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The growth in data storage capacity and the increasing demands for high performance have created several

challenges for concurrent indexing structures. One promising solution is the learned index, which uses a

learning-based approach to fit the distribution of stored data and predictively locate target keys, significantly

improving lookup performance. Despite their advantages, prevailing learned indexes exhibit constraints and

encounter issues of scalability on multi-core data storage.

This paper introduces SALI, the Scalable Adaptive Learned Index framework, which incorporates two

strategies aimed at achieving high scalability, improving efficiency, and enhancing the robustness of the

learned index. Firstly, a set of node-evolving strategies is defined to enable the learned index to adapt to

various workload skews and enhance its concurrency performance in such scenarios. Secondly, a lightweight

strategy is proposed to maintain statistical information within the learned index, with the goal of further

improving the scalability of the index. Furthermore, to validate their effectiveness, SALI applied the two

strategies mentioned above to the learned index structure that utilizes fine-grained write locks, known as LIPP.
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The experimental results have demonstrated that SALI significantly enhances the insertion throughput with

64 threads by an average of 2.04× compared to the second-best learned index. Furthermore, SALI accomplishes

a lookup throughput similar to that of LIPP+.
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1 INTRODUCTION
With the exponential growth of the data volume today, efficient indexing data structures are crucial

for a big data system to support timely information retrieval. To improve the performance and

memory efficiency of traditional tree-based indexes, Kraska et al. introduced a learned index, called

the Recursive Model Indexes (RMI) that uses machine learning models to replace the internal nodes

of a B+tree [15, 20]. An outstanding problem of the original RMI is that it is static: inserting or

updating a key in the index requires a significant portion of the data structure to rebuild, thus

limiting the use cases of the learned index.

Previous work has proposed two strategies to address the updatability issue of learned indexes.

The first (i.e., the buffer-based strategy) is to accommodate new entries in separate insert buffers

first to amortize the index reconstruction cost. XIndex [36] and FINEdex [21] fall into this category.

The other strategy (i.e., the model-based strategy) adopted by ALEX [3] and LIPP [39] is to reserve

slot gaps within nodes to handle new entries with an in-place insertion. Upon an insert collision

(i.e., the mapped slot is already occupied), ALEX reorganizes the node by shifting the existing

entries, while LIPP utilizes a chaining scheme, creating a new node for the corresponding slot to

transform the last-mile search problem into a sub-tree traversal problem.

We found, however, that none of the above index designs scale at a high concurrency. We

performed an experiment where we insert 200 million random integer keys into a learned index,

with a varying number of threads each time. Figure 1 shows the results. Note that the number of

threads in the grey area of the figure is larger than the number of hardware threads of the machine.

This is common in practice as a database/key-value server typically handles a large number of user

connections simultaneously.

As shown in Figure 1, indexes with a buffer-based strategy (i.e., XIndex and FINEdex) exhibit

inferior base performance and worse scalability compared to those with a model-based strategy (i.e.,

ALEX+ and LIPP+
1
). This shows that a larger margin of prediction errors prevents scaling

because the concurrent “last mile” searches saturate the memory bandwidth quickly which becomes

the system’s bottleneck [38].

The problem is solved in LIPP+ where each position prediction is accurate (i.e., no “last mile”

search). However, LIPP+ requires maintaining statistics, such as access counts and collision counts,

in each node to trigger node retraining to prevent performance degradation. These per-node
counters create high contention among threads and cause severe cacheline ping-pong [38].

The model-based strategy in ALEX+ requires shifting existing entries upon an insert collision.

Therefore, ALEX+ must acquire coarse-grained write locks for this operation. As the number of

threads increases, more and more threads are blocked, waiting for those exclusive locks.

In this paper, we propose SALI, the Scalable Adaptive Learned Index framework based on

probability models to solve the scalability issues in existing solutions. To solve the scalability

1
ALEX+ and LIPP+ are concurrent implementations of ALEX and LIPP, respectively [38].
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Fig. 1. Write-only performance of state-of-the-art learned indexes on the FACE dataset [11]. The evaluation
is conducted on a two-socket machine with two 16-core CPUs.

bottleneck of maintaining per-node statistics, we developed lightweight probability models that can

trigger node retraining and other structural evolving operations in SALI with accurate timing (as if

the timing were determined by accurate statistics). In addition, we developed a set of node-evolving

strategies, including expanding an insert-heavy node to contain more gaps, flattening the tree

structure for frequently-accessed nodes, and compacting the rarely-touched nodes to save memory.

SALI applies these node-evolving strategies adaptively according to the probability models so

that it can self-adjust to changing workloads while maintaining excellent scalability. Finally, SALI

adopts the learned index structure that utilizes fine-grained write locks, i.e., LIPP+, to validate the

effectiveness of the aforementioned two strategies. Note that the lightweight probability models

and node-evolving strategies are highly versatile and can be applied to various index scenarios, as

detailed in Section 5.

Our microbenchmark with real-world data sets shows that SALI improves the insertion through-

put with 64 threads by 2.04× on average compared to the second-best learned index, i.e., ALEX+,

while achieving a lookup throughput comparable to LIPP+.

Wemake three primary contributions in this paper. Firstly, we proposed SALI, a high-concurrency

learned index framework designed to improve the scalability of learned indexes. Secondly, we

defined a set of node-evolving strategies in addition to model retraining to allow the learned index

to self-adapt to different workload skews. Thirdly, we replaced the per-node statistics in existing

learned indexes with lightweight probability models to remove the scalability bottleneck of statistics

maintenance while keeping the timing accuracy of node retraining/evolving. Finally, we proved

the effectiveness of the proposed approaches by showing that SALI outperforms the SOTA learned

indexes under high concurrency.

The rest of this paper is organized as follows. Section 2 summarizes the basics of learned indexes

and further motivates the scalability problem. Section 3 introduces the structure of SALI with

an emphasis on the node-evolving strategies and the probability models. Section 4 presents our

experimental results. Section 5 discusses the generalizability of the node-evolving strategies and

the probability models, as well as the limitations of SALI, followed by a related work discussion in

Section 6 Section 7 concludes the paper. The source code of this paper has been made available at

https://github.com/YunWorkshop/SALI.

2 BACKGROUND ANDMOTIVATION
2.1 The principle of learned indexes
The core concept of the learned index is to employ a set of learningmodels to estimate the cumulative

distribution function (CDF) of the stored data [29], allowing for the prediction of the data’s storage

location, as depicted in the CDF diagram on Figure 2.

Figure 2 shows the scheme for the learned index structure. Each node, or only the lowest leaf

nodes, stores the slope and intercept of the linear function [3, 5, 8, 15, 21, 36, 39]. Each segment
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Fig. 2. The scheme of the learned index.

corresponds to a linear model, which is responsible for the approximate position of the target key.

The index segments correspond to linear models that estimate the target key’s position, eliminating

the need for multiple indirect search operations in traditional tree-based indexes. This approach

has the potential to improve indexed lookup performance significantly.

2.2 Scalable Evaluation of Learned Index Structures

Currently, learned indexes demonstrate good performance in single-threaded environments.

However, their scalability remains limited [38]. In this part, our objective is to conduct a thor-

ough investigation into the factors that contribute to the concurrent performance bottlenecks

in existing learned indexes. To achieve this, we begin by introducing the insertion strategies

employed in learned indexes, along with their corresponding index structures, as these design

choices significantly influence the concurrent performance of the indexes. Additionally, we con-

duct a comprehensive evaluation of the index structures and identify their limitations in terms of

scalability.

2.2.1 The insertion strategies of learned indexes. In a concurrent scenario, the blocking of index

operations is primarily due to the insertion of new keys. Understanding the current insertion

strategies is essential for enhancing index scalability. Thus, we present the insertion strategies as

follows.

Strategy 1: Scholars try to design a buffer-based insert strategy, i.e., off-site insertion, on learned

indexes to implement insert operations [5, 8, 21, 36]. As shown in Figure 3, the core idea of the

buffer-based strategy is to create a buffer structure for insertion [5, 8, 21, 36]. When the buffer is

full, its keys must be merged with those in the upper segment and transformed into a new linear

model. Furthermore, this structure suffers from significant errors due to the intensive storage of

keys (no gap) [10].

Strategy 2: The core idea of the model-based insert strategy, i.e., in-place insertion, involves

reserving gaps in the nodes [3, 39]. If the linear model predicts that the target position of the

inserted key is a gap, it is directly inserted. However, if the slot with the key already exists, there

are two existing conflict resolution strategies:

• Solution 1: One potential solution for resolving conflicts is to adopt the “shift” method [3]. As

shown in Figure 3, this method involves shifting the existing conflicted key and its adjacent keys to

the nearest gap by one slot, allowing the target key to be inserted into the target position. However,

the process of key movement can introduce errors.

• Solution 2: Another solution to resolve conflicts is to adopt the “chain” method [39]. As shown

in Figure 3, if a key already exists at the target position of the newly inserted key, a new node is
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Fig. 3. The updatable strategies in learned indexes.

Fig. 4. The in-depth evaluation of performance on the COVID dataset [38], where the workload follows the
uniform distribution. The evaluation is conducted on a two-socket machine with two 16-core CPUs.

created downward to accommodate the conflicting key. This conflict resolution approach does not

involve moving any data, thus avoiding potential lookup errors (precise lookup).

2.2.2 In-depth analysis of these strategies. This part will provide an in-depth analysis of the index

structures corresponding to the insertion strategies mentioned. Building upon the GRE [38], we

further performed an in-depth experimental analysis of existing learned indexes and identified the

scalability problems in their designs. Our objective is not to compare them with each other but to

highlight the scalability bottleneck.

Figure 4 illustrates the performance for the three structures. The buffer-based structure is denoted

by 𝑏𝑢𝑓 . (i.e., the structure of XIndex), theModel-based strategy with the Shift method is denoted by

𝑀𝑜𝑑.+𝑆 (i.e., the structure of ALEX), theModel-based strategy with theChain method is denoted by

𝑀𝑜𝑑.+𝐶 (i.e., the structure of LIPP). The notation𝑀𝑜𝑑.+𝐶 + 𝑠𝑡𝑎𝑡 . is used to represent the𝑀𝑜𝑑.+𝐶
approach along with the maintenance of statistics to track index deterioration. Note that except

for𝑀𝑜𝑑. +𝐶 + 𝑠𝑡𝑎𝑡 ., we disabled the statistics maintenance and local adjustment functions with the

purpose of analyzing the impact of the structures themselves on index concurrency performance.

Figure 4(a) displays that both 𝑏𝑢𝑓 . and 𝑀𝑜𝑑. + 𝑆 exhibit poor scalability due to lookup errors,

which can impact both the lookup and insert performance. Note that, the average search error of

𝑏𝑢𝑓 . is higher compared to𝑀𝑜𝑑. + 𝑆 [10].

Observation 1: Improved concurrency performance can be achieved through the utiliza-
tion of precise lookups. The insertion strategy employed byMod.+C guarantees error-free
generation even during the insertion process.

Figure 4(b) depicts the insertion performance for the three structures. The poor performance of

𝑏𝑢𝑓 . is attributed to a lookup error and an off-site insertion method [10].𝑀𝑜𝑑.+𝑆 has three reasons
for its poor performance: (1) Severe lookup errors; (2) Significant write amplification and frequent

“last mile” lookup lead to exhaustion of memory bandwidth and affect concurrency performance [38].

This amplification occurs because the moving key and the inserted target key need to be written

into the node together; (3) During insertion, coarse-grained locks can easily cause thread blocking.

The shift method leads to significant correlations between keys in the entire node, necessitating
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Table 1. The limited scalability of existing schemes.

Learned Basic performance Concurrency Evolving

index No errors In-place insert Fine lock l-w statistics ability

RMI[15] × × × × ×
FITing[8] × × × × ×
PGM[5] × × × × ×
ALEX+[3] × √ × √ ×
LIPP+[39]

√ √ √ × ×
XIndex[36] × × √ × ×
FINEdex[21] × × √ × ×

SALI
√ √ √ √ √

the locking of the entire node during insertion to ensure accuracy. Moreover, the thread blocking

issue is more pronounced in the gray area in Figure 4(b), where threads frequently access nodes

locked by coarse-grained locks and release CPU time slices, resulting in invalid operations and

exacerbating performance degradation. In fact, the coarse-grained locks have already caused a

slowdown in concurrent performance growth under 64 threads, which may not have been apparent

due to the influence of other scalability factors, e.g., lookup error.

Observation 2: Mod.+C facilitates fine-grained locks, i.e., one slot, no search errors, and
in-place insertion, which enables its good insertion scalability.

The scalability of𝑀𝑜𝑑. +𝐶 + 𝑠𝑡𝑎𝑡 . is severely impacted, depicted in Figure 4(b), primarily due to

the high level of contention and cache-line ping-pong that arises from maintaining statistics in

a concurrent scenario, which is consistent with the findings of Wongkham et al. [38]. Figure 4(c)

shows that𝑀𝑜𝑑. +𝐶 saves 0.8x-5x the average time compared to𝑀𝑜𝑑. + 𝑆 with different datasets.

Observation 3: Maintaining statistics within Mod.+C renders the index non-scalable.
Note that the scalability issue is not attributed to the structure ofMod.+C, but rather to
the absence of a lightweight statistical approach.
Observation 4: The chain method exhibits significantly shorter operation times com-

pared to the shift method.

2.3 The Scalable Learned Index Requirements
In consideration of scalability, we have further summarized the potential limitations of several SOTA

learned indexes in Table 1, taking into account factors such as prediction accuracy (𝑁𝑜 𝑒𝑟𝑟𝑜𝑟𝑠), insert

strategy (𝐼𝑛-𝑝𝑙𝑎𝑐𝑒𝑖𝑛𝑠𝑒𝑟𝑡 ), lock granularity (𝐹𝑖𝑛𝑒 𝑙𝑜𝑐𝑘), lightweight statistics support (𝑙-𝑤 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠),

etc. A checkmark denotes support for the given factor, while a cross sign indicates the lack of

support.

We believe that designing a learned index requires prioritizing concurrency control and
robustness as first-class considerations, adopting a holistic approach to ensure consistency
in design choices. Therefore, considering the challenges associated with learned indexes, we

propose that a more scalable learned index should simultaneously address the following dimensions:

2.3.1 Efficient concurrency.
1) Maintaining statistics should barely impact scalability. To enable efficient insertion perfor-

mance, updatable learned indexes must track statistical information that reflects the degradation

of the index structure over time due to new insertions. This information is crucial for perform-

ing necessary retraining operations. However, maintaining these cumulative statistics jointly by

the insertion thread can potentially lead to blocking, becoming a scalability bottleneck for some
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SALI: A Scalable Adaptive Learned Index Framework based on Probability Models 258:7

state-of-the-art learned indexes [38]. Therefore, there is an urgent need to develop a lightweight

methodology to maintain statistics.

2) Designing effective index structures for concurrent scenarios. In concurrent scenarios, insertion

performance in learned indexes can be hampered by blocking that often arises when multiple

insertion threads work together to uphold key consistency in a single local structure, particularly

under skewed workloads. To mitigate this issue, reducing the manipulation of already-stored keys

during the insertion of new ones can help minimize lock granularity and lower the risk of thread

blocking [21].

2.3.2 Adaptive ability.
The learned index exhibits suboptimal performance under skewed insertion workloads compared

to uniform workloads. The lack of workload-aware adaptive adjustment capability is the primary

cause of this deficiency. Therefore, it is critical for a learned index to possess the adaptive capacity to

guarantee its robustness in concurrent scenarios. In addition, the learned index lacks an optimization

adjustment strategy for the lookup operation, which hinders its ability to maximize lookup efficiency

in concurrent scenarios. Furthermore, learned indexes have yet to fully capitalize on opportunities

for significantly reducing index space costs under skewed workloads [1].

2.3.3 Low overheads of basic performance.
1) Efficient lookup. Achieving high lookup performance in learned indexes typically hinges

on minimizing prediction errors for lookups, as substantial errors can lead to many “last mile”

operations in a concurrent scenario. These operations consume additional memory bandwidth and

negatively impact concurrent performance [38].

2) Efficient insert. Adopting the model-based strategy (i.e., the in-place insertion) rather than the

buffer-based strategy (i.e., the off-site insertion), can significantly enhance the insert performance

of learned indexes by reserving gaps in each node (see Section 2.2).

3 SALI: A PROBABILITY-BASED EVOLVABLE LEARNED INDEX FRAMEWORK
This section introduces the SALI framework, which addresses the concerns and requirements

discussed in Section 1 and 3, and facilitates the efficient scalability of learned indexes. Specifically,

Section 3.1 introduces the overall architecture of SALI, including the architecture built upon𝑀𝑜𝑑.+𝐶
(i.e., the structure of LIPP) (columns 2-4 of Table 1). In Section 3.2, we proposed an adaptive evolving

(adjustment) strategy to further improve the robustness of the learned index under skewed and

uniform workloads (columns 6 of Table 1). Section 3.3 designs a probability-based lightweight

method to maintain statistics of different roles at a meager cost. This method solves the concurrency

performance bottleneck problem caused by the existing high contention statistics method (columns

5 of Table 1).

3.1 Overview
3.1.1 SALI framework. This part introduces the structure of the SALI framework, which encom-

passes the introduction of a probability-based lightweight methodology for statistics maintenance

and the implementation of an adaptive evolving strategy. Due to the common occurrence of skewed

workloads in real-world environments, it is advisable to apply different evolution strategies to

nodes with varying degrees of read-write hotness. These strategies can serve as alternatives to the

traditional retraining method, as they are specifically designed to enhance concurrent performance

and reduce the overhead of index space (Section 3.2). Furthermore, SALI utilizes a probability-based

lightweight method to maintain statistics while keeping the timing accuracy of node retrain-

ing/evolving without blocking insertion operations from multiple threads, unlike the traditional

approach of globally maintaining statistics (Section 3.3).
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Fig. 5. The structure of SALI.

Specifically, the SALI framework consists of two phases in Figure 5. In the first phase, we

calculate the probabilities 1 for each node that requires evolving during lookup/insert operations

to improve performance. Calculating andmaintaining probability models is a lightweight alternative

to maintaining statistics, which does not cause high contention and thread blocking issues (see

Section 3.3). On the contrary, the traditional manner globally maintains statistics 4 , leading to

high contention among threads and limiting index scalability. In the second phase, we perform

evolving operations on nodes that are classified as hot 2 or cold 3 . Note that our evolving

strategy encompasses the functionality of retraining operations in the traditional manner 5 (refer

to Section 3.2).

3.1.2 The structure of SALI builds upon the 𝑀𝑜𝑑. +𝐶 . Based on our observation in Sections 2.2,

we have determined that the structure 𝑀𝑜𝑑. +𝐶 , i.e., the structure of LIPP, exhibits the highest
scalability among the options considered. Consequently, we have opted to implement and evaluate

our novel strategies utilizing𝑀𝑜𝑑.+𝐶 as the underlying index structure. Note that in the subsequent

context, SALI refers to the structure built upon𝑀𝑜𝑑. +𝐶 , as illustrated in Figure 6. Section 3.1.3

and 3.1.4 will introduce the operations of SALI and the coordination between different operations.

3.1.3 Operations of SALI.
1) Lookup operation: SALI employs a linear model to accurately predict the position of the lookup

key, except for cold nodes with errors. The search is considered successful during a query if the key

contained in the prediction slot is equal to the target key (Algorithm 1, line 4-6). Otherwise, it does

not exist (Algorithm 1, line 7-9). However, if the predicted slot is a pointer, the search continues in

the node pointed to by the pointer (Algorithm 1, line 10-22). At this stage, the type of node needs

to be determined. For hot lookup nodes, SIMD [12] is utilized to locate the node containing the

target key, followed by a linear model search in this node (see Figure 7(b) and Algorithm 1, line

12-15). In contrast, for cold nodes, where the linear model prediction has an error, a binary search

method covers the “last mile” (see Figure 7(c) and Algorithm 1, line 16-18). The rest of the nodes

are searched directly using the linear model (Algorithm 1, line 19-20).
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Fig. 6. The structure of SALI builds upon the𝑀𝑜𝑑. +𝐶 .

2) Insert operation: Initially, the read operation algorithm is used to identify the appropriate

location for inserting the key. If the key already exists at this position, a new storage space is

created below, and the key is inserted in this space to handle conflicts (Algorithm 2, lines 5-9). On

the other hand, if the insertion position is a gap, the key is inserted directly (Algorithm 2, lines 2-4).

3) Evolving operation: See Section 3.2 for details.

4) Building operation: SALI adopts the structure of LIPP and therefore utilizes the construction

algorithm of LIPP, i.e., fastest minimum conflict degree (FMCD) [39]. In the SALI and the realm

of the learned index, other linear and even non-linear approximation algorithms are crucial and

intriguing avenues for future research.

3.1.4 Coordination between different operations. Reads can proceed without acquiring the lock as

long as SALI verifies that the item being read (i.e., data or child pointer) has not been modified.

SALI employs an optimistic locking mechanism for the target slot during concurrent writing.

Since the SALI’s structure ensures that only fine-grained locks are necessary to guarantee mutually

exclusive writes, write conflicts are rare under a uniform workload.

To prevent uncontrollable tail latency that may arise from prolonged evolution, we restrict the

evolution process to nodes with less than one million keys. Our observations indicate that indexes

with higher write rates require periodic rebuilding to maintain good performance. Consequently,

during periods of relative inactivity in the storage system, the entire index structure can be rebuilt,

resulting in a flatter SALI structure and improved performance.

Furthermore, when the node is evolving, we use the Read-Copy-Update (RCU)mechanism [31, 35]

to prevent the blocking of read operations, i.e., reading the old version of data. Following the

evolution operation, SALI utilizes the RCU to ensure all threads can access the new model. RCU

barrier is a synchronization mechanism designed for concurrent systems, which enables all readers

to access the new space in shared memory after evolving operation. In addition, to ensure that

child nodes being read are not deleted during the evolution process, SALI utilizes the epoch-based

reclamation [6] that guarantees the safety of node pointers in a concurrent scenario.

3.2 Evolving Strategies
A more comprehensive adaptation strategy than simply retraining is required to adapt the learned

index structure under various workloads. This part presents the design of an evolving strategy
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Algorithm 1 SALI Lookup Operation

Require: Target key: 𝑘 .
1: function 𝑙𝑜𝑜𝑘𝑢𝑝_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑘)
2: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝑟𝑜𝑜𝑡 .𝑙𝑖𝑛𝑒𝑎𝑟 (𝑘)
3: while (TRUE) do
4: if 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑡𝑦𝑝𝑒 == 𝑘𝑒𝑦 then
5: if 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑑𝑎𝑡𝑎 == 𝑘 then
6: return (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑑𝑎𝑡𝑎)

7: else
8: return (𝑛𝑜𝑡 𝑓 𝑜𝑢𝑛𝑑)

9: end if
10: else ⊲ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑡𝑦𝑝𝑒 == 𝑝𝑜𝑖𝑛𝑡𝑒𝑟

11: 𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑑𝑎𝑡𝑎

12: if (𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑡𝑦𝑝𝑒 == ℎ𝑜𝑡_𝑙𝑜𝑜𝑘𝑢𝑝) then
13: 𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑙𝑖𝑛𝑒𝑎𝑟 ← 𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑆𝐼𝑀𝐷 (𝑘)
14: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑙𝑖𝑛𝑒𝑎𝑟 (𝑘)
15: end if
16: if (𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑡𝑦𝑝𝑒 == 𝑐𝑜𝑜𝑙𝑖𝑛𝑔) then
17: 𝑝𝑟𝑒𝑑_𝑠𝑙𝑜𝑡_𝑝𝑟𝑒 ← 𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑙𝑖𝑛𝑒𝑎𝑟 (𝑘)
18: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝑏𝑖_𝑠𝑒𝑎𝑟𝑐ℎ(𝑝𝑟𝑒𝑑_𝑠𝑙𝑜𝑡_𝑝𝑟𝑒, 𝑘)
19: else ⊲ 𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑡𝑦𝑝𝑒 == 𝑛𝑜𝑚𝑎𝑙

20: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒𝑠_𝑚𝑒𝑡𝑎.𝑙𝑖𝑛𝑒𝑎𝑟 (𝑘)
21: end if
22: end if
23: end while
24: end function

Algorithm 2 SALI Insertion Operation

Require: Target key: 𝑘 .
1: function 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑘)
2: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝑙𝑜𝑜𝑘𝑢𝑝_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑘)
3: if (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 = 𝑁𝑈𝐿𝐿) then
4: insert(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡, 𝑘)

5: else ⊲ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑡𝑦𝑝𝑒 == 𝑘𝑒𝑦

6: 𝑜𝑙𝑑_𝑘 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑑𝑎𝑡𝑎

7: 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑡𝑦𝑝𝑒

8: 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 .𝑑𝑎𝑡𝑎

9: insert(𝑛𝑒𝑤_𝑛𝑜𝑑𝑒, 𝑜𝑙𝑑_𝑘, 𝑘)

10: end if
11: end function

that focuses on three aspects to enhance the concurrency performance of the learned index. Note

that this part only covers the evolving strategy, while the conditions and timing for triggering the

evolving process will be discussed in Section 3.3. Next, we will briefly introduce the difference

between evolving and retraining:

a) Retraining is a passive adjustment strategy used in updatable learned indexes to maintain their

performance. Its main features are: 1) it is driven by the deterioration of the index structure and

cannot sense different workloads; 2) it is triggered only by insert operations optimized exclusively

for improving insert performance; and 3) it does not change the index structure in essence.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 258. Publication date: December 2023.



SALI: A Scalable Adaptive Learned Index Framework based on Probability Models 258:11

Fig. 7. The evolving strategies.

b) Evolving, proposed in this paper, is a novel concept in learned indexes that includes the

retraining function and improves the index’s adjustment mechanism in different dimensions. Its

main features are: 1) it is an active adjustment strategy that perceives and is driven by the workload

to improve index performance further; 2) it can be triggered by any operation (e.g., read); and 3) it

can “evolve” into a new structure type that is suitable for the current workload for both improving

the read and insert performance.

3.2.1 The insert triggers the evolving operation. Most retraining methods, including SALI, involve

expanding the target node or its subtree. This expansion creates more gaps that can be used for

inserting keys, thereby improving the overall insertion performance. As shown in Figure 7(a), the

gap array within the data node is increased from two to five to accommodate more keys. To achieve

this, the FMCD algorithm [39] is used to expand the node by inputting all of the keys in the node

and the desired space size after expansion (see Algorithm 3, lines 1-4).

However, a fixed retraining expansion factor may not be sufficient to handle sudden increases in

local insertions under a skewed workload, which can lead to a high number of insert conflicts in

concurrent scenarios. To address this, the expansion factor should be adaptively adjusted based

on the insertion rate to determine the optimal expansion size. Specifically, more gaps are reserved

to enhance the insertion performance when the insertion rate increases. For more information,

please refer to Equation (1) below:

𝑛.𝑒𝑥𝑝𝑎𝑛𝑑_𝑠𝑖𝑧𝑒 =

{
𝛾 × 𝑛.𝑠𝑝𝑒𝑒𝑑𝑡

𝑛.𝑠𝑝𝑒𝑒𝑑𝑡−1
× 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚, 𝑛.𝑠𝑝𝑒𝑒𝑑𝑡

𝑛.𝑠𝑝𝑒𝑒𝑑𝑡−1
≥ 1

𝛾 × 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚, 𝑛.𝑠𝑝𝑒𝑒𝑑𝑡
𝑛.𝑠𝑝𝑒𝑒𝑑𝑡−1

< 1

(1)

Among them, 𝑛 refers to a specific node, 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 represents the size of the current node.

𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 represents the accumulation rate at time 𝑡 , indicating the insertion rate of new keys

into a node at that specific time. This rate is determined by a probabilistic model, as described in

Section 3.3. In Equation (1), a higher speed leads to a more significant expansion rate in the current

operation, meaning that more gaps will be reserved compared to the previous expansion operation.

The expansion factor 𝛾 is defined as follows:

𝛾 =


𝜃, 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 ≥ 1𝑀

2𝜃, 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 ≥ 100𝐾

5𝜃, 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 < 100𝐾

(2)

Equation (2) reveals that nodes of varying sizes should have different expansion factors. Equation

(1) demonstrates that smaller nodes (𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚), need a more significant expansion factor to

achieve adequate expansion. E.g., if the number of slots in two nodes is 4 and 8, respectively, both

nodes would need to expand by 32 units, requiring expansion factors of 8 and 4, respectively. The
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Algorithm 3 SALI Insertion Evolving

Require: Sequence 𝑘𝑒𝑦𝑠{𝐾1, · · · , 𝐾𝑛} in a 𝑁𝑜𝑑𝑒 and its 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 .

1: function 𝐼𝑛𝑠𝑒𝑟𝑡_𝑁𝑜𝑑𝑒_𝐸𝑣𝑜𝑙𝑣𝑖𝑛𝑔(𝑘𝑒𝑦𝑠)
2: 𝑠𝑒𝑔𝑠.𝑚𝑜𝑑𝑒𝑙 ← 𝐹𝑀𝐶𝐷 (𝑘𝑒𝑦𝑠, 𝑛.𝑒𝑥𝑝𝑎𝑛𝑑_𝑠𝑖𝑧𝑒)
3: 𝑓 𝑎𝑡ℎ𝑒𝑟_𝑠𝑙𝑜𝑡 link 𝑠𝑒𝑔𝑠.𝑚𝑜𝑑𝑒𝑙
4: end function

Algorithm 4 SALI Lookup Evolving

Require: Sequence 𝑘𝑒𝑦𝑠{𝐾1, · · · , 𝐾𝑛} in a 𝑁𝑜𝑑𝑒 and its 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 .

1: function 𝐻𝑜𝑡_𝐿𝑜𝑜𝑘𝑢𝑝_𝑁𝑜𝑑𝑒_𝐸𝑣𝑜𝑙𝑣𝑖𝑛𝑔(𝑘𝑒𝑦𝑠)
2: 𝑔𝑎𝑝_𝑎𝑟𝑟𝑎𝑦 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑔𝑎𝑝 (𝑘𝑒𝑦𝑠)
3: 𝑔𝑎𝑝_𝑎𝑟𝑟𝑎𝑦 ← 𝑇𝑜𝑝 − 𝑘 (𝑔𝑎𝑝_𝑎𝑟𝑟𝑎𝑦)
4: for (𝑔𝑎𝑝_𝑎𝑟𝑟𝑎𝑦.𝑠𝑖𝑧𝑒 > 0) do
5: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑘𝑒𝑦 ← 𝑠𝑝𝑙𝑖𝑡 (𝑔𝑎𝑝_𝑎𝑟𝑟𝑎𝑦)
6: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑙𝑖𝑛𝑒𝑎𝑟 ← 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛_𝑎𝑙𝑔(𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑘𝑒𝑦)
7: 𝑠𝑒𝑔𝑠 ← 𝑠𝑒𝑔𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑘𝑒𝑦, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑙𝑖𝑛𝑒𝑎𝑟 )
8: end for
9: 𝑠𝑒𝑔𝑠.𝑙𝑖𝑛𝑒.𝑠𝑙𝑜𝑝𝑒 ← 𝑠𝑒𝑔𝑠.𝑙𝑖𝑛𝑒.𝑠𝑙𝑜𝑝𝑒 × 𝑛.𝑒𝑥𝑝𝑎𝑛𝑑_𝑠𝑖𝑧𝑒
10: 𝑠𝑒𝑔𝑠.𝑚𝑜𝑑𝑒𝑙 ← 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑘𝑒𝑦, 𝑠𝑒𝑔𝑠.𝑙𝑖𝑛𝑒𝑎𝑟 )
11: 𝑓 𝑎𝑡ℎ𝑒𝑟_𝑠𝑙𝑜𝑡 link 𝑠𝑒𝑔𝑠.𝑚𝑜𝑑𝑒𝑙
12: end function

expansion base factor, denoted by 𝜃 , can be dynamically adjusted based on varying workloads. For

our evaluation, we set 𝜃 to its default value of 1.

3.2.2 The lookup triggers the evolving operation. We have developed an evolving strategy for hot

read nodes to enhance concurrent read performance under skewed workloads further. Note that if

the workload is uniform, SALI can either choose to disable this evolving function or treat every

node as a hot read node. As depicted in Figure 7(b), we have designed a flat structure for hot reads

nodes and their subtrees. This structure flattens the nodes and promotes their levels as much as

possible. Unlike the initial state where a single linear segment is linked under one slot, multiple

segments can be linked under one slot after evolving. This flattening strategy reduces the tree

height of the local hot structure. Furthermore, SALI can use SIMD instructions during lookup to

quickly find which node the target key belongs to in the same layer.

We have developed a method to reconstruct structure, which has the effect of flattening the node

and its subtrees (Algorithm 4). First, we sort all the nodes’ keys, calculate the gap between two

adjacent keys, and select the 𝑡𝑜𝑝 − 𝑘 gap (Algorithm 4, line 2). Then, we split into 𝑘 − 1 segments

based on these gaps and generate a linear model using the least squares algorithm (Algorithm 4,

lines 3-8). According to Equation (1), we expand the slope of the linear model by a corresponding

multiple to expand the corresponding space (Algorithm 4, line 9). Reserving the gap enables the

CDF of the stored data to fit more easily on a line and improve lookup performance. Finally, we

calculate the positions of all keys and insert them using the linear model after the slope expands. If

there are still conflicts, we handle them similarly to SALI’s insertion conflict (Algorithm 4, line 10).

3.2.3 Identify the cold node and trigger evolving operation. We developed a cold node-compression

evolving strategy to optimize space usage in SALI under skewed workloads. In addition to initially

creating the SALI index structure, we added a cooling pool space as illustrated in Figure 8. During

SALI construction or each evolving operation, each node in the index has a 10% probability of being

chosen for inclusion in the cooling pool. When a node undergoes an evolving operation, that node,
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Fig. 8. The framework for identifying cold nodes.

Algorithm 5 SALI Cold Node Evolving

Require: Sequence 𝑘𝑒𝑦𝑠{𝐾1, · · · , 𝐾𝑛} in a 𝑁𝑜𝑑𝑒 and its 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 .

1: function 𝐶𝑜𝑜𝑙𝑖𝑛𝑔_𝑁𝑜𝑑𝑒_𝐸𝑣𝑜𝑙𝑣𝑖𝑛𝑔(𝑘𝑒𝑦𝑠)
2: 𝑠𝑒𝑔𝑠.𝑚𝑜𝑑𝑒𝑙 ← 𝑃𝐿𝐴_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑘𝑒𝑦𝑠)
3: 𝑓 𝑎𝑡ℎ𝑒𝑟_𝑠𝑙𝑜𝑡 link 𝑠𝑒𝑔𝑠.𝑚𝑜𝑑𝑒𝑙
4: end function

its subtrees, and all nodes above it are removed from the cooling pool. At this stage, the nodes

that remain in the cooling pool are considered temporarily cold. We took inspiration for cold node

design from [17].

Once each evolving operation finishes, SALI checks whether the user-acceptable index size upper

limit has been exceeded. If it has, SALI selects the earliest-added node in the cooling pool for the

compress operation and deletes it from the cooling pool until the space is reduced to meet the

user-acceptable index size.

For cold nodes, we implemented a space compression strategy. As depicted in Figure 7(c), we

cancel the reserved gaps to save space for cold nodes and their subtrees. We use the PLA algorithm

in PGM [5] to linearly approximate all keys in a cold node and generate the corresponding segment

(Algorithm 5).

3.3 Probability Model
In order to ensure optimum performance, it is imperative that learned indexes monitor degradation

statistics to initiate adjusting when necessary. Unfortunately, existing high-contention statistics

techniques severely limit the scalability of learned indexes. Moreover, the implementation of the

complete adjustment strategy, i.e., evolving presented in Section 3.2, demands additional statistics,

resulting in intolerable overhead in a concurrent scenario.

To address this issue, we propose a probability-based strategy that employs a lightweight ap-

proach to maintain various statistics in SALI to trigger evolving operations at a minimal cost.

Note that the fundamental concept behind the probability models is to leverage probabilities in

simulating the accumulation of information. For example, when simulating the cumulative number

of inserted keys within a specified timeframe, we design a probability model based on the insertion

rate and insertion time. Furthermore, the geometric distribution can be utilized to simulate the

accumulation of information such as insertion conflicts.
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3.3.1 Probability model for triggering insert evolution. Most retrains are triggered by the deteriora-

tion of learned indexes caused by insert operations. However, from an overall perspective of index

performance, adjustments should be considered based on whether the local structure, following its

adjustment, will continue to see the high-frequency insertion of new keys. Such consideration can

make the adjustment operation more advantageous, which achieves high amortized performance

benefits.

Therefore, two conditions need to be considered to trigger insertion evolution: 1) The assessment

of the frequency of new key insertions in a node and its subtree is crucial in determining whether

an adequate number of keys are being inserted. The node’s performance gains are higher after

evolving if the frequency of new key insertions is high. 2) The escalation of conflicts within a node

alongside the gradual increase in the number of newly inserted keys represents a critical aspect as

it can be used to indicate the deterioration of the index. Identifying deteriorating nodes is crucial,

as only evolving such nodes will significantly improve performance.

Note that when a node satisfies only condition 1) and not condition 2), evolving is unnecessary

because the insertion performance remains satisfactory. When a node satisfies only condition 2)

and not condition 1), the amortized performance benefit is low, and the evolving operation entails

overhead costs. Therefore, satisfying both conditions simultaneously is a prerequisite for triggering

the insert evolving operation. In the subsequent section, we provide a comprehensive analysis of

the above two doctrinal conditions.

Condition (1): the node accommodates a sufficient number of newly inserted keys. To
determine if this condition is met, we need to satisfy the following equation:

𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚

𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚
≥ 𝛽 (3)

𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚 refers to the number of keys contained in the node at the end of the current

insertion operation. 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 indicates the number of keys in the node when the last “evolving”

operation was performed. The tolerance coefficient 𝛽 specifies the maximum amount of data that

can be inserted into the node before it needs to be adjusted. As a general guideline, we set 𝛽 = 2.

Since each insertion thread must maintain the cumulative variable 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚, conflicts may

arise. To address this issue, we propose a lightweight probability model.

First, we multiply the insertion rate by the timestamp difference to get the total amount of

inserted new keys during this period and put it into Equation (3) to get:

[𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑡𝑖𝑚𝑒)] + 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚
𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚

≥ 𝛽 (4)

The variable 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑡𝑖𝑚𝑒 represents the timestamp corresponding to state 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚, while

𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 represents the current timestamp. The estimated insertion rate, denoted as𝑛.𝑠𝑝𝑒𝑒𝑑𝑡
2
,

is calculated using Equation (5), which takes the quotient of the total number of insertions and

the difference in timestamp from the previous period. Therefore, we can estimate the value of

𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚 using 𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑡𝑖𝑚𝑒)] + 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 at time 𝑡 .

𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚
𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑡𝑖𝑚𝑒 = 𝑛.𝑠𝑝𝑒𝑒𝑑𝑡+1 (5)

Additionally, we define the cumulative probability within a node as 𝑃𝑎𝑐𝑐 (see Equation (6)),

as obtained through the transformation of Equation (4). When 𝑃𝑎𝑐𝑐 = 1, condition (1) is met.

When 𝑃𝑎𝑐𝑐 < 1, we determine whether the evolving adjustment is necessary based on a Bernoulli

experiment. If the experiment is successful, condition (1) is met; otherwise, it is not met.

2
We assign a specific value to 𝑠𝑝𝑒𝑒𝑑1.
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𝑃𝑎𝑐𝑐 =
[𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑡𝑖𝑚𝑒)]

(𝛽 − 1) × 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 (6)

Note that the calculation of Equation (5) may result in 𝑛.𝑠𝑝𝑒𝑒𝑑 being zero. In such cases, the

cumulative probability computed by Equation (6) will always be zero, preventing any further

changes in 𝑛.𝑠𝑝𝑒𝑒𝑑 . To resolve this issue, we introduce a reconciling variable 𝜖 in the numerator of

Equation (6). Expressly, we set 𝜖 = 𝑝𝑎𝑡ℎ_𝑠𝑖𝑧𝑒/1000, where 𝑝𝑎𝑡ℎ_𝑠𝑖𝑧𝑒 denotes the path length from

the root node to the current node. The final Equation of the cumulative probability model, Equation

(7), determines whether the node accommodates a sufficient number of newly inserted keys.

𝑃𝑎𝑐𝑐 =
[𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑡𝑖𝑚𝑒)] + 𝜖

(𝛽 − 1) × 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 (7)

Condition (2): the node accommodates an adequate number of conflicts.We calculate the

ratio of insertion conflicts to the total number of insertions:

𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚

𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 ≥ 𝛼 (8)

The variable 𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚 denotes the total number of conflicts in the node resulting from

the insertions between the last evolving operation and the current state. Meanwhile, the conflict

tolerance coefficient is denoted by 𝛼 , which we typically set to 0.1 as a rule of thumb. Similar to

Condition (1), in a concurrent scenario, we need to develop a probability model to estimate the

number of conflicts to avoid blocking threads according to Equation (8).

For an evolving operation to occur, the node must have sufficient newly inserted keys. Therefore,

we use (𝛽 − 1) × 𝑛.𝑏𝑢𝑙𝑖𝑑_𝑛𝑢𝑚 to estimate the number of new insertions according to Equation (3)

when there are enough conflicts to cause evolution:

(𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑢𝑚 − 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚) ≈ (𝛽 − 1) × 𝑛.𝑏𝑢𝑙𝑖𝑑_𝑛𝑢𝑚 (9)

By substituting Equation (9) into Equation (8), we obtain Equation (10):

𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚 ≥ 𝛼 × (𝛽 − 1) × 𝑛.𝑏𝑢𝑙𝑖𝑑_𝑛𝑢𝑚 (10)

When an insertion causes a conflict, we set the conflict adjustment probability to 𝑃𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 . Using

the expectation of the geometric distribution, we can estimate that the expected number of conflicts

that trigger evolving after the conflict is
1

𝑃𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡
, i.e.,

1

𝑃𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡
≈ 𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚. Thus, whenever a

conflict occurs in a node, we trigger the probability model specified in Equation (11) to determine

if the model deteriorates and requires evolving.

𝑃𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 =
1

𝛼 × (𝛽 − 1) × 𝑛.𝑏𝑢𝑙𝑖𝑑_𝑛𝑢𝑚 (11)

Application in SALI: In SALI, we only compute probabilities when a conflict occurs to minimize

overhead. We determine whether 𝑃𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 is triggered; if so, we proceed to determine whether

𝑃𝑎𝑐𝑐 is also triggered. If both conditions are met, the evolving operation is necessary to adjust the

insertion structure of SALI.

3.3.2 Probability model for triggering lookup evolution. We define the probability that a target node

is identified as a hot read node due to a lookup operation, denoted as 𝑃ℎ𝑙 , that is a hyperparameter

that can be set to an appropriate value. Whenever the lookup operation encounters a node, we

can check whether 𝑃ℎ𝑙 is triggered for that node. If 𝑃ℎ𝑙 is triggered, we consider the node and its

subtree as a hot lookup structure.
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In addition to the probability 𝑃ℎ𝑙 , the following conditions for setting the read trigger probability

also need to be considered:

(1) The evolving operation has not been triggered by lookup operations on the node for a

prolonged period of time.

(2) The rate at which the node accumulates data (𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 ) through insertions is not slow.

For condition (1), if the last evolve operation of a node was triggered by a hot lookup, it means

that no insert operation has triggered the node to evolve since then, i.e., the node has not severely

deteriorated, and the number of new insertion keys are likely to be few. In this case, we can adjust

𝑃ℎ𝑙 to a smaller value to prevent frequent evolving, i.e., 𝑃ℎ𝑙 = 𝑃ℎ𝑙 ×𝜆, where 𝜆 is a penalty coefficient.

For condition (2), in addition to 𝑃ℎ𝑙 , we introduce the probability 𝑃𝑎𝑐𝑐 , as defined in Equation (7).

If a large number of new keys are inserted since the last evolving operation, it suggests that a new

round of evolving operations may be necessary.

Application in SALI:We generate a 𝑠𝑘𝑖𝑝_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 in each lookup thread-local, which maintains

the number of lookup operations. Upon execution of a lookup operation, the 𝑠𝑘𝑖𝑝_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is

incremented by 1. After every 10 lookup operations, a Bernoulli experiment is conducted to

determine whether 𝑃ℎ𝑙 is triggered. If 𝑃ℎ𝑙 is triggered, the system verifies whether 𝑃𝑎𝑐𝑐 is also

triggered. If 𝑃𝑎𝑐𝑐 is triggered, SALI proceeds with the evolving operation.

4 EVALUATION
This section conducts a comprehensive evaluation of SALI. Section 4.1 describes the experimental

setup. Section 4.2 compares SALI’s performance with that of several state-of-the-art concurrent

learned indexes and traditional indexes using various datasets and thread counts. Section 4.3

evaluates SALI under skewed workloads. Finally, Section 4.4 conducts an ablation study on SALI.

4.1 Experimental Setup
All experiments are conducted on a two-socket server with two 16-core Intel Xeon Gold 6242

@2.80GHz CPUs (hyper-threading to 64 threads) and 384GB of DRAM. We implemented SALI with

∼4k LOC of C++.

4.1.1 Baselines. We benchmarked SALI against six baselines. 1) Masstree [28], a hybrid index

structure of B+Tree and Radix Tree; 2) ART-OLC [19], an exemplary concurrency implementation

of the Adaptive Radix Tree (ART) [18]. 3) ALEX+ [38], an exemplary concurrency implementation

of the ALEX [3]. 4) LIPP+ [38], a concurrency implementation of the LIPP [39]. 5) XIndex [36], a first

attempt to design a concurrent learned index. 6) FINEdex [21], a fine-grained updated concurrent

learned index.

4.1.2 Datasets. We selected several real datasets from SOSD [29] and GRE [38] benchmarks.

• COVID: Tweet ID with tag COVID-19 [24] (Uniformly sampled).

• FACE: Facebook user ID [11].

• LIBIO: Repository ID from libraries.io [38].

• OSM: OpenStreetMap locations [29] (Uniformly sampled).

• GENOME: Pairs of locations on human chromosomes [34].

Note that according to paper [38], the OSM and GENOME datasets are considered to be of “hard”

difficulty for learned indexes, as fitting a Cumulative Distribution Function (CDF) on these datasets

is challenging. Relatively, fitting remaining datasets with a CDF is comparably easier.

4.1.3 Workloads. We design workloads to generate requests using the aforementioned datasets. To

achieve this, we randomly shuffle all 200 million keys for each dataset and issue insert and lookup

requests based on the following ratios:
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Fig. 9. The indexes scalability on write-only workloads. The grey area indicates that the threads number
exceeds the maximum logical cores number. Extended plots with all evaluations are available here: [9]

• Read-Only: Load all 200M keys and randomly search 800M.

• Read-Intensive (20% insert): Load 100M random keys and perform 80% search & 20% insert, i.e.,

insert all the remaining keys.

• Balanced (50% insert): Load 100M random keys and perform 50% search & 50% insert, i.e., insert

all the remaining keys.

•Write-Only: Load 100M keys and insert 100M keys.

• Hot-read-A (100% Read): Load 200M keys. Select 1/10 of these 200M (20M) as hot read keys and

execute five rounds of read operations on these 20M keys, i.e., 100M read operations.

• Hot-read-B (16% insert): Perform an additional insert operation of 20M keys based on the keys

from Hot-read-A.

• Hot-write (100% Insert): Randomly select one-eighth consecutive data in the 200M data as the

hot insert, and insert it after loading the remaining data.

We repeated 10 and 5 experiments for Hot-write and other workloads, respectively, excluding the

lowest and the highest measure, and reported the average of the results. Between each measurement

of experiments, we wiped caches and re-loaded the data to avoid intermediate results.

4.2 Overall Results
This section evaluates the SALI’s overall performance against the SOTA indexes that support

concurrency. In this experiment, uniformworkloads were used. To ensure fairness, SALI turns off the

judgment and evolution modules temporarily of hot read nodes but reserves the evolving operations

triggered by the insertion on SALI, as all indexes require maintaining statistical information and

performing retraining operations when inserting data.

4.2.1 Write-only workloads. Figure 9 shows the concurrent performance evaluation of various

learned indexes when executing the write-only workload on different datasets. The triggered

retraining is directly executed in the foreground by the thread responsible for triggering. These

threads are represented by the numbers specified on the x-axis. All indexes except LIPP+ benefit

from increasing threads, but performance drops when the number of threads exceeds the logical

thread count.

In easy datasets, namely COVID, LIBIO, and FACE, SALI performs better in terms of throughput

overall. Compared to the learned index ALEX+ and traditional index ART-OLC, SALI exhibits

the best scalability. ALEX+ and ART-OLC exhibit a sharp performance drop when the number of

threads exceeds 60, whereas SALI maintains a high and stable performance. In the COVID dataset,

SALI outperforms the best two baselines, i.e., ALEX+ and ART-OLC, by up to 47% and 73% at the

highest solution, respectively, and the advantage continues to expand beyond 60 threads.

In hard datasets, SALI outperforms other learned indexes by up to a factor of 2.5x to 10x, as SALI

can accurately fit complex CDF, so that its performance can match ART-OLC and still maintain
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Fig. 11. The indexes scalability on read-write workloads. Extended plots with all evaluations are available
here: [9]

performance even exceeding the number of logical threads, where, in contrast, the performance of

ART-OLC sharply declined.

It is noteworthy that ALEX+ and ART-OLC exhibit significant performance degradation when

threads exceed 60. This issue is due to the coarse-grained lock, resulting in severe thread blocking

when insertion (as discussed in Section 2.2).

Additionally, the buffer-based insert strategy used by XIndex and FINEdex results in a large

lookup error, and frequent “last mile” searches result in poor scalability. LIPP+ employs a high-

contend method for all nodes to statistic information, leading to severe blocking of insertion threads

and cache-line ping-pong, which complete loss of scalability in a concurrent scenario.

Fig. 10. The latency of indexes on write-only workloads.

Figure 10 shows the 99.9% tail latency

on FACE and OSM datasets. As threads

increase, ALEX+ and LIPP+ exhibit signif-

icant increases in tail latency. ALEX+ has

coarse-grained locks, which cause thread

blocking during insertion and retraining

operations, resulting in a significant in-

crease in tail latency. LIPP+ requires joint

maintenance of statistical information by

different threads, leading to an increase in

thread blocking and a significant increase

in tail latency. In contrast, the other indexes do not show noticeable increases, and SALI maintains

the lowest in most settings.

Insight 1: Concurrent insertion often faces three challenges: a) high-contend statistics
maintenance causing thread blocking; b) coarse-grained write locks leading to thread
blocking; c) write amplification and lookup errors causingmemory bandwidth exhaustion.
SALI efficiently addresses them, leading to exceptional scalability, especially with hard
datasets and a high number of threads.

4.2.2 Read-write workloads. The performance of different indexes under read-intensive and bal-

anced workloads is shown in Figure 11.

Figure 11(a,b) exhibit that SALI outperforms other indexes under read-intensive workloads,

especially in the easy dataset. Compared to ART-OLC and ALEX+, SALI improves the performance

by up to 37% and 55%, respectively, under 60 threads.

Figure 11(c,d) illustrate the performance under the balanced workload. SALI maintains high

scalability. Other indexes’ performance also exhibits similar to the read-intensive workloads.

Nevertheless, LIPP+ remains unscalable. And when the number of threads exceeds 60, the

performance of ALEX+ and ART-OLC degrades significantly. The aforementioned indicates that
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Fig. 12. The indexes scalability on read-only workloads. Extended plots with all evaluations are available
here: [9]

even with a low proportion of write operations (20% insert), the indexes experience a bottleneck

under ultra-high threading conditions.

In Figure 11(e), the tail latency of the index under the balanced workload is illustrated. Similar to

Figure 10, ALEX+ and LIPP+ exhibit higher tail latencies compared to the other indexes. However,

as the read ratio increases, the tail latency of both indexes decreases. Notably, SALI maintains

consistently low tail latency throughout.

Insight 2: SALI exhibits outstanding scalability under workloads that involve inser-
tion operations, even under hard datasets. Conversely, other indexes face scalability
bottlenecks, even with a low proportion of insert operations.

4.2.3 Read-only workloads. Figure 12 presents the evaluation of the read-only workload. SALI and

LIPP+ outperform other indexes in both easy and hard datasets, as they adopt a model-based insert

+ chain structure, which enables accurate lookups.

LIPP+ does not require high-contend maintaining statistics in read-only scenarios, while SALI

needs to identify hot and cold nodes, which adds a slight overhead. Therefore, SALI’s performance

is slightly lower than that of LIPP+.

ALEX+ exhibits poor lookup performance due to frequent “last mile” lookups. XIndex and

FINEdex perform unsatisfied in general due to serious lookup errors. ART-OLC does not have high

superiority with the read-only workload due to its higher tree height in comparison to the learned

index.

Figure 12(d,e) depict the tail latency on FACE and OSM datasets. XIndex and FINEdex perform

worse due to the severe lookup errors. In contrast, SALI and LIPP+ have lower tail latency than

ALEX+, as they do not suffer from any lookup errors.

Insight 3: All indexes benefit from hyperthreading under the read-only. Among them,
SALI and LIPP+ deliver the best performance due to accurate lookup capability, which is
essential for improving query performance.

4.3 Evolving Evaluation
4.3.1 Evolving triggered by hot read. Figure 13(a,b) compare the performance of the learned index

with 48 threads in two hot-read workloads on the OSM dataset. SALI _Prob refers to SALI with only

the probability model, while SALI _REvo uses an evolving strategy triggered by read. The figure

exhibits that SALI _REvo outperforms SALI _Prob by 27% and 36% in the two hot-read workloads,

respectively. In the Hot-read-A workload, SALI _REvo has surpassed the performance of LIPP+.

Moreover, SALI _REvo performs exceptionally well in OSM and GENOME due to the reduction

in subtree height of hot read nodes, effectively increasing read performance. Table 2 (in Figure 13)

shows that the SALI _Prob’s depth on the two hard datasets is up to 5 and 7, respectively. Therefore,

the evolution of the hot node will flatten the node to optimize read performance. However, under

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 258. Publication date: December 2023.



258:20 Jiake Ge, et al.

Fig. 13. The performance of the evolving strategy.

the easy datasets, such as LIBIO, the average depth of SALI _Prob is only 1.2, so there exists a

negligible improvement when using SALI _REvo as there is not enough depth to reduce.

Note that as SALI adopts the LIPP structure, the majority of keys are stored in the root node and

upper levels, while the deeper subtree contains fewer keys. Therefore, during the read evolution,

we found that connecting two nodes in one slot yields the best performance while connecting

more nodes would increase the overhead of indexing fewer keys, rendering the evolution strategy

ineffective. In this case, we directly determine which of the two nodes the target key belongs to

based on the maximum value of the nodes, which is more efficient than the SIMD approach. In

Section 5, we further discuss the applicability and limitations of read evolving.

Insight 4: In skewed workloads, the hot-read evolving can significantly improve read
performance when the subtree of the hot-read node is deep. Flattened tree structures
under easy datasets do not require evolving.
4.3.2 Evolving triggered by the hot insert. Figure 13(c) presents the evaluation of Hot-write work-

loads with 48 threads. SALI _WEvo includes both the probability model and evolving strategy

triggered by insertion. SALI _Prob only consists of the probability model and an adjustment strategy

equipped with a fixed 𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 (as described in Equation (1)), similar to the adjustment method

used by existing learned indexes, i.e., the expansion coefficient is fixed to expand the corresponding

node during adjustment.

SALI _WEvo outperforms SALI _Prob by 32% to 80%, indicating that the evolving strategy

significantly impacts hot write nodes. However, the performance of the index structure during

the hot write workload is not as good as that of the uniform workload. This is because hot writes

cause the local structure of the index to deteriorate continuously and require frequent retraining

operations. Additionally, frequent local writes in ALEX+ and ART-OLC index structures with

coarse-grained write locks increase thread blocking and adversely affect insertion performance.

Nonetheless, SALI _WEvo can adaptively evolve the hot node based on the insertion rate, i.e.,

𝑛.𝑠𝑝𝑒𝑒𝑑𝑡 (see Section 3.2). When the insertion rate becomes faster, more slots are reserved to

ensure excellent insertion performance through the expand operation (see Equation (1)), which

significantly reduces the number of retraining operations and improves overall performance.

Insight 5: Skewed workloads with hot writes often lead to significant performance
deterioration. SALI can effectively analyze and process hot insertion by dynamically
reserving more gaps to maintain a high throughput.

4.3.3 Evolving triggered by cold nodes. Figure 14 illustrates the size of learned indexes on OSM.

Notably, the size of learned indexes on OSM is about 1.5 times larger than that of the easy datasets.

In particular, Figure 14(a) shows the internal structure size of the indexes, indicating that SALI

incurs the smallest space overhead.

Note that the space overhead of the key-value pair could overshadow that of the index. Figure 14(b)

presents the sum of the index’s internal structure, the gap, and the key-value pair’s size (no
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Fig. 14. The size of indexes.

compression). The figure shows that the overall space cost of SALI is higher than that of other

index structures due to SALI reserving gaps for the key to be inserted.

However, when the workload is skewed, the gap utilization in cold nodes is low, and thus, it

can be compressed to reduce space overhead. Table 3 in Figure 13 demonstrates the size of SALI

before and after compressing cold nodes under the Hot-read-A workload. The results show that

the compression scheme in SALI can reduce space cost considerably, with compression ratios of

31% and 37% for cold nodes on OSM and GENOME, respectively, evaluated using the Hot-write

workload.

Insight 6: Compression scheme in SALI can save space dramatically while ensuring
that all gaps are reserved at the hot node, i.e., the gaps are reserved at a more accurate
and efficient location than other learned indexes.

4.4 Ablation Study
Anneser et al. [1] proposed a low-cost sampling method to identify hot and cold data, compress

cold data, and expand hot data based on traditional indexes. However, due to the need to consider

the linear fitting CDF problem, the compression and expansion operations proposed by Anneser et

al. cannot be directly applied to the learned index. Nonetheless, this low-cost sampling method

can be used in SALI for comparison with our proposed probabilistic framework and high-contend

statistics maintenance.

To compare these methods, we maintain statistical information using three approaches, as shown

in Figure 15: SALI _Stat. maintains statistical information with the high-contend approach that

is employed in many state-of-the-art learned index structures, where every new data insertion

triggers a 𝑛𝑢𝑚.++ operation in all nodes. SALI _Samp. maintains statistical information using the

sampling method proposed by Anneser et al., where the 𝑛𝑢𝑚.++ operation is triggered for every ten

inserted data. SALI _Prob. maintains statistical information using the probability model proposed

in our paper. The results show that SALI _Samp. improves scalability compared to SALI _Stat.

Furthermore, the decentralized probability-based model SALI _Prob. is more scalable than SALI

_Samp., achieving up to 35% higher performance at 60 threads.

Insight 7: Probability-based models exhibit excellent performance in concurrent scenar-
ios owing to lightweight statistical information maintenance. In contrast, any centralized
maintenance of statistics can result in performance loss.

5 DISCUSSION
5.1 Generalizability and Applicability
We will describe the two main ideas in the SALI framework, the node-evolving strategies (Section

3.2) and the probability model for node statistics (Section 3.3), as general approaches that can

potentially be applied to a wide range of learned indexes.

1) What we want to emphasize is that in any application scenario, including but not limited to

concurrent settings, if maintaining statistics information globally becomes a performance bottleneck
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Fig. 15. Comparison of different maintaining statistics methods.

for the index, adopting a probability-based lightweight statistical maintenance approach can help

enhance performance. For example, Lan et al. [16] evaluated the performance of learned index

approaches on disk and mentioned that the maintenance statistics overhead in both ALEX and LIPP

can hurt overall performance because fetching more blocks is required during statistics maintenance.

Therefore, our lightweight probability models can address this bottleneck. Anneser et al. [1] still

use a global approach to maintain hot-node information in traditional indexes. Although they

designed a sampling method to reduce overhead, our proposed probability models have minimal

overhead (see Figure 15). Therefore, using probability models for maintaining hot-node information

has the potential to improve performance. Li et al. [23] designed a new model-based learned index

framework named DILI, which combines the structures of ALEX and LIPP. The probability models

can also serve this framework to improve its scalability.

2) The node-evolving strategies can be applied to different learned indexes. The read evolving

can reduce the height of the hot sub-tree, improving read performance. The write evolving can

allocate more space for write-hot nodes in both buffer-based and model-based learned indexes,

thereby enhancing insertion performance. The cold node-compression strategy can save space

overhead in model-based learned indexes. Moreover, if applied to buffer-based learned indexes,

new compression algorithms need to be designed to reduce space overhead, which would be an

interesting research direction. Furthermore, Numerous exceptional compression works demonstrate

that data compression is a promising research direction [42, 43]. Theoretically, the SALI framework

supports the implementation of any excellent compression algorithm. Improving upon current

compression strategies is a key focus area for future.

3) The current experimental results show that the read-evolving strategy of SALI is effective only

when a slot connects two nodes in the flattened structure. As described in Section 4.3.1, the reason

is that the read performance improvement from flattening cannot cover the overhead of using SIMD

to accelerate the node lookup process. This is because the flattened hot subtree contains a relatively

small number of keys, and two nodes are sufficient to meet the flattening requirement. The number

of keys in the subtree depends on the size of the experimental dataset and the LIPP structure used

in SALI. However, we believe that in scenarios with lookup large data volumes, such as Hybrid

Transaction/Analytical Processing (HTAP), the read-evolving strategy of the index requires more

nodes to be flattened in the same slot and accelerated by SIMD for the lookup process, resulting in

performance benefits. In future work, we plan to design an automatic mechanism to determine the

optimal number of nodes to be flattened based on the current data volume and distribution.

5.2 Limitation
We have identified several limitations in this study:

1) The read-evolving strategy offers significant advantages in scenarios with complex data

distributions. Insight 4 in Section 4.3.1 states that flattened tree structures under easy datasets do
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not evolve. In such cases, enabling the read-evolving strategy would introduce additional overhead

to determine if a target node is a hot node, which would compromise the read performance of the

SALI. The overhead of node determination is detailed in additional experiments in the appendix [9].

Therefore, we have encapsulated read-evolving as a toggle switch to be enabled in scenarios where

it is needed. However, we acknowledge that determining the benefit of enabling read-evolving in a

specific data distribution can be challenging. This will be a focus of our future work.

2) Currently, SALI does not support duplicate keys. The reason for this is that SALI, being based

on the LIPP structure, does not currently support the insertion of duplicate data. However, Wu et

al. [39] have suggested that it is relatively straightforward for indexes to accommodate duplicate

keys, such as by maintaining a pointer to an overflow list. As part of our future work, we plan to

focus on implementing the insertion of duplicate data.

6 RELATEDWORK
In 2018, Kraska et al.[7, 15, 29] introduced a learned index called RMI, which sparked a new wave

of index design considerations. While the lookup performance was satisfactory, the first-generation

learned indexes, such as RMI and RS[14], did not support updates. To address this limitation,

Galakat et al.[8] designed FITing-tree, an updatable learned index. Ferragina et al. [5] improved the

construction algorithm of FITing-tree and introduced the PGM index, which optimized the number

of linear models generated while setting the maximum error and used an insertion strategy similar

to LSM-Tree [33] to ensure worst-case insertion performance. However, FITing-tree and PGM

suffered from significant lookup errors and had no better insertion performance than traditional

indexes due to their buffer-based insertion strategy. In response, Ding et al.[3] designed ALEX,

which raised the insertion performance of learned indexes to a new level by using a model-based

insertion strategy. However, ALEX had prediction errors and coarse-grained write lock due to its

"shift" strategy to resolve conflicts. Wu et al.[39] designed LIPP, another learned index with an

error-free model-based insertion strategy. However, LIPP’s high-contend statistics maintenance

approach in every node hindered scalability. TONE [45] mitigates tail latency by dynamically

allocating a secondary array to accommodate data, building upon the foundation of ALEX.

XIndex [36, 37] was the first to implement a concurrent update-capable learned index. However,

frequent “last mile” queries made it less competitive. FINEdex [21] improved the concurrency

performance by using a flattened structure to avoid coarse-grained locking. Wongkham et al. [38]

implemented concurrent structures for ALEX and LIPP, named ALEX+ and LIPP+, respectively.

Experimental showed that ALEX+ outperformed LIPP+.

Learned indexes have also inspired new design ideas for other application scenarios [2, 4, 13,

15, 22, 27, 30, 41, 44]. For instance, Lu et al. [25] developed APEX, a learned index based on NVM.

Ma et al. [26] designed FILM, a learned index that supports larger-than-memory databases. Wu et

al. [40] introduced NFL, a learned index that changes the CDF of stored data through deep learning,

making it easier to approximate. Nathan et al. [32] focused onmulti-dimensional in-memory learned

indexes. However, these works are beyond the scope of our discussion.

7 CONCLUSION
We have developed SALI, a highly scalable learned index framework. In SALI, we have designed a

probability-based framework for monitoring the “degradation signals” of the index and identifying

hot/cold nodes in a decentralized manner, thereby eliminating thread blocking and improving

the index’s scalability in a concurrent scenario. Since the statistical overhead is negligible, the

probability framework provides the necessary conditions for the index to evolve separately toward

hot and cold data. Furthermore, we have devised evolution strategies that allow SALI to develop

into better-performing local structures for hot and cold nodes independently. The experimental
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results demonstrate that SALI built upon the𝑀𝑜𝑑.+𝐶 structure offers significantly better scalability

than state-of-the-art learned indexes, and the evolution strategies can increase read and write

performance by at least 25% and 30%, respectively.
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