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Abstract
We present the Succinct Range Filter (SuRF), a fast and 
compact data structure for approximate membership tests. 
Unlike traditional Bloom filters, SuRF supports both single- 
key lookups and common range queries, such as range 
counts. SuRF is based on a new data structure called the 
Fast Succinct Trie (FST) that matches the performance of 
state-of-the-art order-preserving indexes, while consuming 
only 10 bits per trie node—a space close to the minimum 
required by information theory. Our experiments show that 
SuRF speeds up range queries in a widely used database 
storage engine by up to 5×.

1. INTRODUCTION
Write-optimized log-structured merge (LSM) trees16 are 
popular low-level storage engines for general-purpose 
databases that provide fast writes1, 14, 18 and ingest-abun-
dant DBMSs such as time-series databases.5, 17 One of their 
main challenges for fast query processing is that items 
could reside in different immutable files (SSTables) from 
all levels. Item retrieval in these systems may therefore 
incur multiple expensive disk I/Os.16, 18

Many LSM tree-based systems use Bloom filters to “guard” 
on-disk files to reduce the number of unnecessary I/Os2, 3, 17, 

18: they read an on-disk file only when the associated in-mem-
ory Bloom filter indicates that the query item may exist in the  
file. Bloom filters are a good match for this task. First, 
Bloom filters are fast and small enough to reside in mem-
ory. Second, Bloom filters answer approximate member-
ship tests with “one-sided” errors—if the querying item 
is a member, the filter is guaranteed to return true; other-
wise, the filter will likely return false, but may incur a false 
positive.

Although Bloom filters are useful for single-key lookups 
(“Is key 50 in the SSTable?”), they cannot handle range que-
ries (“Are there keys between 40 and 60 in the SSTable?”). 
With only Bloom filters, an LSM tree-based storage engine 
still needs to read additional disk blocks for range queries. 
Alternatively, one could maintain an auxiliary index, such 
as a B+Tree, to accelerate range queries, but the memory 
cost would be significant. To partly address the high I/O 
cost of range queries, LSM tree-based designs often use 
prefix Bloom filters to optimize certain fixed-prefix queries 
(e.g., “where email starts with com.foo@”),2, 11, 17 despite 
their inflexibility for more general range queries.

To address these limitations, we present the Succinct 
Range Filter (SuRF), a fast and compact data structure that 
provides exact-match filtering, range filtering, and approx-
imate range counts. Like Bloom filters, SuRF guarantees 
one-sided errors for point and range membership tests. 
SuRF can trade between false positive rate and memory 
consumption, and this trade-off is tunable for point and 
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range queries semi-independently.
SuRF is built upon a new space-efficient data structure 

called the Fast Succinct Trie (FST). It performs compara-
bly to or better than state-of-the-art uncompressed index 
structures for both integer and string workloads. FST con-
sumes only 10 bits per trie node, which is close to the infor-
mation-theoretic lower bound.

The key insight in SuRF is to transform the FST into an 
approximate (range) membership filter by removing levels 
of the trie and replacing them with some number of suffix 
bits. The number of such bits (either from the key itself or 
from a hash of the key—as we discuss later in the paper) 
trades space for decreased false positives.

We evaluate SuRF via microbenchmarks and as a Bloom 
filter replacement in RocksDB—a widely-used database 
storage engine.2 Our experiments on a 100GB time-series 
dataset show that replacing the Bloom filters with SuRFs 
of the same filter size reduces I/O. This speeds up closed-
range queries (i.e., with an upper bound) by up to 5× com-
pared to the original implementation, with a modest cost 
on the worst-case point query throughput due to slightly 
higher false positive rate. One can eliminate this perfor-
mance gap by increasing the size of SuRFs by a few bits per 
key.

2. FAST SUCCINCT TRIES
The core data structure in SuRF is the Fast Succinct Trie 
(FST). FST is a space-efficient, static trie that answers point 
and range queries. FST is 4–15× faster than earlier succinct 
tries,6, 12 achieving performance comparable to or better 
than the state-of-the-art pointer-based indexes.8, 15, 19

FST’s design is based on the observation that the upper 
levels of a trie comprise few nodes but incur many accesses. 
The lower levels comprise the majority of nodes, but are 
relatively “colder.” We therefore encode the lower levels of 
the trie using the succinct LOUDS-Sparse scheme to guar-
antee the overall space-efficiency of the data structure. 
Here, LOUDS stands for the Level-Ordered Unary Degree 
Sequence.13 By contrast, we encode the upper levels using 
a fast bitmap-based encoding scheme, called LOUDS-
Dense, in which a child node search requires only one array 
lookup, choosing performance over space.

For the rest of the section, we assume that the trie maps 
the keys to fixed-length values. We also assume that the trie 
has a fanout of 256 (i.e., one byte per level).

http://dx.doi.org/10.1145/3450262
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2.2 LOUDS-Dense
As shown in the top half of Figure 1, LOUDS-Dense 
encodes each trie node using three bitmaps of size 256 
and a byte-sequence to hold the values. The encoding fol-
lows the level order.

The first bitmap (D-Labels) records the branch-
ing labels for each node. Specifically, the ith bit in the 
bitmap (0 ≤ i ≤ 255) indicates whether the node has a 
branch with label i. For example, the root node in Figure 
1 has three outgoing branches labeled f, s, and t. The 
D-Labels bitmap thus sets the 102nd (f), 115th (s), and 
116th (t) bits and clears the rest.

The second bitmap (D-HasChild) indicates whether a 
branch points to a subtrie or terminates (i.e., points to the 
value or the branch does not exist). Taking the root node in 
Figure 1 as an example, the f and the t branches continue 
with subtries, while the s branch terminates with a value. 
In this case, the D-HasChild bitmap only sets the 102nd (f) 
and 116th (t) bits for the node.

The third bitmap (D-IsPrefixKey) includes only one bit 
per node to indicate whether the prefix that leads to the 
node is also a valid key. The same case is handled by the 
special byte 0×FF in LOUDS-Sparse.

The final byte-sequence (D-Values) is organized the same 
way as S-Values in LOUDS-Sparse.

Tree navigation in LOUDS-Dense also uses the rank & 
select primitives. Given a position pos in D-Labels, to move 
to the child node: 256 × rank(D-HasChild, pos); to move 
to the parent: select(D-HasChild, ëpos/256û); to access the 
value: rank(D-Labels, pos) - rank(D-HasChild, pos) + rank(D- 
IsPrefixKey, ëpos/256û) - 1.

LOUDS-Dense is faster than LOUDS-Sparse because (1) 
label search within a node requires only one lookup in the 
bitmap rather than a binary search and (2) move to child 
only computes a rank in one bit-vector instead of a rank 
and a select on different bit-vectors.

2.3 FST and operations
FST is a hybrid trie in which the upper levels are encoded 
with LOUDS-Dense and the lower levels with LOUDS-Sparse. 
The dividing point between the upper and lower levels is 
tunable to trade performance and space. By default, we 

2.1 LOUDS-Sparse
LOUDS-Sparse encodes the trie nodes in the level order 
using four byte-/bit-sequences, as shown in the lower half 
of Figure 1.

The first byte-sequence, S-Labels, records all the branch-
ing labels for each trie node. As an example, the second 
node at level 2 in Figure 1 has three branches. S-Labels 
includes its labels r, s, and t in order. We denote the case 
where the prefix leading to a node is also a valid key using 
the special byte 0×FF1 at the beginning of the node. For 
example, in Figure 1, the second node at level 3 has ‘fas’ 
as its incoming prefix. As ‘fas’ itself is also a key stored in 
the trie, the node adds 0×FF to S-Labels as the first byte. 
Because the special byte always appears at the beginning 
of a node, it can be distinguished from the real 0×FF label.

The second bit-sequence (S-HasChild) includes one bit 
for each byte in S-Labels to indicate whether a child branch 
continues (i.e., points to a subtrie) or terminates (i.e., points 
to a value). Taking the rightmost node at level 2 in Figure 1 
as an example, because the branch labeled i points to a sub-
trie, the corresponding bit in S-HasChild is set. The branch 
labeled y, however, points to a value, and its S-HasChild bit 
is cleared.

The third bit-sequence (S-LOUDS) denotes node bound-
aries: if a label is the first in a node, its S-LOUDS bit is set. 
Otherwise, the bit is cleared. For example, in Figure 1, the 
second node at level 2 has three branches and is encoded 
as 100 in S-LOUDS.

The final byte-sequence (D-Values) stores the fixed-
length values (e.g., pointers) mapped by the keys. The val-
ues are concatenated in the level order—same as the three 
bitmaps.

Tree navigation relies on the fast rank & select primi-
tives. Given a bit-vector, rank(i) counts the number of 1s 
up to position i, while select(i) returns the position of the 
ith 1. Modern rank & select implementations such as21 
achieve constant time by using lookup tables to store a 
sampling of precomputed results so that they only need to 
count between the samples. We denote rank/select over bit-
sequence bs on position pos to be rank/select(bs, pos).

Let pos be the current bit position in S-Labels. Assume 
that S-HasChild[pos] = 1, indicating that the branch at pos 
points to a child node. To move to the child node, we first 
compute the child node’s rank in the overall level-ordered 
node list: r = rank(S-HasChild, pos) + 1. Because every node 
only has its first bit set in S-LOUDS, we can use select(S-
LOUDS, r) to find the position of that child node.

To move to the parent node, we first get the rank r of the 
current node by r = rank(S-LOUDS, pos) because the num-
ber of ones in S-LOUDS indicates the number of nodes. 
We then find the node that contains the (r – 1)th children: 
select(S-HasChild, r – 1).

Given S-HasChild[pos] = 0, to access the associated value, 
we compute its index in S-Values. Because every cleared bit 
in S-HasChild has a value, there are pos - rank(S-HasChild, 
pos) values before pos.

Figure 1. An example fast succinct trie. The upper and lower levels 
of the trie are encoded using LOUDS-Dense and LOUDS-Sparse, 
respectively. “$” represents the character whose ASCII number is 
O×FF. It is used to indicate the situation where the prefix leading to a 
node is also a valid key.
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keep the size ratio R between LOUDS-Dense and LOUDS-
Sparse to be less than 1:64 in favor of the space-efficiency 
provided by LOUDS-Sparse.

FST supports four basic operations efficiently:

• ExactKeySearch(key): Return the value of key if key 
exists (or NULL otherwise).

• LowerBound(key): Return an iterator pointing to the 
key-value pair (k, v) where k is the smallest in lexico-
graphical order satisfying k ≥ key.

• MoveToNext(iter): Move the iterator to the next key.
• Count(lowKey, highKey): Return the number of keys 

contained in the range (lowKey, highKey).

A point query (i.e., ExactKeySearch) in FST works by 
first searching the LOUDS-Dense levels. If the search does 
not terminate, it continues into the LOUDS-Sparse levels. 
The high-level searching steps at each level are similar 
regardless of the encoding mechanism: First, search the 
current node’s label sequence for the target key byte. If 
the key byte does not exist, terminate and return NULL. 
Otherwise, check the corresponding bit in the HasChild 
bit-sequence. If the bit is set, compute the child node’s 
starting position in the label sequence and continue to 
the next level. Otherwise, return the corresponding value 
in the value sequence.

LowerBound uses a high-level algorithm similar to the 
point query implementation. Instead of an exact match, 
the algorithm searches the current node’s label sequence 
for the smallest label that is greater than or equal to the 
search byte of that level. The algorithm may recursively 
move up to the parent node if the search hits node bound-
aries. Once such label L is found, the algorithm moves iter-
ator to the left-most key in the subtrie rooted at L.

We include per-level cursors in the iterator to record a 
trace from root to leaf (i.e., the per-level positions in the 
label sequence) for the current key. Using the cursors, 
range scans (MoveToNext) in FST are implemented effi-
ciently. Each level cursor is initialized once through a 
“move-to-child” call from its upper-level cursor. After 
that, scan operations at this level only involve cursor 
movement, which is cache-friendly and fast. Our evalua-
tion shows that range queries in FST are even faster than 
pointer-based tries.

For Count, the algorithm first performs MoveToNext on 
both boundaries and obtains two iterators. It extends each 
iterator down the trie and sets the cursor at each level to 
the position of the smallest leaf key that is greater than the 
current key, until the two iterators meet or reach the maxi-
mum trie height. The algorithm then counts the number of 
leaf nodes at each level between the two iterators by com-
puting the difference of their ranks on the D-HasChild/S-
HasChild bit-vector. The sum of those counts is returned.

Finally, FST can be built using a single scan over a sorted 
key-value list.

2.4 Space analysis
A tree representation is “succinct” if the space taken by the 
representation is close to the information-theoretic lower 

bound, which is the minimum number of bits needed to  
distinguish any object in a set. The information-theo-
retic lower bound of a trie of degree k is approximately  
n(k log2 k – (k – 1) log2 (k – 1) ) bits (9.44 bits when k = 256 in 
our case).7

Given an n-node trie, LOUDS-Sparse uses 8n bits for 
S-Labels, n bits for S-HasChild, and n bits for S-LOUDS, 
a total of 10n bits (plus auxiliary bits for rank & select). 
Although the space taken by LOUDS-Sparse is close to the 
information-theoretic lower bound, technically, LOUDS-
Sparse can only be categorized as compact rather than 
succinct in a finer classification scheme because LOUDS-
Sparse takes O(Z) space (despite the small multiplier) 
instead of Z + o(Z).

LOUDS-Dense’s size is restricted by the size ratio R to 
ensure that it does not affect the overall space efficiency 
of FST. Notably, LOUDS-Dense does not always take more 
space than LOUDS-Sparse: if a node’s fanout is larger than 
51, it takes fewer bits to encode the node using the for-
mer instead of the latter. As such nodes are common in a 
trie’s upper levels, adding LOUDS-Dense on top of LOUDS-
Sparse often improves space efficiency.

3. SUCCINCT RANGE FILTERS
In building SuRF using FST, our goal was to balance a low 
false positive rate with the memory required by the filter. 
The key idea is to use a truncated trie, that is, to remove 
lower levels of the trie and replace them with suffix bits 
extracted from the key. We introduce three variations of 
SuRF. We describe their properties and how they guarantee 
one-sided errors. The current SuRF design is static, requir-
ing a full rebuild to insert new keys.

3.1 Basic SuRF
FST is a trie-based index structure that stores complete 
keys. As a filter, FST is 100% accurate; the downside, how-
ever, is that the full structure can be big. In many applica-
tions, filters must fit in memory to guard access to a data 
structure stored on slower storage. These applications can-
not afford the space for complete keys and thus must trade 
accuracy for space.

The basic version of SuRF (SuRF-Base) stores the mini-
mum-length key prefixes such that it can uniquely identify 
each key. Specifically, SuRF-Base only stores an additional 
byte for each key beyond the shared prefixes. Figure 2 
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If ks ≤ s, the iterator points to the current key; otherwise, 
it advances to the next key in the trie.

Although SuRF-Real improves FPR for both point and 
range queries, the trade-off is that using real keys for suf-
fix bits cannot provide as good FPR as using hashed bits 
because the distribution correlation between the stored 
keys and the query keys weakens the distinguishability of 
the real suffix bits.

4. SURF MICROBENCHMARKS
In this section, we evaluate SuRF using in-memory micro-
benchmarks to provide a comprehensive understanding 
of the filter’s strengths and weaknesses.

The underlying data structure FST is evaluated sepa-
rately in our original paper.20 We found that compared to 
state-of-the-art pointer-based indexes such as B+tree8 and 
the Adaptive Radix Tree (ART),15 FST matches their per-
formance while being an order-of-magnitude smaller. We 
also compared FST against other succinct trie alternatives6, 

12 and showed that FST is 4–15× faster and is also smaller 
than these previous solutions.

4.1 Experiment setup
We use the YCSB9 workloads C and E to generate point 
and range queries. We test two representative key types: 
64-bit random integers generated by YCSB and email 
addresses (host reversed, e.g., “com.domain@foo”) 
drawn from a real-world dataset (average length = 22 
bytes, max length =129 bytes).

The three most important metrics with which to evalu-
ate SuRF are false positive rate (FPR), performance, and 
space. The datasets are 100M 64-bit random integer keys 
and 25M email keys. In the experiments, we first construct 
the filter under test using half of the dataset selected at 
random. We then execute 10M point or range queries on 
the filter. The querying keys (K) are drawn from the entire 
dataset according to YCSB workload C so that roughly 
50% of the queries return false. For 64-bit random integer 
keys, the range query is [K + 237, K + 238] where 46% of the 
queries return true. For email keys, the range query is [K, 
K (with last byte ++)] (e.g., [org.acm@sigmod, org.acm@
sigmoe]) where 52% of the queries return true.

4.2 False positive rate
Figure 3 shows the false positive rate (FPR) comparison 
between SuRF variants and the Bloom filter by varying the 
size of the filters. The Bloom filter only appears in point 
queries. Note that SuRF-Base consumes 14 (instead of 10) 
bits per key for the email key workloads. This is because 
email keys share longer prefixes, which increases the num-
ber of internal nodes in SuRF.

For point queries, the Bloom filter has lower FPR than 
the same-sized SuRF variants in most cases, although 
SuRF-Hash catches up quickly as the number of bits per 
key increases because every hash bit added cuts the FPR by 
half. Real suffix bits in SuRF-Real are generally less effec-
tive than hash bits for point queries. For range queries, 
only SuRF-Real benefits from increasing filter size because 
the hash suffixes in SuRF-Hash do not provide ordering 

shows an example. Instead of storing the full keys (‘SIGAI’, 
‘SIGMOD’, ‘SIGOPS’), SuRF-Base truncates the full trie by 
including only the shared prefix (‘SIG’) and one more byte 
for each key (‘C’, ‘M’, ‘O’).

Pruning the trie in this way affects both filter space and 
accuracy. Unlike Bloom filters where the keys are hashed, 
the trie shape of SuRF-Base depends on the distribution 
of the stored keys. Hence, there is no theoretical upper 
bound of the size of SuRF-Base. Empirically, however, 
SuRF-Base uses only 10 bits per key (BPK) for 64-bit ran-
dom integers and 14 BPK for emails. The intuition is that 
the trie built by SuRF-Base usually has an average fanout 
F > 2: there are less than twice as many nodes as keys. 
Because FST (LOUDS-Sparse to be precise) uses 10 bits 
to encode a trie node, the size of SuRF-Base is less than  
20 BPK for F > 2.

Filter accuracy is measured by the false positive rate 
(FPR). A false positive in SuRF-Base occurs when the 
prefix of the nonexistent query key coincides with a 
stored key prefix. For example, in Figure 2, querying key 
‘SIGMETRICS’ will cause a false positive in SuRF-Base. FPR 
in SuRF-Base depends on the distributions of the stored 
and query keys. Our results in Section 4.2 show that SuRF-
Base incurs a 4% FPR for integer keys and a 25% FPR for 
email keys. To improve FPR, we include two forms of key 
suffixes described here to allow SuRF to better distinguish 
between key prefixes.

3.2 SuRF with hashed key suffixes
As shown in Figure 2, SuRF with hashed key suffixes 
(SuRF-Hash) adds a few hash bits per key to SuRF-Base 
to reduce its FPR. Let H be the hash function. For each 
key K, SuRF-Hash stores the n (n is fixed) least-signifi-
cant bits of H(K) in FST’s value array (which is empty in 
SuRF-Base). When a key (K′) lookup reaches a leaf node, 
SuRF-Hash extracts the n least-significant bits of H (K′) 
and performs an equality check against the stored hash 
bits associated with the leaf node. Using n hash bits per 
key guarantees that the point query FPR of SuRF-Hash 
is less than 2–n (the partial hash collision probabil-
ity). Experiments in Section 4.2 show that SuRF-Hash 
requires only 2–4 hash bits to reach 1% FPR.

The extra bits in SuRF-Hash do not help range queries 
because they do not provide ordering information on keys.

3.3 SuRF with real key suffixes
Instead of hash bits, SuRF with real key suffixes (SuRF-
Real) stores the n key bits immediately following the 
stored prefix of a key. Figure 2 shows an example when 
n = 8. SuRF-Real includes the next character for each key 
(‘I’, ‘O’, ‘P’) to improve the distinguishability of the keys: 
for example, querying ‘SIGMETRICS’ no longer causes 
a false positive. Unlike in SuRF-Hash, both point and 
range queries benefit from the real suffix bits to reduce 
false positives. For point queries, the real suffix bits are 
used the same way as the hashed suffix bits. For range 
queries (e.g., move to the next key > K), when reaching a 
leaf node, SuRF-Real compares the stored suffix bits s to 
key bits ks of the query key at the corresponding position. 
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Some high-level takeaways from the experiments are 
as follows: (1) SuRF can perform range filtering while the 
Bloom filter cannot. (2) If the target application only needs 
point query filtering with moderate FPR requirements, the 
Bloom filter is usually a better choice than SuRF. (3) For 
point queries, SuRF-Hash can provide similar theoretical 
guarantees on FPR as the Bloom filter, while the FPR for 
SuRF-Real depends on the key distribution.

5. EXAMPLE APPLICATION: ROCKSDB
We integrated SuRF with RocksDB as a replacement for 
its Bloom filter. Incoming writes go into the RocksDB’s 
MemTable. When the MemTable is full (e.g., exceeds 4MB), 
the engine sorts it and then converts it into an SSTable at 
level 0. An SSTable contains sorted key-value pairs and is 
divided into fixed-length blocks matching the smallest disk 
access units. To locate blocks, RocksDB stores the “restart-
ing point” (a string that is ≥ the last key in the current 
block and < the first key in the next block) for each block as 
the block index. When the size of a level hits a threshold, 
RocksDB selects an SSTable at this level and merges it into 
the next-level SSTables that have overlapping key ranges. 
This process is called compaction. The keys are globally 
sorted across SSTables for each level ≥ 1. This property 
ensures that an entry lookup reads at most one SSTable per 
level for levels ≥ 1.

We modified RocksDB’s point (Get) and range (Seek) 
query implementations to use SuRF. For Get(key), RocksDB 
uses SuRF exactly like the Bloom filter where at each level, it 
locates the candidate SSTable(s) and block(s) via the block 
indexes. For each candidate SSTable, RocksDB queries the 

information. The shape of the SuRF-Real curves in the 
email key workloads (i.e., the latter four suffix bits are more 
effective in recognizing false positives than the earlier four) 
is because of ASCII encoding of characters.

We also observe that SuRF variants have higher FPRs 
for the email key workloads. This is because the email keys 
in the dataset are very similar (i.e., the key distribution is 
dense). Two email keys often differ by the last byte, or one 
may be a prefix of the other. If one of the keys is represented 
in the filter and the other key is not, querying the missing 
key on SuRF-Base is likely to produce false positives. The 
high FPR for SuRF-Base is significantly lowered by adding 
suffix bits, as shown in the figures.

4.3 Performance
Figure 4 shows the throughput comparison. The SuRF vari-
ants operate at a speed comparable to the Bloom filter for 
the 64-bit integer key workloads, thanks to the hybrid encod-
ings and other performance optimizations such as vector-
ized label search and memory prefetching. For email keys, 
the SuRF variants are slower than the Bloom filter because 
of the overhead of searching/traversing the long prefixes 
in the trie. The Bloom filter’s throughput decreases as the 
number of bits per key gets larger because larger Bloom fil-
ters require more hash probes. The throughput of the SuRF 
variants does not suffer from increasing the number of suf-
fix bits because as long as the suffix length is less than 64 
bits, checking with the suffix bits only involves one memory 
access and one integer comparison. Range queries in SuRF 
are slower than point queries because every query needs to 
walk down to the bottom of the trie (no early exit).

Figure 3. SuRF false positive rate. False positive rate comparison between SuRF variants and the Bloom filter (lower is better).
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in-memory filter first and fetches the SSTable block only if 
the filter result is positive.

To implement Seek(lk, hk), RocksDB first collects the 
candidate SSTables from all levels by searching for lk 
in the block indexes. Absent SuRFs, RocksDB examines 
each candidate SSTable and fetches the block contain-
ing the smallest key that is ≥ lk. RocksDB then finds the 
global smallest key K ≥ lk among those candidate keys. 
If K ≤ hk, the query succeeds; otherwise, the query returns 
empty.

With SuRFs, however, instead of fetching the actual 
blocks, RocksDB obtains the candidate key for each 
SSTable by performing a LowerBound query on its SuRF 
to avoid the one I/O per SSTable. If the query succeeds, 
RocksDB fetches exactly one block from the selected 
SSTable that contains the global minimum K. If the query 
returns empty, no I/O is involved. Because SuRF only 
stores key prefixes, the system must perform additional 
checks to break ties and to prevent false positives. The 
additional checks are described in our original paper.20 
Despite those potential checks, using SuRF in RocksDB 
reduces the average I/Os per Seek(lk, hk) query.

5.1 Evaluation setup
Time-series databases often use RocksDB or similar LSM-
tree designs as their storage engine.5,17 We thus create a 
synthetic RocksDB benchmark to model a time-series 
dataset generated from distributed sensors for our end-
to-end performance measurements. We simulated 2k sen-
sors to record events. The key for each event is a 128-bit 
value comprised of a 64-bit timestamp followed by a 64-bit 

sensor ID. The associated value in the record is 1KB long. 
The occurrence of each event detected by each sensor fol-
lows a Poisson distribution with an expected frequency of 
one every 0.2 s. Each sensor operates for 10K seconds and 
records ∼50K events. The starting timestamp for each 
sensor is randomly generated within the first 0.2 s. The 
total size of the raw records is approximately 100GB.

Our testing framework supports the following queries:

• Point Query: Given a timestamp and a sensor ID, 
return the record if there is an event.

• Range Query: Given a time range, determine whether 
any events happened during that time period. If yes, 
return an iterator pointing to the earliest event in the 
range.

Our test machine has an Intel Core i7-6770HQ CPU, 32 
GB RAM, and an Intel 540s 480GB SSD. We configured2 
RocksDB according to Facebook’s recommendations.4,11 
The resulting RocksDB instance has four levels and uses 
52GB of disk space.

We create four instances of RocksDB with different fil-
ter options: no filter, Bloom filter, SuRF-Hash, and SuRF-
Real. We configure each filter to use an equal amount of 
memory. Bloom filters use 14 bits per key. The equivalent-
sized SuRF-Hash and SuRF-Real include a 4-bit suffix per 
key. We first warm the cache with 1 million uniformly-dis-
tributed point queries to existing keys so that every SSTable 
is touched roughly 1000 times, and the block indexes and 

Figure 4. SuRF performance. Performance comparison between SuRF variants and the Bloom filter (higher is better).
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2 Block cache size = 1 B; OS page cache ≤3GB.
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5.3 Range query results
The main benefit of using SuRF is speeding up range que-
ries. Figure 6 shows the throughput and I/O count for range 
queries. On the x-axis, we control the percentage of queries 
with empty results by varying the range size. The Poisson 
distribution of events from all sensors has an expected fre-
quency of one per λ = 105 ns. For an interval with length R, 
the probability that the range contains no event is given by 
e–R/λ. Therefore, for a target percentage (P) of Closed-Seek 
queries with empty results, we set range size to . 
For example, for 50%, the range size is 69310 ns.

As shown in Figure 6, the Bloom filter does not help 
range queries and is equivalent to having no filter. Using 
SuRF-Real, however, speeds up the query by 5× when 99% 
of the queries return empty. Again, I/O count dominates 
performance. Without a range filter, every query must 
fetch candidate SSTable blocks from each level to deter-
mine whether there are keys in the range. Using the SuRF 
variants, however, avoids many of the unnecessary I/
Os; RocksDB performs a read to the SSTable block con-
taining that minimum key only when the minimum key 
returned by the filters at each level falls into the querying 
range. Using SuRF-Real is more effective than SuRF-Hash 
because the real suffix bits help reduce false positives at 
the range boundaries.

6. CONCLUSION
This paper introduces the SuRF filter structure, which sup-
ports approximate membership tests for single keys and 
ranges. SuRF is built upon a new succinct data structure, 
called the Fast Succinct Trie (FST), that requires only 10 
bits per node to encode the trie. FST is engineered to have 
performance equivalent to state-of-the-art pointer-based 
indexes. SuRF is memory efficient, and its space and false 
positive rates can be tuned by choosing different amounts 
of suffix bits to include. Replacing the Bloom filters with 
SuRFs of the same size in RocksDB substantially reduced I/O 
and improved throughput for range queries with a modest 
cost on the worst-case point query throughput. We believe, 
therefore, that SuRF is a promising technique for optimiz-
ing future storage systems, and more. SuRF’s source code is 
publicly available at https://github.com/efficient/SuRF. 

filters are cached. After the warm-up, both RocksDB’s block 
cache and the OS page cache are full. We then execute 50k 
application queries, recording the DBMS’s end-to-end 
throughput and I/O counts. The query keys (for range que-
ries, the starting keys) are randomly generated: a random 
timestamp within the operated time range + a randomly 
picked sensor ID. The reported numbers are the average of 
three runs.

5.2 Point query results
Figure 5 shows the result for point queries. Because the 
query keys are randomly generated, almost all queries return 
false. The query performance is dominated by the I/O count: 
they are inversely proportional. Excluding Level 0, each 
point query is expected to access three SSTables, one from 
each level (Level 1, 2, 3). Without filters, point queries incur 
approximately 1.5 I/Os per operation according to Figure 5, 
which means that the entire Level 1 and approximately half 
of Level 2 are likely cached. This is representative of typical 
RocksDB configurations where the last two levels are not 
cached in memory.10

Using filters in point queries reduces I/O because they 
prevent unnecessary block retrieval. Using SuRF-Hash or 
SuRF-Real is slower than using the Bloom filter because 
the 4-bit suffix does not reduce false positives as low as the 
Bloom filter configuration (refer to Section 4.2). SuRF-Real 
provides similar benefit to SuRF-Hash because the key dis-
tribution is sparse.
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