level order
using four byte-/bit-sequences, as shown in the lower half
of Figure 1.

The first byte-sequence, S-Labels, records all the branch-
ing labels for each trie node. As an example, the second
node at level 2 in Figure 1 has three branches. S-Labels
includes its labels r, s, and t in order. We denote the case
where the prefix leading to a node is also a valid key using
the special byte 0×FF1 at the beginning of the node. For
example, in Figure 1, the second node at level 3 has ‘fas’
as its incoming prefix. As ‘fas’ itself is also a key stored in
the trie, the node adds 0×FF to S-Labels as the first byte.
Because the special byte always appears at the beginning
of a node, it can be distinguished from the real 0×FF label.

The second bit-sequence (S-HasChild) includes one bit
for each byte in S-Labels to indicate whether a child branch
continues (i.e., points to a subtrie) or terminates (i.e., points
to a value). Taking the rightmost node at level 2 in Figure 1
as an example, because the branch labeled i points to a sub-
trie, the corresponding bit in S-HasChild is set. The branch
labeled y, however, points to a value, and its S-HasChild bit
is cleared.

The third bit-sequence (S-LOUDS) denotes node bound-
aries: if a label is the first in a node, its S-LOUDS bit is set.
Otherwise, the bit is cleared. For example, in Figure 1, the
second node at level 2 has three branches and is encoded
as 100 in S-LOUDS.

The final byte-sequence (D-Values) stores the fixed-
length values (e.g., pointers) mapped by the keys. The val-
ues are concatenated in the level order—same as the three
bitmaps.

Tree navigation relies on the fast rank & select primi-
tives. Given a bit-vector, rank(i) counts the number of 1s
up to position i, while select(i) returns the position of the
ith 1. Modern rank & select implementations such as21
achieve constant time by using lookup tables to store a
sampling of precomputed results so that they only need to
count between the samples. We denote rank/select over bit-
sequence bs on position pos to be rank/select(bs, pos).

Let pos be the current bit position in S-Labels. Assume
that S-HasChild[pos] = 1, indicating that the branch at pos
points to a child node. To move to the child node, we first
compute the child node’s rank in the overall level-ordered
node list: r = rank(S-HasChild, pos) + 1. Because every node
only has its first bit set in S-LOUDS, we can use select(S-
LOUDS, r) to find the position of that child node.

To move to the parent node, we first get the rank r of the
current node by r = rank(S-LOUDS, pos) because the num-
ber of ones in S-LOUDS indicates the number of nodes.
We then find the node that contains the (r – 1)th children:
select(S-HasChild, r – 1).

Given S-HasChild[pos] = 0, to access the associated value,
we compute its index in S-Values. Because every cleared bit
in S-HasChild has a value, there are pos - rank(S-HasChild,
pos) values before pos.

Figure 1. An example fast succinct trie. The upper and lower levels
of the trie are encoded using LOUDS-Dense and LOUDS-Sparse,
respectively. “$” represents the character whose ASCII number is
O×FF. It is used to indicate the situation where the prefix leading to a
node is also a valid key.

v4

f t

a

r s t

t

o r

p y i y

p

LOUDS-Dense

LOUDS-Sparse
S-Labels:

S-HasChild:

S-LOUDS:

D-Labels:

D-HasChild:

D-IsPrefixKey:
$

$ e

0 1 0

f st a o r

s

D-Values: v1

v1

v2

v3 v4 v5 v6 v7

v8 v9 v10 v11

S-Values: v3 v5 v6 v7 v8 v9 v10 v11

v2

r s t p y i y $ t e p
0 1 0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 1 0 1 0

Keys stored: f, far, fas, fast, fat, s, top, toy, trie, trip, try

Level
0

1

2

3

4

1 If a node has a single branching label 0×FF, it must be the real 0×FF byte
(otherwise, the node will not exist in the trie).

research highlights

168 COMMUNICATIONS OF THE ACM | APRIL 2021 | VOL. 64 | NO. 4

keep the size ratio R between LOUDS-Dense and LOUDS-
Sparse to be less than 1:64 in favor of the space-efficiency
provided by LOUDS-Sparse.

FST supports four basic operations efficiently:

• ExactKeySearch(key): Return the value of key if key
exists (or NULL otherwise).

• LowerBound(key): Return an iterator pointing to the
key-value pair (k, v) where k is the smallest in lexico-
graphical order satisfying k ≥ key.

• MoveToNext(iter): Move the iterator to the next key.
• Count(lowKey, highKey): Return the number of keys

contained in the range (lowKey, highKey).

A point query (i.e., ExactKeySearch) in FST works by
first searching the LOUDS-Dense levels. If the search does
not terminate, it continues into the LOUDS-Sparse levels.
The high-level searching steps at each level are similar
regardless of the encoding mechanism: First, search the
current node’s label sequence for the target key byte. If
the key byte does not exist, terminate and return NULL.
Otherwise, check the corresponding bit in the HasChild
bit-sequence. If the bit is set, compute the child node’s
starting position in the label sequence and continue to
the next level. Otherwise, return the corresponding value
in the value sequence.

LowerBound uses a high-level algorithm similar to the
point query implementation. Instead of an exact match,
the algorithm searches the current node’s label sequence
for the smallest label that is greater than or equal to the
search byte of that level. The algorithm may recursively
move up to the parent node if the search hits node bound-
aries. Once such label L is found, the algorithm moves iter-
ator to the left-most key in the subtrie rooted at L.

We include per-level cursors in the iterator to record a
trace from root to leaf (i.e., the per-level positions in the
label sequence) for the current key. Using the cursors,
range scans (MoveToNext) in FST are implemented effi-
ciently. Each level cursor is initialized once through a
“move-to-child” call from its upper-level cursor. After
that, scan operations at this level only involve cursor
movement, which is cache-friendly and fast. Our evalua-
tion shows that range queries in FST are even faster than
pointer-based tries.

For Count, the algorithm first performs MoveToNext on
both boundaries and obtains two iterators. It extends each
iterator down the trie and sets the cursor at each level to
the position of the smallest leaf key that is greater than the
current key, until the two iterators meet or reach the maxi-
mum trie height. The algorithm then counts the number of
leaf nodes at each level between the two iterators by com-
puting the difference of their ranks on the D-HasChild/S-
HasChild bit-vector. The sum of those counts is returned.

Finally, FST can be built using a single scan over a sorted
key-value list.

2.4 Space analysis
A tree representation is “succinct” if the space taken by the
representation is close to the information-theoretic lower

bound, which is the minimum number of bits needed to
distinguish any object in a set. The information-theo-
retic lower bound of a trie of degree k is approximately
n(k log2 k – (k – 1) log2 (k – 1)) bits (9.44 bits when k = 256 in
our case).7

Given an n-node trie, LOUDS-Sparse uses 8n bits for
S-Labels, n bits for S-HasChild, and n bits for S-LOUDS,
a total of 10n bits (plus auxiliary bits for rank & select).
Although the space taken by LOUDS-Sparse is close to the
information-theoretic lower bound, technically, LOUDS-
Sparse can only be categorized as compact rather than
succinct in a finer classification scheme because LOUDS-
Sparse takes O(Z) space (despite the small multiplier)
instead of Z + o(Z).

LOUDS-Dense’s size is restricted by the size ratio R to
ensure that it does not affect the overall space efficiency
of FST. Notably, LOUDS-Dense does not always take more
space than LOUDS-Sparse: if a node’s fanout is larger than
51, it takes fewer bits to encode the node using the for-
mer instead of the latter. As such nodes are common in a
trie’s upper levels, adding LOUDS-Dense on top of LOUDS-
Sparse often improves space efficiency.

3. SUCCINCT RANGE FILTERS
In building SuRF using FST, our goal was to balance a low
false positive rate with the memory required by the filter.
The key idea is to use a truncated trie, that is, to remove
lower levels of the trie and replace them with suffix bits
extracted from the key. We introduce three variations of
SuRF. We describe their properties and how they guarantee
one-sided errors. The current SuRF design is static, requir-
ing a full rebuild to insert new keys.

3.1 Basic SuRF
FST is a trie-based index structure that stores complete
keys. As a filter, FST is 100% accurate; the downside, how-
ever, is that the full structure can be big. In many applica-
tions, filters must fit in memory to guard access to a data
structure stored on slower storage. These applications can-
not afford the space for complete keys and thus must trade
accuracy for space.

The basic version of SuRF (SuRF-Base) stores the mini-
mum-length key prefixes such that it can uniquely identify
each key. Specifically, SuRF-Base only stores an additional
byte for each key beyond the shared prefixes. Figure 2

S

I

G

A M O

I O P

D S

Full Trie

S

I

G

A M O

SuRF-Base

S

I

G

A M O

SuRF-Real

I O P

S

I

G

A M O

SuRF-Hash

H(SIGAI)[0] H(SIGOPS)[0]H(SIGMOD)[0]

Figure 2. SuRF variations. Deriving SuRF variations from a full trie.

APRIL 2021 | VOL. 64 | NO. 4 | COMMUNICATIONS OF THE ACM 169

If ks ≤ s, the iterator points to the current key; otherwise,
it advances to the next key in the trie.

Although SuRF-Real improves FPR for both point and
range queries, the trade-off is that using real keys for suf-
fix bits cannot provide as good FPR as using hashed bits
because the distribution correlation between the stored
keys and the query keys weakens the distinguishability of
the real suffix bits.

4. SURF MICROBENCHMARKS
In this section, we evaluate SuRF using in-memory micro-
benchmarks to provide a comprehensive understanding
of the filter’s strengths and weaknesses.

The underlying data structure FST is evaluated sepa-
rately in our original paper.20 We found that compared to
state-of-the-art pointer-based indexes such as B+tree8 and
the Adaptive Radix Tree (ART),15 FST matches their per-
formance while being an order-of-magnitude smaller. We
also compared FST against other succinct trie alternatives6,

12 and showed that FST is 4–15× faster and is also smaller
than these previous solutions.

4.1 Experiment setup
We use the YCSB9 workloads C and E to generate point
and range queries. We test two representative key types:
64-bit random integers generated by YCSB and email
addresses (host reversed, e.g., “com.domain@foo”)
drawn from a real-world dataset (average length = 22
bytes, max length =129 bytes).

The three most important metrics with which to evalu-
ate SuRF are false positive rate (FPR), performance, and
space. The datasets are 100M 64-bit random integer keys
and 25M email keys. In the experiments, we first construct
the filter under test using half of the dataset selected at
random. We then execute 10M point or range queries on
the filter. The querying keys (K) are drawn from the entire
dataset according to YCSB workload C so that roughly
50% of the queries return false. For 64-bit random integer
keys, the range query is [K + 237, K + 238] where 46% of the
queries return true. For email keys, the range query is [K,
K (with last byte ++)] (e.g., [org.acm@sigmod, org.acm@
sigmoe]) where 52% of the queries return true.

4.2 False positive rate
Figure 3 shows the false positive rate (FPR) comparison
between SuRF variants and the Bloom filter by varying the
size of the filters. The Bloom filter only appears in point
queries. Note that SuRF-Base consumes 14 (instead of 10)
bits per key for the email key workloads. This is because
email keys share longer prefixes, which increases the num-
ber of internal nodes in SuRF.

For point queries, the Bloom filter has lower FPR than
the same-sized SuRF variants in most cases, although
SuRF-Hash catches up quickly as the number of bits per
key increases because every hash bit added cuts the FPR by
half. Real suffix bits in SuRF-Real are generally less effec-
tive than hash bits for point queries. For range queries,
only SuRF-Real benefits from increasing filter size because
the hash suffixes in SuRF-Hash do not provide ordering

shows an example. Instead of storing the full keys (‘SIGAI’,
‘SIGMOD’, ‘SIGOPS’), SuRF-Base truncates the full trie by
including only the shared prefix (‘SIG’) and one more byte
for each key (‘C’, ‘M’, ‘O’).

Pruning the trie in this way affects both filter space and
accuracy. Unlike Bloom filters where the keys are hashed,
the trie shape of SuRF-Base depends on the distribution
of the stored keys. Hence, there is no theoretical upper
bound of the size of SuRF-Base. Empirically, however,
SuRF-Base uses only 10 bits per key (BPK) for 64-bit ran-
dom integers and 14 BPK for emails. The intuition is that
the trie built by SuRF-Base usually has an average fanout
F > 2: there are less than twice as many nodes as keys.
Because FST (LOUDS-Sparse to be precise) uses 10 bits
to encode a trie node, the size of SuRF-Base is less than
20 BPK for F > 2.

Filter accuracy is measured by the false positive rate
(FPR). A false positive in SuRF-Base occurs when the
prefix of the nonexistent query key coincides with a
stored key prefix. For example, in Figure 2, querying key
‘SIGMETRICS’ will cause a false positive in SuRF-Base. FPR
in SuRF-Base depends on the distributions of the stored
and query keys. Our results in Section 4.2 show that SuRF-
Base incurs a 4% FPR for integer keys and a 25% FPR for
email keys. To improve FPR, we include two forms of key
suffixes described here to allow SuRF to better distinguish
between key prefixes.

3.2 SuRF with hashed key suffixes
As shown in Figure 2, SuRF with hashed key suffixes
(SuRF-Hash) adds a few hash bits per key to SuRF-Base
to reduce its FPR. Let H be the hash function. For each
key K, SuRF-Hash stores the n (n is fixed) least-signifi-
cant bits of H(K) in FST’s value array (which is empty in
SuRF-Base). When a key (K′) lookup reaches a leaf node,
SuRF-Hash extracts the n least-significant bits of H (K′)
and performs an equality check against the stored hash
bits associated with the leaf node. Using n hash bits per
key guarantees that the point query FPR of SuRF-Hash
is less than 2–n (the partial hash collision probabil-
ity). Experiments in Section 4.2 show that SuRF-Hash
requires only 2–4 hash bits to reach 1% FPR.

The extra bits in SuRF-Hash do not help range queries
because they do not provide ordering information on keys.

3.3 SuRF with real key suffixes
Instead of hash bits, SuRF with real key suffixes (SuRF-
Real) stores the n key bits immediately following the
stored prefix of a key. Figure 2 shows an example when
n = 8. SuRF-Real includes the next character for each key
(‘I’, ‘O’, ‘P’) to improve the distinguishability of the keys:
for example, querying ‘SIGMETRICS’ no longer causes
a false positive. Unlike in SuRF-Hash, both point and
range queries benefit from the real suffix bits to reduce
false positives. For point queries, the real suffix bits are
used the same way as the hashed suffix bits. For range
queries (e.g., move to the next key > K), when reaching a
leaf node, SuRF-Real compares the stored suffix bits s to
key bits ks of the query key at the corresponding position.

research highlights

170 COMMUNICATIONS OF THE ACM | APRIL 2021 | VOL. 64 | NO. 4

Some high-level takeaways from the experiments are
as follows: (1) SuRF can perform range filtering while the
Bloom filter cannot. (2) If the target application only needs
point query filtering with moderate FPR requirements, the
Bloom filter is usually a better choice than SuRF. (3) For
point queries, SuRF-Hash can provide similar theoretical
guarantees on FPR as the Bloom filter, while the FPR for
SuRF-Real depends on the key distribution.

5. EXAMPLE APPLICATION: ROCKSDB
We integrated SuRF with RocksDB as a replacement for
its Bloom filter. Incoming writes go into the RocksDB’s
MemTable. When the MemTable is full (e.g., exceeds 4MB),
the engine sorts it and then converts it into an SSTable at
level 0. An SSTable contains sorted key-value pairs and is
divided into fixed-length blocks matching the smallest disk
access units. To locate blocks, RocksDB stores the “restart-
ing point” (a string that is ≥ the last key in the current
block and < the first key in the next block) for each block as
the block index. When the size of a level hits a threshold,
RocksDB selects an SSTable at this level and merges it into
the next-level SSTables that have overlapping key ranges.
This process is called compaction. The keys are globally
sorted across SSTables for each level ≥ 1. This property
ensures that an entry lookup reads at most one SSTable per
level for levels ≥ 1.

We modified RocksDB’s point (Get) and range (Seek)
query implementations to use SuRF. For Get(key), RocksDB
uses SuRF exactly like the Bloom filter where at each level, it
locates the candidate SSTable(s) and block(s) via the block
indexes. For each candidate SSTable, RocksDB queries the

information. The shape of the SuRF-Real curves in the
email key workloads (i.e., the latter four suffix bits are more
effective in recognizing false positives than the earlier four)
is because of ASCII encoding of characters.

We also observe that SuRF variants have higher FPRs
for the email key workloads. This is because the email keys
in the dataset are very similar (i.e., the key distribution is
dense). Two email keys often differ by the last byte, or one
may be a prefix of the other. If one of the keys is represented
in the filter and the other key is not, querying the missing
key on SuRF-Base is likely to produce false positives. The
high FPR for SuRF-Base is significantly lowered by adding
suffix bits, as shown in the figures.

4.3 Performance
Figure 4 shows the throughput comparison. The SuRF vari-
ants operate at a speed comparable to the Bloom filter for
the 64-bit integer key workloads, thanks to the hybrid encod-
ings and other performance optimizations such as vector-
ized label search and memory prefetching. For email keys,
the SuRF variants are slower than the Bloom filter because
of the overhead of searching/traversing the long prefixes
in the trie. The Bloom filter’s throughput decreases as the
number of bits per key gets larger because larger Bloom fil-
ters require more hash probes. The throughput of the SuRF
variants does not suffer from increasing the number of suf-
fix bits because as long as the suffix length is less than 64
bits, checking with the suffix bits only involves one memory
access and one integer comparison. Range queries in SuRF
are slower than point queries because every query needs to
walk down to the bottom of the trie (no early exit).

Figure 3. SuRF false positive rate. False positive rate comparison between SuRF variants and the Bloom filter (lower is better).

10 11 12 13 14 15 16 17 18

Bits per Key

0

1

2

3

4

5

Fa
ls

e
P

os
iti

ve
 R

at
e

(%
)

SuRF-Base
Bloom Filter

SuRF-Hash

SuRF-Real

(a) Point Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22

Bits per Key

0

5

10

15

20

25

30

Fa
ls

e
P

os
iti

ve
 R

at
e

(%
)

SuRF-Base Bloom Filter
SuRF-Hash
SuRF-Real

(b) Point Query, Email

10 11 12 13 14 15 16 17 18
Bits per Key

0

1

2

3

Fa
ls

e
P

os
iti

ve
 R

at
e

(%
)

SuRF-Base

SuRF-Hash

SuRF-Real

(c) Range Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0

10

20

30

40

Fa
ls

e
P

os
iti

ve
 R

at
e

(%
) SuRF-Base

SuRF-Hash
SuRF-Real

(d) Range Query, Email

APRIL 2021 | VOL. 64 | NO. 4 | COMMUNICATIONS OF THE ACM 171

in-memory filter first and fetches the SSTable block only if
the filter result is positive.

To implement Seek(lk, hk), RocksDB first collects the
candidate SSTables from all levels by searching for lk
in the block indexes. Absent SuRFs, RocksDB examines
each candidate SSTable and fetches the block contain-
ing the smallest key that is ≥ lk. RocksDB then finds the
global smallest key K ≥ lk among those candidate keys.
If K ≤ hk, the query succeeds; otherwise, the query returns
empty.

With SuRFs, however, instead of fetching the actual
blocks, RocksDB obtains the candidate key for each
SSTable by performing a LowerBound query on its SuRF
to avoid the one I/O per SSTable. If the query succeeds,
RocksDB fetches exactly one block from the selected
SSTable that contains the global minimum K. If the query
returns empty, no I/O is involved. Because SuRF only
stores key prefixes, the system must perform additional
checks to break ties and to prevent false positives. The
additional checks are described in our original paper.20
Despite those potential checks, using SuRF in RocksDB
reduces the average I/Os per Seek(lk, hk) query.

5.1 Evaluation setup
Time-series databases often use RocksDB or similar LSM-
tree designs as their storage engine.5,17 We thus create a
synthetic RocksDB benchmark to model a time-series
dataset generated from distributed sensors for our end-
to-end performance measurements. We simulated 2k sen-
sors to record events. The key for each event is a 128-bit
value comprised of a 64-bit timestamp followed by a 64-bit

sensor ID. The associated value in the record is 1KB long.
The occurrence of each event detected by each sensor fol-
lows a Poisson distribution with an expected frequency of
one every 0.2 s. Each sensor operates for 10K seconds and
records ∼50K events. The starting timestamp for each
sensor is randomly generated within the first 0.2 s. The
total size of the raw records is approximately 100GB.

Our testing framework supports the following queries:

• Point Query: Given a timestamp and a sensor ID,
return the record if there is an event.

• Range Query: Given a time range, determine whether
any events happened during that time period. If yes,
return an iterator pointing to the earliest event in the
range.

Our test machine has an Intel Core i7-6770HQ CPU, 32
GB RAM, and an Intel 540s 480GB SSD. We configured2
RocksDB according to Facebook’s recommendations.4,11
The resulting RocksDB instance has four levels and uses
52GB of disk space.

We create four instances of RocksDB with different fil-
ter options: no filter, Bloom filter, SuRF-Hash, and SuRF-
Real. We configure each filter to use an equal amount of
memory. Bloom filters use 14 bits per key. The equivalent-
sized SuRF-Hash and SuRF-Real include a 4-bit suffix per
key. We first warm the cache with 1 million uniformly-dis-
tributed point queries to existing keys so that every SSTable
is touched roughly 1000 times, and the block indexes and

Figure 4. SuRF performance. Performance comparison between SuRF variants and the Bloom filter (higher is better).

Bits per Key

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(M
op

s/
s)

SuRF-Base

Bloom Filter
SuRF-Hash
SuRF-Real

(a) Point Query, 64-bit Int

Bits per Key

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(M
op

s/
s)

SuRF-Base

Bloom Filter
SuRF-Hash
SuRF-Real

(b) Point Query, Email

Bits per Key

0

1

2

3

4

T
hr

ou
gh

pu
t

(M
op

s/
s)

SuRF-Base

SuRF-Hash

SuRF-Real

(c) Range Query, 64-bit Int

10 11 12 13 14 15 16 17 18 10 11 12 13 14 15 16 17 18 19 20 21 22

10 11 12 13 14 15 16 17 18 10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0.0

0.3

0.6

0.9

1.2

T
hr

ou
gh

pu
t

(M
op

s/
s)

SuRF-Base

SuRF-Hash
SuRF-Real

(d) Range Query, Email

2 Block cache size = 1 B; OS page cache ≤3GB.

research highlights

172 COMMUNICATIONS OF THE ACM | APRIL 2021 | VOL. 64 | NO. 4

5.3 Range query results
The main benefit of using SuRF is speeding up range que-
ries. Figure 6 shows the throughput and I/O count for range
queries. On the x-axis, we control the percentage of queries
with empty results by varying the range size. The Poisson
distribution of events from all sensors has an expected fre-
quency of one per λ = 105 ns. For an interval with length R,
the probability that the range contains no event is given by
e–R/λ. Therefore, for a target percentage (P) of Closed-Seek
queries with empty results, we set range size to .
For example, for 50%, the range size is 69310 ns.

As shown in Figure 6, the Bloom filter does not help
range queries and is equivalent to having no filter. Using
SuRF-Real, however, speeds up the query by 5× when 99%
of the queries return empty. Again, I/O count dominates
performance. Without a range filter, every query must
fetch candidate SSTable blocks from each level to deter-
mine whether there are keys in the range. Using the SuRF
variants, however, avoids many of the unnecessary I/
Os; RocksDB performs a read to the SSTable block con-
taining that minimum key only when the minimum key
returned by the filters at each level falls into the querying
range. Using SuRF-Real is more effective than SuRF-Hash
because the real suffix bits help reduce false positives at
the range boundaries.

6. CONCLUSION
This paper introduces the SuRF filter structure, which sup-
ports approximate membership tests for single keys and
ranges. SuRF is built upon a new succinct data structure,
called the Fast Succinct Trie (FST), that requires only 10
bits per node to encode the trie. FST is engineered to have
performance equivalent to state-of-the-art pointer-based
indexes. SuRF is memory efficient, and its space and false
positive rates can be tuned by choosing different amounts
of suffix bits to include. Replacing the Bloom filters with
SuRFs of the same size in RocksDB substantially reduced I/O
and improved throughput for range queries with a modest
cost on the worst-case point query throughput. We believe,
therefore, that SuRF is a promising technique for optimiz-
ing future storage systems, and more. SuRF’s source code is
publicly available at https://github.com/efficient/SuRF.

filters are cached. After the warm-up, both RocksDB’s block
cache and the OS page cache are full. We then execute 50k
application queries, recording the DBMS’s end-to-end
throughput and I/O counts. The query keys (for range que-
ries, the starting keys) are randomly generated: a random
timestamp within the operated time range + a randomly
picked sensor ID. The reported numbers are the average of
three runs.

5.2 Point query results
Figure 5 shows the result for point queries. Because the
query keys are randomly generated, almost all queries return
false. The query performance is dominated by the I/O count:
they are inversely proportional. Excluding Level 0, each
point query is expected to access three SSTables, one from
each level (Level 1, 2, 3). Without filters, point queries incur
approximately 1.5 I/Os per operation according to Figure 5,
which means that the entire Level 1 and approximately half
of Level 2 are likely cached. This is representative of typical
RocksDB configurations where the last two levels are not
cached in memory.10

Using filters in point queries reduces I/O because they
prevent unnecessary block retrieval. Using SuRF-Hash or
SuRF-Real is slower than using the Bloom filter because
the 4-bit suffix does not reduce false positives as low as the
Bloom filter configuration (refer to Section 4.2). SuRF-Real
provides similar benefit to SuRF-Hash because the key dis-
tribution is sparse.

No Filter Bloom Filter SuRF-Hash SuRF-Real

Point – Throughput Point – I/O
40

0

10

20

30

T
hr

ou
gh

pu
t

(K
op

s/
s)

2.2

32.9

19.8
16.4

1.2

1.6
1.419

0.0

0.4

0.8

I/
O

s
pe

r
O

pe
ra

tio
n

0.022 0.047 0.056

Figure 5. Point queries. RocksDB point query evaluation under
different filter configurations.

Range – I/ORange – Throughput

10 20 30 40 50 60 70 80 90 99

Percent of queries with empty results

T
hr

ou
gh

pu
t

(K
op

s/
s)

Bloom Filter
SuRF-Hash
SuRF-Real

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 99

Percent of queries with empty results

0.0

0.5

1.0

1.5

2.0

2.5

N
um

be
r

of
 I

/O
s

pe
r

O
pe

ra
tio

n Bloom Filter
SuRF-Hash
SuRF-Real

Figure 6. Range queries. RocksDB range query evaluation under different filter configurations and range sizes.

APRIL 2021 | VOL. 64 | NO. 4 | COMMUNICATIONS OF THE ACM 173

 1. Facebook MyRocks. http://myrocks.io/.
 2. Facebook RocksDB. http://rocksdb.

org/.
 3. Google LevelDB. https://github.com/

google/leveldb.
 4. RocksDB Tuning Guide. https://

github.com/facebook/rocksdb/wiki/
RocksDB-Tuning-Guide.

 5. The InfluxDB storage engine and the
time-structured merge tree (TSM).
https://docs.influxdata.com/influxdb/
v1.0/concepts/storage_engine/.

 6. tx-trie 0.18–Succinct Trie
Implementation. https://github. com/
hillbig/tx-trie, 2010.

 7. Benoit, D., Demaine, E.D., Munro,
J.I., Raman, R., Raman, V., Rao, S.S.
Representing trees of higher degree.
Algorithmica 4, 43 (2005), 275–292.

 8. Bingmann, T. STX B+tree C++
Template Classes. http://idlebox.
net/2007/stx-btree/, 2008.

 9. Cooper, B.F., Silberstein, A., Tam,
E., Ramakrishnan, R., Sears, R.
Benchmarking cloud serving systems
with YCSB. In Proceedings of
SOCC’10 (2010), ACM, 143–154.

 10. Dong, S. Personal communication,
2017. 2017-08-28.

 11. Dong, S., Callaghan, M., Galanis, L.,
Borthakur, D., Savor, T., Strum, M.
Optimizing space amplification in
RocksDB. In Proceedings of CIDR’17,
Volume 3 (2017), 3.

 12. Grossi, R., Ottaviano, G. Fast
compressed tries through path
decompositions. J. Exp. Algorithm.

3–4, 19 (2015).
 13. Jacobson, G. Space-efficient static

trees and graphs. In Foundations
of Computer Science (1989), IEEE,
549–554.

 14. Lakshman, A., Malik, P. Cassandra:
A decentralized structured storage
system. ACM SIGOPS Oper. Syst.
Rev 2, 44 (2010), 35–40.

 15. Leis, V., Kemper, A., Neumann, T.
The adaptive radix tree: ARTful
indexing for main-memory databases.
In Proceedings of ICDE’13 (2013),
IEEE, 38–49.

 16. O’Neil, P., Cheng, E., Gawlick, D.,
O’Neil, E. The log-structured merge-
tree (LSM-tree). Acta Inform. 4, 33
(1996), 351–385.

 17. Rhea, S., Wang, E., Wong, E., Atkins,
E., Storer, N. LittleTable: A time-
series database and its uses. In
Proceedings of SIGMOD’17 (2017),
ACM, 125–138.

 18. Sears, R., Ramakrishnan, R. bLSM: A
general purpose log structured merge
tree. In Proceedings of SIGMOD’12
(2012), ACM, 217–228.

 19. Zhang, H., Andersen, D.G., Pavlo,
A., Kaminsky, M., Ma, L., Shen, R.
Reducing the storage overhead of
main-memory OLTP databases with
hybrid indexes. In Proceedings of
SIGMOD’16 (2016), ACM, 1567–1581.

 20. Zhang, H., Lim, H., Leis, V., Andersen,
D.G., Kaminsky, M., Keeton, K., Pavlo,
A. SuRF: Practical range query
filtering with fast succinct tries. In © 2021 ACM 0001-0782/21/4 $15.00

References
Proceedings of SIGMOD’18 (2018),
ACM, 323–336.

 21. Zhou, D., Andersen, D.G., Kaminsky,
M. Space-efficient, highperformance

rank and select structures on
uncompressed bit sequences. In
Proceedings of SEA’13 (2013),
Springer, 151–163.

Huanchen Zhang, Hyeontaek Lim,
David G. Andersen, and Andrew Pavlo
({huanche1, hl, dga, pavlo}@cs.cmu.edu),
Carnegie Mellon University, Pittsburgh,
PA, USA.

Viktor Leis (viktor.leis@uni-jena.de),
Friedrich Schiller University, Jena,
Germany.

Michael Kaminsky (kaminsky@cs.cmu.
edu) BrdgAI, Pittsburgh, PA, USA.

Kimberly Keeton (kimberly.keeton@hpe.
com), Hewlett Packard Labs, Palo Alto,
CA, USA.

